
HAL Id: hal-00990008
https://hal.science/hal-00990008v1

Preprint submitted on 12 May 2014 (v1), last revised 7 Aug 2015 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistency of Random Forests
Erwan Scornet, Gérard Biau, Jean-Philippe Vert

To cite this version:
Erwan Scornet, Gérard Biau, Jean-Philippe Vert. Consistency of Random Forests. 2014. �hal-
00990008v1�

https://hal.science/hal-00990008v1
https://hal.archives-ouvertes.fr


Consistency of Random Forests

Erwan Scornet
Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
erwan.scornet@upmc.fr

Gérard Biau1

Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
& Institut universitaire de France
gerard.biau@upmc.fr

Jean-Philippe Vert
Centre for Computational Biology, Mines ParisTech, Fontainebleau,
F-77300, France
& Institut Curie, Paris, F-75248, France
& U900, INSERM, Paris, F-75248, France
jean-philippe.vert@mines-paristech.fr

Abstract

Random forests are a learning algorithm proposed by Breiman (2001)
which combines several randomized decision trees and aggregates their
predictions by averaging. Despite its wide usage and outstanding prac-
tical performance, little is known about the mathematical properties
of the procedure. This disparity between theory and practice orig-
inates in the difficulty to simultaneously analyze both the random-
ization process and the highly data-dependent tree structure. In the
present paper, we take a step forward in forest exploration by prov-
ing a consistency result for Breiman’s (2001) original algorithm in the
context of additive regression models. Our analysis also sheds an in-
teresting light on how random forests can nicely adapt to sparsity in
high-dimensional settings.
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1 Introduction

Random forests are an ensemble learning method for classification and re-
gression that constructs a number of randomized decision trees during the
training phase and predicts by averaging the results. Since its publication
in the seminal paper of Breiman (2001), the procedure has become a ma-
jor data analysis tool, that performs well in practice in comparison with
many standard methods. What has greatly contributed to the popularity
of forests is the fact that they can be applied to a wide range of predic-
tion problems and have few parameters to tune. Aside from being simple
to use, the method is generally recognized for its accuracy and its abil-
ity to deal with small sample sizes, high-dimensional feature spaces, and
complex data structures. The random forest methodology has been suc-
cessfully involved in many practical problems, including air quality pre-
diction (winning code of the EMC data science global hackathon in 2012,
see http://www.kaggle.com/c/dsg-hackathon), chemoinformatics (Svet-
nik et al., 2003), ecology (Prasad et al., 2006; Cutler et al., 2007), 3D ob-
ject recognition (Shotton et al., 2011), and bioinformatics (Dı́az-Uriarte and
de Andrés, 2006), just to name a few. In addition, many variations on the
original algorithm have been proposed to improve the calculation time while
maintaining good prediction accuracy (see, e.g., Geurts et al., 2006; Ama-
ratunga et al., 2008). Breiman’s forests have also been extended to quantile
estimation (Meinshausen, 2006), survival analysis (Ishwaran et al., 2008),
and ranking prediction (Clémençon et al., 2013).

On the theoretical side, the story is less conclusive and, regardless of their
extensive use in practical settings, little is known about the mathematical
properties of random forests. To date, most studies have concentrated on
isolated parts or simplified versions of the procedure. The most celebrated
theoretical result is that of Breiman (2001), which offers an upper bound
on the generalization error of forests in terms of correlation and strength of
the individual trees. This was followed by a technical note (Breiman, 2004),
that focuses on a stylized version of the original algorithm. A critical step
was subsequently taken by Lin and Jeon (2006), who established an inter-
esting connection between random forests and a particular class of nearest
neighbor predictors, further explored by Biau and Devroye (2010). In re-
cent years, various theoretical studies (e.g., Biau et al., 2008; Ishwaran and
Kogalur, 2010; Biau, 2012; Genuer, 2012; Zhu et al., 2012) have been per-
formed, analyzing consistency of simplified models, and moving ever closer
to practice. A recent attempt towards narrowing the gap between theory
and practice is by Denil et al. (2013), where the first consistency result for
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online random forests is presented.

The difficulty to properly analyze random forests can be explained by the
black-box nature of the procedure, which is actually a subtle combination of
different components it is illusory to analyze separately. Among the forest
essential ingredients, both bagging (Breiman, 1996) and the Classification
And Regression Trees (CART)-split criterion (Breiman et al., 1984) play a
critical role. Bagging (a contraction of bootstrap-aggregating) is a general
aggregation scheme which proceeds by generating subsamples from the orig-
inal data set, constructing a predictor from each resample, and deciding by
averaging. It is one of the most effective computationally intensive proce-
dures to improve on unstable estimates, especially for large, high-dimensional
data sets where finding a good model in one step is impossible because of
the complexity and scale of the problem (Bühlmann and Yu, 2002; Kleiner
et al., 2012; Wager et al., 2013). On the other hand, the CART-split selec-
tion, originated from the most influential CART algorithm of Breiman et al.
(1984), is used in the construction of the individual trees to choose the best
cuts perpendicular to the axes. At each node of each tree, the best cut is
selected by optimizing the CART-split criterion, based on the notion of Gini
impurity (classification) and prediction squared error (regression).

Yet, while bagging and the CART-splitting scheme play a key role in the
random forest mechanism, both are difficult to analyze, thereby explaining
why theoretical studies have considered so far simplified versions of the orig-
inal procedure. This is often done by simply ignoring the bagging step and
by replacing the CART-split selection by a more elementary cut protocol.
Besides, in Breiman’s forests, each leaf (that is, a terminal node) of the in-
dividual trees contains a fixed pre-specified number of observations (usually
small). Since this feature is hardly amenable to a rigorous mathematical in-
vestigation, most authors focus on a simplified, data-independent, stopping
criterion. All in all, in these toy models, the forest construction is indepen-
dent of the data, thus creating a gap between theory and practice.

Motivated by the above discussion, we study in the present paper some
asymptotic properties of Breiman’s (2001) algorithm in the context of addi-
tive regression models. We prove the L2 consistency of random forests, which
gives a first basic theoretical guarantee of efficiency for this algorithm. Up to
our knowledge, this is the first consistency result for Breiman’s (2001) original
procedure, since most of the previous studies focused on data-independent
splitting criteria and cells containing a number of points growing to infinity
with the sample size. Our approach rests upon a detailed analysis of the
behavior of the cells generated by CART-split selection as the sample size

3



grows. In fact, a good control of the regression function variation inside each
cell, together with a proper choice of the resampling rate in bagging are suf-
ficient to ensure the forest consistency in a L

2 sense. It also turns out that
our analysis has interesting consequences for the understanding of the forest
behavior in a sparse framework, that is, when the ambient dimension p is
large but only a smaller number of coordinates carry out information.

The paper is organized as follows. In Section 2, we introduce some notation
and describe the random forest method. The main asymptotic results are
presented in Section 3 and further discussed in Section 4. Section 5 is devoted
to the main proofs, and technical results are postponed to Section 6.

2 Random forests

The general framework is that of L2 regression estimation, in which an in-
put random vector X ∈ [0, 1]p is observed, and the goal is to predict the
square integrable random response Y ∈ R by estimating the regression func-
tion m(x) = E[Y |X = x]. To this aim, we assume given a training sample
Dn = (X1, Y1), . . . , (Xn, Yn) of [0, 1]p × R-valued independent random vari-
ables distributed as the prototype pair (X, Y ). The objective is to use the
data set Dn to construct an estimate mn : [0, 1]p → R of the function m. In
this respect, we say that a regression function estimate mn is L2 consistent
if E[mn(X)−m(X)]2 → 0 as n → ∞ (where the expectation is over X and
Dn).

A random forest is a predictor consisting of a collection of M randomized
regression trees. For the m-th tree in the family, the predicted value at
the query point x is denoted by mn(x; Θm,Dn), where Θ1, . . . ,ΘM are inde-
pendent random variables, distributed as a generic random variable Θ and
independent of the sample Dn. In practice, this variable is used to subsam-
ple the training set prior to the growing of individual trees and to select the
successive candidate directions for splitting. The trees are combined to form
the (finite) forest estimate

mM,n(x; Θ1, . . . ,ΘM ,Dn) =
1

M

M
∑

m=1

mn(x; Θm,Dn). (1)

Since in practice we can choose M as large as possible, we study in this paper
the property of the infinite forest estimate obtained as the limit of the finite
forest estimate when the number of trees M grows to infinity:

mn(x;Dn) = EΘ [mn(x; Θ,Dn)] ,
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where EΘ denotes expectation with respect to the random parameter Θ,
conditionally on Dn. This operation is justified by the law of large numbers,
which asserts that, almost surely, conditionally on Dn,

lim
M→∞

mn,M(x; Θ1, . . . ,ΘM ,Dn) = mn(x;Dn),

(see the appendix in Breiman, 2001, for details). In the sequel, to lighten
notation, we simply write mn(x) instead of mn(x; Dn).

In Breiman’s (2001) original forests, each node of a single tree is associated
with a hyper-rectangular cell. At each step of the tree construction, the
collection of cells forms a partition of [0, 1]p. The root of the tree is [0, 1]p

itself, and each tree is grown as follows:

Algorithm 1: Breiman random forest predicted value at x.

Input: Training set Dn, number of trees M > 0, an ∈ {1, . . . , n},
mtry ∈ {1, . . . , p}, and x ∈ [0, 1]p.

Output: Prediction of the random forest at x
1 for j = 1, . . . ,M do
2 Select an points, without replacement, uniformly in Dn.
3 Set P = {[0, 1]p} the partition associated with the root of the tree.
4 while there exists A ∈ P that contains strictly more than one point do
5 Select uniformly, without replacement, a subsetMtry ⊂ {1, . . . , p} of

cardinality mtry

6 Select the best split in A by optimizing the CART-split criterion
along the coordinates inMtry (see details below).

7 Cut the cell A according to the best split. Call AL and AR the two
resulting cell.

8 Set P ← (P\{A}) ∪ {AL} ∪ {AR}.
9 end

10 Compute the predicted value mn(x; Θj,Dn) at x equal to the only Yi

falling in the cell of x in partition P .
11 end
12 Compute the random forest estimate mM,n(x; Θ1, . . . ,ΘM ,Dn) at the query

point x according to (1).

So far, we have not made explicit the CART-split criterion used in Algo-
rithm 1. To properly define it, we let A be a generic cell and Nn(A) be
the number of data points falling in A. A cut in A is a pair (j, z), where j
is a dimension in {1, . . . , p} and z is the position of the cut along the j-th
coordinate, within the limits of A. We let CA be the set of all such possible
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cuts in A. Then, with the notation Xi = (X
(1)
i , . . . ,X

(p)
i ), for any (j, z) ∈ CA,

the CART-split criterion (Breiman et al., 1984) takes the form

Ln(j, z) =
1

Nn(A)

n
∑

i=1

(Yi − ȲA)
2
1Xi∈A

− 1

Nn(A)

n
∑

i=1

(Yi − ȲAL
1
X

(j)
i <z
− ȲAR

1
X

(j)
i ≥z

)21Xi∈A, (2)

where AL = {x ∈ A : x(j) < z}, AR = {x ∈ A : x(j) ≥ z} and ȲA (resp.,
ȲAL

, ȲAR
) is the average of the Yi’s belonging to A (resp., AL, AR), with the

convention 0/0 = 0. At each cell A, the best cut (j⋆n, z
⋆
n) is finally selected

by maximizing Ln(j, z) overMtry and CA, that is

(j⋆n, z
⋆
n) ∈ argmax

j∈Mtry

(j,z)∈CA

Ln(j, z).

To remove ties, the best cut is always performed along the best cut direction
j⋆n, at the middle of two consecutive data points. It should be noted that, in
the original algorithm, the resampling step in Algorithm 1 (line 2) is done
by bootstrapping, that is by choosing n out of n points with replacement.
Here, we consider a slightly different version where resampling is done by
choosing an out of n points without replacement, where an < n. Picking data
points without replacement is just a convenient hypothesis for the proofs.
Considering resampling instead of bootstrapping is an easy way to ensure
that the estimation error of the forest can be controlled.

3 Main results

We consider an additive regression model satisfying the following properties:

Assumption 1. (H1) The response Y follows

Y =

p
∑

j=1

mj(X
(j)) + ε,

where X = (X(1), . . . ,X(p)) is uniformly distributed over [0, 1]p, ε is an in-
dependent centered Gaussian noise with finite variance σ2 > 0, and each
component mj is assumed to be continuous.
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Additive regression models, which extend linear models, were popularized
by Stone (1985) and Hastie and Tibshirani (1986). These models, which de-
compose the regression function as a sum of univariate functions, are flexible
and easy to interpret. They are acknowledged for providing a good trade-
off between model complexity and calculation time, and were accordingly
extensively studied for the last thirty years. Additive models also play an
important role in the context of high-dimensional data analysis and sparse
modelling, where they are successfully involved in procedures such as the
Lasso and various aggregation schemes (for an overview, see, e.g., Hastie
et al., 2009).

Throughout the document, 1
X

Θ↔Xi
stands for the indicator that Xi falls in

the same cell as X in the random tree designed with Dn and the random
parameter Θ. We denote by PΘ the partition corresponding to such a random
tree. The following assumption will be needed for our analysis:

Assumption 2. (H2) There exists a sequence (γn)n → 0 such that, for all
n ∈ N

⋆, and for all 1 ≤ i, j ≤ n with j 6= i, almost surely,

∣

∣

∣
E

[

Yi −m(Xi)
∣

∣

∣
Xi,Xj, Yj,1

X
Θ↔Xi

,1
X

Θ′

↔Xj

]∣

∣

∣
≤ γn,

where Θ′ is an independent copy of Θ. Besides, there exists a constant σ′2 > 0
such that, for all 1 ≤ i ≤ n, almost surely,

E

[

(Yi −m(Xi))
2
∣

∣

∣
Xi,1

X
Θ↔Xi

]

≤ σ′2.

It is stressed that (H2) is satisfied in the ideal case where partitions are inde-
pendent of the labels Yi’s. Indeed, in that case, the indicators 1

X
Θ↔Xi

,1
X

Θ′

↔Xj

and the sample Dn are independent, which implies that, almost surely, for
all 1 ≤ i, j ≤ n such that i 6= j,

E

[

Yi −m(Xi)
∣

∣

∣
Xi,Xj, Yj,1

X
Θ↔Xi

,1
X

Θ′

↔Xj

]

= 0,

and, for all 1 ≤ i ≤ n,

E

[

(Yi −m(Xi))
2
∣

∣

∣
Xi,1

X
Θ↔Xi

]

= σ2.

However, assuming such an independence in the Breiman’s forests is by far
unrealistic, since CART-splits make an extensive use of the whole sample
Dn to grow the trees. Thus, assumption (H2) states that the dependency
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between partitions and a fixed data point is weak. Despite its technical as-
pect, the first part of (H2) can be easily interpreted by saying that given
two indicators 1

X
Θ↔Xi

and 1
X

Θ′

↔Xj

(which contain information about parti-

tions PΘ and PΘ′), the pair (Xj, Yj) does not much influence the value Yi

of another data point. The two random variables Yi and Yj are independent
but, since partitions depend upon the whole training sample, Yi is not in-
dependent of (Xi,Xj, Yj,1

X
Θ↔Xi

,1
X

Θ′

↔Xj

). Thus, (H2) requires this indepen-

dence to be weak, in the sense that E[Yi|Xi,Xj, Yj,1
X

Θ↔Xi
,1

X
Θ′

↔Xj

] is close to

m(Xi) = E[Yi|Xi]. Similarly, the second part of (H2) can be understood by
saying that the indicator 1

X
Θ↔Xi

does not alter too much the conditional law

of Yi knowing Xi, in the sense that E
[

(Yi −m(Xi))
2
∣

∣

∣
Xi,1

X
Θ↔Xi

]

should be

close to σ2 = E

[

(Yi −m(Xi))
2
∣

∣

∣
Xi

]

. In that case, this would ensure that the

first quantity is bounded above. It is our belief that requirements in (H2)
are mild, since partitions based on CART-split criterion are not strongly
influenced by single observations. Indeed, splits are decided via quantities
involving empirical mean and variance, which are just averages over sets of
data points and, as such, do not too much depend upon single values. Thus,
knowing the value of one data point does not provide much information about
the value of another one.

We are now equipped to state our main result.

Theorem 3.1. Assume that (H1) and (H2) are satisfied. Then, provided
an →∞ and an log n/n→ 0, random forests are consistent, i.e., we have

lim
n→∞

E [mn(X)−m(X)]2 = 0.

Up to our knowledge, apart from the fact that bootstrapping is replaced by
subsampling, this is the first consistency result for Breiman’s (2001) forests.
Indeed, models studied so far are designed independently of the sample Dn,
and this makes them much easier to analyse. However, such models are
clearly an unrealistic representation of the true procedure, which uses both
the positionsXi’s and the values Yi’s to grow the trees. The resulting forest is
then highly data-dependent and understanding its behavior deserves a more
involved mathematical treatment. This important issue will be thoroughly
discussed in Section 4.

Our analysis sheds also some interesting light on the behavior of forests when
the ambient dimension p is large but the true underlying dimension of the
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model is small. To see how, assume that the additive model (H1) satisfies a
sparsity constraint of the form

Y =
S
∑

j=1

mj(X
(j)) + ε,

where S < p represents the true, but unknown, dimension of the model.
Thus, among the p original features, it is assumed that only the first (without
loss of generality) S variables are informative. Put differently, Y is assumed
to be independent of the last (p− S) variables. In this dimension reduction
context, the ambient dimension p can be very large, but we believe that the
representation is sparse, i.e., that few components of m are non-zero. As
such, the value S characterizes the sparsity of the model: the smaller S, the
sparser m.

Proposition 1 below shows that random forests nicely adapt to the sparsity
setting by asymptotically performing, with high probability, splits along the
S informative variables.

In this proposition, we set mtry = p and, for all k, we denote by j1,n(X), . . . ,
jk,n(X) the first k cut directions used to construct the cell containing X, with
the convention that jq,n(X) =∞ if the cell has been cut strictly less than q
times.

Proposition 1. Assume that (H1) is satisfied. Let k ∈ N
⋆ and ξ > 0.

Assume that there is no interval [a, b] and no j ∈ {1, . . . , S} such that mj is
constant on [a, b]. Then, with probability 1 − ξ, for all n large enough, we
have, for all 1 ≤ q ≤ k,

jq,n(X) ∈ {1, . . . , S}.

This proposition provides an interesting perspective on why random forests
are still able to do a good job in high-dimensional settings. Since the algo-
rithm selects splits mostly along informative variables, everything happens as
if data were projected onto the vector space generated by the S informative
variables. Therefore, forests are likely to only depend upon these S variables,
which, in turn, improves the performance of the method compared to other
non-adaptive (i.e., whose construction is independent of the Yi’s) ones. This
is in line with the results of Biau (2012), who proved that, for a simplified
model, the performance of the method only depends upon the true dimension
S and not on the ambient dimension p.
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4 Discussion

At first, it should be mentioned that, contrary to most previous works, there
is only one observation per leaf of each individual tree. This implies that the
single trees are eventually not consistent, since standard conditions for tree
consistency require that the number of observations in the terminal nodes
tends to infinity as n grows (see, e.g., Devroye et al., 1996; Györfi et al.,
2002). Thus, the random forest algorithm aggregates rough individual tree
predictors to build a provably consistent general architecture.

One of the main difficulties in assessing the mathematical properties of
Breiman’s (2001) forests is that the construction process of the individual
trees strongly depends on both the Xi’s and the Yi’s. For partitions that
are independent of the Yi’s, consistency can be shown by relatively simple
means via Stone’s (1977) theorem for local averaging estimates (see also
Györfi et al., 2002, Chapter 6). However, our partitions and trees depend
upon the Y -values in the data. This makes things complicated, but math-
ematically interesting too. Thus, logically, the proof of Theorem 3.1 starts
with an adaptation of Stone’s (1977) theorem tailored for random forests.
More precisely, the proof relies on two main arguments, both of which stress
an important feature of the random forest mechanism.

The first argument is outlined in Proposition 2 below. It states that the
variation of the regression function m within a cell of a random tree is small
provided n is large enough. To this aim, we define, for any cell A, the
variation of m within A as

∆(m,A) = sup
x,x′∈A

|m(x)−m(x′)|.

Furthermore, we denote by An(X,Θ) the cell of a tree built with random
parameter Θ that contains the point X.

Proposition 2. Assume that (H1) holds. For all ρ, ξ > 0, there exists
N ∈ N

⋆ such that, for all n > N ,

P [∆(m,An(X,Θ)) ≤ ξ] ≥ 1− ρ.

It should be noted that one of the main requirements of Stone’s theorem ap-
plied to Y -independent partitioning estimates is that the diameter of the tree
cells tends to zero in probability. Instead of such a geometrical assumption,
Proposition 2 ensures that the variation of m inside a cell is small, thereby
forcing the approximation error of the forest to asymptotically approach zero.
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The second important argument relies on the fact that the subsampling rate
an/n is o(1/ log n) in Theorem 3.1. This guarantees that every single observa-
tion (Xi, Yi) is used in the tree construction with a probability that becomes
small with n. It also implies that the query point x cannot be connected to
the same data point in a high proportion of trees. If not, the predicted value
at x would be too much influenced by one single pair (Xi, Yi), making the
forest inconsistent. In fact, the proof of Theorem 3.1 reveals that the estima-
tion error of a forest estimate is small as soon as the maximum probability of
connection between the query point and all observations is small. Thus, the
assumption on the subsampling rate is just a convenient way to control these
probabilities, by ensuring that partitions are dissimilar enough. This is the
case if x is connected with many data points through the forest. This idea
of diversity among trees was introduced by Breiman (2001), but is generally
difficult to analyse. In our approach, the subsampling is the key component
for imposing tree diversity.

5 Proof of Theorem 3.1

For the sake of clarity, proofs of the intermediary results are postponed to
Section 6. We start with some notations.

5.1 Notations

In the sequel, to clarify the notation, we will sometimes write d = (d(1), d(2))
to represent a cut (j, z).

Recall that, for any cell A, CA is the set of all possible cuts in A. Thus,
with this notation, C[0,1]p is just the set of all possible cuts at the root of the
tree, that is, all possible choices d = (d(1), d(2)) with d(1) ∈ {1, . . . , p} and
d(2) ∈ [0, 1].

More generally, for any x ∈ [0, 1]p, we call Ak(x) the collection of all possible
k ≥ 1 consecutive cuts used to build the cell containing x. Such a cell is
obtained after a sequence of cuts dk = (d1, . . . , dk), where the dependency of
dk upon x is understood. Accordingly, for any dk ∈ Ak(x), we let A(x,dk)
be the cell containing x built with the particular k-tuple of cuts dk. The
proximity between two elements dk and d′

k in Ak(x) will be measured via

‖dk − d′
k‖∞ = sup

1≤j≤k
max

(

|d(1)j − d
′(1)
j |, |d(2)j − d

′(2)
j |
)

.
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Accordingly, the distance d∞ between dk ∈ Ak(x) and any A ⊂ Ak(x) is

d∞(dk,A) = inf
z∈A
‖dk − z‖∞.

Remember that An(X,Θ) denotes the cell of a tree containingX and designed
with random parameter Θ. Similarly, Ak,n(X,Θ) is the same cell but where
only the first k cuts are performed (k ∈ N

⋆ is a parameter to be chosen later).
We also denote by d̂k,n(X,Θ) = (d̂1,n(X,Θ), . . . , d̂k,n(X,Θ)) the k cuts used
to construct the cell Ak,n(X,Θ).

Recall that, for any cell A, the empirical criterion used to split A in the
random forest algorithm is defined in (2). For any cut (j, z) ∈ CA, we define
the following theoretical version of Ln(·, ·):

L⋆(j, z) = V[Y |X ∈ A]− P[X(j) < z |X ∈ A] V[Y |X(j) < z,X ∈ A]

− P[X(j) ≥ z |X ∈ A] V[Y |X(j) ≥ z,X ∈ A].

Observe that L⋆(·, ·) does not depend upon the training set and that, by the
strong law of large numbers, Ln(j, z) → L⋆(j, z) almost surely as n → ∞
for all cuts (j, z) ∈ CA. Therefore, it is natural to define the best theoretical
split (j⋆, z⋆) of the cell A as

(j⋆, z⋆) ∈ argmin
(j,z)∈CA
j∈Mtry

L⋆(j, z).

In view of this criterion, we define the theoretical random forest as before,
but with consecutive cuts performed by optimizing L⋆(·, ·) instead of Ln(·, ·).
We note that this new forest does depend on Θ throughMtry, but not on the
sample Dn. In particular, the stopping criterion for dividing cells has to be
changed in the theoretical random forest; instead of stopping when a cell has
a single training point, we impose that each tree of the theoretical forest is
stopped at a fixed level k ∈ N

⋆. We also let A⋆
k(X,Θ) be a cell of the theoret-

ical random tree at level k, containing X, designed with randomness Θ, and
resulting from the k theoretical cuts d⋆

k(X,Θ) = (d⋆1(X,Θ), . . . , d⋆k(X,Θ)).
Since there can exist multiple best cuts at, at least, one node, we call
A⋆

k(X,Θ) the set of all k-tuples d⋆
k(X,Θ) of best theoretical cuts used to

build A⋆
k(X,Θ).

We are now equipped to prove Proposition 2. For clarity reasons, the proof
has been divided in three steps. Firstly, we study in Lemma 1, the theoretical
random forest. Then we prove in Lemma 3 (via Lemma 2), that theoretical
and empirical cuts are close to each other. Proposition 2 is finally established
as a consequence of Lemma 1 and Lemma 3. Proofs of these lemmas are to
be found in Section 6.
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5.2 Proof of Proposition 2

We first need a lemma which states that the variation of m(X) within the
cell A⋆

k(X,Θ) where X falls, as measured by ∆(m,A⋆
k(X,Θ)), tends to zero.

Lemma 1. Assume that (H1) is satisfied. Then, for all x ∈ [0, 1]p,

∆(m,A⋆
k(x,Θ))→ 0, almost surely, as k →∞.

The next step is to show that cuts in theoretical and original forests are
close to each other. To this aim, for any x ∈ [0, 1]p and any k-tuple of cuts
dk ∈ Ak(x), we define

Ln,k(x,dk) =
1

Nn(A(x,dk−1))

n
∑

i=1

(Yi − ȲA(x,dk−1))
2
1Xi∈A(x,dk−1)

− 1

Nn(A(x,dk−1))

n
∑

i=1

(

Yi − ȲAL(x,dk−1)1
X

(d
(1)
k

)

i <d
(2)
k

− ȲAR(x,dk−1)1
X

(d
(1)
k

)

i ≥d
(2)
k

)2

1Xi∈A(x,dk−1),

where AL(x,dk−1) = A(x,dk−1) ∩ {z : z(d
(1)
k

) < d
(2)
k } and AR(x,dk−1) =

A(x,dk−1) ∩ {z : z(d
(1)
k

) ≥ d
(2)
k }, and where we use the convention 0/0 = 0

when A(x,dk−1) is empty. Besides, we let A(x,d0) = [0, 1]p in the previous
equation. The quantity Ln,k(x,dk) is nothing but the criterion to maximize
in dk to find the best k-th cut in the cell A(x,dk−1). Lemma 2 below ensures
that Ln,k(x, ·) is stochastically equicontinuous, for all x ∈ [0, 1]p. To this aim,

for all ξ > 0, and for all x ∈ [0, 1]p, we denote by Aξ
k−1(x) ⊂ Ak−1(x) the set

of all (k − 1)-tuples dk−1 such that the cell A(x,dk−1) contains a hypercube
of edge length ξ. Moreover, we let Āξ

k(x) = {dk : dk−1 ∈ Aξ
k−1(x)} equipped

with the norm ‖dk‖∞.

Lemma 2. Assume that (H1) is satisfied. Fix x ∈ [0, 1]p, k ∈ N
⋆ and let

ξ > 0. Then Ln,k(x, ·) is stochastically equicontinuous on Āξ
k(x), that is, for

all α, ρ > 0, there exists δ > 0 such that

lim
n→∞

P









sup
‖dk−d′

k
‖∞≤δ

dk,d
′

k
∈Āξ

k
(x)

|Ln,k(x,dk)− Ln,k(x,d
′
k)| > α









≤ ρ.
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Lemma 2 is then used in Lemma 3 to assess the distance between theoretical
and empirical cuts.

Lemma 3. Assume that (H1) is satisfied. Fix ξ, ρ > 0 and k ∈ N
⋆. Then

there exists N ∈ N
⋆ such that, for all n ≥ N ,

P

[

d∞(d̂k,n(X,Θ),A⋆
k(X,Θ)) ≤ ξ

]

≥ 1− ρ.

We are now ready to prove Proposition 2. Fix ρ, ξ > 0. Since almost sure
convergence implies convergence in probability, according to Lemma 1, there
exists k0 ∈ N

⋆ such that

P
[

∆(m,A⋆
k0
(X,Θ)) ≤ ξ

]

≥ 1− ρ. (3)

By Lemma 3, for all ξ1 > 0, there exists N ∈ N
⋆ such that, for all n ≥ N ,

P

[

d∞(d̂k0,n(X,Θ),A⋆
k0
(X,Θ)) ≤ ξ1

]

≥ 1− ρ. (4)

Since m is uniformly continuous, we can choose ξ1 sufficiently small such
that, for all x ∈ [0, 1]p, for all dk0 ,d

′
k0

satisfying d∞(dk0 ,d
′
k0
) ≤ ξ1, we have

∣

∣∆(m,A(x,dk0))−∆(m,A(x,d′
k0
))
∣

∣ ≤ ξ. (5)

Thus, combining inequalities (4) and (5), we obtain

P

[

∣

∣∆(m,Ak0,n(X,Θ))−∆(m,A⋆
k0
(X,Θ))

∣

∣ ≤ ξ
]

≥ 1− ρ. (6)

Using the fact that ∆(m,A) ≤ ∆(m,A′) whenever A ⊂ A′, we deduce from
(3) and (6) that, for all n ≥ N ,

P [∆(m,An(X,Θ)) ≤ 2ξ] ≥ 1− 2ρ.

This concludes the proof of Proposition 2.

5.3 Proof of Theorem 3.1

Recall that each cell contains exactly one data point. Thus, letting

Wni(X) = EΘ

[

1Xi∈An(X,Θ)

]

,
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the random forest estimate mn may be rewritten as

mn(X) =
n
∑

i=1

Wni(X)Yi.

We have in particular that
∑n

i=1 Wni(X) = 1. Thus,

E [mn(X)−m(X)]2 ≤ 2E

[

n
∑

i=1

Wni(X)(Yi −m(Xi))

]2

+ 2E

[

n
∑

i=1

Wni(X)(m(Xi)−m(X))

]2

def
= 2In + 2Jn.

Fix α > 0 and let ‖m‖∞ = sup
x∈[0,1]p |m(x)|. To upper bound Jn, note that

by Jensen’s inequality,

Jn ≤ E

[

n
∑

i=1

1Xi∈An(X,Θ)(m(Xi)−m(X))2

]

≤ E

[

n
∑

i=1

1Xi∈An(X,Θ)∆
2(m,An(X,Θ))

]

≤ E
[

∆2(m,An(X,Θ))
]

.

So, by definition of ∆(m,An(X,Θ))2,

Jn ≤ 4‖m‖2∞ E[1∆2(m,An(X,Θ))≥α] + α

≤ α(4‖m‖2∞ + 1),

for all n large enough, according to Proposition 2.

To upper bound In, we note that

In = E

[

n
∑

i=1

n
∑

j=1

Wni(X)Wnj(X)(Yi −m(Xi))(Yj −m(Xj))

]

.

Hereafter, to simplify notation, we write 1
X

Θ↔Xi
instead of 1X∈An(Xi,Θ), keep-

ing in mind the fact that the indicator 1
X

Θ↔Xi
depends upon the whole sample

Dn. Thus, recalling that Wni(X) = EΘ[1
X

Θ↔Xi
], we have, for any fixed i, and
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for all j 6= i,

E [Wni(X)Wnj(X)(Yi −m(Xi))(Yj −m(Xj))]

= E

[

1
X

Θ↔Xi
1
X

Θ′

↔Xj

(Yi −m(Xi))(Yj −m(Xj))
]

= E

[

E

[

1
X

Θ↔Xi
1
X

Θ′

↔Xj

(Yi −m(Xi))(Yj −m(Xj))

∣

∣

∣

∣

∣

Xi,Xj, Yi,1
X

Θ↔Xi
,1

X
Θ′

↔Xj

]

]

= E

[

1
X

Θ↔Xi
1
X

Θ′

↔Xj

(Yi −m(Xi))

× E

[

Yj −m(Xj)|Xi,Xj, Yi,1
X

Θ↔Xi
,1

X
Θ′

↔Xi

]

]

.

Therefore, by assumption (H2),

∣

∣E
[

Wni(X)Wnj(X)(Yi −m(Xi))(Yj −m(Xj))
]∣

∣

≤ γnE

[

1
X

Θ↔Xi
1
X

Θ′

↔Xj

|Yi −m(Xi)|
]

.

Taking the sum over (i, j) for i 6= j, we obtain

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i,j=1
i 6=j

E [Wni(X)Wnj(X)(Yi −m(Xi))(Yj −m(Xj))]

∣

∣

∣

∣

∣

∣

∣

∣

≤ γn

n
∑

i,j=1
i 6=j

E

[

1
X

Θ↔Xi
1
X

Θ′

↔Xj

|Yi −m(Xi)|
]

≤ γn

n
∑

i=1

E

[

1
X

Θ↔Xi
|Yi −m(Xi)|

]

≤ γn

n
∑

i=1

E

[

1
X

Θ↔Xi
E

[

|Yi −m(Xi)|
∣

∣

∣
Xi,1

X
Θ↔Xi

]

]

≤ γn

n
∑

i=1

E

[

1
X

Θ↔Xi
E

1/2
[

|Yi −m(Xi)|2
∣

∣

∣
Xi,1

X
Θ↔Xi

]

]

≤ γnσ
′.
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We conclude that, for all n large enough,

n
∑

i,j=1
i 6=j

E [Wni(X,Θ)Wnj(X)(Yi −m(Xi))(Yj −m(Xj))] ≤ α.

Consequently, recalling that εi = Yi−m(Xi), we have, for all n large enough,

In ≤ α + E

[

n
∑

i=1

W 2
ni(X)(Yi −m(Xi))

2

]

≤ α + E

[

max
1≤ℓ≤n

Wnℓ(X)
n
∑

i=1

Wni(X)ε2i

]

≤ α + E

[

max
1≤ℓ≤n

Wnℓ(X) max
1≤i≤n

ε2i

]

. (7)

Now, observe that in the subsampling step, there are exactly
(

an−1
n−1

)

choices
to pick a fixed observation Xi. Since x and Xi belong to the same cell only
if Xi is selected in the subsampling step, we see that

PΘ

[

X
Θ↔ Xi

]

≤
(

an−1
n−1

)

(

an
n

) =
an
n
,

where PΘ denotes the probability with respect to Θ, conditionally on X and
Dn. So,

max
1≤i≤n

Wni(X) ≤ max
1≤i≤n

PΘ

[

X
Θ↔ Xi

]

≤ an
n
. (8)

Thus, combining inequalities (7) and (8), for all n large enough,

In ≤ α +
an
n

E

[

max
1≤i≤n

ε2i

]

.

The term inside the brackets is the maximum of n χ2-squared distributed
random variables. Thus, for some positive constant C,

E

[

max
1≤i≤n

ε2i

]

≤ C log n,

(see, e.g., Chapter 1 in Boucheron et al., 2013). We conclude that, for all n
large enough,

In ≤ α + C
an log n

n
≤ 2α.

Since α was arbitrary, the proof is complete.
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6 Technical results

6.1 Proof of Lemma 1

Technical Lemma 1. Assume that (H1) is satisfied and that L⋆ ≡ 0 for
all cuts in some given cell A. Then the regression function m is constant on
A.

Proof of Technical Lemma 1. We start by proving the result in dimension
p = 1. Letting A = [a, b] (0 ≤ a < b ≤ 1), and recalling that Y = m(X) + ε,
one has

L⋆(1, z) = V [Y |X ∈ A]− P [a ≤ X ≤ z |X ∈ A]V [Y |a ≤ X ≤ z]

− P [z ≤ X ≤ b |X ∈ A]V [Y |z < X ≤ b]

= − 1

(b− a)2

(
∫ b

a

m(t)dt

)2

+
1

(b− a)(z − a)

(
∫ z

a

m(t)dt

)2

+
1

(b− a)(b− z)

(
∫ b

z

m(t)dt

)2

.

Let C =
∫ b

a
m(t)dt and M(z) =

∫ z

a
m(t)dt. Simple calculations show that

L⋆(1, z) =
1

(z − a)(b− z)

(

M(z)− C
z − a

b− a

)2

.

Therefore, since L⋆ ≡ 0 on CA by assumption, we obtain,

M(z) = C
z − a

b− a
.

This proves that M(z) is linear in z, and that m is therefore constant on
[a, b].

Let us now examine the general multivariate case, where A = Πp
j=1[aj, bj] ⊂

[0, 1]p. From the univariate analysis, we know that, for all 1 ≤ j ≤ p, there
exists a constant Cj such that

∫ b1

a1

. . .

∫ bp

ap

m(x)dx1 . . . dxj−1dxj+1 . . . dxp = Cj .
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Since m is additive this implies that, for all j and for all xj,

mj(xj) = Cj −
∫ b1

a1

. . .

∫ bp

ap

∑

ℓ 6=j

mℓ(xℓ)dx1 . . . dxj−1dxj+1 . . . dxp ,

which does not depend upon xi. This shows that m is constant on A.

Proof of Lemma 1. Take ξ > 0 and x ∈ [0, 1]p. Let θ be a realiza-
tion of the random variable Θ. Since m is uniformly continuous, the re-
sult is clear if diam(A⋆

k(x, θ)) tends to zero as k tends to infinity. Thus,
in the sequel, it is assumed that diam(A⋆

k(x, θ)) does not tend to zero.
In that case, since (A⋆

k(x, θ))k is a decreasing sequence of compact sets,

there exist a∞(x, θ) = (a
(1)
∞ (x, θ), . . . , a

(p)
∞ (x, θ)) ∈ [0, 1]p and b∞(x, θ) =

(b
(1)
∞ (x, θ), . . . ,b

(p)
∞ (x, θ)) ∈ [0, 1]p such that

∞
⋂

k=1

A⋆
k(x, θ) =

p
∏

j=1

[a(j)
∞ (x, θ),b(j)

∞ (x, θ)]

def
= A⋆

∞(x, θ).

Since diam(A⋆
k(x, θ)) does not tend to zero, there exists an index j′ such that

a
(j′)
∞ (x, θ) < b

(j′)
∞ (x, θ) (i.e., the cell A⋆

∞(x, θ) is not reduced to a point). Let

A⋆
k(x, θ)

def
=
∏p

j=1[a
(j)
k (x, θ),b

(j)
k (x, θ)] be the cell containing x at level k. If

the criterion L⋆ is identically zero for all cuts in A⋆
∞(x, θ) then m is constant

on A⋆
∞(x, θ) according to Lemma 1. This implies that ∆(m,A⋆

∞(x, θ)) = 0.
Thus, in that case, since m is uniformly continuous,

lim
k→∞

∆(m,A⋆
k(x, θ)) = ∆(m,A⋆

∞(x, θ)) = 0.

Let us now show by contradiction that L⋆ is a.s. necessarily null on the cuts
of A⋆

∞(x, θ). In the rest of the proof, for all k ∈ N
⋆, we let L⋆

k as the criterion
L⋆ used in the cell A⋆

k(x, θ), that is

L⋆
k(d) = V[Y |X ∈ A⋆

k(x, θ)]

− P[X(j) < z |X ∈ A⋆
k(x, θ)] V[Y |X(j) < z,X ∈ A⋆

k(x, θ)]

− P[X(j) ≥ z |X ∈ A⋆
k(x, θ)] V[Y |X(j) ≥ z,X ∈ A⋆

k(x, θ)],

for all d = (j, z) ∈ CA⋆
k
(x,θ). If L

⋆
∞ it is not identically zero, then there exists

a cut d∞(x, θ) in CA⋆
∞
(x,θ) such that L⋆(d∞(x, θ)) = c > 0. Fix ξ > 0. By the

uniform continuity of m, there exists δ1 > 0 such that

sup
‖w−w′‖∞≤δ1

|m(w)−m(w′)| ≤ ξ .
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Since A⋆
k(x, θ) ↓ A⋆

∞(x, θ), there exists k0 such that, for all k ≥ k0,

max (‖ak(x, θ)− a∞(x, θ)‖∞, ‖bk(x, θ)− b∞(x, θ)‖∞) ≤ δ1 . (9)

Observe that for all k ∈ N
⋆, V[Y |X ∈ A⋆

k+1(x, θ)] < V[Y |X ∈ A⋆
k(x, θ)].

Thus,
L⋆
k := sup

d∈CAk(x,θ)

d(1)∈Mtry

L⋆
k(d) ≤ ξ . (10)

From inequality (9), we deduce that

∣

∣E[m(X)|X ∈ A⋆
k(x, θ)]− E[m(X)|X ∈ A⋆

∞(x, θ)]
∣

∣ ≤ ξ.

Consequently, there exists a constant C > 0, such that, for all k ≥ k0, for all
cuts d ∈ CA⋆

∞
(x,θ),

|L⋆
k(d)− L⋆

∞(d)| ≤ Cξ2. (11)

Let k1 ≥ k0 be the first level after k0 at which the direction d
(1)
∞ (x, θ) is

amongst the mtry selected coordinates. With probability 1, k1 < ∞. Thus,
by the definition of d∞(x, θ), and inequality (11),

c− Cξ2 ≤ L⋆
∞(d∞(x, θ))− Cξ2 ≤ L⋆

k(d∞(x, θ)),

which implies that c− Cξ2 ≤ L⋆
k. Hence, using inequality (10), we have

c− Cξ2 ≤ L⋆
k ≤ ξ,

which is absurd, since c > 0 is fixed and ξ is arbitrarily small. Thus, by
Lemma 1, m is constant on A⋆

∞(x, θ). This implies that ∆(m,A⋆
k(x,Θ))→ 0

as k →∞.

6.2 Proof of Lemma 2

We start by proving Lemma 2 in the case k = 1, i.e., when we perform the
first cut at the root of a tree. Since in that case Ln,1(x, ·) does not depend
on x, we simply write Ln,1(·) instead of Ln,1(x, ·).

Proof of Lemma 2 in the case k = 1. Fix α, ρ > 0. Observe that if two cuts
d1, d2 satisfy ‖d1− d2‖∞ < 1, the cut directions are the same, i.e. d

(1)
1 = d

(1)
2 .

Using this fact and for reasons of symmetry, we just need to prove Lemma 2
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when the cuts are performed along the first dimension. In other words, we
only need to prove that

lim
n→∞

P

[

sup
|x1−x2|≤δ

|Ln,1(1, x1)− Ln,1(1, x2)| > α

]

≤ ρ/p. (12)

Recall that, for all i, Yi = m(Xi) + εi, where εi ∼ N (0, σ2). Letting Zi =
max1≤i≤n |εi|, simple calculations show that

P [Zi ≥ t] = 1− exp

(

n ln
(

1− 2P [ε1 ≥ t]
)

)

.

The last probability can be upper bounded by using the following standard
inequality on Gaussian tail:

P [ε1 ≥ t] ≤ σ

t
√
2π

exp

(

− t2

2σ2

)

.

Consequently, there exists a constant Cρ > 0 and N1 ∈ N
⋆ such that, with

probability 1− ρ, for all n > N1,

max
1≤i≤n

|εi| ≤ Cρ

√

log n . (13)

Besides, by simple calculations on Gaussian tail, for all n ∈ N
⋆, we have,

P

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

εi

∣

∣

∣

∣

∣

≥ α

]

≤ σ

α
√
n
exp

(

−α2n

2σ2

)

.

Since there are, at most, n2 sets of the form {i : Xi ∈ [an, bn]} for 0 ≤ an <
bn ≤ 1, we deduce that, from the last inequality and using an union bound,
there exists N2 ∈ N

⋆ such that, with probability 1− ρ, for all n > N2, for all
0 ≤ an < bn ≤ 1 satisfying Nn([an, bn]× [0, 1]p−1) >

√
n, we have

∣

∣

∣

1

Nn([an, bn]× [0, 1]p−1)

∑

i:Xi∈[an,bn]
×[0,1]p−1

εi

∣

∣

∣
≤ α. (14)

By the Glivenko-Cantelli theorem, there exists N3 ∈ N
⋆ such that, with

probability 1− ρ, for all 0 ≤ a < b ≤ 1, for all n > N3,

(b− a− δ2)n ≤ Nn([a, b]× [0, 1]p−1) ≤ (b− a+ δ2)n. (15)

Throughout the proof, we assume to be on the event where assertions (13)-
(15) hold, which occurs with probability 1 − 3ρ, for all n > N , where N =
max(N1, N2, N3).
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Figure 1: Illustration of the notations in dimension p = 2.

Take x1, x2 ∈ [0, 1] such that |x1 − x2| ≤ δ and assume, without loss of
generality, that x1 < x2. In the remainder of the proof, we will need the
following quantities (see Figure 1 for an illustration in dimension two):











AL,
√
δ = [0,

√
δ]× [0, 1]p−1

AR,
√
δ = [1−

√
δ, 1]× [0, 1]p−1

AC,
√
δ = [
√
δ, 1−

√
δ]× [0, 1]p−1.

Similarly, we define






















AL,1 = [0, x1]× [0, 1]p−1

AR,1 = [x1, 1]× [0, 1]p−1

AL,2 = [0, x2]× [0, 1]p−1

AR,2 = [x2, 1]× [0, 1]p−1

AC = [x1, x2]× [0, 1]p−1.

Recall that, for any cell A, ȲA is the mean of the Yi’s falling in A and
Nn(A) is the number of data points in A. To prove (12), five cases are to be
considered, depending upon the positions of x1 and x2. We repeatedly use
the decomposition

Ln,1(1, x1)− Ln,1(1, x2) = J1 + J2 + J3,
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where

J1 =
1

n

∑

i:X
(1)
i <x1

(Yi − ȲAL,1
)2 − 1

n

∑

i:X
(1)
i <x1

(Yi − ȲAL,2
)2,

J2 =
1

n

∑

i:X
(1)
i ∈[x1,x2]

(Yi − ȲAR,1
)2 − 1

n

∑

i:X
(1)
i ∈[x1,x2]

(Yi − ȲAL,2
)2,

and J3 =
1

n

∑

i:X
(1)
i ≥x2

(Yi − ȲAR,1
)2 − 1

n

∑

i:X
(1)
i ≥x2

(Yi − ȲAR,2
)2.

First case: x1, x2 ∈ AC,
√
δ. Since Nn(AL,2) > Nn(AL,

√
δ) >

√
n for all

n > N , we have, according to inequalities (14),

|ȲAL,2
| ≤ ‖m‖∞ + α and |ȲAR,1

| ≤ ‖m‖∞ + α.

Therefore

|J2| = 2
∣

∣ȲAL,2
− ȲAR,1

∣

∣× 1

n

∣

∣

∣

∣

∑

i:X
(1)
i ∈[x1,x2]

(

Yi −
ȲAL,2

+ ȲAR,1

2

)
∣

∣

∣

∣

≤ 4(‖m‖∞ + α)

(

(‖m‖∞ + α)Nn(AC)

n
+

1

n

∣

∣

∣

∣

∑

i:X
(1)
i ∈[x1,x2]

m(Xi)

∣

∣

∣

∣

+
1

n

∣

∣

∣

∣

∑

i:X
(1)
i ∈[x1,x2]

εi

∣

∣

∣

∣

)

≤ 4(‖m‖∞ + α)

(

(δ + δ2)(‖m‖∞ + α) + ‖m‖∞(δ + δ2)

+
1

n

∣

∣

∣

∣

∑

i:X
(1)
i ∈[x1,x2]

εi

∣

∣

∣

∣

)

.

If Nn(AC) ≥
√
n, we have

1

n

∣

∣

∣

∣

∑

i:X
(1)
i ∈[x1,x2]

εi

∣

∣

∣

∣

≤ 1

Nn(AC)

∣

∣

∣

∣

∑

i:X
(1)
i ∈[x1,x2]

εi

∣

∣

∣

∣

≤ α
(

according to (14)
)

or, if Nn(AC) <
√
n, we have

1

n

∣

∣

∣

∣

∑

i:X
(1)
i ∈[x1,x2]

εi

∣

∣

∣

∣

≤ Cρ

√
log n√
n

(

according to (13)
)

.
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Thus, for all n large enough,

|J2| ≤ 4(‖m‖∞ + α)

(

(δ + δ2)(2‖m‖∞ + α) + α

)

. (16)

With respect to J1, observe that

|ȲAL,1
− ȲAL,2

| =
∣

∣

∣

∣

∣

1

Nn(AL,1)

∑

i:X
(1)
i <x1

Yi −
1

Nn(AL,2)

∑

i:X
(1)
i <x2

Yi

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

Nn(AL,1)

∑

i:X
(1)
i <x1

Yi −
1

Nn(AL,2)

∑

i:X
(1)
i <x1

Yi

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

Nn(AL,2)

∑

i:X
(1)
i ∈[x1,x2]

Yi

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1− Nn(AL,1)

Nn(AL,2)

∣

∣

∣

∣

∣

× 1

Nn(AL,1)
×
∣

∣

∣

∣

∣

∑

i:X
(1)
i <x1

Yi

∣

∣

∣

∣

∣

+
1

Nn(AL,2)

∣

∣

∣

∣

∣

∑

i:X
(1)
i ∈[x1,x2]

Yi

∣

∣

∣

∣

∣

.

Since Nn(AL,2)−Nn(AL,1) ≤ n(δ + δ2), we obtain

1− Nn(AL,1)

Nn(AL,2)
≤ n(δ + δ2)

Nn(AL,2)
≤ δ + δ2√

δ − δ2
≤ 4
√
δ,

for all δ small enough, which implies that

|ȲAL,1
− ȲAL,2

| ≤ 4
√
δ

Nn(AL,1)

∣

∣

∣

∣

∣

∑

i:X
(1)
i <x1

Yi

∣

∣

∣

∣

∣

+
Nn(AL,1)

Nn(AL,2)
× 1

Nn(AL,1)

∣

∣

∣

∣

∣

∑

i:X
(1)
i ∈[x1,x2]

Yi

∣

∣

∣

∣

∣

≤ 4
√
δ(‖m‖∞ + α) +

Nn(AL,1)

Nn(AL,2)
(‖m‖∞δ + α)

≤ 5(‖m‖∞
√
δ + α).
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Thus,

|J1| =
∣

∣

∣

∣

∣

1

n

∑

i:X
(1)
i <x1

(Yi − ȲAL,1
)2 − 1

n

∑

i:X
(1)
i <x1

(Yi − ȲAL,2
)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(ȲAL,2
− ȲAL,1

)× 2

n

∑

i:X
(1)
i <x1

(

Yi −
ȲAL,1

+ ȲAL,2

2

)

∣

∣

∣

∣

∣

≤ |ȲAL,2
− ȲAL,1

|2

≤ 25(‖m‖∞
√
δ + α)2. (17)

The term J3 can be bounded with the same arguments.

Finally, by (16) and (17), for all n > N , for all δ small enough, we conclude
that

|Ln(1, x1)− Ln(1, x2)| ≤ 4(‖m‖∞ + α)

(

(δ + δ2)(2‖m‖∞ + α) + α

)

+ 25(‖m‖∞
√
δ + α)2

≤ α.

Second case: x1, x2 ∈ AL,
√
δ. With the same arguments as above, one

proves that

|J1| ≤ max
(

4(
√
δ + δ2)(‖m‖∞ + α)2, α

)

,

|J2| ≤ max(4(‖m‖∞ + α)(2δ‖m‖∞ + 2α), α),

|J3| ≤ 25(‖m‖∞
√
δ + α)2.

Consequently, for all n large enough,

|Ln(1, x1)− Ln(1, x2)| = J1 + J2 + J3 ≤ 3α.

The other cases {x1, x2 ∈ AR,
√
δ}, {x1, x2 ∈ AL,

√
δ × AC,

√
δ}, and {x1, x2 ∈

AC,
√
δ × AR,

√
δ} can be treated in the same way. Details are omitted.

Proof of Lemma 2. We proceed similarly as in the proof for the case k = 1.
Here, we establish the result for k = 2 and p = 2 only. Extensions are
easy and left to the reader. Fix ρ > 0. At first, it should be noted that,
there exists N1 ∈ N

⋆ such that, with probability 1 − ρ, for all n > N0,
An ≡ [a

(1)
n , b

(1)
n ]× [a

(2)
n , b

(2)
n ] ⊂ [0, 1]2 such that Nn(An) >

√
n, we have

∣

∣

∣

1

Nn(An)

∑

i:Xi∈An

εi

∣

∣

∣
≤ α, (18)

25



and,

1

Nn(An)

∑

i:Xi∈An

ε2i ≤ σ̃2, (19)

where σ̃2 is a positive constant, depending only on ρ. Inequality (19) is a
straightforward consequence of the following inequality (see e.g. Laurent and
Massart, 2000), which is valid for all n ∈ N

⋆:

P
[

χ2(n) ≥ 5n
]

≤ exp(−n).

Throughout the proof, we assume to be on the event where assertions (13),
(15), (18)-(19) hold, which occurs with probability 1 − 3ρ, for all n large
enough. We also assume that d1 = (1, x1) and d2 = (2, x2) (see Figure 2).
The other cases can be treated similarly.

Figure 2: An example of cells in dimension p = 2.

Let d′1 = (1, x′
1) and d′2 = (2, x′

2) be such that

|x1 − x′
1| < δ and |x2 − x′

2| < δ.
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Then the CART-split criterion Ln,2 writes

Ln(d1, d2) =
1

Nn(AR,1)

∑

i

(Yi − ȲAR,1
)21

X
(1)
i >x1

− 1

Nn(AR,1)

∑

i:X
(2)
i >x2

(Yi − ȲAH,2
)21

X
(1)
i >x1

− 1

Nn(AR,1)

∑

i:X
(2)
i ≤x2

(Yi − ȲAB,2
)21

X
(1)
i >x1

.

Clearly,

Ln(d1, d2)− Ln(d
′
1, d

′
2) = Ln(d1, d2)− Ln(d

′
1, d2) + Ln(d

′
1, d2)− Ln(d

′
1, d

′
2).

We have (Figure 2):

Ln(d1, d2)− Ln(d
′
1, d2) =

[

1

Nn(AR,1)

∑

i:X
(2)
i >x2

(Yi − ȲAH,2
)21

X
(1)
i >x1

− 1

Nn(A′
R,1)

∑

i:X
(2)
i >x2

(Yi − ȲA′

H,2
)21

X
(1)
i >x′

1

]

+

[

1

Nn(AR,1)

∑

i:X
(2)
i ≤x2

(Yi − ȲAB,2
)21

X
(1)
i >x1

− 1

Nn(A′
R,1)

∑

i:X
(2)
i ≤x2

(Yi − ȲA′

B,2
)21

X
(1)
i >x′

1

]

def
= A1 +B1.

The term A1 can be rewritten as A1 = A1,1 + A1,2 + A1,3, where

A1,1 =
1

Nn(AR,1)

∑

i:X
(2)
i >x2

(Yi − ȲAH,2
)21

X
(1)
i >x′

1

− 1

Nn(AR,1)

∑

i:X
(2)
i >x2

(Yi − ȲA′

H,2
)21

X
(1)
i >x′

1
,

A1,2 =
1

Nn(AR,1)

∑

i:X
(2)
i >x2

(Yi − ȲA′

H,2
)21

X
(1)
i >x′

1
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− 1

Nn(A′
R,1)

∑

i:X
(2)
i >x2

(Yi − ȲA′

H,2
)21

X
(1)
i >x′

1
,

and A1,3 =
1

Nn(AR,1)

∑

i:X
(2)
i >x2

(Yi − ȲAH,2
)21

X
(1)
i ∈[x1,x′

1]
.

Calculations show that

A1,1 =
Nn(A

′
H,2)

Nn(AR,1)
(ȲA′

H,2
− ȲAH,2

)2,

which implies, with the same arguments as in the proof for k = 1, that
A1,1 → 0 as n tends to infinity. With respect to A1,2 and A1,3, we write

max(A1,2, A1,3) ≤ max(Cρ
log n√

n
, 2(σ̃2 + 4‖m‖2∞ + α2)

√
δ

ξ
).

Thus, A1,2 → 0 and A1,3 → 0 as n→∞. Collecting bounds, we conclude that
A1 → 0. One proves with similar arguments that B1 → 0 and, consequently,
that

Ln(d
′
1, d2)− Ln(d

′
1, d

′
2)→ 0.

6.3 Proof of Lemma 3

We prove by induction that, for all k, with probability 1 − ρ, for all ξ > 0
and for all n large enough,

d∞(d̂k,n(X,Θ),A⋆
k(X,Θ)) ≤ ξ.

Call this property Hk. Fix k > 1 and assume that Hk−1 is true. We momen-
tarily keep X fixed. For all dk−1 ∈ Ak−1(X), let

d̂k,n(dk−1) ∈ argmin
dk

Ln(X,dk−1, dk),

and

d⋆k(dk−1) ∈ argmin
dk

L⋆(X,dk−1, dk),
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where the minimum is evaluated, as usual, over {dk ∈ CA(X,dk−1) : d
(1)
k ∈

Mtry}.
Fix ρ > 0. Observe that the volume of a cell which does not contain a
hypercube of edge length ξ is necessarily less than ξ. Thus, the probability
to fall in such a cell at level k is, at most, 2kξ. Since k is fixed, letting
ξ = ρ/2k, conditionally on Dn, with probability 1 − ρ, the cell Ak,n(X,Θ)
contains a hypercube of edge length ξ. In the rest of the proof, we assume
X and Θ to be fixed and that Ak,n(X,Θ) satisfies this geometrical property.
Moreover, since X and Θ are fixed, we omit the dependence on X and Θ.

Note that, for all dk−1,

Ln(dk−1, d̂k,n(dk−1))− L⋆(dk−1, d̂k,n(dk−1))

≤ Ln(dk−1, d̂k,n(dk−1))− L⋆(dk−1, d
⋆
k(dk−1))

(by definition of d⋆k(dk−1))

≤ Ln(dk−1, d
⋆
k(dk−1))− L⋆(dk−1, d

⋆
k(dk−1))

(by definition of d̂k,n(dk−1)).

Thus,

∣

∣

∣
Ln(dk−1, d̂k,n(dk−1))− L⋆(dk−1, d

⋆
k(dk−1))

∣

∣

∣

≤ max
( ∣

∣

∣
Ln(dk−1, d̂k,n(dk−1))− L⋆(dk−1, d̂k,n(dk−1))

∣

∣

∣
,

∣

∣

∣
Ln(dk−1, d

⋆
k(dk−1))− L⋆(dk−1, d

⋆
k(dk−1))

∣

∣

∣

)

≤ sup
dk

|Ln(dk−1, dk)− L⋆(dk−1, dk)| .

Moreover,

|L⋆(dk−1, d̂k,n(dk−1))− L⋆(dk−1, d
⋆
k(dk−1))|

≤ |L⋆(dk−1, d̂k,n(dk−1))− Ln(dk−1, d̂k,n(dk−1))|
+ |Ln(dk−1, d̂k,n(dk−1))− L⋆(dk−1, d

⋆
k(dk−1))|

≤ 2 sup
dk

|Ln(dk−1, dk)− L⋆(dk−1, dk)|

= 2 sup
dk

|Ln(dk)− L⋆(dk)|. (20)

Let Āξ
k =

{

dk : dk−1 ∈ Aξ
k−1

}

. So, taking the supremum on both sides of
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(20) leads to

sup
dk−1∈Aξ

k−1

|L⋆(dk−1, d̂k,n(dk−1))− L⋆(dk−1, d
⋆
k(dk−1))|

≤ 2 sup
dk∈Āξ

k

|Ln(dk)− L⋆(dk)|. (21)

By Lemma 2, for all ξ′ > 0, one can find δ > 0 such that, for all n large
enough,

P

[

sup
‖dk−d′

k
‖∞≤δ

dk,d
′

k
∈Āξ

k

|Ln(dk)− Ln(d
′
k)| ≤ ξ′

]

≥ 1− ρ. (22)

Since Āξ
k is compact, there exists a finite subset Xδ = {x1, . . . ,xp} ⊂ Āξ

k

such that, for all dk ∈ Āξ
k, d∞(dk,Xδ) ≤ δ. Hence, for all dk ∈ Āξ

k, there is
an index j such that, with probability 1− ρ, for all n large enough,

|Ln(dk)− L⋆(dk)| ≤ |Ln(dk)− Ln(xj)|+ |Ln(xj)− L⋆(xj)|
+ |L⋆(xj)− L⋆(dk)|
≤ 2ξ′ + |Ln(xj)− L⋆(xj)|

(by inequality (22))

≤ 3ξ′,

since, for all xj, Ln(xj) → L⋆(xj) almost surely, as n tends to infinity. In
consequence, with probability 1− ρ, for all n large enough,

sup
dk∈Āξ

k

|Ln(dk)− L⋆(dk)| ≤ 3ξ′,

and, using inequality (21), we finally obtain that with probability 1− ρ, for
all n large enough,

sup
dk−1∈Aξ

k−1

|L⋆(dk−1, d̂k,n(dk−1))− L⋆(dk−1, d
⋆
k(dk−1))| ≤ 6ξ′. (23)

Hereafter, to simplify, we assume that, for any given (k − 1)-tuple of theo-
retical cuts, there is only one theoretical cut at level k, and leave the general
case as an easy adaptation. Thus, we can define unambiguously

d⋆k(dk−1) = argmin
dk

L⋆(dk−1, dk).
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Fix ξ′′ > 0. From inequality (23), by evoking the equicontinuity of Ln and
the compactness of Aξ

k−1, we deduce that, with probability 1 − ρ, for all n
large enough,

sup
dk−1∈Aξ

k−1

d∞

(

d̂k,n(dk−1), d
⋆
k(dk−1)

)

≤ ξ′′.

In particular, with probability 1− ρ, for all n large enough,

d∞

(

d̂k,n(d̂k−1,n), d
⋆
k(d̂k−1,n)

)

→ 0.

Now, using triangle inequality,

d∞

(

d̂k,n(d̂k−1,n), d⋆k(d
⋆
k−1)

)

≤ d∞

(

d̂k,n(d̂k−1,n), d⋆k(d̂k−1,n)
)

+ d∞

(

d⋆k(d̂k−1,n), d⋆k(d
⋆
k−1)

)

.

Thus, we just have to show that d∞(d⋆k(d̂k−1,n),A⋆
k) → 0 in probability, as

n→∞, and the proof will be complete.

To avoid confusion, we let

d⋆
k−1 = {d⋆,i

k−1 : i ∈ I}
be the set of best first (k− 1)-th theoretical cuts (which can be either count-
able or not). With this notation, d⋆k(d

⋆,i
k−1) is the k-th theoretical cuts given

that the (k − 1) previous ones are d⋆,i
k−1. For simplicity, let

Li,⋆(dk) = L⋆
k(d

⋆,i
k−1, dk) and L̂⋆(dk) = L⋆

k(d̂k−1,n, dk).

As before,

d⋆k(d
⋆,i
k−1) ∈ argmin

dk

Li,⋆(dk) and d⋆k(d̂k−1,n) ∈ argmin
dk

L̂⋆(dk).

Clearly, the result will be proved if we establish that,

inf
i∈I

d∞(d⋆k(d̂k−1,n), d
⋆
k(d

⋆,i
k−1))→ 0 in probability, as n→∞.

Since dk belongs to a compact set, we can find a finite setX = {x1, . . . , xm} ⊂
C[0,1]p satisfying d∞(dk,X) ≤ ξ. Thus, there is an index j such that, with
probability 1− ρ, for all n large enough,

|L̂⋆(dk)− Li,⋆(dk)| ≤ |L̂⋆(dk)− L̂⋆(xj)|+ |L̂⋆(xj)− Li,⋆(xj)|
+ |Li,⋆(xj)− Li,⋆(dk)|

≤ 2ξ′ + |L̂⋆(xj)− Li,⋆(xj)|.
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Therefore, as in inequality (21), with probability 1 − ρ, for all i, and for all
n large enough,

|Li,⋆(d⋆k(d̂k−1,n))− Li,⋆(d⋆k(d
⋆,i
k−1))| ≤ 2 sup

dk

|L̂⋆(dk)− Li,⋆(dk)|

≤ 4ξ′ + 2max
j
|L̂⋆(xj)− Li,⋆(xj)|.

Taking the infimum over all i, we obtain

inf
i
|Li,⋆(d⋆k(d̂k−1,n))− Li,⋆(d⋆k(d

⋆,i
k−1))| ≤ 4ξ′ + 2 inf

i
max

j
|L̂⋆(xj)− Li,⋆(xj)|.

(24)

Introduce ω, the modulus of continuity of L⋆
k:

ω(δ) = sup
‖x−y‖∞≤δ

|L⋆
k(x)− L⋆

k(y)|.

Observe that, since L⋆
k(·) is uniformly continuous, ω(δ)→ 0 as δ → 0. Hence,

for all n large enough,

inf
i
max

j
|L̂⋆(xj)− Li,⋆(xj)| = inf

i
max

j
|L⋆

k(d̂k−1,n, xj)− L⋆
k(d

⋆,i
k−1, xj)|

≤ inf
i
ω(‖d̂k−1,n − d⋆,i

k−1‖∞)

≤ ξ′, (25)

since, by assumption Hk−1, infi ‖d̂k−1,n−d⋆,i
k−1‖∞ → 0. Therefore, combining

(24) and (25), with probability 1− ρ, for all n large enough,

inf
i
|Li,⋆(d⋆k(d̂k−1,n))− Li,⋆(d⋆k(d

⋆,i
k−1))| ≤ 6ξ.

Finally, by Lemma 4 below, Hk is true. Property H1 can be proved in the
same way.

Lemma 4. For all δ > 0, there exists ξ > 0 such that

inf
i
d∞(d⋆k(d̂k−1,n), d

⋆
k(d

⋆,i
k−1)) ≤ δ (26)

whenever

inf
i
|Li,⋆(d⋆k(d̂k−1,n))− Li,⋆(d⋆k(d

⋆,i
k−1))| ≤ ξ.
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Proof of Lemma 4. Note that, for all δ > 0, there exists ξ > 0 such that

inf
i

inf
y:d∞(y,d⋆

k
(d⋆,i

k−1))≥δ
|L⋆

k(d
⋆,i
k−1, d

⋆
k(d

⋆,i
k−1))− L⋆

k(d
⋆,i
k−1, y)| ≥ ξ.

To see this, assume that one can find δ > 0 such that, for all ξ > 0, there
exist i, y satisfying

|L⋆
k(d

⋆,i
k−1, d

⋆
k(d

⋆,i
k−1))− L⋆

k(d
⋆,i
k−1, y)| ≤ ξ,

with d∞(y, d⋆k(d
⋆,i
k−1)) ≥ δ. Letting ξp = 1/p and recalling that {d⋆,i

k−1 : i ∈ N},
{d⋆k(d⋆,i

k−1) : i ∈ N}, and {yi : i ∈ N} are compact, we can extract three
sequences d⋆,p

k−1 → dk−1, d
⋆
k(d

⋆,p
k−1)→ dk and yp → ỹ as p→∞. Therefore,

L⋆
k(dk−1, dk) = L⋆

k(dk−1, y),

with d∞(y, {d : L⋆
k(dk−1, dk) = L⋆

k(dk−1, d)}) ≥ δ, which is absurd.

Assume now that (26) is not true. If this is the case, then there exists δ > 0
such that

inf
i
d∞(d⋆k(d

⋆,i
k−1), d

⋆
k(d̂k−1,n)) ≥ δ.

Thus,

inf
i
|Li,⋆(d⋆k(d̂k−1,n))− Li,⋆(d⋆k(d

⋆,i
k−1))|

= inf
i
|L⋆

k(d
⋆,i
k−1, d

⋆
k(d̂k−1,n))− L⋆

k(d
⋆,i
k−1, d

⋆
k)|

≥ inf
i

inf
d∞(y,d⋆

k
(d⋆,i

k−1))≥δ
|L⋆

k(d
⋆,i
k−1, y)− L⋆

k(d
⋆,i
k−1, d

⋆
k)|

≥ ξ,

which concludes the proof.

Proof of Proposition 1. Fix k ∈ N
⋆ and ρ, ξ > 0. According to Lemma 3,

with probability 1 − ρ, for all n large enough, there exists a sequence of
theoretical first k cuts d⋆

k(X,Θ) such that

d∞(d⋆
k(X,Θ), d̂k,n(X,Θ)) ≤ ξ. (27)

This implies that, with probability 1 − ρ, for all n large enough and for all
1 ≤ j ≤ k, the j-th empirical cut d̂j,n(X,Θ) is performed along the same
coordinate as d⋆j(X,Θ).

Now, for any cell A, since the regression function is not constant on A, one
can find a theoretical cut d⋆A on A such that L⋆(d⋆A) > 0. Thus, the cut d⋆A is

33



made along an informative variable, in the sense that it is performed along
one of the first S variables. Consequently, for all X,Θ and for all 1 ≤ j ≤ k,
each theoretical cut d⋆j(X,Θ) is made along one of the first S coordinate.
The proof is then a consequence of inequality (27).
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