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Abstract

We consider a one dimensional sub-ballistic random walk evolving in
a parametric i.i.d. random environment. We study the asymptotic prop-
erties of the maximum likelihood estimator (MLE) of the parameter based
on a single observation of the path till the time it reaches a distant site.
In that purpose, we adapt the method developed in the ballistic case by
Comets et al. (2014) and Falconnet et al. (2013). Using a supplementary
assumption due to the specificity of the sub-ballistic regime, we prove con-
sistency and asymptotic normality as the distant site tends to infinity. To
emphazis the role of the additional assumption, we investigate the Temkin
model with unknown support, and it turns out that the MLE is consistent
but, unlike in the ballistic regime, the Fisher information is infinite. We
also explore the numerical performance of our estimation procedure.

Key words : Asymptotic normality, Sub-ballistic random walk, Confidence re-
gions, Cramér-Rao efficiency, Maximum likelihood estimation, Random walk in
random environment. MSC 2000 : Primary 62M05, 62F12; secondary 60J25.

Let ω= (ωx )x∈Z be a collection of independent and identically distributed (i.i.d.)
(0,1)-valued random variables with distribution ν. We suppose that the law ν=
νθ depends on some unknown parameter θ ∈Θ, where Θ⊂R

d is assumed to be
a compact set. Denote by P

θ = ν⊗Z
θ

the law on (0,1)Z of the environment ω and

by E
θ the expectation under this law.

For fixed environment ω, let X = (Xt )t∈Z+ be the Markov chain on Z starting at
X0 = 0 and with transition probabilities

Pω(Xt+1 = y |Xt = x) =






ωx if y = x +1,
1−ωx if y = x −1,
0 otherwise.
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The symbol Pω denotes the measure on the path space of X given ω, usually
called quenched law. The (unconditional) law of X is given by

Pθ(·) =
∫

Pω(·)dPθ(ω),

this is the so-called annealed law. We write Eω and Eθ for the corresponding
quenched and annealed expectations, respectively. The behaviour of the pro-
cess X is related to the ratio sequence

ρx =
1−ωx

ωx
, x ∈Z, (1)

and we refer to Solomon (1975) for the classification of X between transient or
recurrent cases according to whether Eθ(logρ0) is different or not from 0.

The transient case may be further split into two sub-cases, called ballistic and
sub-ballistic that correspond to a linear and a sub-linear speed for the walk, re-
spectively. More precisely, letting Tn be the first hitting time of the positive inte-
ger n,

Tn = inf{t ∈N : Xt =n}, (2)

and assuming E
θ(logρ0) < 0 all through, we can distinguish the following cases.

(a1) (Ballistic). If Eθ(ρ0) < 1, then, Pθ-almost surely,

Tn

n
−−−−→
n→∞

1+E
θ(ρ0)

1−Eθ(ρ0)
. (3)

(a2) (Sub-ballistic). If Eθ(ρ0) ≥ 1, then Tn/n → +∞, Pθ-almost surely when n

tends to infinity.

Moreover, the fluctuations of Tn depend in nature on a parameter κθ ∈ (0,∞],
which is defined as the unique positive solution of

E
θ(ρκθ

0 ) = 1, (4)

when such a number exists, and κθ =+∞ otherwise. The sub-ballistic case cor-
responds toκθ ≤ 1. In our statements, the quantityκθ plays a crucial role that we
will emphazis when it is implicitly involved, since κθ does not appear explicitly
in our assumptions.

Comets et al. (2014) provide a maximum likelihood estimator (MLE) of the pa-
rameter of the environment distribution in the specific case of a transient ballis-

tic one-dimensional nearest neighbour path. In the latter work, the authors es-
tablish the consistency of their estimator while the asymptotic normality of the
MLE as well as its asymptotic efficiency (namely, that it asymptotically achieves
the Cramér-Rao bound) is investigated in Falconnet et al. (2013). The method
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used in these two articles can not be applied directly for a sub-ballistic RWRE,
due to the non-integrability of the criterion function, but can be adapted to the
sub-ballistic regime. However, unlike in the ballistic regime, the asymptotic be-
havior of the estimator turns out to be very different when estimating the sup-
port of the law of the environment. We illustrate this when we consider the one-
parameter Temkin model, a simple framework with finite and unknown support,
which already reveals the main features of the estimation problem. One expla-
nation is that in the sub-ballistic regime, due to the existence of deeper local
traps of the potential than in the ballistic regime, the walk spends a long time
in the bottom of these traps, and the Fisher information of the support parame-
ter becomes infinite. The non-finiteness of the Fisher information suggests that
the convergence of θ̂n is faster than

p
n and we provide a simulation experiment

that supports this. Determining the true rate of convergence is a challenging
problem that we leave to further research.

This article is organised as follows. In Section 1, we present our MLE procedure
to infer the parameter of the environment distribution inspired from Comets et al.
and recall briefly some already known results on an underlying branching pro-
cess in a random environment related to the RWRE. Then, we state in Section 2
our consistency and asymptotic normality results, and present three examples
of environment distributions which are already introduced in Comets et al. (2014)
and Falconnet et al. (2013). The MLE is consistent in the three frameworks, but
asymptotically normal and efficient only in the first two cases. In the last ex-
ample, the Fisher information is infinite and one of our assumptions fails. In
Section 3, all the proofs are presented, and we conclude with some simulation
experiment in Section 4.

1 Maximum likelihood estimator in the sub-ballistic tran-

sient case

We always assume that Θ satisfies the following assumption.

Assumption I. For any θ ∈Θ,

i) E
θ| logρ0| <∞,

ii) E
θ(logρ0) < 0,

iii) E
θ(ρ0) ∈ [1,+∞).

The estimator in Comets et al. (2014) is based on the sequence of the number of
left steps performed by the process X from sites 0 to site n at time Tn defined
by (2). More precisely, their estimator is the maximizer of the criterion function

θ 7→ ℓn(θ) =
n−1∑

x=0
φθ(Ln

x+1,Ln
x ), (5)
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where φθ is the function from Z
2
+ to R defined by

φθ(u, v)= log
∫1

0
au+1(1−a)v dνθ(a), (6)

and for any x ∈ {0, . . . ,n}

Ln
x :=

Tn−1∑

t=0
1{Xt = x, Xt+1 = x −1}. (7)

Comets et al. (2014) show that the limiting behavior of the sequential log-likelihood
function in the case of ballistic RWRE is equivalent to (5). Recall from Kesten et al.
(1975) that for an i.i.d. environment, under the annealed law Pθ , the sequence
Ln

n , Ln
n−1, . . . , Ln

0 has the same distribution as a branching process with immigra-
tion in random environment (BPIRE) denoted Z0, Z1, . . . , Zn and defined by

Z0 = 0, and for k = 0, . . . ,n −1, Zk+1 =
Zk∑

i=0
ξk+1,i , (8)

with {ξk ,i }k∈N;i∈Z+ independent and

∀m ∈Z+, Pω(ξk ,i = m)= (1−ωk )mωk .

Under point i i ) of Assumption I, Comets et al. proved that the process (Zn)n∈Z+

is a positive recurrent Markov chain with transition kernel Qθ defined as

Qθ(u, v)=
(

u +v

v

)∫1

0
au+1(1−a)v dνθ(a) =

(
u +v

v

)

eφθ(v,v), ∀u, v ∈Z+. (9)

The unique invariant probability measure πθ of the process (Zn)n∈Z+ is defined
as

πθ(u) = E
θ[S(1−S)u], ∀u ∈Z+, (10)

where

S =
(

∞∑

k=0

k∏

i=1
ρi

)−1

= (1+ρ1 +ρ1ρ2 +·· ·+ρ1 . . .ρk +·· · )−1 ∈ (0,1). (11)

Due to the equality in law between (Ln
n , . . .Ln

0 ) and (Z0, . . . , Zn), the MLE problem
for RWRE is reduced to the one for the irreducible positive recurrent homoge-
neous Markov chain (Zn)n . Thanks to an ergodic theorem for Markov chains,
Comets et al. proved that in the ballistic transient case the normalized criterion
ℓn(·)/n converges in probability to a limiting function ℓ(·) with finite values. The
former limiting function identifies the true value of the parameter and consis-
tency follows. In the sub-ballistic transient case, Comets et al. prove that the
limiting function ℓ(·) still exists but might be infinite everywhere, and hence do
not identify the true value of the parameter.
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Let us explain briefly where is the problem. Introduce the probability measure
π̃θ on Z+×Z+ defined as

π̃θ(u, v)=πθ(u)Qθ(u, v), (12)

and denote π̃θ(g ) for any function g : Z2
+ →R such that

∑
x,y π̃θ(x, y)|g (x, y)| <∞

with π̃θ the quantity defined as

π̃θ(g ) =
∑

(x,y)∈N2

π̃θ(x, y)g (x, y). (13)

In Comets et al. (2014), the limiting function ℓ(·) is defined as θ 7→ π̃θ⋆(φθ) where
θ⋆ is the true parameter value, and the integrability of φθ with respect to π̃θ⋆ is
equivalent to the existence of a first moment for πθ⋆ . We will see in Proposi-
tion 2.4 that κθ defined by (4) is the upper critical value for the existence of finite
moments for πθ. Therefore, since in the sub-ballistic case, we have κθ⋆ ≤ 1, we
know that πθ⋆ does not have a first moment and ℓ(θ) is infinite. In the light of
this, the natural idea is to consider the difference of two log-likelihood functions.

Definition 1.1. Fix θ0 ∈Θ. The criterium function θ 7→ ℓsb
n (θ) is defined as

ℓsb
n (θ) =

n−1∑

x=0

[
φθ(Ln

x+1,Ln
x )−φθ0 (Ln

x+1,Ln
x )

]
. (14)

An estimator θ̂n of θ is defined as a measurable choice

θ̂n ∈ Argmax
θ∈Θ

ℓsb
n (θ). (15)

As soon as the function θ 7→ φθ(u, v) is continuous on the compact parameter
set Θ for any pair of integers (u, v), the criterion function ℓsb

n (·) achieves its max-
imum, and the estimator θ̂n is well defined as one maximizer of this criterion.
However, it is not necessarily unique.

2 Consistency and asymptotic normality results

From now on, we assume that the process X is generated under the true pa-
rameter value θ⋆, an interior point of the parameter space Θ, that we aim at
estimating. We shorten to P⋆ and E⋆ (resp. P⋆ and E

⋆) the annealed (resp. the
law of the environment ) probability Pθ⋆

(resp. P
θ⋆

) and corresponding expec-
tation Eθ⋆

(resp. Eθ
⋆

) under parameter value θ⋆.

2.1 Consistency result

Assumption II below ensures that the maximizer of criterion ℓsb
n is a consistent

estimator of the unknown parameter.
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Assumption II.

i) (Continuity). For any (x, y)∈N
2, the map θ 7→φθ(x, y) is continuous on the

parameter set Θ.

ii) (Identifiability). For any (θ,θ′) ∈Θ
2, νθ 6=νθ′ ⇐⇒ θ 6= θ′.

iii) (Uniform integrability). For any θ ∈Θ, π̃θ

(
supθ′∈Θ |φθ′ −φθ0 |

)
<∞.

We now state our main result.

Theorem 2.1. (Consistency). Under Assumptions I and II, for any choice of θ̂n

satisfying (15), we have

lim
n→∞

θ̂n = θ⋆,

in P⋆-probability.

Theorem 2.1 is a straight application of Theorem 5.7 in van der Vaart (1998).
Hence, it suffices to check that the assumptions of the former theorem are ful-
filled. The first one is the uniform weak law of large numbers for the renormal-
ized criterion given in Proposition 2.2, and the second one is the statement of
Proposition 2.3. Sections 3.1 and 3.2 are dedicated to their respective proof.

Proposition 2.2. Under Assumptions I and II, the following uniform convergence

holds:

sup
θ∈Θ

∣∣∣∣
1

n
ℓsb

n (θ)−ℓsb(θ)

∣∣∣∣−−−−→n→∞
0 in P⋆-probability, (16)

with

ℓsb(θ) = π̃θ⋆(φθ−φθ0 ). (17)

Proposition 2.3. Under Assumptions I and II, for any ε> 0,

sup
θ:‖θ−θ⋆‖≥ε

ℓsb(θ) < ℓsb(θ⋆). (18)

From Section 1, point i i i ) of Assumption II is essential to ensure that ℓsb(·) takes
finite values and therefore prove consistency. This point can be expressed in
terms of the growth of φ̇and thereby is related to the existence of moments of the
probability distribution πθ⋆ which are characterized in Proposition 2.4 below.
Note that in the ballistic regime, since πθ⋆ possesses a finite first moment and
the growth of φ̇ is linear, point i i i ) of Assumption II is automatically satisfied.

Proposition 2.4. Let κθ defined by (4) and α ∈ (0,+∞). Under point i i ) of As-

sumption I, the following dichotomy holds:

i) α< κθ =⇒
∑∞

k=0 kαπ(k)<∞;

ii) α≥ κθ =⇒
∑∞

k=0 kαπ(k)=∞.

Section 3.3 is dedicated to the proof of 2.4.
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2.2 Asymptotic normality results

The asymptotic normality result in Falconnet et al. (2013) involves the gradient
and the second derivative of ℓn(·) with respect to θ. Since they are equal to the
gradient and the second derivative of ℓsb

n (·) with respect to θ, their result can be
extended to the sub-ballistic case under the same assumptions and without any
modification of their proof.

In the following, for any function gθ depending on the parameter θ, the symbols
ġθ or ∂θgθ and g̈θ or ∂2

θ
gθ denote the (column) gradient vector and Hessian ma-

trix with respect to θ, respectively. Moreover, Y ⊺ is the row vector obtained by
transposing the column vector Y .

Assumption III.

i) (differentiability). The collection of probability measures {νθ : θ ∈Θ} is such

that for any (x, y) ∈ N
2, the map θ 7→ φθ(x, y) is twice continuously differ-

entiable on Θ.

ii) (Regularity conditions). For any θ ∈ Θ, there exists some q > 1 such that

π̃θ

(
‖φ̇θ‖2q

)
<+∞.

iii) (Invertibility). For any u ∈Z+,
∑

v∈Z+ Q̇θ(u, v)= ∂θ
(∑

v∈Z+ Qθ(u, v)
)
.

iv) (Uniform conditions). For any θ ∈Θ, there exists some neighborhood V (θ)

of θ such that π̃θ

(
supθ′∈V (θ) ‖φ̇θ′‖2

)
<+∞ and π̃θ

(
supθ′∈V (θ) ‖φ̈θ′‖

)
<+∞.

v) (Fisher information matrix). For any value θ ∈Θ, the matrixΣθ = π̃θ

(
φ̇
θ
φ̇
⊺
θ

)
=

−π̃θ(φ̈θ) is non singular.

Theorem 2.5. Under Assumptions I to III, the score vector sequence ℓ̇sb
n (θ⋆)/

p
n

is asymptotically normal with mean zero and finite covariance matrix Σθ⋆ .

Theorem 2.6. (Asymptotic normality). Under Assumptions I to III, for any choice

of θ̂n satisfying (15), the sequence {
p

n(θ̂n −θ⋆)}n∈N converges in P⋆-distribution

to a centered Gaussian random vector with covariance matrix Σ
−1
θ⋆ .

Note that the limiting covariance matrix of
p

nθ̂n is exactly the inverse Fisher
information matrix of the model. As such, our estimator is efficient.

2.3 Examples

We illustrate our results in the same frameworks than the ones presented by Comets et al.
(2014) and Falconnet et al. (2013). Note that point i i i ) of Assumption II, which
requires integrability of the criterion, is always satisfied in the ballistic regime

7



whereas it might fails in the sub-ballistic regime. For instance, when supθ′∈Θ |φ̇θ′ |
is integrable with respect to πθ, point i i i ) of Assumption II follows. This occurs
in Examples I and II presented below. However, this point is not satisfied in Ex-
ample III as suggested by point (c) of Proposition 2.9 below. Nevertheless, we
show the consistency of the MLE and prove that the Fisher information is infi-
nite in this framework suggesting that the rate of convergence is faster than

p
n.

Example I. Fix a1 < a2 ∈ (0,1) and let νp = pδa1+(1−p)δa2 , whereδa is the Dirac

mass located at value a. Here, the unknown parameter is the proportion p ∈Θ⊂
[0,1] (namely θ = p). We suppose that a1, a2 and Θ are such that Assumption I is

satisfied.

This example is easily generalized to ν having m ≥ 2 support points namely νθ =∑m
i=1 pi ai , where a1, . . . , am are distinct, fixed and known in (0,1), we let pm =

1−
∑m−1

i=1 pi and the parameter is now θ = (p1, . . . , pm−1).

In the framework of Example I, we have

φp (x, y)= log[pax+1
1 (1−a1)y + (1−p)ax+1

2 (1−a2)y ], (19)

Proposition 2.7. In the framework of Example I, assuming moreover that Θ ⊂
(0,1), Assumptions II and III are satisfied, and hence the MLE of the parameter p

is consistent and asymptotically normal.

Example II. We let νθ be a Beta distribution with parameters (α,β), namely

dνθ(a)=
1

B(α,β)
aα−1(1−a)β−1da, B(α,β) =

∫1

0
tα−1(1− t )β−1dt .

Here, the unknown parameter is θ = (α,β) ∈Θ where Θ is a compact subset of

{(α,β) ∈ (0,+∞)2 : β<α≤β+1}.

The inequalities β<α and α≤β+1 ensures that points i i ) and i i i ) of Assump-
tion I are satisfied.

In the framework of Example II, we have

φθ(x, y) = log
B(x +1+α, y +β)

B(α,β)
(20)

Proposition 2.8. In the framework of Example II, Assumptions II and III are sat-

isfied, and hence MLE of the parameter (α,β) is consistent and asymptotically

normal.

Example III (Temkin model). We let νθ = pδa + (1−p)δ1−a , where p is fixed in

(0,1/2) and the unknown parameter is θ = a ∈Θ, where Θ is a compact subset of

(0, p).
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The inequalities p < 1/2 and a < p ensures that points i i ) and i i i ) of Assump-
tion I are satisfied.

In this framework, we have

Qθ(u, v)=
(

u +v

v

)

eφθ(u,v) = pKa(u, v)+ (1−p)K1−a (u, v), (21)

with Ka(u, v) defined as

Ka(u, v)=
(

u +v

v

)

au+1(1−a)v . (22)

Proposition 2.9. In the framework of Example III, the following holds.

(a) For any α> 0,

1

n

n−1∑

x=0
sup
θ∈V

∁
α

[
φθ(Ln

x+1,Ln
x )−φθ⋆ (Ln

x+1,Ln
x )

]
−−−−→
n→∞

−∞, in P⋆-probability, (23)

where V
∁
α is the complement of Vα defined as Vα = {a ∈ Θ : dKL(a⋆|a) ≤ α}, with

dKL(·|·) is the Kullback-Leibler distance on (0,1)× (0,1) defined as

dKL(q |q ′) = q log
q

q ′ + (1−q) log
1−q

1−q ′ ≥ 0.

Therefore, the MLE of the parameter a is consistent.

(b) The Fisher information is infinite, that is, for any θ,

Σθ = E
θ
[
(φ′

θ)2]=+∞. (24)

(c) For any θ 6= θ⋆,

J = E
⋆
[
|φ′

θ|
]
=+∞. (25)

3 Proofs

3.1 Proof of Proposition 2.2

First, we establish the weak law of large numbers

1

n
ℓsb

n (θ) −−−−→
n→∞

ℓsb(θ), in P⋆-probability. (26)

Since the sequence Ln
n , Ln

n−1, . . . , Ln
0 has the same distribution as the BPIRE Z0,

Z1, . . . , Zn defined by (8), we have

ℓsb
n (θ) ∼

n−1∑

k=0

[
φθ(Zk , Zk+1)−φθ0 (Zk , Zk+1)

]
, (27)
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under P⋆, where ∼ means equality in distribution. Comets et al. proved that
under point i i ) of Assumption I, the process (Zn , Zn+1)n∈Z+ is a positive recur-
rent homogeneous Markov chain which admits the unique invariant probability
measure π̃θ⋆ defined by (12). Hence, according to Theorem 4.2 in Chapter 4
from Revuz (1984), for any function g : Z2

+ → R
d such that π̃θ⋆(‖g‖) < ∞, the

following ergodic theorem holds

lim
n→∞

1

n

n−1∑

k=0

g (Zk , Zk+1) = π̃θ⋆(g ), (28)

P⋆-almost surely and inL
1(P⋆). Under point i i i ) of Assumption II, we can use (28)

with g =φθ−φθ0 , and combining with (27), this yields (26).

Now we turn to the local uniform weak law of large numbers.This could be veri-
fied by the same arguments as in the proof of the standard uniform law of large
numbers (see Theorem 6.10 and its proof in Appendix 6.A in Bierens, 2005) where
(26) plays the role of the weak law of large numbers for a random sample in the
former reference.

Indeed, under point i ) of Assumption II, the map θ 7→ φθ −φθ0 is continuous,
and under point i i i ) of Assumption II, we have

π̃θ⋆

(
sup
θ∈Θ

∣∣φθ−φθ0

∣∣
)
<+∞,

which implies that

π̃θ⋆

(
sup
θ∈Θ

φθ−φθ0

)
<+∞ and π̃θ⋆

(
inf
θ∈Θ

φθ−φθ0

)
>−∞.

Therefore, the proof of Theorem 6.10 in Bierens (2005) can be adapted to our
context and this implies (16).

3.2 Proof of Proposition 2.3

First of all, note that under under point i i i ) of Assumption II, the limit ℓsb(θ) is
finite for any value θ ∈Θ. From (17), we may write

ℓsb(θ)−ℓsb(θ⋆) = π̃θ⋆(φθ−φθ⋆ ).

Using (12) and noting that Qθ(u, v)=
(u+v

u

)
exp[φθ(u, v)] yields

ℓsb(θ)−ℓsb(θ⋆) =
∑

u∈Z+

πθ⋆(u)

[
∑

v∈Z+

log

(
Qθ(u, v)

Qθ⋆ (u, v)

)
Qθ⋆ (u, v)

]

.

Using Jensen’s inequality with respect to the logarithm function and the (condi-
tional) distribution Qθ⋆(u, ·) yields

ℓsb(θ)−ℓsb(θ⋆) ≤
∑

u∈Z+

πθ⋆(u) log

[
∑

v∈Z+

Qθ(u, v)

Qθ⋆ (u, v)
Qθ⋆ (u, v)

]

= 0. (29)

10



The equality in (29) occurs if and only if for any u ∈ Z+, we have Qθ(u, ·) =
Qθ⋆(u, ·), which is equivalent to the probability measures νθ and νθ⋆ having
identical moments. Since their supports are included in the bounded set (0,1),
these probability measures are then identical (see for instance Shiryaev, 1996,
Chapter II, Paragraph 12, Theorem 7). Hence, the equality ℓsb(θ) = ℓsb(θ⋆) yields
νθ =νθ⋆ which is equivalent to θ= θ⋆ under point i i ) of Assumption II.

In other words, we proved that ℓsb(θ) ≤ ℓsb(θ⋆) with equality if and only if θ =
θ⋆. To conclude the proof of Proposition 2.3, it suffices to use that the function
θ 7→ ℓsb(θ) is continuous.

3.3 Proof of Proposition 2.4

Let κθ defined by (4) and α be a positive number. Let Λ be the positive random
variable such that

1−S = e−Λ,

where S is defined by (11). Then, we have

∞∑

k=0
kαπθ(k)= E

θ

[

S
∞∑

k=0
kαe−Λk

]

. (30)

From the fact that for any integer k and any positive λ

∫k+1

k
xαe−λx dx ≥ e−λkαe−λk and

∫k+1

k
xαe−λx dx ≤ eλ(k +1)αe−λ(k+1),

we deduce that

(1−S) ·
Γ(α+1)

Λ1+α ≤
∞∑

k=1

kαe−Λk ≤
1

1−S
·
Γ(α+1)

Λ1+α , (31)

where Γ(z) =
∫+∞

0 xz−1e−x dx. Using the fact that there exists a constant C such
that

S
∞∑

k=1

kαe−Λk
1{S>1/2} ≤C ,

that Λ≥ S and (31) yields

E
θ

[

S
∞∑

k=0

kαe−Λk

]

≤C +2Γ(α+1)Eθ
[
S−α]

. (32)

Kesten (1973) showed that there exists a positive constant cθ such that

P
θ(S−1 > x) ·xκθ → cθ , when x →∞. (33)

Combining (30), (33) and (32) implies point i ) of Proposition 2.4.
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Now, we turn to point i i ) of Proposition 2.4. Using the convexity of the function
x 7→ | log(1−x)| on (0,1), we obtain

1{S<1/2}

2S log2
≤
1{S<1/2}

Λ
,

which combined with (31) yields

E
θ

[

S
∞∑

k=0

kαe−Λk

]

≥
Γ(α+1)

2(2log 2)α+1
E
θ
[
S−α

1{S<1/2}
]

,

and finally

E
θ

[

S
∞∑

k=0
kαe−Λk

]

≥
Γ(α+1)

2(2log 2)α+1

(
E
θ
[
S−α]

−2α
)
. (34)

Combining (30), (33) and (34) implies point i i ) of Proposition 2.4.

3.4 Proof of Proposition 2.7

Falconnet et al. have already established that points i ) and i i ) of Assumption II
as well as point i ) of Assumption III are satisfied. From the latter reference, we
also know that the first derivative φ̇p as well as the second derivative φ̈p are uni-
formly bounded when Θ ∈ (0,1), and this implies that point i i i ) of Assumption II
and points i i ) and i v) of Assumption III are satisfied. Points i i i ) and v) of As-
sumption III can be checked exactly as in Falconnet et al. (2013).

3.5 Proof of Proposition 2.8

Falconnet et al. have already established that points i ) and i i ) of Assumption II
as well as point i ) of Assumption III are satisfied.

From the latter reference, we know that there exists a constant A1 independent
of θ, such that for any u and v

|∂αφθ(u, v)| ≤ A1 log(1+v) and |∂βφθ(u, v)| ≤ A1 log(1+u). (35)

Define κθ ∈ (0,1] as the unique positive number satisfying E
θ[ρκθ

0 ] = 1, that is,

Γ(α−κθ)Γ(β+κθ) =Γ(α)Γ(β).

Define κ = min{κθ : θ ∈ Θ}. From (35), there exists A2 > 0 and A3 > 0 indepen-
dent of θ, such that for any u and v

|∂αφθ(u, v)| ≤ A2vκ/2 and |∂βφθ(u, v)| ≤ A2uκ/2, (36)

and
|∂αφθ(u, v)|4 ≤ A3vκ/2 and |∂βφθ(u, v)|4 ≤ A3uκ/2. (37)

12



Using the fact that Eθ[ρκ/2
0 ] < 1 for any θ ∈Θ, Proposition 2.4, the fact that

∑

k∈Z+

kκ/2πθ(k)=
∑

u,v∈Z+

uκ/2π̃θ(u, v)=
∑

u,v∈Z+

vκ/2π̃θ(u, v),

(36) and (37) yields that point i i i ) of Assumption II is satisfied, as well as point i i )
of Assumption III with q = 2.

Now, we turn to point i i i ) of Assumption III. To exchange the order of derivation
and summation, it is sufficient to prove that

∑

v

sup
θ∈Θ

‖Q̇θ(u, v)‖<∞, (38)

for any integer u. Define θ′ = (α′,β′) with

α′ = inf(proj1(Θ)) and β′ = inf(proj2(Θ)),

where proji , i = 1,2 are the two projectors on the coordinates. Note that θ′ does
not necessarily belong to Θ. However, it still belongs to the sub-ballistic region.
From Falconnet et al. (2013), we know that there exists a constant A4 such that

Qθ(u, v)≤ A4Qθ′(u, v),

for any integers u and v . Define κ′ ∈ (0,1] as the unique positive number satisfy-
ing E

θ′
[ρκ′

0 ] = 1, and recall that Q̇θ(u, v) =Qθ(u, v)φ̇θ(u, v). Hence, using the last

inequality and the fact that ‖φ̇θ‖ =O(vκ′/2), it is sufficient to prove that
∑

v

vκ′/2Qθ′(u, v)<∞, for any integer u, (39)

to get (38). We have

∑

u

(∑

v

vκ′/2Qθ′(u, v)
)
πθ′(u)=

∑

v

vκ′/2πθ′(v)<∞,

where the last inequality comes from the fact that Eθ
′
[ρκ′/2

0 ] < 1 and Proposi-
tion 2.4. Hence, (39) is satisfied for any integer u which proves that (38) is satis-
fied.

The second order derivatives of φθ are given by

∂2
αφθ(x, y) =−

x∑

k=0

1

(k +α)2
+

x+y∑

k=0

1

(k +α+β)2
,

∂α∂βφθ(x, y) =
x+y∑

k=0

1

(k +α+β)2
,

and similar formulas for β instead of α. Thus, the second derivative φ̈θ is uni-
formly bounded on Θ, and this implies that point i v) of Assumption III is sat-
isfied. Point v) of Assumption II can be checked exactly as in Falconnet et al.
(2013).
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3.6 Proof of point (a) of Proposition 2.9

Fix α> 0. To prove (23), we show

i) π̃θ⋆

([
sup

θ∈V
∁
α
φθ−φθ⋆

]−)
=+∞,

ii) π̃θ⋆

([
sup

θ∈V
∁
α
φθ−φθ⋆

]+)
<+∞.

Indeed, under points i) and ii), we can apply an ergodic theorem to (Zn) which
yields

1

n

n−1∑

x=0
sup
θ∈V

∁
α

[
φθ(Zx , Zx+1)−φθ⋆ (Zx , Zx+1)

]
−−−−→
n→∞

−∞, P⋆-almost surely,

and then (23).

We note that Ka(u, ·) defined by (22) is the distribution of a negative binomial
random variable NB(u + 1, a) with probability of success 1− a and number of
failures u +1, that is, the distribution of the number of successes in a sequence
of independent Bernoulli trials until u +1 failures has occurred.

We will make use several times of the fact that NB(u +1, a) is the sum of (u +1)
i.i.d. geometric random variables G1(a), . . . , Gu+1(a) with parameter 1−a, that
is Prob(G1(a) = k) = (1− a)k a, whose mean is given by µ = (1− a)/a > 1. As a
shortand of notation, we write µ⋆ as the ratio (1−a⋆)/a⋆ > 1.

Define for any ε> 0 and any integer u, the sets

A(ε,u) =
{

v ∈Z+ :
∣∣∣

v

u +1
−µ⋆

∣∣∣≤ ε
}

, (40)

B (ε,u)=
{

v ∈Z+ :
∣∣∣

v

u +1
−

1

µ⋆

∣∣∣≤ ε
}

, (41)

C (ε,u) =Z+ \
(

A(ε)∪B (ε)
)
. (42)

We have ∑

v∈A(ε,u)
Ka⋆(u, v)= Prob

(
|Gu+1(a⋆)−µ⋆| ≤ ε

)
,

with

Gu+1(a⋆) =
1

u +1

u+1∑

k=1

Gk (a⋆).

Using concentration inequalities, there exists a constant cε such that
∑

v∈A(ε,u)
Ka⋆(u, v)≥ 1−ec ′

ε(u+1). (43)

Similarly, there exists a constant c ′ε such that
∑

v∈B (ε,u)
K1−a⋆(u, v)≥ 1−ec ′′

ε (u+1), (44)
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and as a consequence of (21), (43) and (44), there exists a constant c ′′ε such that
∑

v∈C (ε,u)
Qθ⋆ (u, v)≤ e−c ′′

ε (u+1). (45)

Introduce the quantity β to be used later and defined as

β=max
{

sup
a∈V

∁
α

∣∣∣ log
1−a⋆

1−a

∣∣∣, sup
a∈V

∁
α

∣∣∣ log
a⋆

a

∣∣∣
}

. (46)

For any 0 < ε<µ⋆−1 and for any v in A(ε,u), we have v > u +1 and as a conse-
quence, for any a ∈Θ,

Ka (u, v)> K1−a(u, v).

Thus, we deduce that for any v in A(ε,u),

(φθ−φθ⋆)(u, v) = log
pKa(u, v)+ (1−p)K1−a (u, v)

pKa⋆(u, v)+ (1−p)K1−a⋆(u, v)

≤ log
1

p
+ (u +1)log

a

a⋆
+v log

1−a

1−a⋆

≤ log
1

p
−

u +1

a⋆

[
dKL(a⋆|a)+

( v

u +1
−µ⋆

)
a⋆ log

1−a⋆

1−a

]

≤ log
1

p
− (u +1)

(α
a⋆

−εβ
)
.

Similarly, we deduce that for any 0 < ε< 1−1/µ⋆ and for any v in B (ε,u),

(φθ−φθ⋆ )(u, v)≤ log
1

1−p
− (u +1)

( α

1−a⋆
−εβ

)
.

Hence, choosing

ε= min
{
µ⋆−1,1−1/µ⋆,

α

2β(1−a⋆)

}

yields the existence of u0 such that for any u ≥ u0 and any v in A(ε,u)∪B (ε,u)

(
sup
θ∈V

∁
α

(φθ−φθ⋆ )(u, v)
)+

= 0 and
(

sup
θ∈V

∁
α

(φθ−φθ⋆ )(u, v)
)−

≥
α

3(1−a⋆)
(u +1).

(47)
Combining (45) and (47) immediatly yields

π̃θ⋆

(
sup
θ∈V

∁
α

[
φθ−φθ⋆

]− )
≥

α

3(1−a⋆)

∑

u≥u0

πθ⋆(u)(u +1)(1−e−c ′′
ε (u+1)) =+∞,

where the last equality comes from Proposition 2.4. This achieves the proof of
point i). To prove point ii), note that there exists a positive constant c1 such that
for any u and any v

(
sup
θ∈V

∁
α

(φθ−φθ⋆ )(u, v)
)+

≤
∣∣∣ sup
θ∈V

∁
α

(φθ−φθ⋆ )(u, v)
∣∣∣≤ c1(u +1+v).
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Furthermore, from Cauchy-Schwarz inequality, the fact that Ka⋆(u, ·) (resp. K1−a⋆(u, ·))
possesses a second moment quadratic with u, and (45), there exists two positive
constants c2 and c3 such that

∑

v≥0
Qθ⋆ (u, v)v ·1C (ε,u)(v) ≤

( ∑

v≥0
Qθ⋆(u, v)v 2

)1/2
·
( ∑

v≥0
Qθ⋆ (u, v)1C (ε,u)(v)

)1/2

≤ c2(u +1)e−c3(u+1),

Therefore, there exists two positive constants c4 and c5 such that

π̃θ⋆

(
sup
θ∈V

∁
α

[
φθ−φθ⋆

]+ )
≤ c4 +c5

∑

u≥u0

πθ⋆(u)(u +1)e−c ′′(u+1) <+∞,

which achieves the proof of point ii).

Noting that θ̂n does not depend on the choice of θ0 in (14), we can take θ0 = θ⋆.
Obviously, we have ℓsb

n (θ⋆) = 0, for all integer n, whereas from (23), we have
ℓsb

n (θ)/n which goes to infinity, for any θ outside a neighborhood of θ⋆. Hence,
the consistency follows.

3.7 Proof of point (b) of Proposition 2.9

We have,

φ′
θ(u, v) ·Qθ(u, v)= pKa(u, v)

(
u +1

a
−

v

1−a

)
− (1−p)K1−a (u, v)

(
u +1

1−a
−

v

a

)
.

(48)

Recall that
Σθ = E

θ
[
(φ′

θ)2]=
∑

u≥0
πθ(u)

∑

v≥0
Qθ(u, v)[φ′

θ(u, v)]2,

which can be rewritten using (48) as

Σθ =
∑

u≥0
πθ(u)

∑

v≥0

1

Qθ(u, v)

[
pKa(u, v)

(
u +1

a
−

v

1−a

)
− (1−p)K1−a (u, v)

(
u +1

1−a
−

v

a

)]2

.

Define

v(u)=u +1, V (u)= max{v ∈Z+ : v ≤µ · (u +1)− (1−a)
p

u +1},

with µ= (1−a)/a. From the fact that µ> 1, there exists u0 such that for any u ≥
u0, we have v(u) <V (u). Furthermore, for any u ≥ u0 and any v in [v(u),V (u)],
we have

Ka(u, v)≥ K1−a(u, v),
u +1

1−a
−

v

a
≤ 0 and

u +1

a
−

v

1−a
≥
p

u +1.
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Thus,

Σθ ≥
∑

u≥u0

πθ(u)
V (u)∑

v=v(u)

1

Qθ(u, v)

[
pKa(u, v)

(u +1

a
−

v

1−a

)]2

≥ p2
∑

u≥u0

(u +1)πθ(u)
V (u)∑

v=v(u)
Ka (u, v). (49)

Recall that

V (u)∑

v=v(u)
Ka (u, v)=Prob

(
NB(u +1, a) ∈ [v(u),V (u)]

)

=Prob
(p

u +1
(
Gu+1 −µ

)
∈

[p
u +1(1−µ),−(1−a)

])
,

with

Gu+1 =
1

u +1

u+1∑

k=1

Gk (a),

where G1(a), . . . , Gu+1(a) are i.i.d. geometric random variables with mean µ.
From the central limit theorem applied to the sequence (Gk (a)), there exists u1 ≥
u0 such that for any u ≥u1

V (u)∑

v=v(u)
Ka(u, v)≥

1

2
Prob

(
N (0,σ2) ∈

[
−2µ,−(1−a)

])
=C > 0, (50)

where σ2 = (1−a)/a2 is the variance of G1(a) and N (0,σ2) a Gaussian random
variable with mean 0 and variance σ2. Injecting (50) in (49) yields

Σθ ≥C p2
∑

u≥u1

(u +1)πθ(u).

From Proposition 2.4, πθ does not possess a finite first moment in the sub-
ballistic regime and we deduce that Σθ =+∞.

3.8 Proof of point (c) of Proposition 2.9

Assume that θ 6= θ⋆. Recall that

J =
∑

u≥0
πθ⋆(u)

∑

v≥0
Qθ⋆(u, v)|φ′

θ(u, v)|,

which can be rewritten using (48) and (9)

J =
∑

u≥0
πθ⋆(u)

∑

v≥0

Qθ⋆ (u, v)

Qθ(u, v)

∣∣∣∣pKa(u, v)

(
u +1

a
−

v

1−a

)
− (1−p)K1−a (u, v)

(
u +1

1−a
−

v

a

)∣∣∣∣ .

Using the set A(ε,u), we have

J ≥ p J1 − (1−p)J2, (51)
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with

J1 =
∑

u≥0
πθ⋆(u)

∑

v∈A(ε,u)

Qθ⋆(u, v)

Qθ(u, v)
Ka(u, v)

∣∣∣∣
u +1

a
−

v

1−a

∣∣∣∣ (52)

J2 =
∑

u≥0
πθ⋆(u)

∑

v∈A(ε,u)

Qθ⋆(u, v)

Qθ(u, v)
K1−a(u, v)

∣∣∣∣
u +1

1−a
−

v

a

∣∣∣∣ . (53)

Choose ε= min{|µ−µ⋆|/2,µ⋆−1}. Then, for any u and any v ∈ A(ε,u), we have

∣∣∣∣
u +1

a
−

v

1−a

∣∣∣∣≥
u +1

1−a
ε, Ka(u, v)≥Qθ(u, v),

and as a consequence

J1 ≥
ε

1−a

∑

u≥0
πθ⋆(u)(u +1)

∑

v∈A(ε,u)
Qθ⋆ (u, v)

≥
pε

1−a

∑

u≥0
πθ⋆(u)(u +1)

∑

v∈A(ε,u)
Ka⋆(u, v).

Using (43) and the fact that πθ⋆ does not possess a finite first moment in the
sub-ballistic regime, we deduce that J1 is infinite. On the other hand, we have
for any u and any v ∈ A(ε,u),

∣∣∣∣
u +1

1−a
−

v

a

∣∣∣∣≤ (u +1)
( 1

1−a
+
ε+µ⋆

a

)
,

and,
K1−a(u, v)

Qθ(u, v)
≤

K1−a(u, v)

pKa(u, v)
≤

1

p
µu+1−v ,

and as a consequence,

J2 ≤
1

p

( 1

1−a
+
ε+µ⋆

a

) ∑

u≥0
πθ⋆(u)(u +1) ·γu+1

∑

v∈A(ε,u)
Qθ⋆(u, v),

where
γ=µ−(µ⋆−1−ε) < 1.

From the fact that u 7→ (u +1)γu+1 ∑
v∈A(ε,u) Qθ⋆(u, v) is bounded, and therefore

integrable against πθ⋆ , we deduce that J2 is finite. This achieves the proof of (25).

4 Numerical performance

In this section, we explore the numerical performance of our estimation pro-
cedure in the frameworks of Example I and the Temkin model. We compare our
performance with the performance of the estimator proposed by Adelman and Enriquez
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(2004). An explicit description of the form of Adelman and Enriquez’s estimator
in the particular case of the one-dimensional nearest neighbour path is provided
in Section 5.1 of Comets et al. (2014). Therefore, one can estimate θ⋆ by the so-
lution of an appropriate system of equations, as illustrated below.

Example I (continued). In this case the parameter θ equals p and we have

v = E
⋆[ω0] = p⋆a1 + (1−p⋆)a2.

Hence, among the visited sites, the proportion of those from which the first
move is to the right gives an estimator for p⋆a1+ (1−p⋆)a2. Using this observa-
tion, we can estimate p⋆.

Example III (continued). In this case the parameter θ equals a and we have

v = E
⋆[ω0] = pa⋆+ (1−p)(1−a⋆).

Hence, among the visited sites, the proportion of those from which the first
move is to the right gives an estimator for pa⋆+(1−p)(1−a⋆). Using this obser-
vation, we can estimate a⋆.

4.1 Experiments

We now present the simulation experiment corresponding to Example I and Ex-
ample III where we include a comparison with Adelman and Enriquez’s proce-
dure.

For each of the two simulations, we a priori fix a parameter value θ⋆ as given in
Table 1 and repeat 1,000 times the procedure described below.

Simulation Fixed parameter Estimated parameter

Example I (a1, a2) = (0.4,0.7), κ= 0.9 p⋆ ≈ 0.548

Example III κ= 0.9, p ≈ 0.41 a⋆ = 0.4

Table 1: Parameter values for each experiment.

Then, we generate a random environment according to νθ⋆ on the set of sites
{−103, . . . ,103}. In fact, we do not use the environment values for all the 103 neg-
ative sites, since only few of these sites are visited by the walk. However the com-
putation cost is very low comparing to the rest of the estimation procedure, and
the symmetry is convenient for programming purpose. Then, we run a random
walk in this environment and stop it successively at the hitting times Tn defined
by (2), with n ∈ {102k : 1 ≤ k ≤ 10}. For each stop, we estimate θ⋆ according
to our procedure and Adelman and Enriquez’s one. The likelihood optimization
procedure was performed as a combination of golden section search and suc-
cessive parabolic interpolation.

19



The parameter is chosen such that the RWRE is transient to the right and sub-
ballistic. Note that the length of the random walk is not n but rather Tn . The
fluctuations of Tn depend in nature on the parameter κ. Under mild additional
assumptions, Kesten et al. (1975) proved that if κ< 1, then n−1/κ ·Tn has a non-
degenerate limit distribution, a stable law with index κ.

In the simulations, the quantity Tn varies considerably. To avoid too long com-
putations, when Tn is too large, we fixed a threshold for the number of steps
for the walk at tmax = 500n1/κ ≈ 106. When the threshold is reached, we did
not compute our estimator. This case happened for 4.4% (when n = 100) and
for 41.9% (when n = 1000) of the simulation in Example I, and for 0.3% (when
n = 100) and for 4.9% (when n = 1000) of the simulation in Example III.

Figure 1 shows the boxplots of our estimator and Adelman and Enriquez’s esti-
mator obtained from 1,000 iterations of the procedures in Example I. First, we
shall notify that in order to simplify the visualisation of the results, we removed
in the boxplots corresponding to Example I about 1.5% of outliers values (out-
side 1.5 times the interquartile range above the upper quartile and below the
lower quartile) from our estimator. We observe that the accuracies of the proce-
dures increase with the value of n. We also note that whereas Adelman and Enriquez’s
seems unbiased our procedure seems to be slightly biaised. However, our pro-
cedure exhibits a much smaller variance than Adelman and Enriquez’s one. One
explanation for the worse performance of Adelman and Enriquez’s estimator com-
paring to our procedure is the fact that only a few part of the trajectory is used
in the estimation.

Figure 2 shows the boxplots of our estimator and Adelman and Enriquez’s es-
timator obtained from 1,000 iterations of the procedures in Example III. First,
we shall notify that in order to simplify the visualisation of the results, we re-
moved in the boxplots corresponding to Example I about 15% of outliers values
(outside 1.5 times the interquartile range above the upper quartile and below
the lower quartile) from our estimator. We first observe that the accuracies of
the procedures increase with the value of n. We also note that both procedures
seem unbiased. However, our procedure exhibits a much smaller variance than
Adelman and Enriquez’s one, but also a much smaller one than when we were
not estimating the support. This suggests that the rate of convergence when
estimating the support in the Temkin model is faster than the square root of n.
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Figure 1: Boxplots of our estimator (left and white) and Adelman and Enriquez’s
estimator (right and grey) obtained from 1,000 iterations and for values n rang-
ing in {102k ;1 ≤ k ≤ 10} (x-axis indicates the value k). The panel displays esti-
mation of p⋆ in Example I. The true value is indicated by horizontal lines.
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Figure 2: Boxplots of our estimator (left and white) and Adelman and Enriquez’s
estimator (right and grey) obtained from 1,000 iterations and for values n rang-
ing in {102k ;1 ≤ k ≤ 10} (x-axis indicates the value k). The panel displays esti-
mation of a⋆ in Example III. The true value is indicated by horizontal lines.
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