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Audio-Visual Speech Source Separation

Bertrand Rivet, Wenwu Wang, Syed Mohsen Naqvi and Jonathon A. Chambers

I. INTRODUCTION

The separation of speech signals measured at multiple microphones in noisy and reverberant environ-

ments using only the audio modality has limitations because there is generally insufficient information

to discriminate fully the different sound sources. Humans mitigate this problem by exploiting the visual

modality which is insensitive to background noise and can provide contextual information about the audio

scene. This advantage has inspired the creation of the new field of audio-visual speech source separation

which targets at doing likewise in a machine. Success in this emerging field will expand the application

of voice-based machine interfaces, such as Siri, the intelligent personal assistant on the iPhone and iPad,

to much more realistic settings and thereby provide more natural human machine interfaces. The purpose

of this article is to provide an overview of the key methodologies in audio-visual speech source separation

building from early methods which simply use the visual modality to identify speech activity through to

sophisticated techniques which synthesise a full audio-visual model. New directions in this exciting area

of signal processing are also identified.

Separating speech signals which are only observable as mixtures requires techniques such as blind

source separation (BSS). This topic has been investigated extensively in the signal processing community

during the past two decades, and has had impact upon many applications such as speech enhancement

and machine audition [1]. A well-known example for demonstrating BSS applications is the so-called

cocktail party problem coined by Cherry [2]. His desire was to build a machine to mimic a human’s ability

in separating target speech sources from a superposition of multiple sound signals including interfering

sounds and background noise, often coupled by sound reflections from room surfaces. This problem is
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usually addressed within the framework of convolutive BSS taking into account room reverberations in

the separation model. In this framework, the vector observations x(t) are modeled as a linear convolutive

mixture of the vector sources s(t): x(t) = H(t) ∗ s(t), where H(t) is the matrix of impulse responses

between each source and each mixture, and t is the discrete time index. For simplicity, H(t) is assumed

to be square so that the number of microphones and sources is equal, but this is not necessary to achieve

separation. The aim is thus to estimate the demixing matrix W (t) so that ŝ(t) = W (t) ∗x(t) contains an

estimate of each source si(t), where subscript i is the index of the source. Alternatively, it is solved in a

transform domain by converting the full-band speech mixtures into sub-band components which are then

separated either individually or jointly, leading to a computationally more efficient method, e.g. frequency

domain BSS. In this latter case, assuming static sources, the frequency domain counterparts of mixing

and demixing equations are x(m, f) = H(f)s(m, f) and ŝ(m, f) = W (f)x(m, f), respectively, where

·(m, f) is the short-term discrete-time Fourier transform (STFT) of ·(t), ·(f) is the Fourier transform of

·(t), and m and f are the time frame and frequency bin indices respectively. This however introduces

the permutation and scaling ambiguity problems, due to the potentially inconsistent orders and scales of

the separated source components at the individual frequency bands that are inherent to the instantaneous

BSS models: in other words, W (f) = Λ(f)P (f)H(f)−1, where Λ(f) is a diagonal matrix (i.e. modeling

the scaling indeterminacy) and P (f) is a permutation matrix (i.e. modeling the permutation ambiguity).

Many methods have, therefore, been developed to mitigate these ambiguities before reconstructing the

full-band source signals (more details can be found in [1]). A more recent approach is independent vector

analysis (IVA) whereby the permutation problem is mitigated via a coupling of the adaptation across all

the frequency bands [29].

These convolutive BSS techniques can be broadly attributed to a category of linear filtering based

methods. Another powerful method for separating convolutive mixtures is based on a form of time-

varying filtering using time-frequency (T-F) masking where the aim is to form a probabilistic (soft) or

binary (hard) mask M(m, f) for each source, and then applying the mask to the T-F representation of

the mixtures for the extraction of that source: ŝ(m, f) = M(m, f)x(m, f). The mask can be estimated

by the evaluation of various cues from the mixtures, such as statistical, spatial, temporal and/or spectral

cues, using an expectation maximization (EM) algorithm [3] under a maximum likelihood or a Bayesian

framework. The T-F masking techniques can often be applied directly on underdetemined mixtures for the

extraction of a larger number of sources than the observed signals. Despite these efforts and the promising

progress made in this area, the state-of-the-art algorithms commonly suffer in the following two practical

situations: namely, highly reverberant and noisy environments, and when multiple moving sources are
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present. For example, most existing methods of frequency domain BSS are practically constrained by

the data length limitation, i.e. the number of samples available at each frequency bin is not sufficient for

learning algorithms to converge [4], while the various cues, such as the spatial cues which are used to

calculate the likelihood of the source being present for the T-F mask estimation, become more ambiguous

with the increasing reverberation and background noise. The performance of most existing algorithms

degrades substantially in these adverse acoustic environments.

The methods mentioned above exploit only single modality signals in the audio domain. However, it is

now widely accepted that human speech is inherently at least bimodal involving interactions between audio

and visual modalities [5]. For example, the uttering activities are often coupled with the visual movements

of vocal organs, while reading lip movement can help a human to infer the meaning of a spoken

sentence in a noisy environment [6]. The well-known McGurk effect also confirms that visual articulatory

information is integrated into the human speech perception process automatically and unconsciously [7].

For example, under certain conditions, a visual /ga/ combined with an auditory /ba/ is often heard as

/da/. As also suggested by Cherry [2], fusing the audio-visual (AV) information from different sensory

measurements would be the best way to address the machine cocktail party problem. The intrinsic AV

coherence1 has been exploited previously to improve the performance of automatic speech recognition [8]

and identification [9].

In the study in [10], a speech signal corrupted by white noise is enhanced with filters estimated from

the video input. The aim is to estimate a time-varying Wiener filter based on a linear regression (linear

predictive coding, LPC) between the audio and visual signals from a regressor trained with a clean

database (Figure 1) and therefore is termed an AV-Wiener filter. This preliminary study has been shown

to be efficient on very simple data (succession of vowels and consonants). For instance, with an input

signal-to-noise ratio (SNR) of -18dB, a simple linear discriminant analysis of the filtered signals leads

to a word classification accuracy (CA) of 40% after the AV enhancement compared to the CA of 10%

with the classical audio enhancement while the unfiltered data leads to a CA of 5%. However, due to the

complex relationship between audio and video signals, this simple approach is found to have limitations

when applied on more complex signals such as natural speech and other noise sources. Nevertheless,

this pioneering approach has shown that it can be extremely beneficial to combine video information

1Here we use the term coherence to describe the dependency between the audio and visual modalities, to be consistent with

the conventional use of the term in previous works in the literature, such as [10]–[12], [27]. As discussed in subsequent sections,

the dependency can be modelled as either joint distribution of the AV features or joint AV atoms (i.e. signal components).
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Fig. 1. Audio visual estimation of Wiener filter from [10]. The linear predictive coding (LPC) method is used to model the

noisy speech. The audio feature based on LPC inverse filtered spectrum is fused with the visual features such as the lip width

(LW) and height (LH) for enhancing the LPC spectrum of the noisy speech. The enhanced speech signal can therefore be

obtained based on this LPC enhanced filter and the residual signal obtained from the inverse filtering of the noisy speech.

when dealing with speech enhancement mirroring the advantage gained in automatic speech recognition

systems [8].

During the last decade, integrating visual information into an audio-only speech source separation

system has been emerging as an exciting new area in signal processing: audio-visual (i.e. multimodal)

speech source separation [11]. The activities in this area include robust modelling of AV coherence [12],

[13]; fusing of AV coherence with independent component analysis (ICA) or T-F masking [14]; using

AV coherence to resolve ambiguities in BSS [13], [15]; employing visual information for the detection of

voice activities [16], [17]; exploiting redundancy within the AV data to design efficient speech separation

algorithms based on sparse representations [14], [18]; and more recently, audio-visual scene analysis for

addressing the challenging problem of speech separation from moving sources [4], [19] or in environments

with long reverberation time [20].

A large diversity of approaches to tackle the speech source separation problem using both audio

and visual modalities has therefore clearly been developed. To present these in a coherent manner the

remainder of this tutorial is organized according to the increasing sophistication in the way in which video

is used to help speech source enhancement as summarized in Table I. The advantages and disadvantages

of the methods are also highlighted in the table, and references are added to papers where the full details

can be found of experimental studies which present the performance gains achievable by adding video

in the processing.
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Methods Main advantages Main disadvantages
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Spectral subtraction [21],

[22]

Effective in noise reduction; Easy to

implement

Introduces processing artefacts; Diffi-

cult to estimate the noise power for

nonstationary signals

AV post-processing of au-

dio ICA [15]

Low computational cost; Strength of

ICA framework; Correct (almost) all

permutations

Increases delay (i.e. latency); Potential

processing artefacts

Extraction based on tempo-

ral voice activity [16]

Low computational cost; Simple as-

sumptions

Limited to low reverberation

V
is

u
al

S
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n
e

A
n

al
y

si
s

S
ec

.
II

I AV beamform-

ing/ICA/IVA [4], [19],

[23]–[25]

Potential for separating moving

sources; Correct the permutations;

Improve convergence of ICA/IVA

algorithms

Degrades with high reverberations

AV T-F masking [20] Exploits time-varying property

of sources; Not affected by the

permutation problem

High computational complexity; Chal-

lenging in resolving spectral overlaps

F
u

ll
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t

A
V

m
o
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el

S
ec

.
I AV-Wiener filter [10] Low computational cost Limited to simple signals; Difficulty in

learning accurate AV model

S
ec

.
IV

-A

Maximization of AV likeli-

hood [11], [26]

Can extract speech sources from under-

determined mixtures

Limited to instantaneous mixtures; Dif-

ficulty in learning accurate AV model;

AV Regularization of

ICA [27]

Exploiting the strength of the ICA

framework

Limited improvement compared to au-

dio only ICA in particular for convolu-

tive mixtures

AV post-processing of au-

dio ICA [12]

Moderate computational cost Difficulty of learning accurate AV

model; Increases delay (i.e. latency)

S
ec

.
IV

-B AVDL + T-F masking [14] Can capture the local information

within the signals; Not affected by the

permutation problem

High computational complexity; Only

bimodality informative parts of the sig-

nals are learned

TABLE I

OVERVIEW OF AV METHODS FOR SPEECH ENHANCEMENT/SEPARATION. THE METHODS ARE CLASSIFIED ACCORDING TO

THE INCREASING SOPHISTICATION IN THE WAY IN WHICH VIDEO IS USED TO HELP SPEECH SOURCE SEPARATION: FROM A

COARSE BINARY INDEX (SECTION II) TO FULL JOINT AV MODEL (SECTION IV) INCLUDING VISUAL SCENE ANALYSIS

(SECTION III), AND REFERENCES ARE GIVEN WHICH DETAIL COMPARATIVE PERFORMANCE EVALUATION STUDIES.
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II. METHODS BASED ON VISUAL VOICE ACTIVITY

A very simple approach to model the link between audio and video signals is to utilise the voice

activity of the time domain speech signal. Indeed, there exist pauses during natural speech: for instance,

during breathing or before a plosive (such as /p/). Such silences can importantly be partially predicted by

the movements of the lips [17]. Based on this idea, several purely video based voice activity detectors (V-

VADs) have been developed [28]: they are generally based on the velocity of face features, usually motions

of the lips. The main advantage of such V-VADs compared to an audio VAD is that they are not corrupted

by concurrent audio sources such as environmental noise, or other speakers. It is worth noting that such

models do not aim at linking audio and video features but they try to infer very coarse information on

silence (i.e. the probability that speech is present P (si(t) 6= 0|ζvi (t))) or not (i.e. P (si(t) = 0|ζvi (m)))

in the audio modality from the video one, where ζvi (t) is the visual signal associated with the ith source

si(t). Examples of speech enhancement methods which exploit a V-VAD are discussed next.

A. Spectral subtraction

A simple method is to extend classical spectral subtraction by embedding visual features [21], [22]: the

spectrum of the enhanced signal is expressed as |ŝ(m, f)|2 = |x(m, f)|2−α|d(m, f)|2, where x(m, f) is

the STFT of a measured microphone signal x(t), d(m, f) is the estimated interference noise spectrum and

α is a parameter to adjust the subtraction level. The spectrum of the interference noise d(m, f) is estimated

from the windows related to the silence of the target source (i.e., the set Ti = {t |P (si(t) = 0|ζvi (t))}).

These windows are efficiently detected by a V-VAD which is thus not corrupted by the interfering audio

noise.

B. AV post-processing of audio ICA

Another use of such high level information (speech/non speech frames) is to embed it into the efficient

ICA framework. In this method, the visual information is used as post-processing after applying an audio

ICA algorithm. Frequency domain source separation generally suffers from the permutation indeterminacy

at each frequency bin: the ICA framework allows the recovery of the sources up to a global permutation

(i.e. the order of the estimated sources is arbitrary). As a consequence, to recover the sources, this

issue must be solved (i.e., permutation matrices P (f) must be the same for all f ). A very intuitive and

efficient method is thus to estimate the permutations in relation to the output power of the sources [15].

Indeed, the V-VAD provides a binary indicator which shows when a specific speaker is silent. Using

this information, one can then solve the permutation indeterminacy by simply minimizing the power
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of the target source during these frames. This method thus exploits the AV dependence, i.e. the joint

distribution of AV features, in a very minimal way but it has been shown to cancel almost all the

permutation ambiguities. Compared to purely audio methods, this requires relatively low computational

cost to mitigate the permutation ambiguities and allows the extraction of only a specific speech source

instead of trying to recover all the sources.

C. AV extraction based on temporal speech activity

A more effective use of such high level information (speech/non speech frames) is to directly incorpo-

rate it into a separation criterion [16] to extract particular speakers in order to provide even less compu-

tational cost than ICA methods. Indeed, considering a set of time samples T so that the sources can be

split into silent ones (∀i ∈ Ssilent, ∀t ∈ T , si(t) = 0) and active ones (∀i ∈ Sactive, ∀t ∈ T , si(t) 6= 0),

purely audio algebraic methods based on generalized eigen decomposition of two covariance matrices

can identify (i) the number of silent speakers (i.e. the cardinality of Ssilent), (ii) the associated support

subspace (i.e. the subspace spanned by {si}i∈Ssilent
). In other words, considering any time samples

including some not in T (i.e. the sources in Ssilent can become active), the projection of the audio

recordings x(t) onto the latter identified subspace cancels all sources in Sactive while sources in Ssilent

remain unchanged. However, this method can not identify which source is silent and thus cannot be used

to extract a specific speaker. To overcome this, a weighted kernel principal component analysis can be

used to improve this approach where the weights are a mixture between the audio probability of silence

(given by the eigen values) and the video probability of silence provided by the V-VAD for a particular

speaker [16]. This simple property provides a very efficient and elegant AV method to extract speech

sources.

III. VISUAL SCENE ANALYSIS BASED METHODS

In the previous section, AV extraction methods use the visual modality in a very coarse way: simple

binary information defining silence or not of specific speakers. In this section, this extra modality is used

in a deeper way by visually analyzing the scene for speech enhancement [23], [24]. Such visual scene

analysis thereby informs the source separation algorithms of the locations of the speakers, especially

when dealing with moving sources, which is a more challenging issue since the mixing filters are now

time-varying. Thus, the classical ICA framework may be ineffective due to the large number of time

samples required to accurately estimate the statistics of the mixtures. These methods are implemented in

two stages: mainly video scene analysis (VSA) based on multiple human tracking (MHT) to estimate the
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Fig. 2. Block diagram of visual scene analysis based method for speech enhancement. Video localization is based on face and

head detection. A video tracker is implemented for tracking of multiple humans and based on the MCMC-PF. The output of the

video processing is position, direction of arrival, and/or velocity information. On the basis of the visual scene the pre-processed

audio mixtures are separated either by a data independent beamformer or intelligently initialized video-aided source separation

method. Finally, post-processing is applied to enhance the separated audio sources.

position, direction of arrival and velocity information of the people in a room or enclosed environment;

and audio source separation depending on the scene as illustrated in the schematic diagram in Figure 2.

A. Video processing for multiple human tracking

Video based face and head detection is applied for multi-person observations from a single image

as initialization. Then a Markov chain Monte Carlo based particle filter (MCMC-PF) is used for MHT

in the video. More details of the three important parts of the probabilistic MHT: the state model, the

measurement model and the sampling mechanism are provided in [4]. Contrary to the V-VAD described

in Section II, it is highlighted that the full-frontal close-up views of the faces of the speakers, which

are generally not available in a room or an enclosed environment, are not required for these trackers.

The above mentioned MHT methods provide a very good framework for AV scene modeling for source

separation: the output of the video based tracker is 3-D position of each speaker p, the elevation (θp)

and azimuth (βp) angles of arrival to the center of the microphone array. The direct-path weight vector

dp(f, θp, βp) can then be computed for frequency bin f and for source of interest (SOI) p = 1, · · · , P

and the velocity information which can then be used in the AV source separation scheme.
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B. AV source separation of moving sources

Speech source separation is a challenging issue when dealing with moving sources [24]. The proposed

extraction of a particular speaker in an AV context depends on the velocity of this speaker.

1) Physically moving sources: After video scene analysis, if the people are moving then the challenge

of separating respective audio sources is that the mixing filters are time varying; as such the unmixing

filters should also be time varying but these are difficult to determine from only audio measurements.

In [19], a multi-stage method has been developed for speech separation of moving sources based on

VSA. This method consists of several stages including the DOA tracking of speech sources based on

video processing, separation of sources based on beamforming with the beampatterns generated by the

DOAs, and time frequency masking as post-processing. From the video signal, the direct path parameter

vector dp can be obtained, as discussed above, which is then used for the design of a robust least squares

frequency invariant data independent (RLSFIDI) beamformer in order to separate the audio sources. The

T-F masking is used as post-processing to further improve the separation quality of the beamformer by

reducing the interferences to a much lower level. However, such time-varying filtering techniques may

introduce musical noise due to the inaccurate estimate of the mask at some T-F points. To overcome this

problem, smoothing techniques such as cepstral smoothing may be used as in [19].

2) Physically stationary sources: After video processing if the speakers are judged to be physically sta-

tionary for at least two seconds then the direct path parameter vector dp with the whitening matrix obtained

from the audio mixtures is used to intelligently initialize the learning algorithms, such as FastICA/IVA

(many learning algorithms are sensitive to initializations) [4], [29], which solves the inherent permutation

problem in ICA or block permutation in IVA algorithms and yields improved convergence [25].

Fig. 3. Speech recording is obtained from two microphones. The direct path parameter vector is calculated with the help of

video cameras. The ILD, the IPD and the mixing vectors which utilize the direct path parameter vector are used to estimate the

model parameters with the EM algorithm. The final probabilistic mask formed from the resulting probabilistic model is used

for source separation.
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C. T-F masking based on VSA

More recently, a video-aided model-based source separation technique for under-determined cases when

the reverberation time is significant has been proposed [20]. This probabilistic T-F masking approach is

motivated by both computational auditory scene analysis (CASA) and BSS which relies on the assumption

of signal sparseness. The interaural level difference (ILD), the interaural phase difference (IPD) and the

mixing vectors are modeled as in [30] and the direct path parameter vector dp is used as the mean

parameter of the mixing vectors which is obtained from video processing. The parameters are updated

iteratively with the EM algorithm. Since the EM algorithm is also sensitive to initialization we initialize the

direction vector parameter with the location information of the speakers obtained from video processing.

To form an AV probabilistic T-F mask Mav
i (m, f) for each static source si(t) the IPD and ILD

models, and the model for the mixing vectors that utilize the direct-path weight vector obtained with

the aid of video are used. It is a hidden maximum-likelihood parameter estimation problem and thus the

EM algorithm can provide the solution. Extensive evaluations can be found in [20] which confirm the

advantage of exploiting the visual modality to analyze the scene.

IV. FULL JOINT AV MODELING BASED METHODS

The most sophisticated approach to use the multimodality is then to build a full audio-visual model

of speech rather than the binary modeling of V-VAD (Section II) or the VSA (Section III). Two of these

models and their uses for speech extraction are presented in this section: AV statistical models, and

AV dictionary learning based sparse representations models. With the statistical modelling approach, the

AV coherence is often established explicitly on a feature space, which provides a holistic representation

across all the observation frames of the AV signals [11], [26], [27], [31]. On the other hand, with the

sparse representation based methods, the AV coherence is implicitly modelled through the decomposition

of an AV signal as a linear combination of a small number of signal components (i.e. atoms) chosen from

a dictionary [14], [32]. The sparse model has shown to be effective in capturing the local information,

such as temporal dynamic structures of the AV signals, which otherwise may be lost in the statistical

modelling methods, but yet could be crucial for speech perception. Note that we distinguish these two

models from the perspectives of modelling and optimisation algorithms rather than the property of signals,

since sparsity can be considered as a statistical property of a signal. The two models could be used together

if, for example, the sparse models are built on a feature space described by some statistical models.

A. Statistical AV based methods
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1) AV model: The coherence between audio and visual modalities can be jointly modeled by e.g. a

Gaussian mixture model (GMM) where the coherence is expressed as a joint AV probability density

function (AV-PDF)

pav1 (ζa(m), ζv(m)) =

K
∑

k=1

wkpG

(

ζa(m), ζv(m)
∣

∣

∣
µav
k ,Σav

k

)

(1)

where the superscripts a and v refer to the audio and visual modalities, respectively, and ζa(m) and

ζv(m) are the audio and visual observation vectors2 at the mth frame, respectively; µav
k and Σav

k are the

mean vector and the covariance matrix of the k-th Gaussian kernel defined by its PDF pG(·|µ,Σ), wk is

the weight of the related kernel and k is the number of mixture terms. Classically, ζa(m) can be chosen

as an audio feature vector, such as the modulus of the Fourier transform or the Mel-frequency cepstrum

coefficients [33] of a windowed frame signal with frame index m, while ζv(m) is a visual feature vector,

containing some shape parameters e.g. the width and height of the lips or active appearance-based visual

features [34]. When dealing with log scale audio parameters in the frequency domain, a more suitable

model is the Log-Rayleigh PDF since this PDF explicitly models the non symmetric property of the

logarithmic scale. The AV-PDF can thus be expressed as [31]:

pav2 (ζa(m), ζv(m)) =

K
∑

k=1

wkpLR

(

ζa(m)
∣

∣

∣
Γa
k

)

pG

(

ζv(m)
∣

∣

∣
µv
k,Σ

v
k

)

. (2)

where pLR(ζ
a(m)|Γ) is the Log-Rayleigh PDF of localization or power coefficients defined by the

diagonal elements of Γa
k (see [31] for more details). Such AV-PDFs not only jointly model the two

modalities but they can also take into account the ambiguity of speech (i.e. the fact that the same shape

of lips can produce several sounds such as /u/ and /y/ in French). The AV-PDF parameters are usually

obtained from a clean training AV database using the EM algorithm.

2) Extraction by direct AV criteria: One of the first methods for AV source separation [11], [26] was

based on the maximization of the AV coherence model described by the joint AV-PDF as in (1):

b̂ = argmax
b

pav1
(

b
T
x(t), ζv(t)

)

, (3)

where b is the extraction vector for a particular speaker in the instantaneous case, and the superscript ·T

denotes the transpose operator. Even though such an approach is shown to be efficient when dealing with

the simple succession of vowels and consonants [11], this method suffers from two important drawbacks:

a relevant AV probabilistic model is quite difficult to obtain for natural speech and a direct maximization

2For simplicity in development, we will use the same notations to denote the AV feature vectors and AV sequence.
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of the AV-PDF becomes rapidly computationally inefficient due to the dimensions of the separation filters

when considering reverberant environments.

On the other hand, ICA [1] is an extraordinarily effective framework to separate sources from several

mixtures. As a consequence, it is natural to embed AV constraints into a more classical frequency domain

ICA criterion JICA({B(f)}f ) by defining an audio-visual penalized ICA criterion [27]: {B̂(f)}f =

argmin{B(f)}f
JICA({B(f)}f ) + PAV (p

av
1 ), where the constraint term PAV (·) is a function of the AV-

PDF as in (1). Note that we intentionally keep JICA({B(f)}f ) to be general as many frequency domain

ICA criteria defined in the literature, such as in [1], can be used. As one can see, this criterion is a

tradeoff between the statistical independence of the estimated sources (first term) based on ICA and the

AV coherence of the estimated sources and the video features (second term). This AV constraint only

slightly improves the signal-to-interference (SIR) ratio compared to a purely audio criterion [27]: this is

mainly due to the difficulty to propose a relevant AV-PDF and appropriate AV constraints.

3) AV post-processing of audio ICA: One natural way is to estimate the global permutation by

maximizing the AV coherence [12] defined by pav2 (·, ·) (2). However, even if these algorithms are shown

to be effective to solve the permutation ambiguities, they suffer from their computational costs and from

the difficulty to train accurately the statistical parameters which represent all the characteristics of natural

speech.

B. Sparse modeling

While the previous methods seem to be quite natural AV extraction methods, the AV coherence used

in these methods is often modeled in the feature space from the ‘global’ point of view across all the

frames of the AV data. These methods often fail to provide accurate estimation of audio signals due to

the difficulty to train a relevant AV statistical model. To address this limitation, an alternative method

for capturing the AV coherence has been considered in [32] and [14], using dictionary learning (DL)

based sparse approximation, which we call ‘sparse modelling’. As pointed out in [14], this technique can

capture the ‘local’ information, i.e., the interconnection between neighboring samples, which is important

for speech perception in a noisy environment.

1) Sparse coding of AV signals and dictionary learning of the AV atoms based on a generative AV

model: To obtain sparse representation of an AV signal, a generative model [14], [32] can be used, where

an AV sequence ζ = (ζa; ζv) is described by a small number of AV atoms φk = (φa
k;φ

v
k) chosen from

an overcomplete dictionary D = {φk}
K
k=1, where the discrete time index t is omitted here for notational

convenience. The audio atoms φa
k are usually the log-modulus of the STFT of the audio signal component
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Fig. 4. A schematic diagram generated artificially to show the use of a generative model to represent an AV sequence as a

linear combination of a small number (two in this case) of atoms. The audio sequence (i.e. the spectrogram) is shown in the

top, and the video sequence (i.e. a series of image frames, depicted as rectangles with solid lines) in the bottom. The patterns A,

B, C and the dots correspond to the two visual atoms. As highlighted by the rectangles with dot-dashed lines, the AV-coherent

part in the sequence is represented by scaling and allocating the atoms at two positions. The audio stream is shown in log scale.

The audio atom is a randomly generated spectrogram pattern, rather than a realistic phoneme or word in speech. The plot is

adapted from [14] where examples of AV sequence and AV atoms from real AV speech data can be found.

and the video ones φv
k are the mouth region (i.e. the area in the image frames where the mouth is located)

of the video signal. We use a schematic diagram to explain the relationship between the AV sequence

and AV atoms as shown in Figure 4, where each audio atom appears in tandem with its corresponding

visual atom at a temporal-spatial (TS) position in the related video. In this example, the AV sequence is

represented by only two AV atoms with some overlap between the two in a particular TS position.

Given an AV signal and a dictionary D, the coding processing aims to find the sparse coefficients set

that leads to a suitable approximation of the original sequence according to a matching criterion. This

can be achieved by many algorithms including the greedy algorithms such as the well known matching

pursuit (MP) or orthogonal MP algorithms. In [32], the MP algorithm has been extended to an AV-MP

version to obtain the coding coefficients, where the matching criterion is defined as the inner product 〈, 〉
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between the residue of the AV sequence (Rnζ) at the n-th iteration and the translated AV atom φk:

Jav
1 (Rnζ,φk) =

∣

∣〈Rnζa, T a
m̆φa

k〉
∣

∣+
∣

∣〈Rnζv, T v

i,j;l̆
φv
k〉
∣

∣, (4)

where T a
m̆ is the temporal translation operator of the audio atom (i.e. shifting an audio atom by m̆ time

frames) and T v

i,j;l̆
is the temporal-spatial translation operator of the video atom (i.e. shifting the video

atom l̆ time frames along the time axis and (i, j) pixels along the horizontal and vertical axes of the image

frames). However, as shown in [14], the latter matching criterion may lead to a mono-modal criterion due

to the imbalance between the two modalities (due e.g. to the scale difference). The following criterion

is therefore proposed in [14],

Jav
2 (Rnζ,φk) =

∣

∣〈Rnζa, T a
m̆φa

k〉
∣

∣× exp

{

−1

IJL

∥

∥

∥
Rnζv − T v

i,j;l̆
φv
k

∥

∥

∥

1

}

, (5)

where I and J are the number of width and height pixels of the video atom φv
k, respectively and L its

time duration; ‖ · ‖1 is the ℓ1 norm.

The learning process is to adapt the K dictionary atoms φk∈{1,··· ,K} to fit the training AV sequence.

Several well-known dictionary learning algorithms can be used for this purpose, such as singular value

decomposition (K-SVD) [35]. In [14], the K-SVD and K-means algorithms are used in each iteration

for updating the audio and visual atoms respectively, so as to take into account the different sparsity

constraints enforced on these two modalities. The sparse coding and dictionary learning stages are often

performed in an alternating manner until the pre-defined criterion such as (5) is optimized.

2) Sparse AV-DL based audio-visual speech separation: From the AV dictionary learning (AV-DL)

methods, T-F masking based BSS methods are proposed [14], where the audio T-F mask Ma(m, f)

generated by the purely audio algorithm [36] is fused empirically with a mask Mv(m, f) defined from

the visual modality by the power-law transformation to define an AV T-F mask:

Mav(m, f) = Ma(m, f)r(M
v(m,f)), (6)

where the power coefficients r are obtained by applying a non-linear mapping function to Mv(m, f)

based on how confident the visual information is in determining the source occupation likelihood of each

T-F point of the mixtures [14]. There are alternative methods for fusing the audio and visual masks,

such as a simple linear combination of these two masks. Such a simple scheme is however less effective

in taking into account the confidence level of the visual information, as compared with the power-law

tranformation (more discussions about the motivation of using power-law transformation can be found
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Fig. 5. Comparison among the visual mask, audio mask, AV mask (power-law), and ideal binary mask which shows improved

definition in the AV mask. For the IBM, 0 is denoted by black, and 1 by white. Although the visual mask looks smooth, some

detailed audio information is missing. By comparing these masks with the IBM, it can be observed that the AV mask provides

the best results. The figure is adapted from [14] where more quantitative comparisons and analysis can be found.

in [14]). The mask defined from the video can be obtained as:

Mv(m, f) =











1, if ζ̂a(m, f) > ζa(m, f)

ζ̂a(m, f)/ζa(m, f), otherwise

(7)

Here ζ̂a(m, f) is the audio signal reconstructed from the speech mixtures by mapping the mixtures

(together with the visual sequence) onto the AV dictionary. Note that, even if the latter mask is defined

from audio only sequences ζa(m, f) and ζ̂a(m, f), it can be considered as a visually inspired mask

since ζ̂a(m, f) is taken from
(

ζ̂a(m, f), ζ̂v(y, x, l)
)

which represents the AV approximation of the new

AV sequence ζ = (ζa; ζv). In other words, ζ̂a(m, f) is the best estimation of the audio signal from the

audio-visual sequence ζ obtained from its sparse decomposition on the AV dictionary D. Finally, the

noise-robust AV mask Mav(m, f) can be applied to the T-F spectrum of the mixtures for the target speech

separation. Figure 5 shows an example of Mv(m, f), Ma(m, f), and AV masks Ma(m, f)r(M
v(m,f)),

as compared with ideal binary mask (IBM). It can be seen that the fused AV masks improve the quality

of the audio mask and the resolution of the visual mask. In [14], it is shown that the power-law transform

performs better than the average operation, i.e. (Ma +Mv)/2.

V. CONCLUSION AND FUTURE DIRECTIONS

Over the past decade, audio-visual speech source separation has emerged as a particularly interesting

area of research in signal processing. It aims at improving the classical BSS methods for speech extraction

by also using information from video and thereby mimicking the multimodal approach of humans. As
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shown in this article, the bimodality of speech can be used at different levels of sophistication to help

audio source separation: from very coarse binary information through to a complete AV model, or from

simple joint lip shape parameters to data-dependent acoustic features represented in an AV dictionary.

As a result, the methods using the various level of information show different strength and weakness,

as highlighted in Table I. The main advantage of using the extra information from video is to tackle the

problems that cannot be easily solved by audio only algorithms, e.g., handling background noise and

interference in strongly reverberant environments, together with multiple, potentially moving, sources.

There are many directions for further research. The AV coherence based on statistical methods requires

high-quality low-dimensional features for accurate and computationally efficient modelling, therefore

emerging methods from manifold or deep learning could be exploited. The current methods in AV

dictionary learning which attempt to capture the AV informative structure in the bimodal data are

computationally expensive due to the intensive numerical operations required in sparse coding algorithms.

Low-complexity and robust algorithms are highly desirable and need to be developed. Moreover, to

be embedded in everyday devices such as smart phones, real time approaches must be proposed to

overcome the batch nature of many current algorithms. In the longer term, building richer models

exploiting psychoacoustic-visual properties on the basis of the fields of brain-science and psychology

can potentially further improve the AV speech separation systems, but this presents a particular challenge

for future research in this area.

Finally, as speech source separation is clearly profiting from the bimodality of sources, other fields of

source separation/extraction should also be explored using multimodal data, for instance brain imaging

which can record brain activity by electro-encephalography, magneto-encephalography, magnetic reso-

nance imaging and positron emission tomography. The next generation of intelligent multimodal signal

processing techniques will combine such information to provide radically improved performance not

achievable with methods based on single-modality data.
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