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Complex free field and Eulerian circuits

Yves Le Jan

May 12, 2014

1 The loop ensemble and the free field

We adopt the framework described in [4]. Given a graph (X,E), a set of non
negative conductances Cx,y = Cy,x indexed by E and a non negative killing
measure κ on X , we can associate with them an energy (or Dirichlet form)
E , we will assume to be positive definite, which is a transience assumption.
There is a duality measure λ defined by λx =

∑

y Cx,y + κx. Let Gx,y be the
symmetric Green’s function associated with E . It is assumed that

∑

xGx,xλx

is finite.
The symmetric Markov process associated with it can be obtained from the
Markov chain defined by the transition matrix Px,y = Cx,y

λy
by adding inde-

pendent exponential holding times of mean 1 before each jump. The complex
(real) free field is a the complex (real) Gaussian field on X whose covariance
function is G. We will denote it by ϕ (ϕR).
We denote by µ the loop measure associated with the symmetric Markov
process (µ can be also viewed as a shift invariant measure on based loops).
The Poissonian loop ensemble L is the Poisson process of loops of intensity
µ. Recall that it can be constructed by the following procedure:
- Splitting the set of based loops erased around each vertex in the construc-
tion of the random spanning tree associated with the continuous time Markov
chain through Wilson’s algorithm, by dividing the local time at their base
points according to independent Poisson-Dirichlet random variables (Cf: [4],
[1]).
- Mapping this set of based loops to their equivalence class by shift (this is
the definition of loops).
.
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2 Occupation field and Isomorphisms

Given any vertex x of the graph, denote by L̂x the total time spent in x by
the loops, normalized by λx. L̂ is known as the occupation field of L.
Recall that as a Poisson process, L is infinitely divisible. We denote by L 1

2
the

Poisson process of loops of intensity µ

2
and by L̂ 1

2
the associated occupation

field. It has been shown in [3] ( see also [4]) that the fields L̂ (L̂ 1
2
) and 1

2
ϕ2

(1
2
ϕ2
R
) have the same distribution.

We can use the second identity in law to give a simple proof of a result
known as generalized second Ray-Knight theorem ([2], [7], [5])Let x0 be a
point of X , and assume that κ is supported by Let x0. Set D = X − {x0}.
Then

ϕR = ϕD
R
+ ϕR(x0)

and ϕD
R
(the real free field associated with the restriction of E to D) is inde-

pendent of ϕR(x0). On the other hand,

L̂ 1
2
= L̂D

1
2
+ L̂(x0)

1
2

where L̂(x0)
1
2

denotes the occupation field of the set of loops of L 1
2
hitting x0

and L̂D
1
2

denotes the occupation field of the set of loops of L 1
2
contained in

D.
The two terms of the decomposition are clearly independent.

Moreover, given that its value in x0 is ρ, the field L̂(x0)
1
2

has the same dis-

tribution as the occupation field γ̂τρ of an independent copy of the Markov
chain started at x0 and stopped when the local time at x0 equals ρ.
The identity in law which is valid between L̂D

1
2

and 1
2
(ϕD

R
)2 as well as between

L̂ 1
2
and 1

2
ϕR

2 can be desintegrated taking L̂x0
1
2

= 1
2
ϕ2
R
(x0) = ρ. Noting finally

that the sign η of ϕR at x0 is independent of the other variables we get that

1

2
ϕR

2 + γ̂τρ
(d)
= L̂D

1
2
+ γ̂τρ

(d)
=

1

2
(ϕD

R
+ η

√

2ρ)2

but we have also, by symmetry of ϕD
R
,

1
2
(ϕD

R
+η

√
2ρ)2

(d)
= 1

2
(ϕD

R
+
√
2ρ)2

(d)
= 1

2
(ϕD

R
−√

2ρ)2. so that finally we have
proved that:

1

2
ϕR

2 + γ̂τρ
(d)
=

1

2
(ϕD

R
+
√

2ρ)2
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3 Eulerian networks

Given any oriented edge (x, y) of the graph, denote by Nx,y(l) the total
number of jumps made from x to y by the loop l and by Nx,y the total
number of jumps made from x to y by the loops of L. We define a network
to be a matrix k with N-valued coefficient which vanishes on the diagonal
and on entries (x, y) such that {x, y} is not an edge of the graph. We say
that k is Eulerian if

∑

y

kx,y =
∑

y

ky,x

For any Eulerian network k, we define kx to be
∑

kx,y =
∑

ky,x. The matrix
N defines a random network which verifies the Eulerian property.

Let Z be any Hermitian matrix indexed by pairs of vertices such that
∀x, y, 0 < |Zx,y| ≤ 1, and such that all but a finite set of entries indexed by
K ×K, with K finite, are equal to 1.
Denote by PZ

x,y the matrix Px,yZx,y

The content of the following lemma appeared already in [4].

Lemma 3.1 we have:

E(
∏

x 6=y

ZNx,y

x,y ) = E(e
∑

x 6=y(
1
2
Cx,y(Zx,y−1)ϕxϕ̄y))

Indeed on one hand, the left side can be expressed as

exp(
∫

(
∏

x,y Z
Nx,y(l)
x,y − 1)µ(dl)) and

∫

(
∏

x,y Z
Nx,y(l)
x,y − 1)µ(dl) =

∫

(
∏p(l)

m=1 Zξm−1,ξmµ(dl)− µ({non trivial loops})
which equals

∑∞
n=1

1
n
(Tr([PZ ]n)− Tr(P n)).

On the other hand, the right hand side equals det(I−P )
det(I−PZ)

.

and the lemma follows from the identity log(det) = Tr(log).
The distribution of the random network is given in the following:

Theorem 3.1 For any Eulerian network k,

P (N = k) = det(I − P )

∏

x kx!
∏

x,y kx,y!

∏

x,y

P kx,y
x,y

Let N be the additive semigroup of networks and E be the additive semigroup
of Eulerian networks. On one hand, note that:

E(
∏

x,y

ZNx,y
x,y ) =

∑

k∈E

P (N = k)
∏

x,y

Zkx,y
x,y
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On the other hand,

E(e
∑

x,y(
1
2
Cx,y(Zx,y−1)ϕxϕ̄y))

= 1
(2π)d det(G)

∫

e−
1
2
(
∑

x λxϕxϕ̄x−
∑

(x,y)∈K×K Cx,yZx,yϕxϕ̄y)
∏

x
1
2i
dϕx ∧ dϕ̄x

= 1
(2π)d det(G)

∫∞

0

∫ 2π

0
e−

1
2
(
∑

x λxr
2
x−

∑
x,y Cx,yZx,yrxrye

i(θx−θy))
∏

x rxdrxdθx

= 1
(2π)d det(G)

∫∞

0

∫ 2π

0
e−

1
2

∑
x λxr

2
x
∑

n∈N

∏

x,y∈K
1

nx,y!
(Cx,y(

1
2
Zx,yrxrye

i(θx−θy))nx,y
∏

x rxdrxdθx

Integrating in θ and using the definition of Eulerian networks, it equals

1
det(G)

∫∞

0
e−

1
2

∑
x λxr

2
x
∑

n∈E

∏

(x,y)∈K×K
1

nx,y!
(1
2
Cx,yZx,yrxry)

nx,y
∏

x rxdrx

= 1
det(G)

∏
λx

∑

n∈E

∏

x∈K nx!
∏

(x,y)∈K×K
1

nx,y!
(Cx,y

λx
Zx,y)

nx,y

= det(I − P )
∑

n∈E

∏

x∈K nx!
∏

(x,y)∈K×K
1

nx,y!
(Px,yZx,y)

nx,y

4 Additional remarks

4.1 A determinant formula

Lemma 3.1 can be stated in a more general form (cf [4] (6-4)).

E(
∏

x 6=y

ZNx,y
x,y

∏

x

Z−(Nx+1)
x,x ) = E(e

∑
x 6=y(

1
2
Cx,y(Zx,y−1)ϕxϕ̄y)+

∑
x(

1
2
λx(1−Zx,x)ϕxϕ̄x))

A conseqence is that is that for any set (xi, yi) of distinct oriented edges, and
any set zl of distinct vertices,

E(
∏

i

N(xi,yi)

∏

l

(Nzl + 1)) = E(
∏

i

ϕxi
ϕ̄yiC(xi,yi)

∏

l

λzlϕzlϕ̄zl)

In particular, assuming X is finite, if we set Ň(x,y) = 0 for x 6= y and
Ň(x,x) = 1 +Nx, for all χ ≥ λ

E(det(MχŇ −N)) = det(Mϕ(Mχ − C)Mϕ̄) = det(Mχ − C)Per(G)
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4.2 An application of the BEST theorem.

The BEST theorem (Cf [6]) allows to determine the measure induced on
Eulerian networks by the restriction of µ to non trivial loops. If k is a
Eulerian network let k̃ be the oriented Eulerian graph associated with it. Its
set of vertices is X and it has kx,y oriented edges from x to y. Let |k| be
the total number of edges in k̃. Noting that all pointed loops inducing the
same network k ∈ E have the same measure 1

|k|

∏

x,y P
kx,y
x,y , the measure of k

is given by N(k)
|k|

∏

x,y

P
kx,y
x,y

kx,y!
where N(k) is the number of Eulerian tours of k̃,

i.e. of directed closed paths visiting each edge of k̃ exactly once. It is given
by the BEST theorem:

N(k) = |k| det(Q)
∏

x

(kx − 1)!

where det(Q) is the number of arborescence of k̃ given by the matrix-tree
theorem (Cf [6] ) and the factor |k| takes into account the choice of the first
oriented edge in the Eulerian tour. Hence,

µ(k) = det(Q)
∏

x

(kx − 1)!
∏

x,y

P
kx,y
x,y

kx,y!

for k non zero. We now already that the total µmeasure of non zero networks
is − log(det(I − P )).
Our probability on Eulerian networks is therefore the sum the the convolu-
tions powers of this measure with Poissonnian weights.
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