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ABSTRACT the MLDA technique proposed in [9], our approach features an inter-
esting duality property similar to the duality of principal component

This paper proposes a new method for constructing and selectinghalysis. To tackle the curse of dimensionality and enforce spatial
of discriminant space-time-scale features for electroencephalograf@ature smoothness, we also introduce a graph laplacian based regu-
(EEG) signal classification, suitable for Error Related Potentialsarization. As a result, we obtain STS-localized features, that can be
(ErrP)detection in brain-computer interface (BCI). The method restgterpreted and exploited further for classification purpose.
on a new variant of matrix-variate Linear Discriminant Analysis We apply this methodology to an EEG signal processing prob-
(LDA), and differs from previously proposed approaches in mainlylem, namely the single trial analysis and classification of error po-
three ways. First, a discrete wavelet expansion is introduced faentials. Features are learnt from a training set, and we show that
mapping time-courses to time-scale coefficients, yielding time-scalthe most relevant ones can be interpreted in terms of error potentials.

localized features. Second, the matrix-variate LDA is modified inTheir relevance is also asserted by classification results on a test set.
such a way that it yields an interesting duality property, that makes

interpretation easier. Third, a space penallz_atlon is introduced using > MODEL SETUP
a surface Laplacian, so as to enforce spatial smoothness. The pro-
posed approaches, termed D-MLDA and D-MPDA are tested o :
EEG signals, with the goal of detecting ErrP. Numerical result_?'l' Data structure and Preprocessing
show that D-MPDA outperforms D-MLDA and other matrix-variate Since our target application is EEG signal analysis, we consider
LDA techniques. In addition this method produces relevant featuremulti-sensor signalg” € RY*”, recorded as time series of length
for interpretation in ErrP signals. L on J sensors. Time samples being strongly correlated, a dimen-
sion reduction is performed via discrete wavelet transform followed
by a projection onto a fixed subspace of most relevant wavelet and
scaling coefficients. As a result, each instance of the considered sig-
nal takes the form of a matriX € R¥*7 wavelet and scaling co-

1. INTRODUCTION efficients (which are therefore doubly labeled by time and scale),

K = K, + K, being the number of retained wavelet and scaling
Analysis, interpretation and classification of EEG signals (for ins-COefficients. We limit here to unitary discrete wavelet transforms,
tance in BCI contexts) often rest on features, which are supposed ¥ghich are then invertible. More details on the pre-processing are
characterize brain activities of interest. Many types of features hav@Ven in Section 4 below. , N
been proposed in the literature, that depend on the type of data and EEG measurements mvo_lvmg sey(era}l repetitions (he_reafter
the target application. In particular, spatio-temporal features [2, 12§alled trials), several data matric&s € R™ "~ are obtained, which
and spatio-spectral features [5, 9, 10] allow for simple interpretatioryi€lds three-way arrays.
while yielding good classification performances.
In this work we are interested in designing discriminant feature€.2. A matrix-variate Gaussian mixture model and separability

that can be interpreted in terms of Space-Time-Scale (STS) locagssumption

ization. More precisely, we seek features that can be associated wim each class, the EEG single-trialk¢ € RX* is considered as
. ) K3

well defined localization on the scalp, as well as time-scale Iocallz,;1 realization of a random matriX® with a matrix variate Gaus-
zat_ion for the corresponding time course. We ?‘ddress this probleraan distribution with class-dependent mean matfixand a class-

by |ntr9ducmg anew approach t_hat Comb".‘es discrete wave!et reprﬁidependent covariance matfiix As in [9] we assume that the co-
sentation for the time course with LDA. Since the observations ar¢., riance between two elements of the maffikcan be decomposed

multi-sensor S|_gna!s, LDA has to_ be a}dapted to this situation. ﬁnto an inter-row and inter-column covariances. Therefore, the fol-
standard practice is to turn matrices into vectors through row Orowing separability assumption is introduced :

column concatenation, and use classical LDA. However this ap-
proach called 1DLDA often leads to difficult covariance estimation(1) y=xrg ER,
problems. Based on an additional covariance separability assump-
tion, we rather resort to a matrix-variate version of LDA, which Wheres:” € R**/ is the left covariance (corresponding to rows i.e.
extends previously proposed matrix LDA techniques. In contrast téime-scale coefficients};” € R”*” the right covariance (columns
i.e. sensors) ang denotes the Kronecker product [6].

This work was supported by the ANR project CO-ADAPT (ANR-09- In the sequel we shall use the following notations. Given a ma-
EMER-002-05). trix A, we denote byA’ the transpose oft and ve¢A) the vector
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obtained by vertical concatenation of columnsAf We shall use  with
the following definition [6]:

N G
Definition 1 Lety € RX*7 andlets” € R7*7 ands® € RE*K  (8) M= Ne ZXi :
be symmetric positive definite matrices. Hie J random matrixX i=1
is said to have a matrix variate normal distribution with mgaand
covariancex” @ %7 if the vector ve¢X”) is distributed according

The within-class matrices are calculated through two iterative steps

to asin [9].
. n With the same metrics as above, we define the between-class

2) ved X') ~ Nxs(vedy), 2" @ 2). matricesSL andSE as follows :
We writeX ~ Nk s(u, =8 @ BF).

A L _ NiNa 1 2 Ry\—1 1 24/
Let us note that if the right covariance is equal to the identity marid® °F = @ (M7 = M7) (Sw) ™ (M = M),
15, the columns of the centered matk — p are independent and R N1 N, 1 N L A —1 1 2
identically distributed (i.i.d.). Therefore in this case tRerows of 10) Sz = N2 (M -M ) (Sw) (M -M ) :

X — pareK ii.d. Gaussian vectors with i.i.d. components and the

covariancex” can be estimated by empirical covariance. A similar  An interesting consequence of these definitions is the following
remark can be done on the rows in the case whtfe= I,. In duality property between row and column spaces.

general the columns (respectively rows) are not i.i.d. but we can

get back to the previous situation as follows. Iete R’*/ and  Propositon1  a) The matrices(Sf ) 'S5 and (S{) " *SE

L € RE*K pe square roots of covarianc@’%)*% and(zL)*% have the sam€ non-zero eigenvalues whete< min (K, J).

B : : /
respectively, multiplying the rows of by R and the columns by b) If u € R¥ is an eigenvector ofS% ) 'S associated to the

we obtain: eigenvaluex > 0, thenv = (Si)~1(M*' — M?)'u is an
(©)] XR ~ Nks(uR,X*®1,), eigenvector of Sit ) ' SE associated to the same eigenvalue
4 LI'X ~ Ngg(L'pIx@x%). A

In the following each test triak; € R**“ is modeled as a rea- Let us denote by/ € R¥*? andV € R7*? respectively

lization of a matrix variate Gaussian mixture model (MGMM) the eigenvector matrices ¢5%) 'S5 and (S#) "' SE sorted in
of two components Gaussian matrix variate distributions withdecreasing order of associated non-zero eigenvalues. FromgRropo
class-dependent mean matyi¥ and a common covariance ma- tion 1, the following relation holds :
trix £ ® 2. We thus write
2 (11) V= (Siy) (M - M*)'U.
) p(X10) = pefrs(X|pS, X" @x™)
e=1 Remark 1 The difference with the MLDA method proposed by Ma-

whered represents all the model parametersandp. are the mix-  hanta et a_ll. [9] is t_he calculation of the_ Ieft.and right between-_
ture weights, fx. (X | u¢, =% @ ©7), ¢ = 1,2, are the compo- class matrices. We introduce a column withening through the matrix

nent matrix variate Gaussian densities and the other notations afé = (Sé‘})‘% to find the discriminant linear combinations of rows
the same as before. (time-scale filters) and respectively a row withening through the ma-
For simplicity, we will takep. = %= in the following, where  trix = (S )2 to obtain discriminant linear combinations of
N = N1 + N is the size of the training data set aNd the number  columns (spatial filters). This yields duality between the two ana-
of trials in each class c. lyses and simplifies the calculation of eigenvectors. For this reason
this method will be called D-MLDA.

3. APENALIZED MATRIX-BASED LDA

3.1. Matrix-based LDA and row-column duality (D-MLDA) 3.2. Penalized D-MLDA (D-MPDA)

The method is based on decoupling the analysis on row and colun]f SOMe situation it can be useful to introduce prior information into
through Kronecker product. We search the most discriminant linegihe feature construction. A relevant example of such prior infor-
combinations of rows (resp. of columns ) by optimizing suitableMation is spatial smoothness of the features which will be used in
Fisher criterion. This boils down to find the respective eigenvectoréhe application below. Following the penalized discriminant analy-
of (S&) 1SERN*K and (SE)"1sE ¢ R’*’ whereSL, S& sis proposed by Hastie et al. [7], this can be done by replacing the
and S, SE are the within-class and between-class matrices in théPatial within-class covarianc; by a regularized version

column spaceR™) and in the row spacék(’) respectively.

From Section 2 the within-class matric&§;, and Sf- cor-  (12) 55 = ST+ Q,
respond of the maximum-likelihood (ML) estimates®f and-%
and must satisfy whereQ) encodes the prior spatial information aids an hyper-
| 2N parameter. After this replacement the procedure is exactly the same
6)SL — X — M© [ARE X — M°Y, as before and yields penalized STS features. These features ob-
©) Sii JN ZZ( J(Sw) ) viously depend on the hyperparameter The determination o

c=1 1=1
5 N requires an additonal validation step. In the application developed
3 1 e c - c c below the latter is estimated through cross-validation. This pena-
7N SE = — XS — MO (SE) HXF—M g P
(7) Sw KN Z Z( ‘ )V (Sw) (X ) lized version of D-MLDA method, will be called D-MPDA.

c=11i=1



3.3. Application to classification to the participant’s response. Two classes of trials are considered:
. . ) errors and correct responses.
The above analysis naturally leads to introduce the following space- As described in Section 2, time-domain reduction was achieved
time-scale (STS) featur?{sm IxQ . using DWT (for which we used the Wavelab package [3]). DWT was
_ We recall that/ € R™ andV’ € R~ are respectively the - oo tormed on zero-padded signals with Daubechies filter D6 [11]
eigenvector matrices ¢8;,) S and(Sy,) S whose columns o 5" jecomposition levels.  Dimension reduction was achieved
are generically denoted hy, andv;. by removing the first 3 (smallest scale) decomposition levels,
which is equivalent to an orthogonal projection onto the com-
plementary subspace [1]. Finally, remaining coefficients that are
, strongly affected by boundary effects (resulting from zero-padding
(13) Yi=UXiV. were not accounted for in the statistical analysis. After this step,
K = 24 coefficients are selecteds’s = 6 scaling coefficients and
K, = 6 + 12 wavelet coefficients for level§ and5 respectively.

Definition 2 a) For each triali the corresponding STS feature
matrix is

The matrix elements; (%, j) are the features.

b) For a given featurd’; (k, j), its spatial and time-scale signa-
tureSUgs) ando!"* are defined by 4.2. Laplacian penalization

14) o =upX; eR’7 and o) = X,u; e RF. In the penalized version of the method, we enforce spatial smooth-
ness by adding to the within-class matrix a Laplacian penalization,

The time-signature" is obtained by inverse DWT from the based upon a discrete surface Laplacian [8]. The graph Laplacian

time-scale signature. penalization is calculated from a first-order neighbourhood ma-

o trix of the electrodes as follows. Given two electrodesande;,
From Definitions 1 and 2, the STS feature matrix of any ;= _ 1 64, the Laplacian matrig is defined by

training trial is a realization of a matrix variate normal distribution :

B deg(e;) if i=7
(15) Y ~ Nk, (U’;ﬁV, SW) , where 17) Q= -1 if e; ande; are adjacent
0 otherwise

(16) Sw = UeV)SWUeV).
. o ~ wheredeg(e;) is the number o&;’s first order adjacent electrodes.
The model for STS feature matrix’ of any test trial is a matrix The determination of the hyperparametein (12) requires an
variate Gaussian mixture model. After vectorizatipn= vedY;),  additional validation step. For the sake of simpliciyis chosen

we end up with a standard multivariate Gaussian mixture decisiosing a cross-validation procedure as the optimizer of the CCR on a
problem in the case of equal covariances. It is known that in thigglidation data set.

situation LDA provides a Bayes optimal classification rule.

Remark 2 (Feature selection)All coefficients from the STS feature 4-3- Space-time-scale features analysis

matrix are not equally relevant, and various feature selection stratey analyse and interpret the features provided by D-MLDA and
gies could be considered, for example selecting those coefficients. \ppa, we compare the corresponding signatures with the known
whose associated eigenvalues are the largest, as proposed in [9e|evant spatial and temporal components of the Error-related EEG
In the Application section below, we limited ourselves to visualizingyotentials as discussed in the literature (see [13], [4] and references
signatures associated to the features with maximally different avénerein). The latter are mainly fronto-central brain activities that are

rages on the training dataset. expected to peak around 100 ms after participant's response.
To this end we analysed the features obtained from the two
4. APPLICATION: ERROR POTENTIALS ANALYSIS AND classes (Error and Correct responses). For the sake of simplicity
CLASSIFICATION we limit the current discussion to D-MPDA and to mean features

namely features averaged over trials within each class (and there-
We now evaluate D-MLDA and D-MPDA in terms of features selec-fore the corresponding mean signatures). We illustrate in Fig. 1
tion and classification accuracy and compare to other approacheSpace-Time-Scale (STS) mean features for Subject A. The two most
We investigate Error-related EEG potentials from a previously pubdiscriminant features, corresponding respectivelyitoj) = (1, 1)
lished dataset [13]. We first focus on the interpretability of theand (k,j) = (8,1) were selected, following the rule described
selected features, before comparing correct classification rate)(CCR Remark 2. For both features = 1, therefore the temporal
performances using D-MLDA and D-MPDA with CCR perfor- signatures are the same, whereas spatial signatures differ (
mances of 1DLDA and MLDA. andk = 8). Let us note that this time signature corresponds to
the time course of the optimal spatial filter (linear combinations of
electrodes) averaged over trials within each class.

The first selected featur@, 1) corresponds to a scaling coeffi-
The dataset includes ten participants who had to respond with eithefent in the wavelet decomposition and contains low frequency in-
the left hand or right hand as fast as possible to visual stimulationformation of the signal. For each class its spatial signature (see
that were conflicting, hence inducing erroneous responses (ErrP @efinition 2) is displayed in Fig. 1 (topographiésand 3 on the
errors). The signal was recorded usihgscalp electrodes (Active- top panel). In agreement with a large literature on error potentials,
two system, Biosemi, Amsterdam) and acquired at a sampling ratihe latter largely loads on fronto-central electrodes while the tem-
of 1024 Hz. After preprocessing (artifacts removal...), data wereporal signature presents a significant negative activity shortly after
downsampled t@56 Hz. The selected trials were segmented intothe response (time 0 on bottom panel of Fig. 1) followed by positive
epochs o800 ms from—400 ms to+400 ms, were zero corresponds one. The second selected feature corresponds to an higher fogquen

4.1. EEG dataset and preprocessing



Errors Correct trials

Scaling Coefficients Wavelet coefficients Scaling coefficients Wavelet coefficients
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
T T T

— Errors
—%— Correct trials

0
Time From EMG onset (ms)

Fig. 1. Display of the two relevant STS features from the mean feature matrigtmBEG classes (errors and correct trials). Top: mean
spatial signatures of the selected features represented in gray scalélfck to white). Each pattern corresponds to the top view of a head.
Nose and ears give the direction of the head. The dots on the head gilae#tion for each electrode. Bottom: mean temporal signatures
of the selected features for Errors and Correct trials; O corresponiie electromyographic (EMG) onset that triggered the participant’s
response.

Methods method, and to a smaller extend 1DLDA. For subjects A, C, D and E,

1DLDA MLDA D-MLDA D-MPDA the penalized version significantely improves D-MLDA. It should be
SubjectA  82.0 53.5 77.5 82.9 noted that MLDA, initially implemented for spatio-spectral features,
SubjectB  69.4 49.2 71.8 69.7 does not provide consistent results applied to a space-time-scale fea-
SubjectC  78.5 52.7 79.2 80.3 ture extraction problem. Our results seems to indicate that the intro-
SubjectD  72.4 50.8 71.9 73.6 duced spatial penalization improves classification results. Further
Subject E 81.4 52.0 83.2 84.8 validations on larger data sets will be necessary to draw definite con-

clusion.

Table 1. Correct classification rat§CCR) for the studied methods
averaged over 100 iterations. The bold numbers are the highest CCR

) 5. CONCLUSIONS AND PERSPECTIVES
for each subject.

A new approach for constructing discriminant space-time-scale fea-
o o _ tures for two-class multi-sensor signals has been proposed and stu-
activity (within the frequency band—16 Hz). For each class its died in this paper. The approach combines discrete wavelet represen-
spatial signature is mainly located on the back of the head. Botation for representing time courses, with an original matrix-variate
spatial localization and frequency band seem unusual for interpretginear discriminant analysis, involving spatial penalization. This pro-
tion in terms of error pOtential. Neverthless we stress that discardinguces features deﬁned in a Space_time_sca'e representaﬁon domain,
this feature significantly degrades classification results which tendghich have been shown to be relevant when applied to the problem

to indicate the relevance of this feature. of detecting error related potentials (ErrP) in EEG signals.
The current contribution essentially focused on the description
4.4. Classifier performance of the main features of the proposed approach and the application

to ErrP detection. Several aspects are still to be investigated further,

We now compare the performance of D-MLDA and D-MPDA with among which the choice of relevant features (for which we sticked
1DLDA and MLDA for which the same preprocessing had beenhere to a very simple strategy, as our goal was mainly illustrative),
done (see Subsection 2.1). We implemented the following protothe tuning of the number of needed trials in training and validation
col: classifiers were trained ovgo trials (40 in each class) and me- datasets, and the actual influence of the wavelet filters. In this res-
thods are tested on the same amount of trials for the test3@ep ( pect, let us stress that the choice of time-scale (i.e. wavelet) repre-
each class). For D-MPDA the hyperparametdnad been selected sentation was motivated by the ErrP application, other types of data
on a validation data sef( trials in each class). In must be noted and problems will presumably call for different types of transfor-
that we are in a small dataset situation: some subjects turned out toations, such as Fourier or short time Fourier transformations, as
produce few errors during the experiment (less ti@nand were  discussed in [10].
excluded from the present study. We performidd iterations of
cross-validation on 5 subjects.

Results are displayed in Table 1. The proposed D-MPDA an
D-MLDA methods outperform very significantly the existing MLDA
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