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ABSTRACT

This paper proposes a new method for constructing and selecting
of discriminant space-time-scale features for electroencephalogram
(EEG) signal classification, suitable for Error Related Potentials
(ErrP)detection in brain-computer interface (BCI). The method rests
on a new variant of matrix-variate Linear Discriminant Analysis
(LDA), and differs from previously proposed approaches in mainly
three ways. First, a discrete wavelet expansion is introduced for
mapping time-courses to time-scale coefficients, yielding time-scale
localized features. Second, the matrix-variate LDA is modified in
such a way that it yields an interesting duality property, that makes
interpretation easier. Third, a space penalization is introduced using
a surface Laplacian, so as to enforce spatial smoothness. The pro-
posed approaches, termed D-MLDA and D-MPDA are tested on
EEG signals, with the goal of detecting ErrP. Numerical results
show that D-MPDA outperforms D-MLDA and other matrix-variate
LDA techniques. In addition this method produces relevant features
for interpretation in ErrP signals.

Index Terms— Matrix-based LDA, Multi-sensor signals,
Discrete wavelet transforms, EEG features

1. INTRODUCTION

Analysis, interpretation and classification of EEG signals (for ins-
tance in BCI contexts) often rest on features, which are supposed to
characterize brain activities of interest. Many types of features have
been proposed in the literature, that depend on the type of data and
the target application. In particular, spatio-temporal features [2, 12]
and spatio-spectral features [5, 9, 10] allow for simple interpretation
while yielding good classification performances.

In this work we are interested in designing discriminant features
that can be interpreted in terms of Space-Time-Scale (STS) local-
ization. More precisely, we seek features that can be associated with
well defined localization on the scalp, as well as time-scale locali-
zation for the corresponding time course. We address this problem
by introducing a new approach that combines discrete wavelet repre-
sentation for the time course with LDA. Since the observations are
multi-sensor signals, LDA has to be adapted to this situation. A
standard practice is to turn matrices into vectors through row or
column concatenation, and use classical LDA. However this ap-
proach called 1DLDA often leads to difficult covariance estimation
problems. Based on an additional covariance separability assump-
tion, we rather resort to a matrix-variate version of LDA, which
extends previously proposed matrix LDA techniques. In contrast to
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the MLDA technique proposed in [9], our approach features an inter-
esting duality property similar to the duality of principal component
analysis. To tackle the curse of dimensionality and enforce spatial
feature smoothness, we also introduce a graph laplacian based regu-
larization. As a result, we obtain STS-localized features, that can be
interpreted and exploited further for classification purpose.

We apply this methodology to an EEG signal processing prob-
lem, namely the single trial analysis and classification of error po-
tentials. Features are learnt from a training set, and we show that
the most relevant ones can be interpreted in terms of error potentials.
Their relevance is also asserted by classification results on a test set.

2. MODEL SETUP

2.1. Data structure and Preprocessing

Since our target application is EEG signal analysis, we consider
multi-sensor signalsF ∈ R

L×J , recorded as time series of length
L on J sensors. Time samples being strongly correlated, a dimen-
sion reduction is performed via discrete wavelet transform followed
by a projection onto a fixed subspace of most relevant wavelet and
scaling coefficients. As a result, each instance of the considered sig-
nal takes the form of a matrixX ∈ R

K×J wavelet and scaling co-
efficients (which are therefore doubly labeled by time and scale),
K = Kw + Ks being the number of retained wavelet and scaling
coefficients. We limit here to unitary discrete wavelet transforms,
which are then invertible. More details on the pre-processing are
given in Section 4 below.

EEG measurements involving several repetitions (hereafter
called trials), several data matricesXi ∈ R

K×J are obtained, which
yields three-way arrays.

2.2. A matrix-variate Gaussian mixture model and separability
assumption

In each classc, the EEG single-trialXc
i ∈ R

K×J is considered as
a realization of a random matrixXc with a matrix variate Gaus-
sian distribution with class-dependent mean matrixµc and a class-
independent covariance matrixΣ. As in [9] we assume that the co-
variance between two elements of the matrixXc can be decomposed
into an inter-row and inter-column covariances. Therefore, the fol-
lowing separability assumption is introduced :

(1) Σ = ΣL ⊗ ΣR
,

whereΣL ∈ R
K×K is the left covariance (corresponding to rows i.e.

time-scale coefficients),ΣR ∈ R
J×J the right covariance (columns

i.e. sensors) and⊗ denotes the Kronecker product [6].
In the sequel we shall use the following notations. Given a ma-

trix A, we denote byA′ the transpose ofA and vec(A) the vector



obtained by vertical concatenation of columns ofA. We shall use
the following definition [6] :

Definition 1 Letµ ∈ R
K×J and letΣL ∈ R

J×J andΣR ∈ R
K×K

be symmetric positive definite matrices. TheK×J random matrixX
is said to have a matrix variate normal distribution with meanµ and
covarianceΣL⊗ΣR if the vector vec(X ′) is distributed according
to

(2) vec(X ′) ∼ NKJ(vec(µ′),ΣL ⊗ ΣR) .

We writeX ∼ NK,J(µ,Σ
L ⊗ ΣR).

Let us note that if the right covariance is equal to the identity matrix
IJ , the columns of the centered matrixX − µ are independent and
identically distributed (i.i.d.). Therefore in this case theK rows of
X − µ areK i.i.d. Gaussian vectors with i.i.d. components and the
covarianceΣL can be estimated by empirical covariance. A similar
remark can be done on the rows in the case whereΣL = Ik. In
general the columns (respectively rows) are not i.i.d. but we can
get back to the previous situation as follows. LetR ∈ R

J×J and
L ∈ R

K×K be square roots of covariances(ΣR)−
1

2 and(ΣL)−
1

2

respectively, multiplying the rows ofX byR and the columns byL′

we obtain :

XR ∼ NK,J(µR,ΣL ⊗ IJ) ,(3)

L
′
X ∼ NK,J(L

′
µ, IK ⊗ ΣR) .(4)

In the following each test trialXi ∈ R
K×J is modeled as a rea-

lization of a matrix variate Gaussian mixture model (MGMM)
of two components Gaussian matrix variate distributions with
class-dependent mean matrixµc and a common covariance ma-
trix ΣL ⊗ ΣR. We thus write

(5) p(X|θ) =
2∑

c=1

pcfK,J(X|µc
,ΣL⊗ΣR) ,

whereθ represents all the model parameters,p1 andp2 are the mix-
ture weights,fK,J (X |µc,ΣL ⊗ ΣR), c = 1, 2, are the compo-
nent matrix variate Gaussian densities and the other notations are
the same as before.

For simplicity, we will takepc = Nc

N
in the following, where

N = N1 +N2 is the size of the training data set andNc the number
of trials in each class c.

3. A PENALIZED MATRIX-BASED LDA

3.1. Matrix-based LDA and row-column duality (D-MLDA)

The method is based on decoupling the analysis on row and column
through Kronecker product. We search the most discriminant linear
combinations of rows (resp. of columns ) by optimizing suitable
Fisher criterion. This boils down to find the respective eigenvectors
of (SL

W )−1SL
BR

K×K and (SR
W )−1SR

B ∈ R
J×J whereSL

W , SL
B

andSR
W , SR

B are the within-class and between-class matrices in the
column space (RK ) and in the row space (RJ ) respectively.

From Section 2 the within-class matricesSL
W and SR

W cor-
respond of the maximum-likelihood (ML) estimates ofΣL andΣR

and must satisfy

S
L
W =

1

JN

2∑

c=1

Nc∑

i=1

(Xc
i −M

c)(SR
W )−1(Xc

i −M
c)′ ,(6)

S
R
W =

1

KN

2∑

c=1

Nc∑

i=1

(Xc
i −M

c)′(SL
W )−1(Xc

i −M
c) ,(7)

with

(8) M
c =

1

Nc

Nc∑

i=1

X
c
i .

The within-class matrices are calculated through two iterative steps
as in [9].

With the same metrics as above, we define the between-class
matricesSL

B andSR
B as follows :

S
L
B =

N1N2

N2

(
M

1 −M
2) (SR

W )−1 (
M

1 −M
2)′

,(9)

S
R
B =

N1N2

N2

(
M

1 −M
2)′ (SL

W )−1 (
M

1 −M
2)

.(10)

An interesting consequence of these definitions is the following
duality property between row and column spaces.

Proposition 1 a) The matrices(SL
W )−1SL

B and (SR
W )−1SR

B

have the sameQ non-zero eigenvalues whereQ ≤ min(K, J).

b) If u ∈ R
K is an eigenvector of(SL

W )−1SL
B associated to the

eigenvalueλ > 0, thenv = (SR
W )−1(M1 − M2)′u is an

eigenvector of(SR
W )−1SR

B associated to the same eigenvalue
λ.

Let us denote byU ∈ R
K×Q andV ∈ R

J×Q respectively
the eigenvector matrices of(SL

W )−1SL
B and (SR

W )−1SR
B sorted in

decreasing order of associated non-zero eigenvalues. From Proposi-
tion 1, the following relation holds :

(11) V = (SR
W )−1(M1 −M

2)′U .

Remark 1 The difference with the MLDA method proposed by Ma-
hanta et al. [9] is the calculation of the left and right between-
class matrices. We introduce a column withening through the matrix
R̂ = (SR

W )−
1

2 to find the discriminant linear combinations of rows
(time-scale filters) and respectively a row withening through the ma-
trix L̂ = (SR

W )−
1

2 to obtain discriminant linear combinations of
columns (spatial filters). This yields duality between the two ana-
lyses and simplifies the calculation of eigenvectors. For this reason
this method will be called D-MLDA.

3.2. Penalized D-MLDA (D-MPDA)

In some situation it can be useful to introduce prior information into
the feature construction. A relevant example of such prior infor-
mation is spatial smoothness of the features which will be used in
the application below. Following the penalized discriminant analy-
sis proposed by Hastie et al. [7], this can be done by replacing the
spatial within-class covarianceSR

W by a regularized version

(12) S̃R
W = S

R
W + λΩ ,

whereΩ encodes the prior spatial information andλ is an hyper-
parameter. After this replacement the procedure is exactly the same
as before and yields penalized STS features. These features ob-
viously depend on the hyperparameterλ. The determination ofλ
requires an additonal validation step. In the application developed
below the latter is estimated through cross-validation. This pena-
lized version of D-MLDA method, will be called D-MPDA.



3.3. Application to classification

The above analysis naturally leads to introduce the following space-
time-scale (STS) features.

We recall thatU ∈ R
K×Q andV ∈ R

J×Q are respectively the
eigenvector matrices of(SL

W )−1SL
B and(SR

W )−1SR
B whose columns

are generically denoted byuk andvj .

Definition 2 a) For each triali the corresponding STS feature
matrix is

(13) Yi = U
′
XiV .

The matrix elementsYi(k, j) are the features.

b) For a given featureYi(k, j), its spatial and time-scale signa-
turesσ(s)

i andσ(ts)
i are defined by

(14) σ
(s)
i = u

′

kXi ∈ R
J and σ

(ts)
i = Xivj ∈ R

K
.

The time-signatureσ(t)
i is obtained by inverse DWT from the

time-scale signature.

From Definitions 1 and 2, the STS feature matrixY c
i of any

training trial is a realization of a matrix variate normal distribution :

Y
c
i ∼ NK,J

(
U

′
µ
c
V , S̃W

)
, where(15)

S̃W = (U ⊗ V )′Σ(U ⊗ V ) .(16)

The model for STS feature matrixY i of any test trial is a matrix
variate Gaussian mixture model. After vectorizationyi = vec(Y ′

i ),
we end up with a standard multivariate Gaussian mixture decision
problem in the case of equal covariances. It is known that in this
situation LDA provides a Bayes optimal classification rule.

Remark 2 (Feature selection)All coefficients from the STS feature
matrix are not equally relevant, and various feature selection strate-
gies could be considered, for example selecting those coefficients
whose associated eigenvalues are the largest, as proposed in [9].
In the Application section below, we limited ourselves to visualizing
signatures associated to the features with maximally different ave-
rages on the training dataset.

4. APPLICATION: ERROR POTENTIALS ANALYSIS AND
CLASSIFICATION

We now evaluate D-MLDA and D-MPDA in terms of features selec-
tion and classification accuracy and compare to other approaches.
We investigate Error-related EEG potentials from a previously pub-
lished dataset [13]. We first focus on the interpretability of the
selected features, before comparing correct classification rate (CCR)
performances using D-MLDA and D-MPDA with CCR perfor-
mances of 1DLDA and MLDA.

4.1. EEG dataset and preprocessing

The dataset includes ten participants who had to respond with either
the left hand or right hand as fast as possible to visual stimulations
that were conflicting, hence inducing erroneous responses (ErrP or
errors). The signal was recorded using64 scalp electrodes (Active-
two system, Biosemi, Amsterdam) and acquired at a sampling rate
of 1024 Hz. After preprocessing (artifacts removal...), data were
downsampled to256 Hz. The selected trials were segmented into
epochs of800 ms from−400 ms to+400 ms, were zero corresponds

to the participant’s response. Two classes of trials are considered:
errors and correct responses.

As described in Section 2, time-domain reduction was achieved
using DWT (for which we used the Wavelab package [3]). DWT was
performed on zero-padded signals with Daubechies filter D6 [11]
on 5 decomposition levels. Dimension reduction was achieved
by removing the first 3 (smallest scale) decomposition levels,
which is equivalent to an orthogonal projection onto the com-
plementary subspace [1]. Finally, remaining coefficients that are
strongly affected by boundary effects (resulting from zero-padding)
were not accounted for in the statistical analysis. After this step,
K = 24 coefficients are selected:Ks = 6 scaling coefficients and
Kw = 6 + 12 wavelet coefficients for levels4 and5 respectively.

4.2. Laplacian penalization

In the penalized version of the method, we enforce spatial smooth-
ness by adding to the within-class matrix a Laplacian penalization,
based upon a discrete surface Laplacian [8]. The graph Laplacian
penalization is calculated from a first-order neighbourhood ma-
trix of the electrodes as follows. Given two electrodesei andej ,
i, j = 1, . . . , 64, the Laplacian matrixΩ is defined by

(17) Ωij =





deg(ei) if i = j
−1 if ei andej are adjacent
0 otherwise

wheredeg(ei) is the number ofei’s first order adjacent electrodes.
The determination of the hyperparameterλ in (12) requires an

additional validation step. For the sake of simplicityλ is chosen
using a cross-validation procedure as the optimizer of the CCR on a
validation data set.

4.3. Space-time-scale features analysis

To analyse and interpret the features provided by D-MLDA and
D-MPDA, we compare the corresponding signatures with the known
relevant spatial and temporal components of the Error-related EEG
potentials as discussed in the literature (see [13], [4] and references
therein). The latter are mainly fronto-central brain activities that are
expected to peak around 100 ms after participant’s response.

To this end we analysed the features obtained from the two
classes (Error and Correct responses). For the sake of simplicity
we limit the current discussion to D-MPDA and to mean features
namely features averaged over trials within each class (and there-
fore the corresponding mean signatures). We illustrate in Fig. 1
Space-Time-Scale (STS) mean features for Subject A. The two most
discriminant features, corresponding respectively to(k, j) = (1, 1)
and (k, j) = (8, 1) were selected, following the rule described
in Remark 2. For both featuresj = 1, therefore the temporal
signatures are the same, whereas spatial signatures differ (k = 1
and k = 8). Let us note that this time signature corresponds to
the time course of the optimal spatial filter (linear combinations of
electrodes) averaged over trials within each class.

The first selected feature(1, 1) corresponds to a scaling coeffi-
cient in the wavelet decomposition and contains low frequency in-
formation of the signal. For each class its spatial signature (see
Definition 2) is displayed in Fig. 1 (topographies1 and 3 on the
top panel). In agreement with a large literature on error potentials,
the latter largely loads on fronto-central electrodes while the tem-
poral signature presents a significant negative activity shortly after
the response (time 0 on bottom panel of Fig. 1) followed by positive
one. The second selected feature corresponds to an higher frequency



Fig. 1. Display of the two relevant STS features from the mean feature matrix in both EEG classes (errors and correct trials). Top: mean
spatial signatures of the selected features represented in gray scale (from black to white). Each pattern corresponds to the top view of a head.
Nose and ears give the direction of the head. The dots on the head give the location for each electrode. Bottom: mean temporal signatures
of the selected features for Errors and Correct trials; 0 correspondsto the electromyographic (EMG) onset that triggered the participant’s
response.

Methods
1DLDA MLDA D-MLDA D-MPDA

Subject A 82.0 53.5 77.5 82.9
Subject B 69.4 49.2 71.8 69.7
Subject C 78.5 52.7 79.2 80.3
Subject D 72.4 50.8 71.9 73.6
Subject E 81.4 52.0 83.2 84.8

Table 1. Correct classification rate (%CCR) for the studied methods
averaged over 100 iterations. The bold numbers are the highest CCR
for each subject.

activity (within the frequency band8−16 Hz). For each class its
spatial signature is mainly located on the back of the head. Both
spatial localization and frequency band seem unusual for interpreta-
tion in terms of error potential. Neverthless we stress that discarding
this feature significantly degrades classification results which tends
to indicate the relevance of this feature.

4.4. Classifier performance

We now compare the performance of D-MLDA and D-MPDA with
1DLDA and MLDA for which the same preprocessing had been
done (see Subsection 2.1). We implemented the following proto-
col: classifiers were trained over80 trials (40 in each class) and me-
thods are tested on the same amount of trials for the test step (30 in
each class). For D-MPDA the hyperparameterλ had been selected
on a validation data set (20 trials in each class). In must be noted
that we are in a small dataset situation: some subjects turned out to
produce few errors during the experiment (less than70) and were
excluded from the present study. We performed100 iterations of
cross-validation on 5 subjects.

Results are displayed in Table 1. The proposed D-MPDA and
D-MLDA methods outperform very significantly the existing MLDA

method, and to a smaller extend 1DLDA. For subjects A, C, D and E,
the penalized version significantely improves D-MLDA. It should be
noted that MLDA, initially implemented for spatio-spectral features,
does not provide consistent results applied to a space-time-scale fea-
ture extraction problem. Our results seems to indicate that the intro-
duced spatial penalization improves classification results. Further
validations on larger data sets will be necessary to draw definite con-
clusion.

5. CONCLUSIONS AND PERSPECTIVES

A new approach for constructing discriminant space-time-scale fea-
tures for two-class multi-sensor signals has been proposed and stu-
died in this paper. The approach combines discrete wavelet represen-
tation for representing time courses, with an original matrix-variate
linear discriminant analysis, involving spatial penalization. This pro-
duces features defined in a space-time-scale representation domain,
which have been shown to be relevant when applied to the problem
of detecting error related potentials (ErrP) in EEG signals.

The current contribution essentially focused on the description
of the main features of the proposed approach and the application
to ErrP detection. Several aspects are still to be investigated further,
among which the choice of relevant features (for which we sticked
here to a very simple strategy, as our goal was mainly illustrative),
the tuning of the number of needed trials in training and validation
datasets, and the actual influence of the wavelet filters. In this res-
pect, let us stress that the choice of time-scale (i.e. wavelet) repre-
sentation was motivated by the ErrP application, other types of data
and problems will presumably call for different types of transfor-
mations, such as Fourier or short time Fourier transformations, as
discussed in [10].
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