N
N

N

HAL

open science

Skeletal Quads: Human Action Recognition Using Joint
Quadruples

Georgios Evangelidis, Gurkirt Singh, Radu Horaud

» To cite this version:

Georgios Evangelidis, Gurkirt Singh, Radu Horaud. Skeletal Quads: Human Action Recognition
Using Joint Quadruples. ICPR 2014 - International Conference on Pattern Recognition, Sep 2014,

Stockholm, Sweden. pp.NA. hal-00989725v1

HAL Id: hal-00989725
https://hal.science/hal-00989725v1

Submitted on 12 May 2014 (v1), last revised 16 Sep 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00989725v1
https://hal.archives-ouvertes.fr

Skeletal Quads: Human Action Recognition
Using Joint Quadruples

Georgios Evangelidis, Gurkirt Singh and Radu Horaud
INRIA Grenoble Rhone-Alpes
655, avenue de 1’Europe
38330 Montbonnot Saint-Martin, FRANCE
email: firstname.lastname @inria.fr

Abstract—Recent advances on human motion analysis have
made the extraction of human skeleton structure feasible, even
from single depth images. This structure has been proven quite in-
formative for discriminating actions in a recognition scenario. In
this context, we propose a local skeleton descriptor that encodes
the relative position of joint quadruples. Such a coding implies
a similarity normalisation transform that leads to a compact
(6D) view-invariant skeletal feature, referred to as skeletal quad.
Further, the use of a Fisher kernel representation is suggested
to describe the skeletal quads contained in a (sub)action. A
Gaussian mixture model is learnt from training data, so that
the generation of any set of quads is encoded by its Fisher
vector. Finally, a multi-level representation of Fisher vectors leads
to an action description that roughly carries the order of sub-
action within each action sequence. Efficient classification is here
achieved by linear SVMs. The proposed action representation
is tested on widely used datasets, MSRAction3D and HDMO05.
The experimental evaluation shows that the proposed method
outperforms state-of-the-art algorithms that rely only on joints,
while it competes with methods that combine joints with extra
cues.

I. INTRODUCTION

Action recognition is an active topic in computer vision
and pattern recognition, with many potential applications in
human-computer interaction. Despite the advances in recent
years, however, recognising human actions remains a challeng-
ing problem, mainly because of the articulated nature of human
motion. Therefore, the discrimination of human postures and
actions benefits from the segmentation of the body into parts.
While this kind of segmentation remains a quite difficult task
using monocular visual sensors, the release of depth sensors
(e.g. Kinect) has simplified the pose estimation by means of
3D body joints [15].

Typically, an action recognition method employs an L-class
classifier that performs a 1-of-L assignment to input vectors.
By putting aside the classifier itself, what mostly differentiates
the majority of the methods is the way of building the input of
the classifier, i.e., the vector representation of a video segment.
Commonly, multiple descriptors of raw data are summarised
into a vector, e.g. through a Bag-of-Words (BoW) paradigm,
in order to encode an action sequence.

Thanks to recent achievements [15], the detection of the
human pose by means of skeleton joints is feasible even from
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Fig. 1. A Gaussian Mixture Model (GMM), learnt on training data, is
supposed to generate skeletal quads. Based on the GMM parameters, the
skeletal quads of any action example are encoded into a Fisher vector, thus
building the action descriptor which is led to a multi-class linear SVM.

single depth images. This implies a powerful representation for
action recognition, since actions can be seen as a set of poses.
However, when joints are pooled into global features, e.g.,
using all pairwise joint differences [21], the articulated nature
of the human pose is not well encoded in the action descriptor.
Therefore, local skeleton features are more meaningful.

In this paper, we propose a compact yet effective local
skeleton descriptor that makes the pose representation invariant
to any similarity transformation, hence view-invariant. The
novel skeletal feature, referred here to as skeletal quad, locally
encodes the relation of joint quadruples, so that 3D similarity
invariance is guaranteed. Unlike the common BoW paradigm,
we adopt a Fisher kernel representation [5]. Inspired by [13],
we consider a Gaussian mixture model that generates the
skeletal quads, while we enable a power normalisation for the
Fisher vectors. Further, a multi-level splitting of sequences into
segments is invoked to integrate the performing order of sub-
actions into the vector representation. Such vectors constitute
the input of a multi-class linear SVM. Fig. 1 illustrates our
action recognition pipeline.

The remainder of the paper is organised as follows. We
summarise the related work in Sec. II and we propose our
video representation in Sec. III. Sec. IV in short discusses the
used classifier, while our method is tested on public datasets
in Sec. V. Finally, Sec. VI concludes this work.



II. RELATED WORK

Shotton et al. presented in [15] an articulated pose recog-
nition algorithm that makes the extraction of skeleton structure
from single depth images possible. This result inspired many
researchers either to rely on skeleton information only or to
combine joints with other depth and/or color cues in order to
recognise actions. In what follows, we first describe methods
that only use skeleton data, hence more related to our approach,
and we proceed with the state-of-the-art methods that use
multiple features. For a recent detailed survey on human
motion analysis from depth data, we refer the reader to [1],
[22].

Xia et al. [20] suggest a compact posture representation
through a histogram of 3D joint locations. Linear discriminant
analysis along with a BoW model translates each action into
a series of symbols (quantized postures). Then, a generative
classifier (discrete HMM), that deals with the temporal nature
of data, classifies each input. Yang and Tian [21] rely on
position differences of in-frame and cross-frame joints. The
resulting long vectors are compressed by PCA so that each
frame is described by an EigenJoint descriptor. As for the
classification, a naive Bayes nearest-neighbor classifier assigns
to unknown inputs the label with the minimum video-to-class
distance. Ofli et al. [10] represent an action instance as a
sequence of the most informative joints (SMIJ) per action.
This selection is based on joint related measures such as the
moments of the joint angles. Several encoding methods are
suggested for the vector representation of SMIJ, while two
classifiers are tested, nearest-neighbor classifier (NNC) and
SMVs. Chaundry et al. [3] are inspired by a neural encoding
method and describe skeletal features based on a medial-axis
template. Global linear dynamical systems (LDS) model the
temporal dynamics of such features, while the LDS parameters
describe the sequences and define the input of the classifier
(either SVMs or NNC).

Regardless of the skeleton structure, the raw depth map
itself provides a source for extracting discriminative features.
Li et al. [8] propose a BoW model to describe the points close
to the silhouette, after their projection to the three Cartesian
planes. Local occupancy patterns (LOP) of depth sequences
have been also used as features. Random and spatio-temporal
LOPs are proposed in [17] and [16] respectively. Wang et al.
in [18] combine LOPs around joints with joint differences to
build joint-based time series, whose Fourier coefficients are
used to describe the action. Moreover, a mining step provides
a pool of informative actionlets (subset of joints) per action,
that are taken into account by the classifier being used. Instead
of the raw depth data, the 4D normals are used by Oreifej et
al. [12], while their distribution is encoded in a histogram
whose bins are irregularly spaced in 4D; this binning results
from a learning process. Xia and Aggarwal [19] recently
presented a depth-based spatio-termporal detector along with
a self-similarity feature that describes local depth areas of
adaptive size. Finally, Ohn-Bar and Trivedi [11] track the joint
angles and build a descriptor based on similarities between
angle trajectories. This feature is further combined with a
double-HOG descriptor that accounts for the spatio-temporal
distribution of depth values around the joints. Both [19] and
[11] illustrate the benefits of combining different features.
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Fig. 2. An example of coding the marked joint quadruple {Neck, Shoulder,
Elbow, Hand}. The Neck and Hand joints are identified with the points
(0,0,0) and (1,1,1) in the new local coordinate system. The local 3D
coordinates of the Shoulder and Elbow joints describe the structure of the
quadruple and the quad descriptor is q = [Sz, Sy, Sz, Ex, Ey, E2]7.

III. SKELETON-BASED VIDEO REPRESENTATION

We propose new representation based on skeleton joints,
namely a local skeletal descriptor and an associated represen-
tation that. This skeletal descriptor, which is referred to as
skeletal quad, was inspired by a geometry hashing method
that describes the positions of nearby stars in night sky
images [6]. It was also used to describe keypoint constellations
in video frames [4]. Our action descriptor is a Fisher kernel
representation which encodes the Jacobian of the probability
function that generates the skeletal quads contained in a depth-
image sequence.

A. Skeletal quads

Let x € R? denote the coordinates of a skeleton joint in
some world centered frame. Suppose also that we are given
a quadruple of (nearby) joints X = [x; X2 X3 X4], Where
(x1, X2) is the most widely separated pair of points within the
quadruple. We consider a local coordinate system, such that
x; becomes the origin and x5 is mapped onto [1,1,1]T. This
constrains a similarity transformation (a 3 x3 rotation matrix, a
translation vector and a scale factor) whose parameters can be
easily computed from x; and x». Once these parameters are
estimated, the quadruple is mapped onto its new coordinates:

S(Xi):SR[Xi—Xl], 2214, (1)

with S(x;) = [0,0,0]" and S(x2) = [1,1,1]T. Hence
the quadruple is encoded by six parameters, namely q =
[S(x3); S(x4)], where the notation [; -] denotes vertical vector
concatenation. We refer to this descriptor as skeletal quad.
Fig. 2 shows an upper-body skeleton example and how the
skeletal quad is formed for a joint quadruple.

Unlike translation-invariant representations of skeleton
joints that rely on joint differences (e.g. [18]), our descriptor is
scale, viewpoint and body-orientation invariant. Moreover, this
coding scheme leads to well distributed points in R° [6]. Note
that there is a kind of symmetry between descriptors owing to
the different order in the pairs x1, X3, and x3,x4, which can
be easily broken or taken into account. Here, we consider both
orders for the first pair, while the third point of X is always
the closest to the local origin between the remaining points.

B. A Fisher Kernel representation

The superiority of Fisher vectors (FV) against the popular
BoW representation has been analyzed in the image classifi-
cation context [13]. We follow a similar approach in order to



describe an action sequence. It is important to note that the
low dimension of the proposed descriptor compensates for the
large inherent dimensionality associated with Fisher vectors.

Let Q = {q;,1 <i < M} be a set of M skeletal quads in
an action example. By assuming statistical independence, ()
may be modeled by a K-component Gaussian mixture model
(GMM):

M K
p(Q10) = [ D_ weN (ailmy, ok). 2

i=1 k=1

where 0 = {wy, gy, ok}, k =1, ..., K is the set of the mixture
parameters with mixing parameters wy,, means g, € RS and
diagonal covariance matrices o), € R®*6. These parameters
can be easily estimated via the standard EM algorithm based
on a training dataset. Once the GMM parameters are estimated,
any set () may be described by its Fisher score [5], namely
the Jacobian of the log-probability with respect to the GMM
parameters:

J§ = Vo logp(Qlf) . 3)

The Fisher kernel, however, relates any two such vectors
through a bilinear form based on the inverse of the Fisher
information matrix. Since the decomposition of this matrix is
possible, one can write the Fisher kernel as a linear kernel of
the so called Fisher vectors, denoted here as 7. The reader is
referred to [5] for a detailed analysis.

As in [13], we consider the Jacobians with respect to
non-scalar parameters only, so that the FV consists of the
concatenation of two vectors j;? and J; Q . One can easily
show (see [14]) that the ((k—1)6+ ]) th element of the above
vectors (1 < j <6, 1 <k < K), i.e. the j-th entry for the
k-th mixture component, is given by:

T2 (5) =

T () =

AN 1> 4
\/ﬁ Z rYk A (( O_k ) I ( )
where v;; is the posterior probability that q; belongs to
kth cluster conditioned by (). The normalization by M is
added to avoid dependence on the @Q’s cardinality. Since quads
live in RS, our Fisher vectors are reasonably long, i.e., of
dimension 12K. Typically, d-dimensional descriptors imply
2K d-dimensional Fisher vectors in a similar framework, a
strong disadvantage when long descriptors are employed.

Once the two vectors of (4) are computed and appended
in a single vector, a power-normalisation step is applied, i.e.,
each element undergoes the transformation [13]

T(x) = sgn(z) * |z]* . Q)

This normalisation step eliminates the sparseness of the Fisher
vector, thus increasing its discriminability. Note that the FVs
tend to be sparse since the majority of the quads are assigned
with high posterior probability to a couple of components.
The impact of such a normalization is evident in Fig. 3 which
depicts the distribution of a Fisher vector’s elements before
and after the power normalisation. We refer the reader to [13],
[14] for a detailed discussion about power normalization.
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Fig. 3. The distribution of entries (left) before and (right) after the power
normalisation (o« = 0.5) of Fisher vector.
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Fig. 4. A 3-level representation of an action example. The complete action
descriptor is the concatenation of the six FVs.

Since any permutation of @)’s elements would lead to the
same FV, the order of different postures within an action
is not taken into account. Therefore, and similar to spatial
pyramids in scene recognition [7], we further enable a multi-
level splitting of sequences, so that n video non-overlapping
segments are present in the n-th level. The concatenation
of FVs of all segments somewhat makes the representation
temporally- and order-dependent as long as the order of sub-
actions is encoded in the action descriptor. Three pyramid
levels are used in this paper as shown in Fig. 4.

IV. ACTION CLASSIFICATION

It is beyond the scope of this paper to focus on the
classification step. We simply employ linear SVMs trained
in an one-versus-all fashion in order to build a multi-class
classifier, while a cross-validation on training sets provides the
best offset per classifier. Notice that a Fisher kernel classifier
is equivalent to a linear classifier on FVs [5]. Moreover, linear
SVMs easily deal with the high-dimensional representations
that result from our mutli-level FVs. However, a more in-depth
analysis on the classification step will possibly lead to higher
performance. To implement the classifier, we make use of the
LIBSVM library [2].

V. EXPERIMENTS

In this section, we test our action recognition method on
widely used datasets and compare it with the state-of-the-art.



TABLE II.

RECOGNITION ACCURACY ON MSRACTION3D DATASET USING SKELETON JOINTS.

AS1 AS2 AS3 Overall
Histogram of 3D Joints (Xia et al. [20]) 87.98%  8548%  63.46%  18.97%
EigenJoints (Yang & Tian [21]) 74.50%  76.10%  96.40%  82.33%
Joint Angles (Ohn-Bar & Trivedi [11]) N/A N/A N/A 83.53%
Joint angles + SIMJ* (Ofli er al. [10]) N/A N/A N/A 47.06%
Joint angles + LDS™ (Chaundry et al. [3]) N/A N/A N/A 83.89%
FV of Skeletal Quads 88.39% 86.61% 9459%  89.86%
*results on a reduced dataset with less actions
TABLE III. RECOGNITION ACCURACY ON MSRACTION3D DATASETS.

Two publicly available datasets are used: MSR-Action3D [8]
and HDMOS [9]. The datasets are captured from different
modalities and regard different human activities.

A. MSR-Action3D Dataset

MSR-Action3D dataset [8] is a set of depth videos, cap-
tured by a Kinect device, that contains 20 actions: high arm
wave, horizontal arm wave, hammer, hand catch, forward
punch, high throw, draw x, draw tick, draw circle, hand clap,
two hand wave, sideboxing, bend, forward kick, side kick,
jogging, tennis swing, tennis serve, golf swing, pick up &
throw. Ten actors perform each action three or two times.
Commonly, this dataset is divided into three action subsets
as shown in Table I, while the average performance over these
subsets is reported as the recognition accuracy [8], [20]. Notice
that AS1 and AS2 were intended to group similar actions,
while AS3 defines a subset with high cross-action variability.

We consider here the challenging case of cross-subject
splitting into training and testing sets [20], [18], [19], [8],
i.e. half of the subjects are used for training and the rest for
testing. In particular, the common splitting with odd and even
subject-IDs defining the training and testing sets respectively
is adopted [8], [18]. As in [18], we exclude ten sequences
where the skeleton data is missing or corrupted, namely, 557
sequences are used in total. A 20-joint skeleton is provided that
implies 4845 skeletal quads per frame. The number of GMM
components is K = 128, thus leading to 1560-element FVs
that are power normalised with a = 0.3. As mentioned, three
levels are considered, hence (14 2 + 3 =)6 FVs are obtained
per sequence.

A fair comparison suggests using competitors that exploit
the skeleton structure only. For the sake of completeness,
however, we present in a separate table the recognition ac-
curacy of methods that use multiple features and combine
joints with other depth cues. Table II shows the recognition
accuracy per action subset along with the corresponding results
of methods that rely on skeleton joints. Notice that SMIJ [10]
and LDS [3] methods use a reduced dataset of 17 actions.

TABLE 1. THE THREE ACTION SUBSETS (AS) OF MSRACTION3D
DATASET AS DEFINED IN [8]
AS1 AS2 AS2
Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward kick
Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing
Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing
Pickup & throw side boxing Pickup & throw

THE METHODS EITHER COMBINE SKELETON JOINTS WITH OTHER DEPTH
CUES OR USE VARIOUS DEPTH FEATURES

Methods Accuracy
Bag of 3D points (Li et al. [8]) 74.70%
Radnom Occupancy Patterns (Wang et al. [17]) 86.50%
Space-time Occupancy Patterns (Vieira et al. [16]) 87.50%
Joints + Actionlets (Wang et al. [18]) 88.20%
HON4D (Oreifej and Liu [12]) 88.89% ™
Joints + Depth Cuboids (Xia and Aggarwal [19]) 89.30%
Joint Angles + MaxMin + HOG? (Ohn-Bar and Trivedi [11]) 94.84%*

*performance obtained with different cross-subject splitting (first five actors for training,
last five actors for testing).

Unlike most of the competitors, our method provides equally
good results in all action subsets, while it provides the best
overall accuracy. Fig. 5 depicts the confusion matrices we
obtain per action subset. Actions with similar poses, such as
the drawing actions in AS2, are more easily confused owing
the similarity of the resulting quads. Instead, actions in AS3 are
better discriminated, as expected. For comparison reasons, we
also show the confusion matrices obtained by the EigenJoint-
based method [21].

Table III shows the recognition accuracy of methods that
use the full-body depth map or combine skeleton information
with other features. To the best of our knowledge, the method
by Ohn-Bar and Trivedi [11] performs best when it combines
the joints angles with two other features. However, when only
joint information is employed, our method performs better (see
Table II). It is important to note that our algorithm competes
with the majority of these methods, despite the fact that they
employ multiple features. As a consequence, the use of skeletal
quads in conjunction with other features suggests an even
promising approach.

B. Mocap databse HDMOS5

In this subsection, we present results when applying our
method on skeleton sequences of a Motion Capture dataset,
the HDMOS5 database [9]. Unlike MSR Action3D, this dataset is
captured by motion-capture sensors that acquire more precise
data. Moreover, the frame rate is much higher (120 fps),
while 31 joints are provided per pose instance. However, we
consider here only 15 joints: root, L/Rhip, L/Rknee, L/Rankle,
neck, head, L/Rshoulder, L/Relbow, L/Rwrist. As a result, each
skeleton pose implies 1365 quads.

We adopt the experimental setup of [10] that suggests a
set of 11 actions: deposit floor, elbow to knee, grab high, hop
both legs, jog, kick forward, lie down floor, rotate both arms
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Fig. 5. The confusion matrices obtained by (top) [21] and (bottom) our method for each action subset of MSRAction3D dataset (left: AS1, middle: AS2, right:

AS3).

backward, sneak,squat, and throw basketball. The actions are
performed by 5 subjects, while each subject performs each
action a couple of times (not fixed); this suggests a set of 249
sequences. As with [10], we use a cross-subject splitting with
3 and 2 subjects in training and testing sets respectively, thus
having 139 training and 110 testing examples at our disposal.
The same parameters with MSR-Action3D are used.

Table IV shows the recognition accuracy of our method
along with several counterparts of the algorithms presented
in [10] and [3]. Notice that all methods in [3] regard global
linear dynamical systems (LDS) that describe the dynamics
of several joint features across the whole sequence. Then, the
LDS parameters encode each action sequence and are classified
by SVMs. Moreover, both methods enable a mining step
that provides the most discriminative features. Even so, our
simple method is more robust and provides higher recognition
accuracy. The confusion matrix of our results is shown in
Fig. 6.! Despite the more accurate joints in this dataset, there
is still confusion between some actions, such as deposit floor
and kick forward. Note that deposit floor means “deposit an
item on the floor with knees bent” [9]. As a consequence, there
are similar leg poses between these two actions, hence similar
quads.

VI. CONCLUSIONS

A local skeletal representation was proposed in this paper.
This representation implies a short, view-invariant descriptor
of joint quadruples. Furthermore, a Fisher kernel representation
was devised that encodes the generation of such a repre-
sentation from a Gaussian mixture model. The final action
descriptor results from a multi-level representation of Fisher
vectors that encodes the temporal nature of action examples.
Experimental validation of the proposed method verified its

lconfusion matrices are not provided by [10] and [3]

TABLE IV. RECOGNITION ACCURACY ON HDMO5 DATASET USING
SKELETON JOINTS
Methods Accuracy
Joint angles + LDS (Ofli er al. [10]) 76.15%
Joint angles + HMW™ (Ofli er al. [10]) 78.90%
Joint angles + HMIJ** (Ofli et al. [10]) 82.57%
Joint angles + SMIJ (Ofli et al. [10]) 84.47%
Joint Shape + LDS (Chaudhry et al. [3]) 82.57%
Joint Tangents + LDS (Chaudhry et al. [3]) 88.07%
Joint positions + LDS (Chaudhry et al. [3]) 91.74%
FV of Skeletal Quads 93.89%
*histogram of motion words, ** histogram of most informative joints
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Fig. 6. The confusion matrix of our method on HDMOS5 dataset.

state-of-the-art performance in human action recognition from
depth data.

Future work regards the combination of skeletal quads with
other cues. As well, the dimensionality reduction of the final



action descriptor will lead to more efficient classification and
will allow the use of non-linear SVMs.
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