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Perceptual DFT watermarking with improved

detection and robustness to geometrical

distortions

Matthieu Urvoy, Dalila Goudia, Florent Autrusseau

Abstract

More than ever, the growing amount of exchanged digital contents calls for efficient and practical techniques

to protect intellectual property rights. During the past two decades, watermarking techniques have been proposed to

embed and detect information within these contents, with four key requirements at hand: robustness, security, capacity

and invisibility. So far, researchers mostly focused on the first three, but seldom addressed the invisibility from a

perceptual perspective and instead mostly relied on objective quality metrics.

In this paper, a novel DFT watermarking scheme featuring perceptually-optimal visibility versus robustness is

proposed. The watermark, a noise-like square patch of coefficients, is embedded by substitution within the Fourier

domain; the amplitude component adjusts the watermark strength, and the phase component holds the information. A

perceptual model of the Human Visual System (HVS) based on the Contrast Sensitivity Function (CSF) and a local

contrast pooling is used to determine the optimal strength at which the mark reaches the visibility threshold.

A novel blind detection method is proposed to assess the presence of the watermark. The proposed approach

exhibits high robustness to various kind of attacks, including geometrical distortions. Experimental results show that

the robustness of the proposed method is globally slightly better than state-of-the-art. A comparative study was

conducted at the visibility threshold (from subjective data) and showed that the obtained performances are more

stable across various kinds of contents.

Index Terms

Watermarking, visibility, robustness, contrast sensitivity, Fourier, subjective experiment, Grubbs’ test

I. INTRODUCTION

Facing the ever-growing quantity of digital documents transmitted over the internet, it is more than ever necessary

for efficient and practical data hiding techniques to be designed in order to protect intellectual property rights.
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Watermarking is one such technique and has been extensively studied for the past two decades; applied to still

images, it comes down to embedding an invisible information, called watermark, that can be retrieved and matched

even when the watermarked image was attacked to some degree.

Four key requirements have been driving researchers in designing watermarking algorithms: the invisibility, the

robustness, the capacity and the security. Any watermarking algorithm should ideally provide the best tradeoff

between these four aspects. Lately, security has been widely studied [1]; as for the invisibility, the robustness and

the capacity, they influence each other and often must be addressed together. For instance, when the robustness is

increased, the perceptual quality of the watermarked image inevitably decreases.

Yet, few works address the problem of invisibility from a perceptual perspective. Watson’s visual models [2],

[3], in particular, have been used to compute Just Noticeable Differences (JND) masks, thus providing a perceptual

model of the visibility of the watermark [4], [5] which was embedded either in the Discrete Cosine Transform

(DCT) or the Discrete Wavelet Transform (DWT) domains. More recently, another Human Visual System (HVS)

model was used for DWT embedding [6]. Some of these methods are non-blind [4] or require side information to

be transmitted in order to reconstruct the JND mask at the receiver [5], [6]. Some other perceptual methods are

fully blind but they use heuristics instead of HVS models to derive JND masks [7], [8], [9].

Alternatively, some approaches based on statistical Objective Quality Metrics (OQMs) tune the embedding

strength based on the computed quality score [10], [11] and do not require any side information at the receiver either.

However, two main problems emerge: these metrics often provide wrong estimates of the perceived quality; more

importantly, OQMs provide a continuous quality scale and were not intended to scenarios, such as watermarking,

targeting the visibility threshold. In practice, the only reliable way to assess the invisibility is to conduct a subjective

experiment in which observers are asked whether they can notice the watermark or not. In addition, most comparisons

between watermarking techniques found in the literature are also based on OQMs – most often the Peak Signal to

Noise Ratio (PSNR) – which, as will be shown in this paper, can be misleading.

Besides invisibility, the robustness is also a key aspect in watermarking. None of the aforementioned techniques are

robust to common attacks such as geometrical distortions: they cannot efficiently withstand their desynchronization

effects. Rotation-Scale-Translation (RST) invariant techniques have been proposed to address this issue through the

use of appropriate transform domains. In [12], the watermark is embedded in the Fourier-Mellin domain, to the

cost of an important algorithmic complexity. Later, in [13], log-polar mapping of the Fourier domain is used to

make the watermark robust against RST attacks. Another log-polar Fourier embedding technique is proposed in

[14]. Besides these log-polar mapping techniques – that commonly exhibit an important computational load –, some

directly embed the watermark within the modulus of the Discrete Fourier Transform (DFT). In [15], the watermark

is made rotation invariant thanks to its circular shape. A similar technique is proposed in [16] where circular dots

are embedded in the Fourier transformed coefficients.

The success of a watermarking algorithm not only depends on its embedding strategy, but also on its detection

strategy. In particular, properly estimating the optimal detection threshold is crucial and thus has been extensively

studied. Usually, the problem is stated in terms of two hypotheses H1 and H0, which respectively denote scenarios
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with and without embedded watermark in the considered host content. In [17], [18], statistical models for the signal

and the watermark are used to derive a theoretical threshold. Typically, these are Gaussian or binomial models; the

threshold is chosen so as to limit the probability of false detections. However, the statistics of both the watermark

and the host image are likely to change with various parameters (e.g. watermark size, embedded message, etc), thus

impacting the parameters of the fitted models, which in turn requires for the detection threshold to be re-evaluated.

Moreover, if the statistics of both the host image and the watermark do not quite strictly fit the derived models, the

obtained threshold is likely not to be optimal.

In this work, a robust, blind, substitutive and perceptual watermarking technique is proposed. Various characteris-

tics of the HVS are used to determine and adjust the visibility level of the embedded watermark, thus resulting in an

optimal invisibility versus robustness tradeoff. The proposed technique is designed to be robust against various kinds

of attacks (including geometrical distortions). In addition, a subjective experiment is conducted in order to assess

the invisibility of the watermark. Finally, the proposed detection strategy is efficient and adapts to the statistics of

the watermark.

II. OVERVIEW OF THE CONTRIBUTION

Similarly to [15], [16], it is proposed to embed the watermark in the Fourier domain; the magnitude is used

to control the energy of the watermark while the phase is used to hold its information. For best robustness, the

watermarked coefficients are grouped into two symmetrical square patches, which can be expressed as a sum

of sinewaves. Once displayed, this results in a combination of sine gratings at various visual frequencies and

orientations: a perceptual model is used to adjust their amplitude at the visibility threshold. The watermarked image

is then obtained by inverse Fourier transform. Sec. III describes the perceptual model, then Sec. IV focuses on the

embedding process. Sec. V details the detection process.

The proposed method is designed to be robust against multiple kinds of attacks. Sec. VI investigates the robustness

of the proposed method in comparison to [15] and [16]. Sec. VII reports the results of a subjective experiment

assessing the visibility of the watermark Sec. VIII then re-evaluate the robustness when the strength has been

adjusted according to the observers feedback. Finally, Sec. IX validates the proposed approach in the context of

low quality Print & Scan (P&S).

III. REACHING THE VISIBILITY THRESHOLD

Choosing the appropriate watermark strength is a delicate but crucial step while designing a watermarking

technique. Over-estimations of the strength are likely to result in visible watermarks; on the contrary, under-

estimations are likely to reduce the robustness performances. In this paper, it is proposed to use some properties

of the HVS to automatically determine the perceptually optimal watermarking strength, at which the embedded

watermark appears at the visibility threshold.

Computational models of the HVS providing estimates for the visibility of differences between an original and

a distorted image have been proposed, such as in [19], [20], [21], [22] and [23]. They generally implement some
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Fig. 1. The proposed HVS model estimates the probability Ψmark that a watermark – embedded in an image IsRGB at visual frequencies fk

and orientations θk – is visible. Please refer to Section III for employed notations.

of the following elements: (1) non-linear sensitivity to the amplitude of the luminance, (2) conversion to contrast,

(3) contrast sensitivity to visual frequencies, (4) oblique effect, (5) subband decomposition into visual channels, (6)

masking effects, (7) psychometric probability of detection and (8) error pooling. A survey of these models can be

found in [24].

Practical applications, however, may not implement all of these HVS properties; visual channels, for instance,

may be discarded due to their high complexity and their rather small contribution to the visibility estimates [23].

In a preliminary subjective experiment involving 4 expert observers, it was reported that the proposed watermark is

first noticed in uniform image areas where masking effects do not occur (see Sec. VII-B for experimental details).

Therefore, the proposed HVS model is simplified and discards the perceptual channel decomposition. Moreover,

excluding the masking effects from the model underestimates the visibility threshold and thus the watermark strength:

the invisibility requirement is met anyway. The proposed model is illustrated in Fig. 1.

A. Modeling viewing conditions

Typically, HVS models require both the viewed image and the viewing conditions to be input. Let IsRGB(x, y)

denote an image to be watermarked, 0 ≤ x < Rx, 0 ≤ y < Ry , where Rx and Ry are respectively its horizontal

and vertical resolutions. Let Sx and Sy denote IsRGB’s displayed size in meters. The display illumination is noted

L; it is set to 280 cd.m−2 in the proposed model, a typical value for modern LCD monitors (slightly above the

advised illumination level in [25]). The viewing distance d is generally expressed as a multiplicative factor of the

active image area’s height, such that d = d ·Sy , where d is the normalized viewing distance.
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B. From pixel values to perceived contrast

Contrast sensitivity models generally take physical luminance in cd.m−2 as an input; digital images on the other

hand are gamma encoded for display purposes. The proposed model assumes that a typical monitor (γ = 2.2)

is used for display; the standard RGB (sRGB) color space [26] will thus be used. Gamma expansion (Γ) is first

applied to IsRGB in order to transform the original sRGB pixel values into linear RGB values: IRGB = Γ (IsRGB). In

a second step, IRGB is converted into the CIE XYZ color space, with D65 white point. Let IXYZ denote the obtained

image; its component Y is proportional to the physical luminance and will thus be used for contrast computation

and watermark embedding.

Michelson’s formula for contrast [27], when applied to a sine grating of peak amplitude Apeak, defines the contrast

as

C(x, y) =
Apeak

Ymean(x, y)
, (1)

where Ymean is the mean illumination of the area supporting the sine grating. In typical images, the illumination

varies locally; Ymean thus needs to be computed locally as well. As proposed in [28], a raised cosine filter Φ of

diameter one degree of visual angle is applied to Y to obtain Ymean(x, y); this provides an estimate of the average

foveal illumination over the entire image domain. The Fourier domain, which is later used to embed the watermark,

is not spatially localized. Prior to applying such non-localized processing steps, it is proposed to normalize Y with

respect to the local luminance Ymean. The locally normalized luminance map Ylocal(x, y) = Y (x,y)/Ymean(x,y) may

then be input to Fourier computations. Within this normalized luminance space, the local contrast of a sine grating

writes as

Clocal = Apeak . (2)

C. Contrast sensitivity

The sensitivity to contrast is influenced by numerous factors [29]. Intensive research has made available a large

number of computational models known as Contrast Sensitivity Functions (CSFs), describing our sensitivity to

contrast levels as a function of the visual frequency: the CSF returns the inverse of the threshold contrast above

which a sine grating becomes visible. In [29], an accurate CSF is built by interlinking models for the optical

Modulation Transfer Function, the photon noise, the lateral inhibition, and the neural noise. Some aspects of this

model, though, are not theoretically supported; authors in [30] addressed these issues and incorporated better models

for cone and midget ganglion cell densities. However, the resulting models are computationally intensive and do

not fit practical applications such as ours.

CSFs with medium to low complexities have been made available as well. In [31], the CSF proposed by Mannos

and Sakrison features a single parameter, the visual frequency. However, such a model lacks important factors such

as light adaptation and stimulus size. In, the CSF proposed by Daly features key factors, but was designed to be used

within his Visible Differences Predictor (VDP) quality model and should be used with caution in other contexts.

In [32], finally, Barten provides a simplified formula for his initial CSF, which also incorporates the oblique effect
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and the influence of the surround luminance. In this paper, the proposed Fourier watermark embedding technique

(as will be further discussed in section IV), modifies frequency coefficients whose orientations are oblique. For this

reason, it is necessary to implement the oblique effect as our sensitivity varies with the orientation of the visual

pattern. Barten’s simplified CSF formula [32], at binocular viewing, will thus be used in the proposed model:

CSF(f, θ) = 5200 · e−0.0016 · f2(1+ 100

L )
0.08

·

 
1 +

144

Θ2(I)
+ 0.64 · f2 ·

⇣
1 + 3 sin2 (2θ)

⌘!−0.5

·

✓
63

L0.83
+

1

1− e−0.02f2

◆−0.5

(3)

where f is the visual frequency in cycles per degree (cpd), L is the adaptation luminance in cd.m−2 and is assumed

to be equivalent to the display illumination (see Sec. III-A), Θ2(I) is the square angular area of the displayed image

I in square visual degrees, and θ the orientation angle.

From Eqs. (2) and (3), one may now obtain the threshold amplitude Aτ
peak(f, θ) of a sine grating

Aτ
peak(f, θ) = Cτ

local(f, θ) =
1

CSF(f, θ)
(4)

where Cτ
local is the local contrast threshold.

D. Psychometric function

The psychometric function Ψ is typically used to relate the parameter of a physical stimulus to the subjective

responses. When applied to contrast sensitivity, Ψ may describe the relationship between the contrast level and the

probability that such contrast can be perceived [20]. In the proposed approach, Daly’s Weibull parametrization [20]

is used:

Ψ
(
Cτ⇤

local

)
= 1− e−(C

τ∗

local)
β

, (5)

where Cτ⇤
local = Clocal/Cτ

local is the ratio between the locally normalized contrast and its threshold value given in Eq. (4).

β is the slope of the psychometric curve; its value is usually obtained by fitting from experimental data. Typical

values for β range from 1.3 (contrast discrimination) up to 4 (contrast detection) [33]. Moreover, the psychometric

function is typically applied locally, contrary to our model which applies it in the Fourier domain, hence globally.

For both these reasons, it is proposed to use β = 2, a rather low value which provides a large transition area

between invisible and visible domains.

E. Watermark frequency pooling

In this paper, the watermark is embedded into multiple Fourier coefficients, which results into the superimposing

of multiple sine gratings Gk, 0 ≤ k < N , with visual frequencies fk and orientations θk. The CSF solely provides

an estimate for the visibility of a single sine grating; a summation model is thus required to estimate the combined

visibility level of all embedded gratings. Numerous models have been proposed [23], [20]. Recent findings suggest
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that Minkowski summation [23] may not be adequate [34]; the proposed model will thus use probability summation

as in [20].

Let Cτ⇤
local(fk, θk) denote the contrast threshold ratio of Gk. As in [20], the probability Ψmark that the watermark

is perceived by an observer computes as

Ψmark = 1−

N−1Y

k=0

⇣
1−Ψ

(
Cτ⇤

local(fk, θk)
)⌘

, (6)

where Ψmark is set according to Eq. (5): 1− e−(1)β = 0.632.

Let us now work our way back from the entire watermark to individual gratings. In the proposed approach, it

is assumed that all embedded gratings share the same probability of detection Ψ
(
Cτ⇤

local(fk, θk)
)
= ψ, ∀k ∈ [0, N [.

This probability can be derived from Ψmark by solving Eq. (6):

ψ = 1− (1−Ψmark)
1/N

. (7)

The corresponding normalized contrast, which is equal to the optimal grating peak amplitude, may thus be

obtained by inversion of the psychometric function (Eq. (5))

Apeak (fk, θk) = Cτ
local (fk, θk) ·


− ln

⇣
(1−Ψmark)

1/N
⌘]1/β

(8)

IV. MAGNITUDE-PHASE SUBSTITUTIVE EMBEDDING

The proposed embedding technique relies on both the amplitude and the phase Fourier components to modulate

a binary watermark. The amplitude allows to adjust the watermark strength whereas the phase holds the binary

information.

Let an N-bits binary sequence M1..N be the message to embed. A binary watermark W(i, j), 0 ≤ i < M ,

0 ≤ j < M , is generated from M1..N using a PRNG and arranged into a M ×M matrix.

Let FY (u, v) denote the Fourier transform of Ylocal over frequency domain Ω =
{
(u, v) : −Rx/2 ≤ u < Rx/2,−Ry/2 ≤ v < Ry/2

 
,

where u and v are the horizontal and vertical frequencies. Let Ω+
W =

{
(u, v) : uw ≤ u < uw +M, vw ≤ v < vw +M}

and Ω−

W =
n
(u, v) : (−u,−v) ∈ Ω+

W

o
be two subsets of Ω within which the watermark will be embedded; uw and

vw are called watermark modulation frequencies. The watermarked spectrum is obtained by substitution as follows:

fFY (u, v) =
8
>>>>><
>>>>>:

α/2 ·A⇤
peak(u, v) · e

π ·W(u−uw,v−vw), (u, v) ∈ Ω+
W

α/2 ·A⇤
peak(u, v) · e

π ·W(−u−uw,−v−vw), (u, v) ∈ Ω−

W

FY (u, v), elsewhere

(9)

where α is a weighting factor that controls the watermark energy relatively to the predicted visibility level. A⇤
peak(u, v)

equals to Apeak

(
f(u, v), θ(u, v)

)
and denotes the embedded grating’s optimal amplitude obtained in Eq. (8) for

discrete frequency (u, v); f(u, v) and θ(u, v) respectively denote its visual frequency and orientation. In this paper,

the values for uw and vw are both set to 80% of the highest horizontal and vertical Fourier frequencies, thus ensuring
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Fig. 2. Correlation matrices ξ(u, v): how the dynamic range of the detection peaks and the surrounding noise varies with the watermark size

M .

low sensitivity to watermarked frequencies, which induces high threshold amplitudes, hence high watermark energy.

Lower values for uw and vw were also experimented (20% of the maximum frequency), with similar robustness

performances.

The proposed embedding scheme given in Eq. (9) is a substitutive technique. Here, the choice for amplitude

substitution is straightforward as it allows precise control over the energy of the watermark. Moreover, as can be

seen in Eq. (9), phase substitution is performed in order to encode the binary watermark information: zeros are

coded as null phases, ones as π phases. Eventually, the watermarked image is obtained by inverse Fourier transform,

local luminance de-normalization, and transform into the original color space.

V. TWO-STEPS BLIND WATERMARK DETECTION

Let [IsRGB be a supposedly watermarked image; it is assumed to have the same resolution and dimensions as

the original image IsRGB, otherwise it is re-scaled. Let Ylocal(bI) denote its locally normalized luminance map (see

Section III-B).

The proposed detection algorithm is blind, thus neither requires the original image IsRGB nor the original Fourier

coefficients nor the CSF weighting coefficients. It is performed in two steps. At first, Template Matching (TM)

is used to compute a 2D correlation matrix between the Fourier transform of Ylocal(bI) – denoted cFY – and the

watermark to be detected W(i, j). Then, outlier detection is performed to assess the presence of matching locations

within the correlation matrix, thus providing a binary decision (zero-bit watermarking).

A. A 2D-correlation algorithm based on template matching

Often, detection schemes are solely based on a correlation coefficient that is compared to a predefined threshold

value (e.g. [4], [15]). Detectors based on cross-correlation, cross-covariance and their optimized variants [35]
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generally perform better, at the cost of an increased computational load. Most often, however, one-dimensional

correlation is performed [16], while the searched pattern is likely to be two-dimensional. Moreover, geometric

distortions affect the location and shape of the watermark in the Fourier domain.

Not only does 2D cross-correlation account for the two-dimensional structure of the embedded watermark, but the

displacement of its correlation peaks allows to estimate the geometrical distortions undergone by the input image

[IsRGB. Therefore, it is proposed to perform two-dimensional TM similarly to [14]. Furthermore, no additional re-

synchronisation watermark is required (contrary to [36], [37], [38]); the TM is able to retrieve the watermark as

long as it is located, even partially, within the searched area.

Typically, TM involves: (1) a supporting signal S , (2) a searched template T , (3) a search area ΩS and (4) a

matching criterion ρ. In our case, S is derived from cFY :

S(u, v) =

8
>>><
>>>:

∣∣∣cFY (u, v)
∣∣∣ , −π/2 < arg

⇣
cFY (u, v)

⌘
≤ π/2

−
∣∣∣ cFY (u, v)

∣∣∣ , π/2 < arg
⇣
cFY (u, v)

⌘
≤ −π/2

(10)

which encompasses both the Fourier energy and the phase information into a single signed signal. This stands in

contrast to Kang et al. [14], who perform phase-only correlation to cope with the large dynamic range of the energy

of the watermarked coefficients. In our scenario, this range depends on the CSF; therefore it is rather low, which

allows us to take the energy level into account as well. The template T is derived from the binary watermark W

as follows:

∀(i, j) ∈ [0,M [2 ,

T (i, j) = A⇤
peak(uw + i, vw + j) ·

(
2 ·W(i, j)− 1

) (11)

which maps W’s binary values from {0, 1} to {−1, 1} and accounts for the optimal amplitude A⇤
peak of the embedded

gratings (see Eq. (9)). The search area ΩS is centered around the original watermark modulation frequencies, such

that ΩS =
{
(u, v) : uw −M < u < uw +M, vw −M < v < vw +M}. Finally, Pearson’s correlation coefficient

serves as matching criterion ρ, so that the final 2D correlation matrix is given by ξ(u, v) = ρ(T ,S(ΩM⇥M
u,v )), where

(u, v) ∈ ΩS and ΩM⇥M
u,v =

{
(u0, v0) : u ≤ u0 < u+M, v ≤ v0 < v +M

 
.

B. Peak detection

Typically, watermark detection is granted when the correlation score exceeds some given threshold value. It is

generally obtained by measuring [15] (experimentally) or estimating [18] (theoretically) the distribution of the values

of the correlation matrix under true or false detection scenarios. On the one hand, theoretical approaches are based

on statistical analysis, and thus make assumptions that may not hold in practice. On the other hand, experimental

thresholds are only valid within the scope of the test signals. In any case, the obtained threshold is constant, and

might not be optimal.

In contrast, the dynamic range of a correlation matrix varies with numerous parameters. To illustrate this, the

proposed embedding method was used to watermark the Lena image. The watermarked image was then rotated
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(1.5◦) and blurred (Gaussian noise, σ = 2.0) to simulate an attack. Fig. 2 plots the obtained correlation matrices, for

M = 32 (Fig. 2a) and M = 64 (Fig. 2b). Although the detection peaks are obvious in both cases, their amplitude,

as well as the amplitude of the surrounding noise, differ significantly. In other words, the detection decision should

be driven by the relative difference in amplitude between the correlation peak(s) and the surrounding noise. In Fig.

2, for the same image, the same embedding method, and against the same attack, a fixed detection threshold (e.g.

0.4) would properly detect the correlation peak from Fig. 2a and miss the one from Fig. 2b.

Instead, detection peaks may be seen as outliers. Numerous methods for outlier detection have been proposed in

the context of statistical analysis [39]. Grubbs’ test [40] is one such method, both robust and low computational, and

solely requires that input correlation matrices are (approximately) normally distributed. This assumption is quite

common [18]; Kolmogorov-Smirnov tests further confirmed Gaussianity of the correlation matrices in practical

experiments. The proposed detection method features an iterative implementation of Grubbs’ test that removes one

outlier value at a time, up to a predefined maximum number of outliers. Alternatively, the performances of the

Extreme Studentized Deviate (ESD) test were also investigated and proved to be identical in practical experiments.

Such an approach prevents us from fixing the threshold, and adapts the detection to the observed correlation matrix.

Moreover, it can be applied to any correlation-based watermark embedding method. Last but not least, the test’s

significance level αG can be used to control the tradeoff between detection capacity and false alarm rate. High (resp.

low) values bring higher (resp. lower) True Positive (TP) and False Positive (FP) rates. In terms of complexity,

the proposed method proves to be very fast: with 1024 × 1024 images and 64 × 64 watermarks, both detection

and embedding steps took approximately 0.2s to perform on a mid-2012 Mac Book Pro (2.3 GHz Intel Core i7

processor, 8Gb of RAM), of which 0.26ms was needed to apply Grubbs’ test.

VI. EXPERIMENTAL RESULTS

Most experimental results were obtained from dataset Da containing nine images with resolution 512 × 768,

including six natural color images, two text images and one cartoon color image. They are listed in Table I. When

a larger number of images were required (e.g. threshold selection), a second dataset Db featuring 1000 natural color

images was used. The results are compared to those of [15] and [16]. Datasets, watermarked images and additional

data are available online1. Fig. 3 shows examples of watermarked images at default embedding strength α0 (α = 1,

see Eq. (9)).

A. Grubbs significance level

In order to determine the optimal significance level for Grubbs’ test, Da’s images were watermarked with the

proposed algorithm. 90 attacks, from the Stirmark benchmark [43], were then applied to both original (hypothesis

H0) and watermarked (hypothesis H1) images. Detection was finally run on each resulting image with varying

values for αG. This process was repeated for several watermark sizes M ∈ {16, 32, 64, 128}. The results obtained

for both H0 and H1 scenarios are shown in Fig. 4.

1http://www.irccyn.ec-nantes.fr/∼autrusse/DFTWmking/
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TABLE I

DATASET Da USED IN THE EXPERIMENTS

# Name Type Description

1 ED Cartoon Elephant dream (652nd frame, cropped)

2–7 k03 – k23 Natural Images 3, 7, 15, 20, 21 and 23 from [41]

8 dsc Text Scanned payslip, cropped

9 wilk Text Wilkins text [42]

(a) Cartoon image ED (b) Text image wilk

Fig. 3. Examples of atypical images (cartoon and text): watermarked images.

As can be seen from Fig. 4a, the TP rate slightly varies with αG, and mostly with the size of the embedded

watermark. As for the FP rate, it also increases with the size of the watermark, but exponentially increases with

αG. Therefore, the value of αG may be adjusted according to the desired false alarm rate. In the next experiments,

we set M to 64 – in order to provide high detection performances – and αG to 1e−4 – in order to ensure a low

FP rate (null in experimented images) –.

B. False alarms and true detections

To ensure optimal detection performances, the gap between the detection scores in watermarked images (hy-

pothesis H1) and those in un-marked images (hypothesis H0) need to be as large as possible. Detection scores

were collected on dataset Db (1000 images). Fig. 5 plots the histograms (solid lines) of the detection scores in

both scenarios H0 and H1, along with the fitted Gaussian models (colored areas). As can be seen, H0 and H1

distributions are clearly disjoint in the proposed technique, similarly to [15]. Conversely, Fig. 5 shows that the

distributions of H0 and H1 are much closer in [16], thus resulting in respectively higher and lower FP and TP

rates.
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Fig. 4. True Positive and False Positive detection rates against Stirmark attacks on Da: influence of the watermark size (M ) and αG

C. Robustness to attacks

The robustness of the proposed watermarking algorithm to various attacks was measured with the Stirmark

benchmark [43]. All 90 Stirmark attacks were applied on dataset Da, thus resulting in 810 attacked images. The

robustness is reported in terms of maximum of correlation against experimented attacks; yet, the proposed detection

scheme depends on the output of Grubbs’ test (absence/presence of outliers). Therefore, the robustness of the

proposed algorithm is reported in terms of percentage of images with a positive detection (detection rate). The

obtained results are compared with [15] and [16], where detection rates correspond to the percentage of images for

which correlation is higher than the predefined thresholds.

The obtained results are plotted in Fig. 6; details for each attack are available online. For each attack, the dark

bar(s) correspond to the best performing algorithm(s) and the light bar(s) to the least performing algorithm(s).

Overall, it appears that the proposed technique performs best with an average detection rate of 62.5%, while [15]

and [16] respectively reach 52.1% and 53.1%. It should be noted that [16] performs well against most kinds of
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Fig. 5. H0 (original) versus H1 (marked): comparison with [15] and [16] on dataset Db. Solid lines represent the experimental histograms,

and colored areas represent the fitted Gaussian models.

attacks, although seldom performing best out of the three algorithms. The proposed technique is especially robust

to geometric distortions such as rotations (despite the fact that [15] and [16] embed a circular watermark contrary

to the proposed approach) and shearing. Still, only [16] withstands severe rotations and cropping. In addition, the

proposed technique is nearly as robust as [15] to scaling and filtering operations, and nearly as robust as [16]

to cropping. Moreover, it is significantly more robust to random bending, which randomly adds local geometrical

distortions, as can be induced by severe P&S effects. On the downside, it appears that the proposed technique

is not robust to severe JPEG compression, although this can be explained by the fact that the chosen watermark

modulation frequencies are high and thus very likely to be strongly affected by compression. Better robustness

against coding artifacts could be achieved by simply shifting the embedded watermark towards lower frequencies.

Further information can be found in Table II which lists average detection rates amongst groups of attacks.

VII. SUBJECTIVE EXPERIMENT

Previously, we assessed the robustness of the proposed watermarking scheme at default strength α0 = 1 and

compared it to [15], [16] at suggested strengths. Yet, one may wonder whether these strengths are equivalent in

terms of visibility, hence whether previous results are truly comparable. For this reason, a subjective experiment

was conducted to determine the optimal strengths at which the watermarks appear at visibility threshold. Section

VIII will re-assess the robustness of the compared algorithms at the obtained strengths.
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Fig. 6. Robustness to Stirmark attacks at default embedding strength (α0): detection rates on dataset Da

A. Apparatus and methodology

Observers were seated in a standardized room [44] and watched experimental stimuli on a 40” TV Logic LVM401

display, with 1920× 1080 resolution. Screen brightness was set to 200 cd.m−2. Calibration was performed with an
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TABLE II

STIRMARK BENCHMARK AT DEFAULT EMBEDDING STRENGTH: AVERAGE DETECTION RATESa (%) AMONGST GROUPS OF ATTACKS ON

DATASET Da .
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Prop. 62.5 100 88.9 29.6 27.8 100 100 51.4 50.0 88.9 94.5 55.6

[16] 53.1 77.8 71.1 33.3 51.9 59.3 76.4 45.8 48.6 64.8 40.7 44.4

[15] 52.1 100 100 0.0 100 92.6 100 11.8 11.1 100 42.6 11.1

a In each column, the bold value designates the best performing algorithm.

Eye One Pro luminance meter: gamma correction was set to 2.2 and white point to 6600 K. Room illumination was

set to 30 cd.m−2 behind the screen, hence 15% of the perceived screen brightness. Finally, the viewing distance

was set to six times the height of the presented images (as in [6]).

The Two Alternative Forced Choice (2AFC) protocol was used as it is best suited to estimate visibility thresholds.

37 naive observers were recruited to participate to the experiment; screening tests ensured that they had a perfect

visual acuity (Snellen chart) and no color deficiencies (Ishihara plates). The 2AFC methodology [45] (chap. 8, p.

258) was used to assess the visibility of the embedded watermarks. Nine anchor images were first presented for the

observers to familiarize themselves with the sources and the type of degradations. All 243 images were then shown

randomly to each observer. Observers were showed each pair of images (the watermarked image and its original

version) during 10 seconds, at which point images were hidden. Observers were forced to vote for either one or

the other image they thought was containing the watermark, before they could resume the experiment.

B. Stimuli set

Source images were taken from dataset Da. The nine images were then watermarked with three different

algorithms (proposed, [15] and [16]). This watermarking was repeated for various embedding strengths αi = wi ·α0,

1 ≤ i ≤ 9, where wi are weighting coefficients, and α0 is the default strength. α0 = α = 1 according to Eq. (9)

in the proposed algorithm; α0 = 0.3 in [15]; finally, α0 is image-adaptive in [16].

In 2AFC experiments, it is especially important to make sure that presented stimuli span the entire visibility range,

therefore from completely invisible to severely distorted: the obtained results can thus be best fitted to the expected

psychometric curve. Table III lists the values for wi, whose suitability was assessed by 4 expert observers who

performed the proposed experiment prior to naive observers. In total, 243 images were included in the subjective

experiment.
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TABLE III

DATASET Da : WATERMARK STRENGTH WEIGHTING COEFFICIENTS wi

Algorithm Img. w1 w2 w3 w4 w5 w6 w7 w8 w9

Proposed
1–7 0.13 0.25 0.50 0.75 1.00 1.50 2.00 4.00 6.00

8–9 0.25 0.50 0.75 1.00 1.25 1.38 1.50 2.00 4.00

[15]
1–7 0.06 0.13 0.19 0.25 0.38 0.50 1.00 2.00 3.00

8–9 0.03 0.06 0.09 0.13 0.15 0.17 0.25 0.50 1.00

[16]
1–7 0.25 0.37 0.50 0.75 1.00 2.00 5.00 10.00 20.00

8–9 0.50 0.75 1.00 2.00 3.00 5.00 7.00 10.00 20.00

C. Analysis

Let V(i, j) denote the vote of the jth observer at the ith image: it is equal to 1 if the watermarked image was

correctly identified, and to 0 otherwise. For each of the 243 watermarked images, the percentage of observers

who correctly identified the watermarked image R(i) = 1/Nobs ·
PNobs

j=1 V(i, j) is called the 2AFC detection rate,

where Nobs = 37 is the number of observers. A clustering-based analysis revealed 6 observers whose votes were

inconsistent, these were removed from subsequent analysis, thus reducing Nobs to 31.

Fig. 7 plots the 2AFC detection rates R(i) obtained for image ED from dataset Da (circles) against the strength

weighting coefficients wi. Typically, the visibility threshold is assumed to be obtained for a 2AFC score of 75%

[45]. Experimental data are fitted to a sigmoidal Weibull curve to obtain the corresponding psychometric curve,

from which the threshold value and therefore optimal watermarking strength α⇤ can be obtained. Fig. 7 also shows

the corresponding Weibull fit (solid line), along with the 75% threshold which is reached for strength α⇤ = w⇤ ·α0,

with w⇤ = 0.62.
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Fig. 7. Proposed method: 2AFC analysis on image ED - dataset Da

The same fitting process is repeated for each image and each algorithm, therefore resulting in 27 perceptually
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optimized strengths α⇤ = w⇤ ·α0. Table IV lists the obtained weights w⇤. Fig. 8 plots w⇤’s distributions for each of

the three algorithms; for plotting purposes, the histogram was computed on the binary logarithm of w⇤: log2(w
⇤) = 0

therefore corresponds to α = α0, log2(w
⇤) = 1 to α = 2 ·α0 and log2(w

⇤) = −1 to α = 0.5 ·α0. These strengths

α⇤, in the scope of experimented images, optimize the robustness versus visibility tradeoff. The further away the

default strength α0 is from its optimum α⇤, the more (in)visible is the watermark. When the default strength α0

is greater than its optimum α⇤ (i.e. log2(w
⇤) < 0), the watermark is likely to become visible. Conversely, when

α0 is less than α⇤ (i.e. log2(w
⇤) > 0), the watermark is invisible but the strength is not maximized, hence likely

resulting in a loss of robustness.

TABLE IV

DATASET Da : PERCEPTUALLY OPTIMAL STRENGTH WEIGHTING COEFFICIENTS w∗

Algorithm ED k03 k07 k15 k20 k21 k23 dsc wilk

Proposed 0.62 2.10 2.98 1.46 0.46 1.96 3.00 0.84 0.55

[15] 0.32 0.48 0.30 0.20 0.18 0.14 0.22 0.14 0.16

[16] 0.88 1.08 0.72 1.01 1.04 0.49 0.96 3.64 1.30
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Fig. 8. Distribution of perceptually optimized weights w∗ = α∗/α0 on Da.

Fig. 8 shows that algorithm [15] overestimates the watermarking strength by factors ranging from 2 to 8: the

embedded watermark is always visible at default strength. The other two algorithms perform much better in this

regard: the distribution of their w⇤ are nearly centered around the default position; misestimation factors remain
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within the [0.46; 3.64] range (Table V). In addition, both of these algorithms are more likely to under-estimate the

strength than to over-estimate it, which is preferable as it keeps the watermark invisible.

TABLE V

PERCEPTUALLY OPTIMAL STRENGTH WEIGHTING FACTORS: A SUMMARY.

Algorithm
Optimal weight w∗ Estimation Adequacy (%)

min. max. average over-est. under-est.

Proposed 0.46 3.00 1.55 44.4 55.6

[15] 0.14 0.48 0.24 100.0 0.0

[16] 0.49 3.64 1.24 44.4 55.6

Above all, these results tend to show that the proposed HVS model provides good estimates for the visibility

threshold. While [16] does not feature any kind of psychophysical model, the embedded watermark also nears the

visibility threshold.

VIII. PERFORMANCES AT THE VISIBILITY THRESHOLD

Here, the algorithms are re-evaluated with the obtained perceptually optimized strengths α⇤. Images from dataset

Da are thus watermarked using α⇤ instead of α0.

A. Robustness to attacks

The robustness benchmark performed in section VI-C was thus rerun at α⇤. The obtained results are plotted in

Fig. 9; again, the darkest bar(s) correspond to the best performing algorithm(s) and the light bar(s) to the least

performing algorithm(s). Table VI summarizes average detection rates amongst groups of attacks.

In average, the three algorithms now feature similar robustness percentages: [15] and [16] tie at 65.3%, and the

proposed method reaches 63.2%. In the proposed method, the robustness to individual attacks is very similar to

the scores obtained at default strength (see Fig. 6). Still, the robustness to filtering, shearing and random bending

moderately improves with optimal strengths. In [16], the robustness is significantly improved for all kinds of attacks;

it even slightly outperforms our method against JPEG, rotation, and the rotation & scaling. As a consequence, the

introduction of a perceptual model into [16] would be very likely to significantly enhance its robustness instead of

targeting a given PSNR.

Surprisingly in [15], there is no overall loss in robustness despite the strong reduction in the embedding strength

(α⇤ = 0.24 ·α0 in average), but on the contrary a drastic improvement. This can be explained by the fact that the

normalized correlation value in [15] is inversely proportional to the embedding strength. The detection threshold

from [15] being fixed, the FP rate is likely to rise.

Besides high detection capabilities, providing stable performances over a rather large range of embedding strengths

is also essential. In the proposed technique, variations in the embedding strength do not significantly affect the
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Fig. 9. Robustness to Stirmark attacks at visibility threshold (α∗): detection rates on dataset Da

robustness thanks to the efficiency of the perceptual model that accurately set the watermark strength with respect

to its visibility threshold. Conversely in [15] and [16], small variations in the embedding strength strongly affect

their robustness, in other words, unstable performances.
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TABLE VI

STIRMARK BENCHMARK AT VISIBILITY THRESHOLD: AVERAGE DETECTION RATESa (%) AMONGST GROUPS OF ATTACKS COMPARED TO

BASELINE RATESb

Alg. O
v
er

a
ll

R
o
w

s
&

co
ls

re
m

o
v
al

F
il

te
ri

n
g

&

sh
ar

p
en

in
g

C
ro

p
p

in
g

JP
E

G

L
in

ea
r

R
at

io

R
o

ta
ti

o
n

R
o

ta
ti

o
n

&

sc
al

e

S
ca

le

S
h

ea
ri

n
g

R
an

d
o

m
b

en
d

Prop. 63.2 100 95.0 30.6 30.2 100 100 50.8 50.0 85.4 97.9 62.5

Diff. +0.7 – +6.1 +0.9 +2.4 – – -0.6 – -3.5 +3.5 +6.9

[16] 65.3 95.6 97.8 49.4 40.7 77.8 88.9 61.8 59.0 90.7 51.9 77.8

Diff. +12.2 +17.8 +26.7 +16.1 -11.1 +18.5 +12.5 +16.0 +10.4 +25.9 +11.1 +33.3

[15] 65.3 77.8 100 18.5 100 100 100 33.3 35.4 100 79.6 66.7

Diff. +13.0 -22.2 – +18.5 – +7.4 – +21.5 +24.3 – +37.0 +55.6

a In each column, the bold value designates the best performing algorithm.

b Rows “Diff.” indicate the difference in detection rate w.r.t. baseline rates obtained at default embedding strengths – see Table II.

B. Objective quality

Among the three tested algorithms, three different strategies are observed. In the proposed method, a perceptual

model automatically adjusts the watermark strength at the visibility threshold. In [15], the embedding strength is

fixed and is thus independent of the image content. In [16], the embedding strength is progressively increased, so

as to reach a target PSNR of 40 dB. Although it is widely accepted that the PSNR does not reflect image quality,

it is still a recurrent quality metric when assessing the visibility of a watermark.

Fig. 10 plots the 2AFC detection rate as a function of the PSNR for image k21. The numerical values next

to each point within the figure gives the detection performances for various wi against 90 Stimark attacks (in

percents). At a constant PSNR of ∼ 37.9 dB (see the vertical dimension line A in Fig. 10), the proposed watermark

is invisible (2AFC percentage of 27.3%), while the watermark from [15] is highly visible (2AFC percentage of

93.9%). Focusing now on data points close to the visibility threshold (see the horizontal dimension line B in Fig.

10), it appears that the obtained PSNRs significantly differ between [16] (43.2 db) and the proposed method (29.3

dB), while the watermark in [16] is slightly above the visibility threshold (81.8%) and the proposed watermark

is slightly under the threshold (69.7%). In addition, the robustness of the proposed method is higher (62%) than

the one of [16] (56%). Therefore, assessing the quality of experimented algorithms, from their PSNRs only, would

conflict with the subjective results (ground truth), which in turn would lead to erroneous conclusions.

Concerning the robustness performances, one can see that experimented algorithms behave differently with varying

wi. As it was already seen in section VIII-A, slight variations in embedding strength have a significant impact on the

robustness in [16] and [15], but have little impact on the proposed approach. In the proposed method, performances
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remain stable across experimented wi; in [16], they are dramatically reduced (from 78% down to 5%) at low wi;

surprisingly in [15], they increase (from 52% up to 88%) with decreasing wi.
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Fig. 10. 2AFC visibility percentage versus PSNR for Da’s image k21

This effect was already observed in Sec. VIII-A (see Fig. 9). We further investigated this unexpected behavior

and studied the Receiver Operating Characteristics (ROCs) of [15]. The ROC curves obtained for various strengths

w ·α0, with w ranging from 0.24 (the average w⇤ across dataset Da in [15]) to 0.14 (the minimum w⇤). While

the ROC curve remains near-optimal for w = 0.24, it quickly declines at lower strengths. At w = 0.14, the TP

rate starts decreasing at high FP rates (10−1) and drops to 0.1 for an FP rate of 10−16. Neither in the proposed

technique nor in [16] was this observed.
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C. Content-dependency: some aspects

Fig. 12 plots, for each algorithm, the average robustness to Stirmark attacks in each image belonging to dataset

Da, at default strength (dashed line) and optimal strength (solid line). In addition, the bars in Fig. 12 plot the

absolute difference in robustness between default and optimal strengths, i.e. the gain or loss in robustness when

switching from α0 to α⇤. It can be seen that the performances are consistent across all images in the proposed

approach. Conversely in [15] and [16], performances are much more inconsistent. This can be explained by the

fact that, thanks to the accurate estimation of the visibility threshold provided by the proposed perceptual model,

the watermark strength is properly adapted to the visual contents whilst this is not the case in [15] and [16].
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Fig. 12. Average robustness per image for dataset Da at default strength α0 (dashed lines) and optimal strength α∗ (solid line). The bars plot

the corresponding difference in robustness.

IX. ROBUSTNESS TO PRINT & SCAN

In order to validate the proposed scheme in a more realistic scenario, the robustness to Print & Scan (P&S) of

the proposed method was evaluated on seven 512× 512 standard images (Baboon , Barbara, Boats, Fruits,

Lena, Monarch and Peppers denoted as Di
s, 1 ≤ i ≤ 7, in Table VII) and nine images of the Da database

(denoted Dj
a, 1 ≤ j ≤ 9). As demonstrated in Sec. VII-C, default (α0) and optimal (α⇤) strengths are close; here,

images were watermarked at α0. To ensure best reproducibility, each watermarked image was first printed five

times at 600 ppi (with a 80% downscaling) on a Dell 2335dn laser printer. Printed images were then scanned at
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75, 150, 200 and 300 ppi with a Lexmark CX410de scanner, thus leading to 320 scanned images (images were

placed approximately straight on the scanner glass).

TABLE VII

ROBUSTNESS TO PRINT & SCAN: NUMBER OF DETECTED IMAGESa IN FIVE STANDARD 512× 512 IMAGES AT SEVERAL SCANNING

RESOLUTIONS

Image D1
s D2

s D3
s D4

s D5
s D6

s D7
s D1

a D2
a D3

a D4
a D5

a D6
a D7

a D8
a D9

a Average

75 ppi 0 1 3 4 2 0 1 0 0 0 0 0 2 0 0 0 16.25 %

150 ppi 5 5 5 5 4 5 5 4 5 5 5 5 5 5 0 0 85.00 %

200 ppi 5 5 5 5 4 5 5 3 5 5 5 5 5 5 0 0 83.75 %

300 ppi 5 5 5 5 4 5 5 4 5 5 5 5 5 5 0 0 85.00 %

a Out of five printed & scanned copies.

For each watermarked image and scanning resolution, Table VII lists the number of images (out of five) for which

the watermark was detected. As can be seen, the proposed approach is not robust to very low scanning quality

(75 ppi), but is robust to slightly higher resolutions 150 to 300 ppi. The detection fails only in text images wilk

(see Fig. 3b) and dsc. In comparison, [16] is robust to a combination of print (600 ppi) and scan (150 ppi). The

technique in [37] is not robust to scanning resolutions below 600 ppi, while the technique in [14] can withstand

resolutions as low as 100 ppi.

An informal 2AFC subjective test was run on the 16 prints with 8 observers. The results show that the watermark

remains under the visibility threshold (53.1% of detection).

X. CONCLUSION

This paper proposes a new watermarking method. The watermark, a square patch of coefficients, is embedded

within the Fourier domain by substitution of both the magnitude (energy) and the phase (information). The watermark

strength is perceptually optimized. The detection features both template matching and outlier detection, the latter

being applied to the obtained correlation matrix. The decision is positive if at least one outlier is detected, and

negative otherwise.

The proposed method was extensively compared to two competing algorithms from the literature. A subjective

experiment was conducted in order to determine the perceptually optimized watermarking strengths (i.e. at the

visibility threshold). The performances of both the proposed and the compared algorithms were evaluated twice: at

default then perceptually optimal strengths. Experimental results showed that:

1) the proposed perceptual model accurately sets the watermark to its visibility threshold and is stable across

all kinds of experimented contents;

2) the template matching accurately locates the watermark for slight geometrical distortions;

3) Grubbs’ test for outlier performs very well both in terms of True Positives and False Positives;
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4) the proposed method is robust against Print & Scan and shows state-of-the-art performances.
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