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, and the extension of the cycle lemma to more than 2 variables was elusive. The cycle lemma has found a lot of applications in combinatorics, so we expect our multivariate extension to be quite fruitful: as a first application we mention economical linear time exact random sampling for multispecies trees.

Introduction

For any power series g(x) with g(0) = 0, there exists a unique power series f (t) solution of the equation f = tg( f ). The Lagrange inversion formula says that the nth coefficient of f (t) is 1 n [x n-1 ]g(x) n . This formula is now known as a fundamental tool to derive tree enumeration results. The two simpler and most classical examples are:

if g(x) = exp(x) then f (t) is the exponential generating function of Cayley trees, so that the number of rooted Cayley trees with n nodes is equal to 1 n

x n-1

(n-1)! exp(nx) = n n-2 ; if g(x) = (1 + x) 2 then f (t) is the ordinary generating function of binary trees, so that the number of rooted binary trees with n nodes is equal to

1 n [x n-1 ](1 + x) 2n = 1 n 2n n-1 = 1 n+1 2n 
n . These examples are in a sense generic: the bijection between doubly rooted Cayley trees and endofunctions underlies Labelle's proof of the Lagrange inversion formula [START_REF] Labelle | Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange[END_REF], while the cyclic lemma used in [START_REF] Dvoretzky | A problem of arrangements[END_REF] to count ballot numbers underlies Raney's proof [START_REF] Raney | Functional composition patterns and power series reversion[END_REF].

Our interest is in the multivariate extension of the Lagrange inversion formula. Fix an integer k ≥ 1. Let bold letters denote k-dimensional vectors; write

x n = x n 1 1 • • • x n k k and x n-1 = x n 1 -1 1 • • • x n k -1 k
. Let h(x) and g 1 (x), . . . , g k (x) be power series in x such that for i = 1, . . . , k, g i (0) = 0. Again there is a unique familly of power series f(t) solution of the system of equations May 27, 2013 and the multivariate Lagrange inversion formula admits the two equivalent following formulations (among several others):

f i = t i g i ( f i ) for i = 1, . . . , k ⋆ Version of
[t n ]h(f(t)) = [x n-1 ]h(x)g(x) n det δ i, j - x i g j (x) ∂ g j (x) ∂ x i (1) = 1 n 1 • • • n k [x n-1 ] ∑ T ∂ T (h, g n 1 1 , . . . , g n k k ) (2) 
where the sum is over oriented 0-rooted Cayley trees (non-plane trees with arcs going toward 0) with vertices {0, . . . , k} and the derivative ∂ G with respect to a directed graph G with vertex set V = {0, . . . , k} and edge set E is defined as

∂ G ( f 0 (x), . . . , f k (x)) = k ∏ j=0 ∏ (i, j)∈E ∂ ∂ x i f j (x)
Several variants of (1) are given in [START_REF] Gessel | A combinatorial proof of the multivariable Lagrange inversion formula[END_REF] but (2) appeared more recently, implicitely in [START_REF] Goulden | Multivariable Lagrange inversion, Gessel-Viennot cancellation, and the matrix tree theorem[END_REF] and explicitely in [START_REF] Bender | A multivariate Lagrange inversion formula for asymptotic calculations[END_REF]. As far as we know all combinatorial proofs of the multivariate Lagrange inversion extend Joyal and Labelle's approach [START_REF]Une théorie combinatoire des séries formelles[END_REF][START_REF] Labelle | Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange[END_REF]: [START_REF] Gessel | A combinatorial proof of the multivariable Lagrange inversion formula[END_REF] proves another variant of (1), [START_REF] Goulden | Multivariable Lagrange inversion, Gessel-Viennot cancellation, and the matrix tree theorem[END_REF][START_REF] Bousquet | Two bijective proofs for the arborescent form of the Good-Lagrange formula and some applications to colored rooted trees and cacti[END_REF] prove [START_REF] Bernardi | Counting trees using symmetries[END_REF]. A completely different approach was recently proposed in [START_REF] Bernardi | Counting trees using symmetries[END_REF]. Chottin [START_REF] Chottin | Une démonstration combinatoire de la formule de Lagrange à deux variables[END_REF][START_REF] Chottin | Énumération d'arbres et formules d'inversion de séries formelles[END_REF] instead proposed a remarkable extension of Raney's strategy to prove the two variable Lagrange inversion formula. Yet he failed to move to three variables and the problem of proving the multivariate Lagrange inversion formula with the cycle lemma was considered as difficult. Apart from the theoretical interest of such a proof, an extension of the cycle lemma is desirable in view of its numerous applications, to tree and map enumeration [START_REF] Lothaire | Combinatorics on words[END_REF]Chapter 11], [START_REF] Lothaire | Applied Combinatorics on words[END_REF]Chapter 9], probability [START_REF] Pitman | Enumerations of trees and forests related to branching processes and random walks[END_REF], and random sampling [START_REF] Dershowitz | The cycle lemma and some applications[END_REF]. We present such an extension in this paper.

Generalized Cycle Lemma

Following [START_REF] Chottin | Énumération d'arbres et formules d'inversion de séries formelles[END_REF] and the modern accounts of Raney's proof, our combinatorial construction is in terms of encodings of rooted plane trees by sequences of nodes. To deal with the multivariate case, we introduce colored trees.

A colored tree is a plane, rooted tree in which all edges have a color in the set {1, . . . , k}. A colored bush is a colored tree that can have "pending" edges with no node attached. We call such edges free edges; an edge is occupied if a node is attached to it.

Let ℓ be an integer with 0 ≤ ℓ ≤ k. An ℓ-bush is a colored bush such that occupied edges have color more than ℓ and free edges have color at most ℓ. In particular, a k-bush only has a single node, while a 0-bush is a colored tree. Therefore, ℓ-bushes can be seen as intermediate objects between colored nodes and colored trees. Definition 1. Let 0 ≤ ℓ ≤ k. We denote by S ℓ the set of tuples of the form S = (S 0 , . . . , S ℓ , e 1 , . . . , e k ), where S 0 , . . . , S ℓ are sequences of ℓ-bushes and e i is an edge of color i in S (refered to as a marked edge), satisfying the following conditions.

1. The sequence S 0 has only one element; for i = 1, . . . , ℓ, the number of elements of the sequence S i is equal to the number of edges of color i in S. 2. Let T be the graph with vertices 0, . . . , ℓ and an arc i → j if the edge e j is in the sequence S i . The graph T is a 0-rooted Cayley tree.

According to the previous remark, the objects of S ℓ may also be seen as intermediates between two objects. If k = ℓ, then S 0 , . . . , S k are simply sequences of nodes. If ℓ = 0, the unique element of the sequence S 0 is a colored tree.

Theorem 2 (generalized Cycle Lemma).

There is a bijection between the sets S ℓ and S ℓ-1 that works by attaching the elements of the sequence S ℓ to the edges of color ℓ.

The actual description of the bijection is given in Section 3; an example is given in Figure 1. Observe that for ℓ = k = 1, the statement is equivalent to the standard Cycle Lemma: there is a bijection between p-uples of rooted plane trees with one pointed node (represented here as a unique tree with an extra node of degree p at the root) and pairs formed of a node of degree p having a marked free edge and a sequence of nodes such that the number of nodes in the sequence equals the total number of free edges. Iterating the bijection yields a bijection between S 0 and S k . Given a Cayley tree T with vertices {0, . . . , k}, the generating function of the associated subset of

S k is hg n 1 1 • • • g n k
k with the proper derivatives to mark edges (taking a derivative of g n j j with respect to x i amounts to marking an edge of color i in the sequence S j ). It can thus be seen that the formula ( 2) is a corollary of the generalized Cycle Lemma.

The bijection

We now describe without proof our bijection between the sets S ℓ and S ℓ-1 , for 1 ≤ ℓ ≤ k, illustrated in Figure 1. This bijection uses Prüfer codes of Cayley trees [START_REF] Prüfer | Neuer beweis eines satzes über permutationen[END_REF]. The Prüfer code of a 0-rooted Cayley tree T with vertices 0, . . . , s is a sequence p 1 , . . . , p s with p s = 0; there exists a permutation σ such that the parent vertex of j in T is p σ ( j) for j = 1, . . . , s. Moreover, every sequence corresponds to a unique tree.

Let S = (S 0 , . . . , S ℓ , e 1 , . . . , e k ) be an element of S ℓ ; let T be the associated Cayley tree. In the following, we call ℓ-edge an edge of color ℓ. Since we are dealing with plane trees, there is a natural order on the set of ℓ-edges of S given by depth-first traversals of the ℓ-bushes.

Let r be the number of ℓ-edges in the sequences S 0 , . . . , S ℓ-1 . Since T is a Cayley tree, it does not contain the arc ℓ → ℓ, which means that the marked edge e ℓ is not in the sequence S ℓ . Thus, we have r ≥ 1. Let u be the root of the first element of S ℓ . By Definition 1, the sequence S ℓ has exactly r more elements than it has ℓ-edges. We combine the elements of S ℓ using the Cycle Lemma; we denote by b 1 , . . . , b r the resulting ℓ -1-bushes, so that the node u is in b 1 .

First case: the vertex ℓ is a leaf of T . In this case, we attach the bushes b 1 , . . . , b r to the remaining free ℓ-edges in order, with a cyclic permutation chosen so that the bush b 1 is attached to the marked edge e ℓ .

Second case: the vertex ℓ is not a leaf of T . In the Cayley tree T , all arcs going toward ℓ correspond to marked edges in the sequence S ℓ . Let m 1 , . . . , m s be the ℓ -1-bushes that we just formed containing at least one marked edge.

We break up the Cayley tree T in the following manner. For i = 1, . . . , s, let T i be the forest composed of the colors of the marked edges in m i and their descendants in T . Let T 0 be the tree composed of the remaining vertices of T with the vertex ℓ deleted; in other words, the vertices of T 0 are exactly the nondescendants of ℓ. We also assume that the order of the m i 's was chosen so that the T i 's are ordered according to their lowest label. Now, attach the bushes b 1 , . . . , b r to the free ℓ-edges in order, with a cyclic permutation chosen so that b s is attached to the marked edge e ℓ . For j = 1, . . . , s, let p j = i if m j is attached to an edge in the sequence with an index in T i . As the edge e ℓ is in the sequence corresponding to the parent of ℓ in T , which is in T 0 , we have p s = 0.

We can therefore regard the sequence p 1 , . . . , p s as the Prüfer code of a 0rooted Cayley tree T with labels {0, . . . , s}. Let σ be the permutation associated to this tree and swap the bushes m 1 , . . . , m s according to the permutation σ . Let S ′ 0 , . . . , S ′ ℓ-1 be the sequences resulting from this procedure. As no free ℓ-edges remain, every element of the sequences S ′ 0 , . . . , S ′ ℓ-1 is an ℓ -1-bush. Finally, let e ′ ℓ be the parent edge of the node u defined at the beginning. Let T ′ be the graph associated with the marked edges e 1 , . . . , e ℓ-1 . In the first case above, this is the tree T with the leaf ℓ deleted; in the second, it is a compound of the tree T 0 and the forests T 1 , . . . , T s , arranged according to the tree T ; it is therefore a Cayley tree. This shows that the tuple (S ′ 0 , . . . , S ′ ℓ-1 , e 1 , . . . , e ′ ℓ , . . . , e k ) is an element of S ℓ-1 .

We conclude with some comments. We use Cayley trees and Prüfer codes in a manner that may seem needlessly complicated; however, in the first stage, we see how important the condition that the graph T contains no edge ℓ → ℓ is, which is implied by the fact that T is a Cayley tree. The construction aims at ensuring that the graph T ′ describing the marked edges e 1 , . . . , e ℓ-1 remains a Cayley tree.

Fig. 1 .

 1 Fig.1. An example with k = 3, a tree of S 0 and the corresponding elements of S 1 , S 2 and S 3 (from left to right), with their associated Cayley trees (bottom). Marked edges are represented as double lines.