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Directed and multi-directed animals

on the King’s lattice

Axel Bacher

LIPN, Université Paris Nord — bacher@lipn.univ-paris13.fr

Abstract. We define the directed King’s lattice to be the square lattice with diagonal

(next nearest neighbor) bonds and with the preferred directions { , , , , }. We enu-

merate directed animals on this lattice using a bijection with Viennot’s heaps of pieces.

We also define and enumerate a superclass of directed animals, the elements of which

are called multi-directed animals. This follows Bousquet-Mélou and Rechnitzer’s work

on the directed triangular and square lattices. Our final results show that directed and

multi-directed animals asymptotically behave similarly to the ones on the triangular and

square lattices.

1 Introduction

An animal on a lattice is a finite and connected set of vertices. The enumer-

ation of animals (up to a translation) is a longstanding problem in statistical

physics and combinatorics. The problem, however, is extremely difficult, and

little progress has been made [16, 12]. A more realistic goal, therefore, is to

enumerate natural subclasses of animals.

The class of directed animals is one of the most classical of these subclasses.

Directed animals have been enumerated in a variety of lattices; let us cite, non-

exhaustively, the square and triangular lattices [18, 14, 9, 11, 2], Bousquet-Mélou

and Conway’s lattices Ln [4, 8], and the “strange” or n-decorated lattices [7, 3]

(Figure 1). Unsolved lattices include, notably, the honeycomb lattice [13].

The class of multi-directed animals is a superclass of directed animals, first

introduced by Klarner [15] on the square and triangular lattices. Bousquet-Mélou

and Rechnitzer [5] clarified Klarner’s definition and introduced a variant class

on the square lattice. Moreover, they gave closed expressions for the generating

function of multi-directed animals and showed that it is not D-finite.

The goal of this paper is to enumerate directed and multi-directed animals

on a new lattice. We call King’s lattice the square lattice with added diagonal

bonds, or next nearest neighbor bonds. We also consider the preferred orienta-

tions { , , , , } (Figure 1, right). Directed animals on the King’s lattice are

a superclass of directed animals on Bousquet-Mélou and Conway’s lattice L3,

which has arcs { , , } [4].

Several techniques have been used to enumerate directed animals on the var-

ious lattices. Among them are direct bijections with other combinatorial objects

[11], comparison with gas models [9, 3, 17, 1] and the use of Viennot’s theory

of heaps of pieces [20, 2, 8, 5, 21]. In this paper, we use the last method; we

show that directed animals on the King’s lattice are in bijection with heaps of

segments, already defined in [6].



Fig. 1. Directed animals on a selection of lattices. From left to right: the square lattice,

the triangular lattice, the lattice L3, and the King’s lattice.

2 Animals on the King’s lattice and heaps of segments

2.1 Definitions

Definition 1. We call segment a closed real interval of the form [i, j], where i

and j are integers such that j > i. Two segments are called concurrent if they

intersect, even by a point. A heap of segments is a finite sequence of segments,

considered up to commutation of non-concurrent segments.

The heaps of segments described here are the same as in [6], except that the

segment reduced to a point is not allowed. More information on heaps of pieces

in general can be found in [20]. Graphically, a heap is built by dropping seg-

ments in succession; a segment either falls on the ground or on another segment

concurrent to it. Examples are shown in Figures 2 and 3.

2.2 Directed animals and pyramids of segments

Let A be an animal; we say that a site t of A is connected to another site s if

there exists a directed path (i.e. respecting the preferred directions of the lattice)

from s to t visiting only sites of A. We say that the animal A is directed of

source s if every site t of A is connected to s. The source s is not unique; it may

be any of the bottommost sites of A (see Figure 2, left). By convention, we call

source of A the leftmost bottom site.

In Figure 2 is illustrated a bijection between directed animals and pyramids

of segments (or heaps with only one segment lying on the ground). This bijec-

tion works identically to the classical bijection between directed animals on the

square lattice and strict pyramids of dimers [20, 2].

Fig. 2. Left: a directed animal on the King’s lattice (represented, for clarity, as a poly-

omino on the dual lattice) with its source circled. Right: the pyramid of segments obtained

by replacing each maximal sequence of ℓ consecutive sites by a segment of length ℓ.

2.3 Multi-directed animals and connected heaps of segments

Let A be an animal. For any abscissa i, we denote by b(i) the ordinate of the bot-

tommost site of A at abscissa i (or b(i) =+∞ if there is no site of A at abscissa i).

We call source of A a site that realizes a local minimum of b and keystone of A



a site that realizes a local maximum. In case several consecutive sites realize

a minimum or maximum, the source or keystone is the leftmost one (Figure 3,

left). This is a purely arbitrary choice that does not alter the definition.

Definition 2. Let A be an animal. The animal A is said multi-directed if it satis-

fies the two conditions:

– for every site t of A, there exists a source s such that t is connected to s;

– for every keystone t of A, there exist two sources sℓ and sr, to the left and

to the right of t respectively, such that t is connected to both sℓ and sr.

Moreover, the directed paths connecting t to sℓ and sr do not go through a

keystone at the same height as t.

As a directed animal has only one source and no keystone, every directed

animal is multi-directed. Multi-directed animals are in bijection with connected

heaps of segments (or heaps without an empty column). A multi-directed animal

and its corresponding heap are depicted in Figure 3.

sℓ

sr

t

Fig. 3. Left: a multi-directed animal with four sources (circled) and three keystones

(boxed). The directed paths connecting one keystone, denoted by t, to the sources sℓ
and sr are shown. Right: the corresponding connected heap of segments, with has four

minimal pieces (one for each source of the animal).

Definition 2 can be adapted in the directed square and triangular lattices; the

animals thus defined are in bijection with connected heaps of dimers. Bousquet-

Mélou and Rechnitzer also defined multi-directed animals in bijection with con-

nected heaps of dimers in [5], in a slightly different way. Our definition of multi-

directed animals has the advantages of being more intrinsic and of having a ver-

tical symmetry.

3 Enumeration of directed animals

In this section, we use the bijection with pyramids of segments to enumerate

directed animals on the King’s lattice. We call half-animal a directed animal

with no site on the left side of its source. The associated pyramids are called

half-pyramids. We adapt Bétréma and Penaud’s methods [2] to decompose the

pyramids of segments, which yields the following result.

Theorem 3. The generating functions S(t) and D(t) of half-animals and ani-

mals are:

S(t) =
1− 3t−

√
1− 6t+ t2

4t
; D(t) =

1

4

(

1+ t√
1− 6t+ t2

− 1

)

.



The decomposition of the half-pyramids is sketched in Figure 4. Interest-

ingly, the generating function S(t) is already known in combinatorics. Its coef-

ficients are the little Schröder numbers, A001003 in the OEIS [19]. The coeffi-

cients of D(t) also appear as A047781. This is remindful of the triangular lattice,

where the half-animals are enumerated by the Catalan numbers [2].

P =
P1

P2

+ P′
1

P2

Fig. 4. Sketch of the two cases in the decomposition of half-pyramids. The generating

function of the possible heaps P1 and P2 is 1+S(t), while the generating function of the

possible heaps P′
1 is S(t). This shows the identity S = t(1+S)2 + tS(1+S), from which

we derive the value of S(t).

4 Enumeration of multi-directed animals

In this section, we enumerate multi-directed animals, or, equivalently, connected

heaps of segments. To do this, we adapt the Nordic decomposition, invented by

Viennot to enumerate connected heaps of dimers [21].

Theorem 4. Let M =M(t) be the generating function of multi-directed animals.

Let S= S(t), D=D(t) be the power series defined in Theorem 3, R= S+t(1+S)
and Q = 2(1− t)S− t. The generating function M is given by:

M =
D

1− ∑
k≥0

S(1+ S)k
QRk

1−QRk

.

5 Asymptotic results

Finally, we derive asymptotic results from Theorems 3 and 4.

Theorem 5. Let Dn and Mn be the number of directed and multi-directed ani-

mals of area n, respectively. As n tends to infinity, we have:

Dn ∼ κ
(

3+
√

8
)n

n−1/2; Mn ∼ λ µn,

with µ = 6.475.... The average width of directed animals grows like
√

n, while

the average width of multi-directed animals grows like n. Finally, the series M(t)
is not D-finite.

The results on directed animals are a straightforward application of singu-

larity analysis [10, Theorem VI.4]. The results on multi-directed animals are

more involved. Similar results already exist on the square and triangular lattices,

including the non-D-finiteness of the series M(t) [5].
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