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S1 Appendix - Some applications to nonpara-

metric statistics

For illustration purposes, we consider here several statistical applications of the

asymptotic results established in the main paper.

S1.1 Hadamard differentiable functionals

We first highlight that the FCLT stated above permits to establish the asymp-

totic normality of any statistic that can be expressed as the empirical version of

some Hadamard differentiable functional, see Shorack and Wellner (1986). For

the sake of clarity, we recall the definition of uniform Hadamard differentiability

in Definition S1.1, adapted from Pons and de Turkheim (1991). Our results ap-

ply to many situations considered in their paper, related in particular to certain

functionals of censored data. Other examples are treated in Gill (1989), van der

Vaart and Wellner (1996) (see Chapter 3.9 p. 379 therein, in particular refer to
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the discussion about the validity of the bootstrap for uniform Hadamard differ-

entiable functionals). Define B(F ,P) as the set of measures Q in `∞(F) whose

paths f ∈ F 7→ Qf :=
∫
fdQ are ‖.‖2,P-uniformly continuous and bounded. This

is the smallest natural space containing G. We consider the uniform Hadamard

differentiability tangentially to the subspace B(F ,P) because it weakens the

notion of differentiation and is easier to check in practice.

Definition S1.1 A functional T : `∞(F) → Rq is said to be uniformly

Hadamard differentiable at P tangentially to B(F ,P), if and only if there exists

a continuous linear mapping dTP such that for any sequence PN converging to

P, any hN converging to h ∈ B(F ,P) and every tN converging to 0 such that

PN + tN.hN ∈ `∞(F), we have:

T(PN + tN.hN) − T(PN)
tN

− dTP.h −→
tN→0 0.

Notice that T may be defined not on the entire space `∞(F) but on a subset L

only. In this case, one must check that PN + tN.hN ∈ L.

Remark S1.1 We may in addition assume that the differential dTP admits an

integral representation, i.e.

dTP.h =

∫
T (1)(x,P)h(dx),

where T (1)(.,P) is the influence function defined from X to B1 such that we

have

EP

(
T (1)(X,P)

)
= 0.

We recall that in the robustness terminology (Hampel et al., 1986), the influence

function of the parameter T(P) may be calculated directly by computing the

derivative of the functional taken at the contaminated distribution (1−t)P+tδx,

i.e.

T (1)(x,P) := lim
t→0

T ((1− t)P+ tδx) − T(P)
t

.

In this case, the limiting distribution may be calculated more easily.

2



Empirical processes in survey sampling - Supplementary Materials

Theorem S1.1 – CLT for Hadamard differentiable functionals. Sup-

pose that the assumptions of Theorem 4.2 hold and that functional T : L ⊂

`∞(F) → Rq is Hadamard differentiable at P with differential dTP and influ-

ence function T (1)(x,P). Then, as N→ +∞, we have:

√
N
(
T(Pπ(RN)

RN
) − T(PN)

)⇒ dTP.G,

where G is a Gaussian process with covariance operator Σ, as in Eq. (4).

The result above, the proof of which is available in the Supplementary Ma-

terials, applies in particular to the following statistics.

Example S1.1 – Expectation and variance. It is well-known that the function-

als T(P) = EP (X) and T(P) = VP (X) are uniformly Hadamard-differentiable

when considering appropriate classes of function F . When T(P) = EP (X), The-

orem S1.1 exactly reduces to the Central Limit Theorem established in Hàjek

(1964).

Example S1.2 – Cumulative distribution function. In a univariate setting, the

functional T(P) = F(x) := P (X ∈ (−∞, x]) can be dealt with by simply consid-

ering the class of indicator functions u 7→ I {u ≤ x} with x ∈ R and applying

next ?? and Corollary 4.1. We provide illustrations of this specific example in

Section S1.3.

S1.2 Fréchet differentiable functionals

Hadamard differentiability is sometimes difficult to prove and it does not yield

a precise control of the remainder for further approximations like Edgeworth

expansions. Another approach followed by Dudley (1990) and Barbe and Bertail

(1995) is to assume Fréchet differentiability with respect to a metric dF indexed

by a class of function F , for which some uniform entropy conditions hold. A

functional is said to be Fréchet differentiable at P for such a metric if there

exists a gradient (for instance the influence function T (1)(x,P), which fulfills
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EP
(
T (1)(x,P)

)
= 0) and a continuous function ε(.), null at 0, such that for any

probability Q,

T(Q) − T(P) =
∫
T (1)(x,P) (Q− P)(dx) + dF (Q,P) ε(dF (Q,P)).

It is generally possible to choose the class of functions according to the functional

of interest, see for instance Arcones and Giné (1992) for general classes of M-

estimators. Notice that in that case, by applying Fréchet differentiability twice,

we have

√
N
(
T(Pπ(RN)

RN
) − T(PN)

)
=
√
N

∫
T (1)(x,P) (Pπ(RN)

RN
− PN)(dx) + rN

=
1√
N

N∑
i=1

εi

πi
T (1)(Xi,P) + rN,

with a remainder

rN =
√
NdF (Pπ(RN)

RN
,P) ε(dF (Pπ(RN)

RN
,P)) +

√
NdF (PN,P) ε(dF (PN,P)).

By virtue of the results in Hàjek (1964), it is then obvious that the lin-

ear term in this approximation is asymptotically Gaussian with known vari-

ance. Controlling the remainder essentially amounts to controlling the behav-

ior of
√
NdF (Pπ(RN)

RN
,P) or alternatively, by the triangular inequality, that of

√
NdF (Pπ(RN)

RN
,PN), which was the purpose of Section 3 and Section 4.

S1.3 Simulation-based Gaussian asymptotic confidence re-

gions

A straightforward application consists in the building of Gaussian confidence re-

gions for the (univariate) empirical cumulative distribution function in the entire

population, denoted by FN(x), x ∈ R, when the survey scheme is of the rejective

type. Indeed, consider the class of functions F := {fx(.) := I {. ≤ x} , x ∈ R}.

Provided Assumption 2.1 is fulfilled, it respects the required conditions for

Corollary 4.1 to hold (see Van der Vaart, 2000, Example 19.16 for the uni-

form entropy condition and take H(x) = 1 and δ = 1 when checking condition
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i?) in 4.2), which implies in particular that ‖Gπ(RN)
RN

‖F converges in distribu-

tion to ‖G‖F as N→ +∞ (Van der Vaart, 2000, Corrolary 19.21). This yields

the following asymptotic uniform confidence band of level α ∈ (0, 1) for the

population cdf FN:

CBα :=

[
F
π(RN)
RN

−
qα√
N
, F

π(RN)
RN

+
qα√
N

]
,

where F
π(RN)
RN

is the Horvitz-Thompson estimator of the cdf based on the rejec-

tive sample and qα the α-quantile of random variable ‖G‖F . Since in practice

qα is unknown, it needs to be estimated. It can be achieved by means of

Monte-Carlo simulations, using a simple technique based on the Cholesky de-

composition of the covariance matrix (Kroese et al., 2011, Algorithm 5.1). In

the next subsections, a set of numerical experiments is performed to provide

illustrative examples of this technique.

S1.3.1 Experiment setting

Simulations were based on the following model, chosen for its simplicity in terms

of both computation and interpretation:

X = βW +U, with β ∈ {0, 1}, W ; T N (µ, σ2W , w?, w
?), U; N (0, σ2U),

P (W ≤ w , U ≤ u) = P (W ≤ w)P (U ≤ u) ,

where X is the variable of interest, W the auxiliary information, U a white noise

independent from W, and T N (0, σ2W , w?, w
?) refers to the truncated Normal

distribution over [w?, w
?], with expectation µ and variance σ2W . Such a repre-

sentation enables a simple control of the dependence between X and W, since

their correlation is then

corr(X,W) = β
σW√

σ2W + σ2U

.

For a given population UN of size N, where it is assumed that {Wi, i ∈ UN}

(resp. {Ui, i ∈ UN}) are independent (hence exchangeable) realizations of W
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(resp. U), inclusion probabilities of the Poisson sampling scheme are defined as

pi = p(Wi) = n
Wi∑N
j=1Wj

, (S1)

with n the desired expected sample size (Hàjek, 1964, Section 6, p.1512). When

the inclusion probabilities are proportionate to the auxiliary variable like in

Eq. (S1), the stronger the correlation between X andW, the smaller the variance

of the estimator of the population mean 1
N

∑N
i=1 Xi (or, equivalently, of the total∑N

i=1 Xi). Recall that under Assumption 2.1, we have n/N→ c ∈ (0, 1) as both

n and N tend to infinity. Hence, pi can be viewed as the empirical version in

the population of

p(W) :=W
c

E(W)
.

Observe that thus defined, p(W) ∈ [p?, p
?], where p? = cw?/µ and p? =

cw?/µ, which offers an easy way of ensuring Assumption 2.1 is fulfilled.

Numerical experiments were conducted on a set of populations with increas-

ing sizes N = 102, 5 × 102, 103, 5 × 103 and 104. Though the latter may

seem quite small to study asymptotic properties, they are in fact representa-

tive of many practical situations, where populations under the microscope have

moderate sizes in comparison to nationwide surveys. Several scenarios were in-

vestigated depending on both the variance parameter σ2U and the coefficient β,

so as to cover situations where corr(X,W) is high, low or null. They are sum-

marized in Table S1. For each scenario, two sample sizes were considered: one

small with n = 0.1×N and one relatively large with n = 0.5×N. Parameters

of the distribution of W were chosen to ensure that for all i ∈ UN, pi ∈ [0.01, 1].

Specifically, we set µ = 1, σ2W = 0.09, w? = 0.1 and w? = 2, thereby implying

that (p?, p
?) = (0.01, 0.02) when n = 0.1 × N and (p?, p

?) = (0.05, 1) when

n = 0.5×N.
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Table S1 – List of scenarios depending on β and σ2U, and corresponding model char-

acteristics

Scenario β σ2U corr(X,W)

S1 1 0.01 0.95

S2 1 35.91 0.05

S3 0 35.91 0

For each scenario, we drew 1000 samples according to a rejective sampling

scheme, following Algorithm 5.9 in Tillé (2006). The true inclusion probabilities,

denoted by πi, 1 ≤ i ≤ N, were deduced from their Poisson equivalents defined

in Eq. (S1) by repeating 105 times the basic algorithm stated in Example 2.4.

We constructed asymptotic uniform 95% confidence bands of the popula-

tion cdf FN using 103 Monte-Carlo approximations as in Kroese et al. (2011,

Algorithm 5.1).

S1.3.2 Experiment results

The average and maximal width of the confidence bands over the 1000 simulated

samples for each scenario are given in Table S2. Coverage probabilities were also

estimated, the results of which are displayed in Table S3. Finally, some graphical

illustrations are provided in Figure S1.

As expected, the largerN and c, the smaller the confidence bands. Regarding

coverage probabilities, they appear to be close to 95%, the desired level, for any

N and c. The most remarkable variability is that observed between scenarios:

confidence bands get significantly tighter as the correlation between X and W

decreases. As a consequence, estimated coverage probabilities are systematically

smaller in scenarios S2 and S3 than in scenario S1, especially when N = 102

and c = 0.1.
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Table S2 – Average (Av) and maximal (Mx) width of confidence bands (in %)

N

102 5× 102 103 5× 103 104

c Av Mx Av Mx Av Mx Av Mx Av Mx

S1
0.5 31.24 37.12 15.68 20.70 11.43 14.61 5.10 5.76 3.58 3.94

0.1 87.68 116.62 42.67 68.80 32.67 45.64 14.46 18.15 10.19 12.33

S2
0.5 27.74 33.55 13.77 16.52 9.95 12.88 4.48 5.05 3.17 3.56

0.1 76.43 103.01 37.63 53.10 28.40 40.36 12.70 15.95 8.99 10.81

S3
0.5 27.53 32.79 13.67 16.12 9.85 13.36 4.43 5.13 3.14 3.41

0.1 75.65 105.18 37.20 53.93 27.93 38.51 12.57 15.92 8.90 10.61

Table S3 – Estimated coverage probabilities (in %)

N

Scenario c 102 5× 102 103 5× 103 104

S1
0.5 96.30 96.80 96.80 97.80 97.00

0.1 94.74 97.20 97.12 98.30 98.50

S2
0.5 92.50 97.30 95.60 96.40 96.40

0.1 89.12 93.80 93.55 95.60 96.90

S3
0.5 91.80 96.50 95.50 96.10 95.60

0.1 87.82 93.50 93.48 94.80 96.70

This phenomenon is due to the formula used to construct inclusion probabil-

ities, in Eq. (S1). Let us dwell for a moment on this expression. It ensures that

the Horvitz-Thompson estimator (based on the Poisson inclusion probabilities)

of the expectation of W coincides with the classical empirical mean in the entire

population:

1

N

N∑
i=1

εi

pi
Wi =

1

N

N∑
i=1

εi

n Wi∑
N
j=1Wj

Wi =
1

N

N∑
i=1

εi

n

N∑
j=1

Wj =
1

N

N∑
j=1

Wj,
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since
∑N
i=1 εi = n by definition. It is no surprise then that the stronger the cor-

relation between X and W, the closer (in terms of variance) the weighted mean

1
N

∑N
i=1

εi

pi
Xi is to its population counterpart. However, when considering em-

pirical distribution functions, the standard and sample estimators for W are no

longer equal. Hence, not only does the model in Eq. (S1) fail to improve the

variance of the HT-cdf of X, but the deviations of FpRN
are expected to grow as

the link between X and W tightens. To counterbalance this drawback, we could

for instance choose the inclusion probabilities pi, 1 ≤ i ≤ N, that minimize the

uniform difference between the HT and the empirical cdf of W (see for instance

Rueda et al., 2007). Such refinements are left for further research. Although

not optimal, the confidence bands constructed on our numerical experiments

are still satisfactory and advocate the utility of our asymptotic results whatever

the available inclusion probabilities.
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Figure S1 – Example of the 95% confidence bands of the empirical distribution function

in the population FN (black line) constructed on one of the 1000 simulated samples

under scenario S1 with c = 0.1 (dark area) and c = 0.5 (light area) for N = 5 × 102

(left hand plot) and N = 104 (right hand plot)
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S2 Appendix - Technical proofs

S2.1 Proof of Lemma 4.1

Notice first that under Assumption 4.1, we have: ∀ (f, g) ∈ F2,

covN,p(f, g) =
1

N

N∑
i=1

f(Xi)

p(Wi)

g(Xi)

p(Wi)
p(Wi) (1− p(Wi))

− θN,p(f) θN,p(g)
1

N

N∑
i=1

p(Wi) (1− p(Wi)),

with

θN,p(f) =

∑N
i=1(1− p(Wi)) f(Xi)∑N
i=1(1− p(Wi))p(Wi)

.

Now it is sufficient to apply the Strong Law of Large Numbers for exchangeable

vectors to obtain that

1

N
dN =

1

N

N∑
i=1

(1− p(Wi))p(Wi)

−→
N→∞

∫
W
(1− p(w))p(w)PW(dw) almost-surely.

The limit above is finite, positive under Assumption 2.1 (that implies there

exists p? > 0 such that p(w) > p?)). Additionally, we have with probability

one

1

N

N∑
i=1

f(Xi)

p(Wi)

g(Xi)

p(Wi)
p(Wi) (1− p(Wi)) −→

N→∞∫
X×W

f(x)g(x)

(
1

p(w)
− 1

)
PX,W(dx, dw).

By virtue of Assumption 2.2, the latter integral is finite. Finally, observe that

we almost-surely have

θN,p(f) −→
N→∞ θp(f),

and the desired result follows. In particular notice that the limiting variance

V2(f) is given by

V2(f) :=

∫
X×W

f(x)2
(

1

p(w)
− 1

)
PX,W(dx, dw)

− θp(f)
2

∫
W
(1− p(w))p(w)PW(dw),
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which is strictly positive except in the degenerate case where f(x) = p(w).

Typically, this occurs when the inclusion probabilities are based directly on the

variable of interest (or W = c×X for some c ∈ R). Positivity of the operator

results from Cauchy-Schwarz inequality.

S2.2 Proof of Theorem 4.2

We essentially have to check hypotheses i) − iv) of Theorem 4.1.

Concerning hypothesis i), the Lindeberg-Feller condition can be written as

1

N

N∑
i=1

E
(
Z2N,i I

{
ZN,i > η

√
N
})
−→
N→∞ 0 for every η > 0,

which reduces to E
(
Z2N,i I

{
ZN,i > η

√
N
})
−→
N→∞ 0 by exchangeability of the

components. This corresponds to condition i) in Theorem 4.2 above.

Recall that Assumption 2.2 stipulates the envelope of class F is square-

integrable function H and that under Assumption 2.1, there is some p? > 0

such that for all i ∈ UN, p(Wi) ≥ p?. Hence, we have

N∑
i=1

p(Wi) (1− p(Wi) ≥ p? (N− E (n)) = p?N

(
1−

E (n)

N

)
.

as well as

|θN,p(f)| ≤ θN,p(H) ≤
1

p?

1

N− E (n)

N∑
i=1

H(Xi) <∞.
We thus obtain:

sup
f∈F

∣∣∣∣ f(Xi)p(Wi)
− θN,p(f)

∣∣∣∣2 ≤ 2
(

sup
f∈F

∣∣∣∣ f(Xi)p(Wi)

∣∣∣∣2 + sup
f∈F

|θN,p(f)|
2

)

≤ 2

(∣∣∣∣H(Xi)p(Wi)

∣∣∣∣2 + |θN,p(H)|
2

)
.

Set

G1,i = |εi − p(Wi)|

(∣∣∣∣H(Xi)p(Wi)

∣∣∣∣+ |θN,p(H)|

)
,

G2,i = (εi − p(Wi))
2

(∣∣∣∣H(Xi)p(Wi)

∣∣∣∣2 + |θN,p(H)|
2

)
.

11



P. Bertail, E. Chautru, S. Clémençon

Observe that it is thus sufficient to check that for every η > 0,

EPX,W

(
ETN

(
G2,i I

{
G1,i > η

√
N
} ∣∣ (Xi,Wi)1≤i≤N

))
−→
N→∞ 0.

Condition ii) can be checked immediately by noticing that, in the case of the

Poisson process, the equicontinuity condition becomes

sup
ρP(f,g)<δ

N∑
i=1

E
(
(ZN,i(f) − ZN,i(g))

2
)
=

sup
ρP(f,g)<δ

1

N

N∑
i=1

EPX,W

((
f(Xi) − g(Xi)

p(Wi)
− θN,p(f) + θN,p(g)

)2
× p(Wi)(1− p(Wi))

)
≤ sup
ρP(f,g)<δ

Cp?

4p2?
EPX,W

(
(f(X1) − g(X1))

2
)→ 0, as δ→ 0,

where Cp?
is a positive constant depending on p?. In practice, condition iii) is

checked in an easier manner by using the uniform entropy condition given here,

see also Lemma 2.11.6 in van der Vaart and Wellner (1996).

Finally, condition iv) is a direct consequence of Lemma 4.1.

S2.3 Proof of Theorem 4.3

As explained in Section 3.2, with a fixed sample size n in the canonical case

where
∑N
i=1 pi = n, the recentered process G̃p

RN
coincides with the initial pro-

cess Gp
RN

and the distribution of G̃p
RN

is the same as that of G̃p
TN

conditional

on the sample size being fixed, equal to n. Therefore, it suffices to study the

joint distribution of
(
(G̃p
TN
f)f∈F ,

1√
N

∑N
i=1 εi − pi

)
, which by virtue of Theo-

rem 4.2 is marginally asymptotically Gaussian. There, checking the condition

of the multivariate Lindeberg-Feller Theorem reduces to checking condition i)

of Theorem 4.2. Therefore, under our set of hypotheses, the limiting process is

jointly Gaussian. In addition, we have covTN

(
G̃p
TN
f, 1√

N

∑N
i=1 εi − pi

)
= 0 for

all f ∈ F , thus they are asymptotically independent and the limiting distribution

of Gp
RN

reduces to that of G̃p
TN

.
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S2.4 Proof of Corollary 4.1

Following in the footsteps of Hàjek (1964), in the rejective sampling situation

where p(Wi) = pi for i ∈ {1, . . . ,N}, we have

max
1≤i≤N

∣∣∣∣ piπRi − 1

∣∣∣∣ −→N→∞ 0.

We thus have

max
1≤i≤N

∣∣∣∣πRipi − 1

∣∣∣∣ −→N→∞ 0

under the hypothesis that Assumption 2.1 is fulfilled by the pi’s. Then, we can

write

Gp(W)
RN

f−Gπ(RN)
RN

f =
1√
N

N∑
i=1

(
εi

p(Wi)
−
εi

πRi

)
f(Xi)

=
1√
N

N∑
i=1

εi

p(Wi)

(
1−

pi

πRi

)
f(Xi),

and

sup
b∈BL1(`∞(F))

E
(∣∣∣∣b(sup

f∈F
Gp(W)
RN

f

)
− b

(
sup
f∈F

Gπ(RN)
RN

f

)∣∣∣∣)
≤ E

(∣∣∣∣sup
f∈F

Gp(W)
RN

f− sup
f∈F

Gπ(RN)
RN

f

∣∣∣∣)
≤ E

(
sup
f∈F

∣∣∣∣∣ 1√N
N∑
i=1

(
εi

p(Wi)
−
εi

πRi

)
f(Xi)

∣∣∣∣∣
)

≤ 1√
N

N∑
i=1

∣∣∣∣ πRi
p(Wi)

− 1

∣∣∣∣H(Xi),
which quantity vanishes asymptotically under Assumption 2.1, according to

Theorem 5.1, Equations (5.7) and (5.26) in Hàjek (1964, p. 1508-1510).

The desired convergence is finally established by combining this result with

Theorem 4.3 and the functional version of Slutsky’s theorem (see Theorem 3.4

in Resnick, 2007 for instance).
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S2.5 Proof of Lemma 4.2

Let b ∈ BL1(`∞(F)). We have

ERN

(
b
(
Gπ(RN)

R̃N

))
− E

R̃N

(
b
(
Gπ(RN)
RN

))
=

∑
s∈P(UN)

R̃N(s)b
(
Gπ(RN)
RN(s)

)
−
∑

s∈P(UN)

RN(s)b
(
Gπ(RN)

R̃N(s)

)
≤

∑
s∈P(UN)

∣∣∣RN(s) − R̃N(s)∣∣∣
because b is bounded by 1 and for a fixed s ∈ P(UN),

b
(
Gπ(RN)
RN(s)

)
= b

(
Gπ(RN)

R̃N(s)

)
,

their expressions depending on the first order inclusion probabilities π(RN)

solely. The last inequality follows from the usual inequality between the to-

tal variation metric and the entropy (Berger, 1998, Lemma 2 p.219).

S2.6 Proof of Theorem S1.1

The idea is essentially to apply the Hadamard differentiability property to the

sequence hN =
√
N(Pπ(RN)

RN
− PN) =: Gπ(RN)

RN
, which converges to h = G in

`∞(F) and tN = 1√
N
→ 0. We thus have, as N→ +∞:

√
N
(
T(Pπ(RN)

RN
) − T(PN)

)
=
√
N

(
T(PN +

1√
N
hN) − T(PN)

)
−→ dTP.G.
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