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in the laboratory, Journal of Economic Behavior and Organization (2008),

doi:10.1016/j.jebo.2011.01.005

This is a PDF file of an unedited manuscript that has been accepted for publication.

As a service to our customers we are providing this early version of the manuscript.

The manuscript will undergo copyediting, typesetting, and review of the resulting proof

before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that

apply to the journal pertain.

dx.doi.org/doi:10.1016/j.jebo.2011.01.005
dx.doi.org/10.1016/j.jebo.2011.01.005


Page 1 of 36

Acc
ep

te
d 

M
an

us
cr

ip
tExtortion in the laboratory

Friedel Bolle

EUV Frankfurt (Oder)

Yves Breitmoser∗

EUV Frankfurt (Oder)

Steffen Schlächter

EUV Frankfurt (Oder)

December 20, 2010

Abstract

In a laboratory experiment, we study a finitely repeated game (T = 15) under

complete information. In each round, P demands tribute (cash transfer) from A,

A complies or refuses, and after refusals P may punish A. In equilibrium (payoff

maximization), P does not punish and A refuses any positive demand. In the

experiment, P punishes increasingly often and increasingly severely as she gains

experience; most As comply with P’s demands. The observations are compatible

with linear spite. In a finite mixture model, the types of P and A in the subject

pool are characterized. An A that is resistant to extortion (declines all demands)

is very rare, and hence the threat of punishment in general is effective, but all

As either ignore actual punishment or react negatively to it. They accept to pay

tribute but they are resistant to piecemeal expropriation.

JEL classification: C72, C91, D74

Keywords: laboratory experiment, mafia, extortion, punishment, finitely repeated game

∗We are grateful to a co-editor and two anonymous referees for very helpful comments.

Corresponding author: Yves Breitmoser. email: breitmoser@euv-frankfurt-o.de. Postfach 1786, 15207

Frankfurt(Oder), Germany, Telephone/Fax: +3355534 2291/2390.

Title Page (with Full Author Details)



Page 2 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

• laboratory experiment on finitely repeated extortion game

• P(rincipal) demands tribute from A(gent), and if A does not comply, P may punish A

• P punishes increasingly often and increasingly severely after rejections

• eventually, most As comply with P’s demands

• finite mixture modeling of type heterogeneity is applied to understand behavior

1
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1 Introduction

Many economic interactions are asymmetric in that one player, P(rincipal), is able to

punish misbehavior of the other, A(gent), but effectively not vice versa. Such interac-

tions can be found in social, military, and business hierarchies, between teachers and

students, parents and children, or the mafia and shopkeepers. Formal analyses of such

interactions usually build on the pair of assumptions that (i) punishment is sufficiently

severe to destroy the benefits of misbehavior of opponents, and (ii) it is costly. The for-

mer implies that misbehavior is ruled out if the threat of punishment is credible, while

the latter implies that it is non-credible in finitely repeated interactions. In turn, if the

threat of punishment is non-credible (e.g. if the interaction has finite time horizon),

A has nothing to fear and misbehaves: students harass their teachers, children mess

around, shopkeepers refuse payment, and so on. Experimental analyses of this predic-

tion (under complete information) are rare, however. The only dedicated experiment

seems to be the one of Jung et al. (1994), who consider a game of P against a sequence

of short-lived A’s, but in the above examples, A is actually long-lived.1

In our experiment, P faces a long-lived A. The subjects are matched to form

pairs and play a finitely repeated extensive form game. The time horizon (T = 15) is

common knowledge. In each round, P is endowed with 40 and A is endowed with 160.

They play a constituent game with three stages. First, P chooses a demand x ∈ [0,160],

second A decides whether to accept or decline, and third, if A declined, P may punish

A through reducing his income by some amount y ∈ [0,160]. Punishment (y > 0) bears

costs of 10 for P. The game has been designed to distinguish demands that exploit

P’s strategic advantages from demands inspired by fairness concerns, and similarly to

distinguish punishment in general from punishment to level incomes. For example,

if P intends to level incomes, then she demands x = 60 (6= 160/2, these choices are

separated to distinguish whether P wishes half of A’s endowment rather than equality).

Demands x> 60 suggest that P intends to exploit the strategic asymmetry and demands

x < 60 suggest that P feels weak. Analogously, P punishes in order to level incomes

1There is more loosely related work, e.g. on entry deterrence without the possibility of punishment ex

post (Mason and Nowell, 1998), chain store games under incomplete information (Cooper et al., 1997),

repeated “reputation” games under incomplete information, e.g. Camerer and Weigelt (1988), Neral and

Ochs (1992), and Andreoni and Miller (1993), and also the wealth of experiments on ultimatum games,

but in none of these cases, P may punish A in every round and the threat of doing so is non-credible.

2
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by choosing y = 130 in stage 3, she punishes “adequately” in relation to the rejected

demand by choosing y = x (i.e. thus A does not profit through rejecting the demand),

while the maximal and perhaps most effective punishment is y = 160.

The results can be summarized as follows. First, the principals (P) become in-

creasingly inclined to punish (y > 0) as they gain experience, and eventually, they

almost universally choose the maximal punishment y = 160 after declines of their

demands. This inclination to punish is a divergence from subgame perfection2 that

almost all subjects in the role of P adopt. There is no “end effect” in that behavior

approaches subgame perfection in the last rounds of the repeated game. Second, the

principals’ demands are fairly moderate, often just high enough to equalize payoffs,

and even such demands get rejected by some of the agents. This contrasts strikingly

with the observed convergence toward maximal punishment. For, taking the latter as

given essentially transforms the interaction into a repeated ultimatum game. In rela-

tion to ultimatum games, equalizing demands are moderate indeed and show that the

Ps struggle to fully exploit their strategic advantage.

Third, we observe that both demands and accepted demands are significantly in-

creasing in the course of time, while the econometric estimates of the demand strategies

are independent of “exogenous inputs” such as time, acceptance decisions, and previ-

ous punishment. Econometrically, they simply constitute stationary ARMA processes.

To understand the discrepancy between overall trend and individual behavior, we re-

estimate the strategies controlling for subject heterogeneity (in a finite mixture model).

After segregating subject types, we find that that about 43% of the Ps actually do in-

crease demands in time, and another 42% of them increase demands after acceptance

(while acceptance rates happen to be increasing in time). In turn, only controlling for

subject heterogeneity disentangles the diversity of behavior and explains the overall

trend. Arguably, similar diversity may be hidden in many experimental analyses.

Fourth, our results confirm the suspicion that punishment is a two-edged sword

(see e.g. Fehr and Rockenbach, 2003). The anticipation of getting punished induces

agents to accept moderate demands, but the actual execution of punishment does not

improve acceptance rates. About 40% of the agents ignore the level of punishment,

and the remaining 60% react negatively to getting punished (i.e. their acceptance rates

2Unless stated otherwise, by “subgame perfection” we refer to the subgame perfect equilibrium

(SPE) assuming that it is common knowledge that all players maximize payoffs.

3
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drop). Overall, agents seem willing to comply with moderate requests, and in partic-

ular they give more than they would without the threat of punishment (i.e. in dictator

games). But they ignore punishment as such, or at least seek to maintain a reputation

of ignoring it, seemingly to prevent piecemeal expropriation. This resistance to pun-

ishment is sustained although P may punish at low costs, which suggests that it would

be stable also under other cost structures.

Finally, let us comment on the persistence of punishment, despite its violation

of subgame perfection.3 This has been observed similarly in the context of “altruis-

tic” punishment by Fehr and Gächter (2000, 2002). Altruistic punishment differs from

“egoistic” punishment in extortion games, however. Altruistic punishers intend to sus-

tain efficiency in contributions to public goods, while egoistic ones intend to enforce

redistribution of resources (or contracts, see e.g. Fehr et al., 1997). This affects the

strategic consequences fundamentally, as for example Masclet et al. (2010) report that

threats of altruistic punishment effectively increase contributions, while in our case the

previous period’s punishment (= the threat for punishment in this period) decreases

acceptance rates. The reason for the persistence of punishment in our experiment is

therefore understood best in contrast to Jung et al. (1994), where punishment also

serves redistribution but disappears over time. The reason for the divergence seems to

be the relative cost-effectiveness. In our case, a self-chosen damage can be inflicted

at costs of 10, while Jung et al. give P the option to destroy 70 at costs of 90 for her-

self. The low costs of punishment in our experiment loosely reflect the examples cited

above (e.g. mafia or parental punishment), but analyzing experiments with intermedi-

ately effective technologies may allow future research to locate the threshold between

persistence and disappearance of punishment. As for altruistic punishment, Egas and

Riedl (2008) and in particular Nikiforakis and Normann (2008) have shown that its

cost effectiveness is decisive.

The remainder of the paper is organized as follows. Section 2 describes the ex-

perimental game and the procedure. Section 3 describes the basic results. Section 4

estimates the subjects’ strategies and the subject types. Section 5 discusses the results

and concludes.

3In most cases, convergence toward Nash equilibrium is observed in the final rounds of finitely

repeated games, e.g. in Prisoner’s dilemmas (Selten and Stoecker, 1986), public goods games (Muller

et al., 2008; Neugebauer et al., 2009), market games (Loomes et al., 2003), and investment games

(Cochard et al., 2004).

4
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2 The experiment

2.1 The game and equilibrium predictions

The experimental game is a finitely repeated game (T = 15) of an extensive-form con-

stituent game. The players are matched with the same partner for the duration of

the experiment and the role assignments (principal and agent) are held constant. The

number of rounds (T = 15) had been chosen such that subjects can be considered expe-

rienced in the final rounds, without risking that the subjects perceive it as an infinitely

repeated game at any point. Thus, behavior is projected to stabilize in the sense of

Nash equilibrium in the final rounds, which allows us to assess individual strategies

and implicitly the possible interdependence of preferences.

The constituent game consists of three decision stages.

0. The principal P is endowed with 40 Euro-cent, the agent A is endowed with 160

Euro-cent

1. P chooses a demand x ∈ [0,160]

2. A decides whether to accept or reject the demand; if A accepts, then the round

ends and the payoffs are πP = 40+ x and πA = 160− x

3. If A rejects, then P chooses a punishment y ∈ [0,160]; if P chooses y = 0, then

πP = 40 and πA = 160 results, and otherwise πP = 30 and πA = 160− y results

We refer to this game as the extortion game, but alternative interpretations are possible.

The equilibrium predictions depend on the players’ utilities. If players maximize

pecuniary payoffs (i.e. if ui = πi for i = A,P) and act in accordance with subgame

perfection, then the equilibrium payoffs are unique: πP = 40 and πA = 160. Along the

equilibrium path, P demands any x ∈ [0,160], A rejects if x > 0, and P chooses zero

punishment y = 0. This equilibrium prediction holds invariantly in all repeated games

with finite time horizon.

Next, consider Fehr-Schmidt inequity aversion (Fehr and Schmidt, 1999). If i 6=

j ∈ {P,A} denotes the players and (πi,π j) the payoffs, then the Fehr-Schmidt utility of

i is (using the guilt weight ai ≥ 0 and the envy weight bi ≥ ai)

ui = πi −ai ·max{πi −π j,0}−bi ·max{π j −πi,0}. (1)

5
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An inequity averse P with Fehr-Schmidt preferences punishes non-compliance of A

in equilibrium if and only if bP ≥ 1/12. If bP > 1/12, then P chooses y = 130 in

every SPE, and (30,30) results when stage 3 is reached. In Stage 2, A will therefore

accept certain positive demands. For example, an inequity averse A knowing bP > 1/12

generally accepts 60, since he prefers (100,100) to (30,30), but he would never accept

a demand greater than 130. The demand x that makes A indifferent between accepting

and rejecting is the maximal demand that he would accept.

xmax = (130+bA ·120)/(1+2bA) (2)

Hence, xmax also is the choice of P in all SPEs if bA is common knowledge (assuming

aP ≤ 1/2; she demands x= 60 if aP > 1/2). It equates with 130 if A is egoistic (bA = 0)

and it approaches 60 as bA tends to infinity.4

Finally, assume that the players’ preferences exhibit “linear altruism” ui = πi +

αiπ j for i ∈ {A,P}. In this case, P punishes a non-compliant agent if αP <−1/16, and

if she does, she chooses maximal punishment y = 160. Anticipating such punishment,

in the unique SPE, an A with αA ≥ 1 would accept any demand, and an A with αA < 1

would accept demands up to

x′max = (160+10αA)/(1−αA). (3)

That is, an altruistic agent (αA ≥ 0) would accept any demand, and spiteful agents

with for example αA =−10/7 would accept demands up to 60. In contrast to inequity

aversion, a spiteful principal does not generally prefer the equitable payoff allocation

(100,100) over the disagreement payoff, which is (30,0) if P is spiteful, nor does she

prefer the maximal sustainable allocation (160−x′max,40+x′max) over disagreement in

general. If she does not, namely if x′max < (−10−160αP)/(1−αP), then P deliberately

makes an offer that A will reject.

There are at least two other reasons why P may punish non-compliance of A: P

may try to build a reputation in the sense of Kreps and Wilson (1982) and Milgrom and

Roberts (1982), or P may be boundedly rational. The former may be relevant even in

a game that is repeated only 15 times, e.g. if the share of boundedly rational players to

be mimicked is sufficiently high, which seems reasonable in laboratory experiments.

4If bA is private information of A, then P maximizes her expected utility according to her risk attitude

and the distribution of bA in the population, and ends up choosing some x ∈ [60,130] as well.

6
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2.2 Experimental procedure

The experiment took place in the computer laboratory of the European University Vi-

adrina in Frankfurt (Oder), Germany. Each computer terminal in the laboratory was

partitioned, so that subjects were not able to look at other computer screens, or to

communicate via audio or visual signals. Subjects were recruited from an email list

consisting of students from the faculties of Cultural Science, Business and Economics,

and Law. We conducted eight sessions, each with either 10 or 12 participants. Alto-

gether, 92 subjects were randomly and anonymously matched to form 46 pairs who

played 15 rounds of the above game. Our data set therefore comprises observations

from 46 stochastically independent finitely repeated games.

Each session proceeded as follows. First, subjects were randomly allocated to

their seats, second they were provided with the experimental instructions and a short

control questionnaire (translations of both are provided in the appendix). Their an-

swers to the control questionnaire allowed us to verify their understanding. Subjects

in doubt were verbally advised by assistants before the experimental game began. At

the end of the experiment, subjects were informed of their payments, and asked to pri-

vately choose a code name and password. This was used to anonymously collect their

payments from a third party about a week after the experiment.

Throughout the experiment, “mildly” loaded language was used. For example,

the game was not referred to as “mafia game” or “extortion game” and the term “pun-

ishment” was avoided, but we describe the stage-3 action of P as “If the A-participant

rejects the demand, then the B-participant has the option to destroy an arbitrary number

of points (maximally 160) of the A-participant.” The experimental instructions and the

full data set are provided as supplementary material. The experiment was conducted

using z-tree (Fischbacher, 2007), the programs are available from the authors upon re-

quest. Every session lasted about 30–40 minutes. The average income was e 12.07

and varied between e 6.45 and e 18.45.

3 Basic results

The average results are displayed in Figure 1. Almost all demands are positive (99%),

and the most frequent demand is 60. When accepted, a demand of 60 equates the final

7
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incomes at 100 each. Principals usually punish rejections of their demands (in 90%

of the cases), and in 70% of these cases the maximal punishment y = 160 had been

chosen. The occurrences of maximal punishment are compatible with linear altruism

if αP < −1/16. Punishment below the principal’s demand (0 < y < x) was observed

in only 3.6% of the cases, and similarly y = x (relative frequency 1%) or the SPE

punishments of egoistic players (y = 0, relative frequency: 10.4%) and Fehr-Schmidt

players (y = 130, 3.6%) had not been chosen systematically. Apparently anticipating

severe punishment, agents typically accept moderate demands. Overall, 72% of the de-

mands were accepted, while the average accepted demand was 64.64, and the average

rejected demand was 85.38. These values differ significantly (p < .001),5 and in this

sense agents are more likely to reject high demands. As we will see below, demands

and acceptance decisions are compatible with linear altruism, too.

The paths of play of the 46 pairs are highly diverse. In some cases, the agent seems

to try to enforce demand reductions by rejecting previously accepted demands, in other

cases, the principal seems to be attacking (by raising demands after acceptances), and

in some pairs, the demands had actually been held constant for all 15 rounds and got

accepted throughout. Such variations in the course of action, and its structure, suggest

that the subject pool is not homogenous. This will be discussed in detail once the basic

structure of the data over time has been described.

Figure 2 presents box-and-whisker plots of demands and accepted demands over

time. It shows that the quartiles of the demands remained fairly constant for the du-

ration of the experiment, and in particular the lower quartile is at x = 60 from round

3 on. Overall, demands are increasing in time, however. Tables 1–3 describe how de-

mands, acceptance rates, and punishment changed over time. In these three tables, we

have segregated the 15 rounds into three phases of five rounds each. Table 1 shows

that the relative frequency of demands x < 60 decreases over time, from 23% initially

to 6% eventually, and the relative frequency of demands x > 60 increases over time,

from 37% initially to 55% eventually. These changes are significant (p < .001 and

p < .001, respectively, in Wilcoxon matched pairs tests, using the 46 pairs as indepen-

dent observations). In parallel to this development, the “accepted demands” changed

over time. Figure 2 shows that the eventual lower quartile is above the initial upper

quartile. Similarly, Table 2 shows that the acceptance rates with respect to most levels

5in a Mann-Whitney-U test using the mean demands within the 46 pairs as independent observations

8
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Figure 1: Game time line and average decisions
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of demands increased over time.

Overall, the principals’ incomes increase from 79.6 initially to 90.1 eventually

(p < .01 in a Wilcoxon paired sample test, using the n = 46 individual means as inde-

pendent observations) and the agents’ incomes decrease from 84.1 to 71.2 (p = 0.046),

see Table 1. This shows that the extortion games converge to a state favoring P, but

the sources of this development (i.e. the time dependence of demands and acceptance

rates) are not obvious. This is analyzed in the next section.

The aggregate behavior does not converge toward the exact predictions for either

payoff maximizing players or Fehr-Schmidt players. The former is incompatible with

the observation that both demands and acceptance rates are clearly positive and even

increasing in time, and the latter is not exactly compatible with the joint distribution

of demands and punishments. In the last third of the experiment, most subjects choose

the maximal punishment y = 160 (82%, see Table 3)—when punishment does not

serve reputation building anymore—while the majority (55%) of demands is x > 60.

Demands x > 60 suggest that most players are at most partially inequity averse, but if

so, they should punish by y≤ 130. A possible explanation is that principals are inequity

averse in general and spiteful after rejections (i.e. angered), but our experiment was

not designed to distinguish this from the simpler notion that Ps are spiteful throughout.

Specifically, maximal punishment results for αP <−1/16 in linear altruism, demands

x ≥ 60 result for αP ≥−7/10, and the intersection of these conditions is non-empty.

4 Strategy estimation and latent type classification

To understand why extortion is profitable and how individuals act in detail, we now

estimate the subjects’ strategies. For a wide range of utility functions, the SPE predic-

tions are unique for finitely repeated extortion games. This follows from the unique-

ness of the constituent game equilibria, and implies in our case that the SPE strategies

are even stationary (i.e. time invariant). Assuming stationarity seems a little restrictive

when estimating behavioral strategies, however, and we therefore allow for a variety

of alternative influences.

In modeling the demand strategy (Xi,t)
15
t=1 of principal i, we allow for correlation

with last round’s demand Xi,t−1 (and for this reason, we skip the observation for t = 1),

10
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Figure 2: Box-and-whisker plots of demands and accepted demands
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Table 1: Demand categories and incomes over time

Rounds Rel. frequency of demand x Incomes

x < 60 x = 60 x > 60 Agent Principal Σ

1–5 22.6% 40.0% 37.4% 84.1 79.5 163.7

6–10 12.6% 38.3% 49.1% 75.0 82.8 157.8

11–15 6.1% 38.7% 55.2% 71.2 90.2 161.3

Table 2: Frequencies of demands and acceptance rates (in brackets) over time

Rounds [0,45) [45,55) [55,65) [65,75) [75,85) [85,105) [105,160]

1–5 26(89%) 23(74%) 95(86%) 24(58%) 25(56%) 22(50%) 12(17%)

6–10 12(92%) 13(62%) 93(97%) 36(50%) 31(55%) 31(39%) 11(36%)

11–15 8(100%) 1(0%) 96(97%) 34(71%) 41(66%) 26(42%) 18(44%)

Table 3: Frequencies of punishment (conditional on demand rejection)

Rounds y = 0 y ∈ (0,160) y = 160 Σ

1–5 10 (14.9%) 26 (38.9%) 31 (46.3%) 67

6–10 7 (10.1%) 18 (26.1%) 44 (63.8%) 69

11–15 3 (5.4%) 7 (12.5%) 46 (82.1%) 56

11
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with last round’s acceptance decision A j,t−1 ∈ {0,1} of her agent j, with the number of

rounds left Rt = 15−t, with last round’s punishment Pi,t−1, and for serial correlation of

individual errors εi,t−1. Such econometric models are known as censored “ARMAX”

models (auto-regressive moving average with exogenous inputs); the censoring follows

from the bounds of the strategy set. The estimated coefficients and intercept, including

their standard errors are as follows.6

Xi,t = 3.017
(3.9259)

+0.9289
(0.0314)

∗∗∗ ·Xi,t−1 +4.1128
(3.039)

·A j,t−1 −0.0578
(0.1021)

·Rt

+0.0084
(0.021)

·Pi,t−1 −0.5584
(0.0532)

∗∗∗ · εi,t−1 + εi,t

where εi,t has standard deviation σ̂ε = 18.87. This suggests that demands are best de-

scribed as ARMA processes—the “exogenous inputs” such as acceptance decisions,

time, and punishment are insignificant with respect to the “representative” subject.

The obvious issue with this conclusion is that the assumed existence of a “represen-

tative” subject is invalid. For this reason, we now relax the assumption of subject

homogeneity. The econometric technique to do so is finite mixture modeling (Peel and

MacLahlan, 2000). In the existing economic literature, finite mixture modeling is still

used irregularly, but the applications that exist have shown that latent heteregoneity is

a concern in experimental analyses. For example, Bardsley and Moffatt (2007) and

Fischbacher and Gächter (2010) show heterogeneity of strategies in public goods con-

tributions, Conte et al. (2008) and Harrison and Rutström (2009) show heterogeneity

of preferences in choice under risk, and heterogeneity of “levels of reasoning” in p-

beauty contest is observed by Stahl (1996) and Ho et al. (1998) and in other games by

Kübler and Weizsäcker (2004) and Crawford and Iriberri (2007), to name just a few.

These studies suggest that heterogeneity of subject pools is the rule rather than the

exception, and thus also that finite mixture modeling should be considered routinely.

Technically, we consider a finite mixture of tobit models to represent individual

demand strategies (similar to e.g. Bardsley and Moffatt, 2007, for public goods con-

tributions) and finite mixtures of logit models to represent acceptance strategies. The

details are summarized in Appendix A. The results are in Tables 4 and 5.

Before we discuss the estimated demand strategies, let us note that the Bayes in-

formation criterion (BIC, Schwarz, 1978) improves by about 200 points per subject

6In this section, we use “∗” to denote significance at α = .05 (in two-sided tests), “∗∗” to denote

significance at α = .01, and “∗∗∗” to denote significance at α = .001.
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Table 4: Maximum likelihood estimates of the proposer models

Model Type Interc Dem Accept RoundsLeft Punish Theta Sigma Share BICLL

A 1 3.017
(3.9259)

0.9289
(0.0314)

∗∗∗ 4.1128
(3.039)

−0.0578
(0.1021)

0.0084
(0.021)

−0.5584
(0.0532)

∗∗∗ 18.8722
(0.5258)

∗∗∗ 2828.33
(−2805.69)

B 1 9.9768
(7.5578)

0.9033
(0.0574)

∗∗∗ 2.3947
(5.2418)

−0.2064
(0.2181)

−0.0305
(0.0357)

−0.5754
(0.092)

∗∗∗ 26.0469
(1.1605)

∗∗∗ 0.4667
(0.0766)

∗∗∗

2 −3.4758
(3.1001)

0.9389
(0.0291)

∗∗∗ 8.6467
(2.3766)

∗∗∗ −0.0573
(0.0705)

0.0549
(0.0164)

∗∗∗ −0.3431
(0.0576)

∗∗∗ 6.9881
(0.3628)

∗∗∗ 2638.34
(−2589.83)

C 1 55.7812
(17.7765)

∗∗ 0.3865
(0.2156)

. 0
(−)

−0.8942
(0.5668)

0
(−)

−0.0433
(0.2282)

32.4928
(1.7722)

∗∗∗ 0.2865
(0.069)

∗∗∗

2 13.6486
(0.0032)

∗∗∗ 0.7726
(2e−04)

∗∗∗ 0
(−)

0
(−)

0
(−)

−0.7119
(0.2173)

∗∗ 0.1724
(0.0151)

∗∗∗ 0.108
(0.0456)

∗

3 9.0971
(4.1901)

∗ 0.7426
(0.0547)

∗∗∗ 10.6469
(2.8261)

∗∗∗ 0
(−)

0.0513
(0.0193)

∗∗ −0.0354
(0.0864)

10.6122
(0.4943)

∗∗∗ 2448.12
(−2373.74)

Table 5: Maximum likelihood estimates of the responder models

Model Type Int Dem ∆Dem RoundsLeft Punish Share BICLL

A 4.2034
(0.4319)

∗∗∗ −0.03187
(0.00483)

∗∗∗ −0.02716
(0.00723)

∗∗∗ −0.07437
(0.02311)

∗∗ −0.00857
(0.00149)

∗∗∗ 348.72
(−332.38)

B 1 7.8422
(1.4654)

∗∗∗ −0.0505
(0.0104)

∗∗∗ 0.0115
(0.0084)

−0.2435
(0.0865)

∗∗ 0.0046
(0.0059)

0.2958
(0.0894)

∗∗∗

2 5.3390
(0.6966)

∗∗∗ −0.0520
(0.0087)

∗∗∗ −0.0621
(0.0132)

∗∗∗ −0.0677
(0.0299)

∗ −0.0097
(0.0019)

∗∗∗ 342.66
(−306.71)

C 1 7.6883
(1.4034)

∗∗∗ −0.0452
(0.009)

∗∗∗ 0
(−)

−0.2736
(0.0828)

∗∗∗ 0
(−)

0.2874
(0.0825)

∗∗∗

2 4.0678
(1.8914)

∗ −0.0425
(0.0256)

−0.1132
(0.0491)

∗ −0.2697
(0.1088)

∗ 0
(−)

0.0974
(0.0557)

3 6.9618
(0.9611)

∗∗∗ −0.078
(0.0131)

∗∗∗ −0.0501
(0.0143)

∗∗∗ 0
(−)

−0.0073
(0.0024)

∗∗ 337.05
(−294.56)

1
3
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type that we add (until level 3). Considering that improvements of about 20 points are

highly significant in adding six-parametric types (according to likelihood ratio tests),

improvements of 200 points are striking and confirm the observations on heterogeneity

made in the aforementioned studies. In particular, note the significance of heterogene-

ity in contrast to the insignificance of exogenous inputs such as A j,t−1, Rt , and Pi,t−1.

We identified three types of principals in our subject pool (according to the BIC).

After eliminating insignificant parameters (again according to BIC) from the type defi-

nitions, we obtained model C reported in Table 4. Type 1 has relative frequency 28.7%

and a demand strategy with residual standard error σ̂ε1 = 32.49. That is, about two in

seven subjects are of type 1. The long-term mean of X1
i,t is µ1 = 56.8399/(1− .3658) =

90.9, which is high in relation to the other two types. Hence, we refer to them as ag-

gressive subjects. About one in nine subjects (10.8%) is of type 2— with the extremely

low residual standard error σε2 = 0.172. Due to the low residual variance, and the long-

term mean at µ2 = 60, these subjects will be referred to as fair subjects. The remaining

approximately three in five subjects (60.6%) are of type 3. They have the residual stan-

dard error σε3 = 10.61, and most interestingly they strategically react to acceptance

decisions (raising the demand by about 10 after acceptance). The long-term mean in

response to rejecting agents, i.e. if A j,t−1 = 0 and Pi,t−1 = 160, is µ3 = 67.2. The

long-term mean in response to accepting agents, i.e. if A j,t−1 = 1 and Pi,t−1 = 0, is

µ3 = 76.7. We refer to them as adaptive subjects.7

The agent strategies are estimated similarly. Agent j responds with either “ac-

cept” or “reject” to the principals demand, which we represent as a finite mixture of

logit models with the following independent variables: the current demand Xi,t , the

demand change ∆i,t = Xi,t − Xi,t−1 in relation to the previous round, the number of

rounds left Rt = 15 − t, and last round’s punishment Pi,t−1. Again three types are

identified.8 The estimates are reported in Table 5, and the average marginal effects

required to interpret the estimated strategies are reported in Table 6. The average ac-

7Since only 3/5 of the subjects react to rejections and punishments, this explains why these terms

had been insignificant in the global regression model.
8A referee raised the concern that the behavior (and type) of a given A depends on behavior (type) of

the P he is matched with, or vice versa. After computing the posterior classifications for all subjects, see

Appendix A, we verified the stochastic independence between A’s classification and P’s classification in

linear probability regression models. We found that there was no significant interaction effect between

the types (at the 10% level), i.e. the classifications of A and P do not violate stochastic independence.

14
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Table 6: Average marginal effects in the logit models for A’s acceptance

Type Demand Xi,t Change ∆i,t Rounds left Rt Punishment Pi,t−1

1 −0.00378 0 −0.02291 0

2 −0.00637 −0.01698 −0.04043 0

3 −0.00919 −0.00590 0 −0.00086

Note: The marginal effect is the first derivative of the acceptance probability with

respect to the respective independent variable. We computed these derivatives for all

data points and report their averages.

ceptance probabilities of types 1 through 3 are 0.873, 0.388, and 0.711 respectively

(these probabilities are the predictions averaged over all data points). Overall, Type

1 (share 28.8%) is largely acceptive with little response to the demand itself and in-

termediate response to the number of rounds left. Type 2 (share 9.75%) is on average

rejective with intermediate (yet insignificant) response to the demand, and stronger

response to demand changes and the number of rounds left. Finally, the majority of

agents is of type 3 (share 61.5%). They are particularly responsive, with intermediate

acceptance rates and strong negative responses to the level of the demand, to demand

increases, and to punishment. The behavior of type 3 can be interpreted as reciprocal

and the negative response to punishment resembles counter-punishment in the sense

of Nikiforakis (2008). Note that the counter-punishment is substantial. After maximal

punishment y = 160, acceptance rates drop by roughly 14% on average.

These strategy estimates allow us to shed light on the observations made in Section

3. Table 2 showed that for most levels of demands, the acceptance rates are increas-

ing in time. This increase of acceptance probabilities in time has been found for the

agents classified as “acceptive” or “rejective”. The majority of agents is classified as

“responsive,” however, and they respond to the demand, to demand changes, and to

punishment, but not to time. The univariate tests also had shown that principals’ de-

mands are increasing in time, while the estimated representative demand strategy was

stationary. After disaggregating subject types, we can now see that time is relevant

only for aggressive principals. In addition, “adaptive” principals increase demands (by

about 10 points) when last round’s demand had been accepted, and since acceptance

rates are increasing in time, this implies that “adaptive” demands correlate with time,

too—without causality. Finally, principals classified as “adaptive” seem to believe that

15
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punishment improves acceptance rates (see that Pi,t−1 is significant for them). Agents

do not respond positively to punishment, though. The first two types of agents do not

respond to punishment at all, and the majority of agents (the “responsive” ones) react

negatively.

5 Conclusion

In our experiment, a powerful player called P(rincipal) interacts with a second player

called A(gent) for 15 rounds. In each round, P may demand a transfer from A, e.g.

in terms of money, housework, homework, quality time, and so on. A may accept

or decline the transfer, and after declines, P may punish A at comparably small costs

for herself. The induced valuations have it such that subjects maximizing pecuniary

payoffs do not make any transfer from A to P under subgame perfection, and that P

would never punish A after rejections (due to the costs). We found that P’s demands are

largely moderate, As tend to accept moderate demands, but As that decline a demand

are punished harshly. Furthermore, one type of Ps (accounting for 3/5 of the popu-

lation) raise demands after harsh punishment, seemingly expecting A to give in, and

yet all types of A respond non-positively to punishment. The acceptance rates remain

either constant or drop after punishment.

Overall, however, the subjects’ interactions do not display excessive disagree-

ment. The maximal combined earnings of P and A are e 30 in the experiment, and the

average combined earnings were e 24.14—about 80% of the maximum, disagreement

occurred on average only every fourth round. Hence, the fairness standards of the var-

ious P and A in our experiment are largely compatible with one another, which one

would not expect unless these standards (or beliefs) are “realistic” and apply similarly

outside the laboratory. In contrast to this overall compatibility of fairness standards,

the convergence toward maximal punishment after rejections seems particularly sur-

prising. Further research may investigate how frequency and extent of punishment

depend on the efficiency of the punishment technology and on the possibility to punish

agents also after acceptance.

Finally, let us emphasize the relevance of controlling for subject heterogeneity.

We did so non-parametrically, by finite mixture modeling, which strikingly improved

the goodness-of-fit and resolved the (counter-intuitive) insignificance of state variables

16
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such as time and previous acceptance decision with respect to the decisions of the

“representative” subject. There simply is no representative subject, and in general,

analyses assuming otherwise risk getting misled. In our case, accounting for hetero-

geneity recovered the state variable effects, and amongst others it allowed us to pin

down why demands are increasing in time—although exogenous inputs are insignifi-

cant for the representative subject. From a more general point of view, this shows that

modeling heterogeneity is important not only for technical econometric reasons, but

also to understand how individual behavior relates to the overall patterns of the data.

The approach of finite mixture modeling, which has yet to gain wide application (but

see Bardsley and Moffatt, 2007, Conte et al., 2008, and Harrison and Rutström, 2009),

seems particularly helpful in this respect.

Appendix A Finite mixture modeling

A detailed review of finite mixture modeling can be found in Peel and MacLahlan

(2000). The following intends to provide a brief introduction with all the information

needed to follow the above analysis. The basic idea is to model a (heterogenous)

population with a multiplicity of discrete player types. The main alternative approach

would be to assume that subject heterogeneity can be represented using parametric

distributions of random effects on the intercept (as in mixed effects models) or on

other model parameters (as in say mixed logit models). The finite mixture model is

more flexible in describing interdependence of parameters across player types, but it

works well only if the actual distribution of types is indeed clustered in the parameter

space, which then allows us to approximate it using discrete types. In our analyses, the

distinction of discrete types did improve the log-likelihood strikingly, and hence we

concluded that it works well.

To define the finite mixture model formally, consider a population with K ∈ N

types. Each type k ≤ K is defined by P parameters (e.g. coefficients of a tobit or

logit model), denoted as αk := {αk,p}p≤P. The aggregate parameter profile is α :=

{αk}k≤K . The prior probability that a subject is of type k is denoted as ρk, for all

k ≤ K; the posterior follows from Bayes’ Rule as shown below. Now, let os,t denote

the action of subject s ≤ S in round t ≤ T of the experiment, and let Pr(os,t |αk) denote

the probability/density that a player of type k (i.e. with parameters αk) chooses os,t .

17
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The log-likelihood of the model, represented by its parameters (α,ρ), given the data

set o = (os,t) is

LL(α,ρ|o) = ∑
s≤S

ln ∑
k≤K

ρk ·∏
t≤T

Pr(os,t |αk). (4)

In turn, the posterior probability that subjects s is of type k, conditional on the actions

os, is

Pr(Type = k | os) =
ρk ·∏t≤T Pr(os,t |αk)

∑k′≤K ρk′ ·∏t≤T Pr(os,t |αk′)
. (5)

For the maximum likelihood estimates of the parameter profile (α,ρ), the aggregate

posterior share of type k equates with its prior share. For every individual, the posterior

classification is probabilistic (although it may be rather decisive, assigning probabili-

ties close to either 0 or 1 for all types to every subject). The posteriors for our subjects

are listed in the supplementary material.

We obtained the parameter estimates by maximizing the full likelihood function

jointly over all parameters (to obtain efficient estimates, see Arcidiacono and Jones,

2003). We used the Nelder-Mead algorithm as implemented in GNU R. The standard

errors were derived from the information matrix, which in turn was computed numer-

ically. Model selection was based on the Bayes information criterion (BIC, Schwarz,

1978). In our case, the BIC of a given model can be defined as

BIC =−LL+(K ∗P+K −1)/2∗ ln(S∗T ), (6)

where K ∗P+K − 1 is the number of parameters and S ∗T is the number of observa-

tions.
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Supplementary material

Extortion in the laboratory

Overview

The supplementary material provides translations of both the instructions and the con-

trol questionnaire used in the experiment (the originals, in German, are available from

the authors) as well as various figures and tables with the content described next.

• Figures 1–4 plot all demands and acceptance decisions for all P-A pairs. For

each plot, the header displays the unique identifiers of P and A in the respective

match (the same identifiers are used in the tables following below), and the plot

contains a connected line representing the various demands of P and for each

demand it displays a symbol representing either acceptance or rejection of A

(a triangle pointing upwards indicates acceptance, and a little cross indicates

rejection).

• Table 1 provides a tabular representation of all observations. Each “cell” in this

table consists of two lines and lists the actions of a particular P-A pair. The order

of P-A pairs is the same as in Figures 1–4. The upper line in each cell shows the

identifier of the repsective P and all demands she made. The lower line shows

the identifier of A and his corresponding acceptance decisions (“1” is acceptance,

“0” is rejection).

• Table 2 provides the posterior classifications for all P based on their actions.

• Table 3 provides the posterior classifications for all A based on their actions. The

entries are ordered such that the first P listed in Table 2 (“S16”) is the one who

was matched with the first A listed in Table 3 (“S11”), the second P (“S17”) was

matched with the second A (“S12”), and so on. The posterior classifications are

probabilistic, as described in Appendix A of the paper.

1

Table(s)
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Experimental instructions

Instructions

You are participating in an experiment on decision making. The computer will match

you randomly in groups of two. You remain in the same group for the duration of the

whole experiment. One member of each group will be referred to as A-participant and

the other member is referred to as B-participant. These assignments are random, too,

and held constant for the duration of the experiment.

The experiment consists of 15 stages. The procedure in each stage is identical to

that in all other stages. In each stage, you earn points that will be converted into Euro

and paid to you after the end of the experiment. Here, the sum of the points earned in

all stages is relevant. For each point, you obtain 1 cent. The payment can be collected

a week after the experiment from the secretary of the chair.

The procedure of single stages The endowment of the A-participant is 160 points

and that of the B-participant is 40 points. First, the B-participant may choose a number

of points that he demands from the A-participant. Second, the A-participant has to

decide whether to comply with the demand or not.

• If the A-participant accepts the demand, then the respective number of points is

transferred to the B-participant.

• If the A-participant rejects the demand, then the B-participant has the option

to destroy an arbitrary number of points (maximally 160) of the A-participant.

Exercising this option bears costs of 10 points for the B-participant.

Then the stage ends and the resulting scores are saved for both participants. If the 15th

stage is not reached yet, then a new stage begins (with constant assignments of roles).

Example 1 The B-participant demands x1 points and the A-participants accepts the

demand. The resulting scores for this stage are as follows.

A-participant: 160− x1 B-participant: 40+ x1

2
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Example 2 The B-participant demands x2 points, the A-participant rejects the de-

mand, and the B-participant chooses not to exercise the option of destroying points.

The resulting scores for this stage are as follows.

A-participant: 160 B-participant: 40

Example 3 The B-participant demands x3 points, the A-participant rejects the de-

mand, and the B-participant destroys y3 points of the A-participant. The resulting

scores for this stage are as follows.

A-participant: 160− y3 B-participant: 40−10

Questionnaire

Please tick the correct answers.

1. The person that is matched with me in a group

� changes after each stage.

� is always the same.

� may change, but may also be the same.

2. The number of stages overall is

� equal to 1.

� finite, but random and not known in the beginning.

� equal to 15.

3. The assignments of A- and B-participants in a group

� is held constant in all stages.

� changes after each stage.

� may change, but may also be kept constant.

4. May payment in this experiment

3
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� is independent of the actions chosen.

� results from the aggregate score of all stages.

� results from the score earned in a randomly chosen stage.

5. If the A-participant rejects the demand of the B-participant, then

� the endowments (160 points and 40 points, respectively) remain unchanged

and the current stage ends.

� the current stage ends and both participants score 0 points in this stage.

� the endowments (160 points and 40 points, respectively) remain unchanged

and the B-participant is provided with an option to destroy points.

6. Exercising the option of the B-participant to destroy points

� bears no costs and allows him to destroy an arbitrary number of points of

the A-participant.

� costs 10 points and allows him to destroy an arbitrary number of points of

the A-participant.

� costs 10 points and allows him to destroy exactly 80 points of the A-participant.

4
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Figure 1: Individual demands and acceptance (triangle)/rejection (+) decisions
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Figure 2: Individual demands and acceptance (triangle)/rejection (+) decisions (continued)
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Figure 3: Individual demands and acceptance (triangle)/rejection (+) decisions (continued)
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Figure 4: Individual demands and acceptance (triangle)/rejection (+) decisions (continued)
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Table 1: All observations

Rounds

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P = S110 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60

A = S15 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P = S16 60 60 60 50 50 50 50 50 40 40 40 50 100 60 60

A = S11 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1

P = S17 80 90 100 140 100 90 70 70 60 70 80 120 100 100 80

A = S12 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1

P = S18 60 60 60 60 59 60 60 60 60 60 60 60 60 60 61

A = S13 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

P = S19 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

A = S14 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

P = S210 50 50 50 60 60 70 160 70 70 70 70 70 80 100 100

A = S24 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0

P = S211 50 50 60 60 60 60 70 70 70 70 70 70 70 70 70

A = S25 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1

P = S212 60 60 60 60 60 60 60 60 60 60 100 100 100 80 69

A = S26 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1

P = S27 60 60 60 60 65 60 65 65 65 65 60 60 60 60 80

A = S21 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1

P = S28 52 48 87 42 60 75 122 60 60 76 60 122 60 60 87

A = S22 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1

P = S29 60 0 60 60 60 60 60 60 60 60 60 60 60 60 120

A = S23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

P = S310 80 80 90 80 80 80 80 75 85 80 60 60 80 80 80

A = S35 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

P = S36 40 43 55 54 53 52 51 50 60 59 0 160 59 59 59

A = S31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P = S37 60 30 70 60 70 90 80 80 80 80 80 80 80 80 70

A = S32 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1

P = S38 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

A = S33 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1

P = S39 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40

A = S34 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

P = S410 10 12 50 60 70 70 75 100 80 85 85 80 80 75 70

A = S44 1 1 1 1 0 1 0 0 1 0 0 1 0 1 1

P = S411 60 60 60 60 70 60 60 60 60 60 60 90 90 90 100

A = S45 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

P = S412 10 13 5 8 10 30 100 85 85 50 70 60 60 65 65

A = S46 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1

P = S47 60 50 65 100 100 70 90 60 60 60 120 130 120 120 120

A = S41 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1

P = S48 50 70 70 50 65 80 80 70 70 60 60 80 60 80 80

A = S42 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0

continued on next page
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Rounds

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P = S49 55 40 140 80 80 90 110 120 130 140 90 110 130 130 140

A = S43 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0

P = S510 60 70 60 60 60 60 63 60 60 60 60 60 60 60 100

A = S54 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0

P = S511 50 60 80 120 120 100 90 95 93 90 80 60 70 60 60

A = S55 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1

P = S512 80 60 80 140 120 75 75 130 110 80 75 75 75 75 90

A = S56 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0

P = S57 100 65 60 60 60 60 80 60 60 80 80 80 80 80 60

A = S51 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P = S58 95 95 100 100 100 120 100 100 100 100 120 120 120 120 100

A = S52 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

P = S59 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

A = S53 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

P = S610 40 29 29 10 35 50 50 40 35 45 80 60 75 55 65

A = S64 1 0 0 1 0 0 0 1 1 1 0 0 0 1 1

P = S611 80 70 65 60 80 80 60 70 70 70 80 70 80 90 90

A = S65 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0

P = S612 130 50 85 85 70 50 60 65 80 70 72 72 70 60 60

A = S66 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1

P = S67 80 70 60 60 60 60 60 60 60 60 60 60 60 10 110

A = S61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

P = S68 120 60 60 70 60 60 60 60 70 60 60 60 60 60 60

A = S62 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1

P = S69 80 80 80 90 90 100 90 80 70 75 70 70 70 70 70

A = S63 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1

P = S710 60 60 65 60 60 65 60 60 60 80 60 70 60 70 90

A = S74 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

P = S711 80 80 120 60 70 70 70 70 80 60 60 70 70 80 80

A = S75 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0

P = S712 70 65 70 75 80 80 90 85 80 80 80 80 80 80 80

A = S76 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1

P = S77 20 40 50 50 60 70 85 85 85 85 85 85 85 90 90

A = S71 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0

P = S78 160 160 0 0 160 0 0 160 80 160 160 160 160 160 160

A = S72 0 0 1 1 0 1 1 1 1 0 1 0 1 0 0

P = S79 75 75 60 60 65 65 70 70 60 65 60 60 60 60 60

A = S73 0 0 1 1 0 0 0 0 1 0 1 1 1 1 1

P = S810 100 80 80 60 70 50 50 55 55 57 57 60 60 60 60

A = S84 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1

P = S811 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

A = S85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P = S812 60 60 90 100 60 85 85 75 65 77 70 65 70 69 64

continued on next page
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Rounds

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A = S86 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1

P = S87 60 60 60 60 70 60 60 60 60 60 60 60 60 60 60

A = S81 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

P = S88 80 60 60 60 60 60 60 60 60 60 60 60 70 60 60

A = S82 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

P = S89 130 120 100 125 95 105 110 100 95 120 115 80 80 80 70

A = S83 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1
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Types

Subject Aggressive Fair Adaptive

S16 0.0219 0 0.9781

S17 0.9853 0 0.0147

S18 0 1 0

S19 0 1 0

S110 0 0 1

S27 0 0 1

S28 1 0 0

S29 1 0 0

S210 1 0 0

S211 0 0 1

S212 1e-04 0 0.9999

S36 1 0 0

S37 0.0014 0 0.9986

S38 0 1 0

S39 0 0 1

S310 0 0 1

S47 1 0 0

S48 0 0 1

S49 1 0 0

S410 1e-04 0 0.9999

S411 0 0 1

S412 0.9511 0 0.0489

S57 2e-04 0 0.9998

Types

Subject Aggressive Fair Adaptive

S58 4e-04 0 0.9996

S59 0 1 0

S510 0 0 1

S511 0.0018 0 0.9982

S512 1 0 0

S67 1 0 0

S68 1e-04 0 0.9999

S69 0 0 1

S610 6e-04 0 0.9994

S611 0 0 1

S612 0.9908 0 0.0092

S77 0 0 1

S78 1 0 0

S79 0 0 1

S710 0 0 1

S711 0.7969 0 0.2031

S712 0 0 1

S87 0 0 1

S88 0 0 1

S89 0.0207 0 0.9793

S810 0 0 1

S811 0 1 0

S812 5e-04 0 0.9995
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Types

Subject Aggressive Fair Adaptive

S11 0 1 0

S12 0.9982 0 0.0018

S13 0.6353 0 0.3647

S14 0.5884 0 0.4116

S15 0.7651 0 0.2349

S21 0.0386 8e-04 0.9606

S22 0.1729 0.001 0.8261

S23 0.1383 0 0.8617

S24 0 0.2127 0.7873

S25 0.0051 0.3444 0.6505

S26 0 0 1

S31 1 0 0

S32 0.0239 5e-04 0.9756

S33 0.0143 0 0.9857

S34 0.4323 0.001 0.5667

S35 0.8879 0 0.1121

S41 0.0966 0 0.9034

S42 0 0 1

S43 1 0 0

S44 1e-04 1e-04 0.9997

S45 0.0528 0 0.9472

S46 0.0013 0.0038 0.9949

S51 0.8698 0 0.1302

Types

Subject Aggressive Fair Adaptive

S52 1 0 0

S53 0.1282 0 0.8718

S54 0.0129 1e-04 0.987

S55 0 0 0.9999

S56 0.0174 3e-04 0.9823

S61 0.0271 0 0.9729

S62 0.1106 0 0.8894

S63 0.0469 1e-04 0.953

S64 0 0.9999 1e-04

S65 0 0.9968 0.0032

S66 0 0.0772 0.9227

S71 0.0014 0 0.9986

S72 1 0 0

S73 1e-04 0.8956 0.1043

S74 0.2504 0 0.7496

S75 0 2e-04 0.9998

S76 0.9703 2e-04 0.0295

S81 0.5998 0 0.4002

S82 0.8233 0 0.1766

S83 0 0.0363 0.9637

S84 0.2317 0.0236 0.7447

S85 0.3773 0 0.6227

S86 0 2e-04 0.9998
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