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Random Digraphs with Given Expected Degree

Sequences: A Model for Economic Networks

January 19, 2011

Abstract

Building upon the growing interest for complex network theory, the
main ambition of this paper is to contribute to a more effective application
of network theory to economic phenomena, and particularly to financial
networks. We depart from recent contributions on credit networks in two
respects. In the first place, we constrain diversification with the out-
and in-degree distribution of nodes, by adopting a suitable extension of
the expected degree model for random weighted digraphs. In the second
place, we focus on real networks by using this extension as null model
for statistical analysis. With the help of statistical inference, we provide
a rigorous answer to the following question: do real networks obey our
null model? Further, we show that this answer is tightly connected to
the existence of clusters or modules, as defined by Newman and Girvan
(2004), within networks.

1 Introduction

For many years an increasing interdependence has been the intended and wel-
come outcome of the liberalization of real and financial economic flows across
the globe. With the start of the global crisis, this trend has come to a sudden
reversal, as the unintended, and unwelcome, consequences of interdependence
have finally come to the fore for both private investors and policy makers. To-
day, the need to deal with the unpleasant side of interdependency is highlighted
by the new importance attached to the concept of systemic risk. By the latter
expression, policy makers, and especially central banks, have begun to designate
a new way of looking at economic risk, which aims to take into consideration
the potentially negative impact, on the wealth of an individual institution, of
the behavior of other institutions, directly or indirectly connected with it.

Systemic risk is implicitly defined by the transmission channels we introduce
to explain events which cannot be accounted for by looking only at individual
institutions. Many such transmission channels have been listed by the literature
(see e.g Brunnermeier, 2009), which for our purposes may be categorized in two
broad classes. The first class includes all sorts of market-related contagion ef-
fects, which are determined by the indirect interaction of agents through asset
markets. The most prominent example in this class is the asset price conta-
gion effect, i. e. the negative feedback loop running from asset price declines
to forced asset sales and back, via balance sheet constraints. The second class

1
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consists of credit-related contagion effects, which are determined by the recip-
rocal claims between institutions on the credit markets. Obviously, the two
classes are themselves tightly connected, since most investors on asset markets
rely on credit to fund their positions, a circumstance which explains why credit
deleveraging may hurt asset prices so badly.

Recently, complex network theory has become a prominent tool in this field,
since it provides a rigorous representation of complex multi-part interactions,
as well as the possibility to predict their static and dynamic behavior in many
cases1. Regarding the case in point, it’s natural to conceive credit markets
as credit networks in which nodes represent agents and links represent credit
claims. This idea, which has been circulating for some years (Greenwald and
Stiglitz, 2003), has received new attention after the outbreak of the global crisis,
which started with the so called “credit crunch“, an almost complete breakdown
of most segments of the global credit markets. Additionally, network theory is
suited to represent market interactions too. For example, any asset market may
be conceived of as a bipartite network, i. e. one with two separate categories
of nodes, the first one being the investors, the second one being the assets
exchanged on the market, and the links being weighted by the holdings of each
asset by each investor. In such a framework, it’s quite easy to build a projected
network for investors, i. e. one in which investors exposed to the same asset
are connected, but it may be more useful, for some purposes, to work with the
original network. To deal with such bipartite representation, as well as with
any multipartite interaction which is typical of the economic domain (just think
about the loan market, where firms and banks act on the opposite sides of the
market), very flexible tools are needed. The main ambition of this paper is
to provide a set of such tools, thus laying the ground for a more general and
effective application of network theory to the economic domain.

Most works on systemic risk focus on credit markets, and specifically on the
interbank market, which is particularly relevant for financial stability and, at
the same time, well suited for a representation with basic network theory. The
early contribution of Allen and Gale (2000) stressed the benefits of increasing
diversification, suggesting that the more connections, the better for financial
stability, even though, to be honest, the authors didn’t take into account the
kind of global shock experienced with the crisis. Since the latter triggered a full
rethink of this matter, a growing number of works have begun to challenge this
view, showing that diversification is not always beneficial for stability.

Building upon the work of Eisenberg and Noe (2001), Shin (2008) has pro-
vided a model in which balance sheet effects acting across a number of in-
terconnected banks may produce credit booms and busts. The recent model
of Battiston et al. (2009) shows, using the tools of complexity theory, that,
if market-related effects are considered along with credit-related effects by in-
troducing a financial accelerator mechanism, then a potential trade-off between
individual risk and systemic risk may exist for increasing connectivity of the net-
work. Similar results are provided by Gai and Kapadia (2010), who show, with
the help of complex networks theory, that financial systems exhibit a robust-yet-
fragile tendency: while the probability of contagion may be low, once a default
cascade is started its spread may be quite large. This effect is non monotonic in
connectivity: for a given range of values, connectivity increases the chances that

1For a general introduction see Vega-Redondo (2007).
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institutions surviving the effects of the initial default will be exposed to more
than one defaulting counterpart after the first round of contagion, thus making
them more vulnerable to a second-round default. Finally, it’s noteworthy that
central banks are getting more and more interested in this topic, supporting
network-related research and dissemination, although most applied work in this
direction still looks merely descriptive (Castrén and Kavonius, 2009; ECB, 2010)
2.

While pursuing the same general goal of a better understanding of complex
interactions within the economic domain, our approach is different in two re-
spects from the existing works on credit networks. In the first place, we adopt
a different view on diversification. While most models use either very simpli-
fied network settings (e.g. Allen et al., 2010), involving few nodes, or regular
topologies, and in both cases agents are assumed to have equally weighted rel-
ative exposure, we suppose that agents’ diversification is constrained by the
respective weight of their participation to the network. Technically, this means
assuming networks with arbitrary weighted degree distributions. This approach,
which will be explained fully in the next section, brings our model much closer
to empirics, since regular topologies are hardly observed in real world economic
networks, while also carrying some theoretical advantages. To explain the lat-
ter point, we may think of a network representing a market; then our approach
constrains diversification to a given expected supply and demand on part of the
agents. This is convenient, since it allows to sharply separate the problem of
market interaction from the problem of supply and demand determination.

In the second place, we turn to empirics by adopting our “constrained di-
versification” model as null model for a statistical analysis of real networks. We
choose this path since we believe that a stronger theory and a stronger empirical
knowledge of real networks go hand in hand, and both are needed to improve our
understanding of this complex domain. In particular, in this paper we wish to
answer the following general question: do real networks obey to our null model?
As it turns out, we can provide a rigorous answer to this question with the help
of statistical inference. Further, we show that this answer is tightly linked to
the existence of clusters or modules in the networks, to be defined, according to
Newman and Girvan (2004), as subset of nodes whose connections exceed the
expectation under an appropriately chosen null model. Thus, a perfect (con-
strained) diversification is proven to be equivalent to the absence of modules in a
network, a circumstance which clears the way for a rigorous meso-level analysis
of economic networks, and of markets in particular.

The rest of the paper is organized as follows. The first step is to introduce
our null model (section 2) along with some basic concepts and facts needed
to derive the results presented later (section 3). Then, with the help of two
bounds provided in section 4, we derive a set of statistical tools for the analysis
of economic networks (section 5), which are subsequently tested on a credit
network in section 6. We must remark that these tools can be applied readily to
any interaction occurring among economic agents, provided that this interaction
can be represented by a nonnegative matrix of arbitrary shape. Finally, the
conclusive section summarizes the main results of the paper and suggests future
research paths.

2A notable exception is provided by Alessandri et al. (2009) who incorporate default cas-
cades in a more general econometric model for estimating the assets distribution of UK banks.

3
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2 The Expected Degree Model

Our expected degree (ED) model is a generalization of the one proposed by F.
Chung and co-authors in several papers (Chung, 2002; Chung and Lu, 2002;
Chung et al., 2003a,b). The latter, on its part, represents an extension of
the classical random graph model to accommodate for any arbitrary nodes’
degree sequence d̄ = (d̄1, d̄2 . . . , d̄n), contrary to the basic Erdos-Rényi model
whose degrees follow invariably the binomial distribution. In particular, under
Chung’s formulation, each pair (i, j) of vertices in G(d̄) is joined by an edge

with probability p̄ij =
d̄id̄j

v̄ where v̄ = v(d̄) =
∑n

i=1 d̄i is the volume of G.
A key assumption of the model is that maxi d̄

2
i < v̄ so that pij 6 1 for all

i and j, and the sequence is graphical, in the sense that the necessary and
sufficient conditions for a sequence to be realized by a graph are satisfied. In
particular, if aij is an element of the adjacency matrix A of G, then aij becomes
a random variable and we have aij = { 1, 0} and thus E[aij ] = p̄ij . It is
straightforward to verify that E[di] = E[

∑n
j=1 aij ] =

∑n
j=1 E[aij ] =

∑n
j=1 p̄ij =

d̄i. Unfortunately, in its original formulation this model is not very interesting
for economic applications due to two major shortcomings:

1. economic interactions are typically not symmetric (think of market op-
erations where buyers and sellers find themselves in opposite roles, or to
credit operations, where the same occurs to borrowers and lenders) - thus
a graph model, which depicts only symmetric relations, doesn’t fit very
well into this domain

2. the content of economic interactions is usually best described by monetary
values or some equivalent, which are naturally conceived as continuous
magnitudes, as opposed to the discrete binary representation typical of
graph theory

To begin with, we want to show that it is possible to recast the model in
such a way as to overcome these limitations. In doing so we take advantage of
the extensions of the ED model to weighted and directed networks, proposed by
authors studying the problem of community detection in complex networks, like
Newman and Girvan (2004) or Arenas et al. (2007). In the first place, given the
discussion above, it looks natural to conceive the out- and in-degree values as
continuous variables. In the second place, we must take into account the even-
tual lack of symmetry by letting G(d̄out, d̄in) depend on two distinct sequences
d̄out = (d̄out1 , d̄out2 , . . . , d̄outn) and d̄in = (d̄in1 , d̄in2 , . . . , d̄inm). We depart from
the extensions mentioned above by allowing possibly n 6= m, provided that
v(d̄out) =

∑n
i=1 d̄outi = v̄ =

∑m
j=1 d̄inj = v(d̄in) still holds. The representation

obtained in this way is indeed very general, since we only require that n,m are
less or equal to the number of vertices or economic agents involved in the sys-
tem or market under consideration, which means that any agent could possibly
(but not necessarily) operate on both sides of any interaction, and eventually
even interact with herself if this makes sense in the specific domain. Later on
we will introduce the condition that d̄outi , d̄inj > 0 for all i, j with 1 6 i 6 n
and 1 6 j 6 m, since we wish to work with a properly degree normalized adja-
cency matrix (see next section). Although none of the arguments presented in
this section depends on this assumption, we must remark that requiring strictly
positive in- and out-degree provides more parsimony of representation while not

4
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imposing any significant restriction, since, according to our former assumption,
we don’t necessarily need to represent agents who are not expected to take part
to one of the two poles of the interaction.

If we define Ωij = {ω1, ω2} where ω1 = {ε ∈ (ij)} and ω2 = {ε /∈ (ij)}, for
ε > 0 and (ij) representing a pair of economic agents, then (Ωij ,F , Pij) is a

discrete probabilistic model. In fact, if we set Pij(ω1) = p̄ij =
d̄outi

d̄inj

v̄2 and
Pij(ω2) = 1 − Pij(ω1) , it is clear that Pij(ω1), Pij(ω2) > 0, P (Ωij) = 1 and
Pij(ω1) +Pij(ω2) = 1, which means that Pij satisfies all the axioms of a proba-
bility measure for (Ωij ,F). In graph theoretic terms, a successionWij = {ωn} of
events from (Ωij ,F , Pij) may describe the (i, j) nonnegative entry of a random
adjacency matrix A ∈ R

n×m representing a weighted directed graph, possibly
with self-loops, whenever the weights are of the form w = εN for some in-
teger N . In fact, from Wij we can build a succession of random values {εi}
with εi = {0, ε} such that aij =

∑K−1
i=0 εi for each entry of A and some in-

teger K > 0. We must prove that the expected degree distribution derived
from A corresponds to the desired one. The key hypothesis to obtain this re-
sult is that |Wij | = M for all i and j, where we have that v̄ = εM . In fact,

E[aij ] =
∑M−1

k=0 E[εk] =
∑M−1

k=0 p̄ijε =
d̄outi

d̄inj

v̄ = āij . Then douti and dinj

are themselves sums of independent random variables, whose expectation is
E[douti ] =

∑m
j=1 E[aij ] = d̄outi and E[dinj ] =

∑n
i=1E[aij ] = d̄inj , as required

by the main assumption of the model.

We can justify the choice made for Pij(ω1) by showing that it is possible
to derive the expression for p̄ij as the solution of an entropy maximization
problem over Pij ≡ Pij(ω1). This solution is commonly used as a statistical
tool to estimate the entries of a matrix from its row and column sums, and has
found wide application in the economic domain, e. g. to estimate the bilateral
exposure of financial entities or goods’ flows across sectors in the input-output
tables (Castrén and Kavonius, 2009). In particular, following the formulation
of Wells (2004), we can state the problem as follows:

min
P

g(P ) =

n
∑

i=1

m
∑

j=1

Pij lnPij (2.1)

subject to the following constraints:

m
∑

j=1

Pij = r̄i

n
∑

i=1

Pij = c̄j

Pij > 0

where r̄i = d̄outi/v̄ < 1, c̄j = d̄inj/v̄ < 1 and of course
∑n

i=1 r̄i =
∑m

j=1 c̄j =
1. The first-order conditions give the solution of the problem:

Pij = exp(λi + µj − 1) (2.2)

5
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where λi and µj are Lagrange multipliers respectively of the first and second
constraint. By substituting the solution into the constraints and the normaliza-
tion condition we obtain

m
∑

j=1

exp(λi + µj − 1) = exp(λi − 1/2)

m
∑

j=1

exp(µj − 1/2) = r̄i

n
∑

i=1

exp(λi + µj − 1) = exp(µj − 1/2)

n
∑

i=1

exp(λi − 1/2) = c̄j

n
∑

i=1

m
∑

j=1

exp(λi + µj − 1) =

m
∑

j=1

exp(µj − 1/2)

n
∑

i=1

exp(λi − 1/2) = 1

Combining the latter expression with the former two we get

exp(λi − 1/2) =

n
∑

i=1

exp(λi − 1/2)r̄i

exp(µj − 1/2) =

m
∑

j=1

exp(µj − 1/2)c̄j

If we now substitute the latter expressions into eq. (2.2), we get the desired
result

Pij = r̄ic̄j

n
∑

i=1

exp(λi − 1/2)

m
∑

j=1

exp(µj − 1/2) = r̄ic̄j =
d̄outi d̄inj

v̄2
(2.3)

Given the properties of entropy, this result means that the probability ex-
pression we have chosen for Pij(ω1) is not an arbitrary one. In fact, it corre-
sponds to a set of probability values obtained using as information input only
the relative in- and out-degree of nodes in the network. To understand why this
solution works, we should ask ourselves which relationship holds between the
constraints of problem (2.1) and G(d̄out, d̄in). In order to do so, the first step
is to write down P (aij = w) explicitly. If we set w = εK > 0 and x = εN > 0,
then we may write

P (aij = w)(x) = P (K)

=

(

N
K

)

PK
ij (1− Pij)

N−K
(2.4)

Since each aij follows an independent binomial distribution, the likelihood
of observing a given w is maximized by the mode of the Beta distribution with
parameters (K + 1, N −K + 1). Next we observe that, if we wish to equalize
the expected volume of G(d̄out, d̄in) and the actual volume of G, the following
must hold:

6
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v̄ = E[v] =
∑

ij

E[aij ] =
∑

ij

Pijx (2.5)

A natural candidate solution of equation (2.5) is x = v̄, which implies
∑

ij Pij = 1. Let’s suppose that we start with an unconstrained entropy max-
imizing assignment Pij = p for all i, j. Next suppose we wish to maximize
P (di = d̄)(v̄) with respect to p, now considered as a variable, for a given ob-
served degree value d̄ = εK. The solution is again provided by the mode of
the Beta distribution with parameters (K + 1, N −K + 1) since di is a sum of
binomially distributed variables with equal probability parameter p:

α− 1

α+ β − 2
=
K

N
=
d̄

v̄
(2.6)

Clearly the set of maximum likelihood solutions for each di provides us with
the constraints used for problem (2.1). Then it’s clear that x = v̄ is the only
value which makes the latter constraints, derived for each degree sequence, con-
sistent with condition (2.5), a conclusion which justifies our previous seemingly
arbitrary assumption.

The problem (2.1) is also tightly related to a different class of models (Gar-
laschelli and Loffredo, 2008, 2009), which apply the maximum likelihood method
to estimate, under a set of local constraints, the probability of observing a given
G within the ensemble of graphs which may be represented by a n × m ad-
jacency matrix. Since each G is equivalent to a nm long ordered sequence of
weights, each possible nonnegative sequence w = (w0 . . . wnm−1) with wi 6 x
and wi = εKi for some integer Ki, corresponds to a Graph in the ensemble and
vice versa. The probability of observing a graph G in the ensemble is

P (G) =
∏

i,j

Pij(w) (2.7)

where we leave Pij(w) undefined for the moment. By maximizing−P (G) lnP (G)
it’s possible to show that P (G) takes the following form (Garlaschelli and Lof-
fredo, 2009):

P (G) =
e−H(G)

Z
(2.8)

where H(G) is an Hamiltonian for the vector of constraints and Z is a par-
tition function which serves as a normalizing factor. In the case of G(d̄out, d̄in)
the Hamiltonian reads H(G) =

∑

ij(θ
out
i + θinj )aij . Comparing equations (2.7)

and (2.8) we derive

Pij(w) =
e−(θi+θj)w

∑N
k=0 e

−(θi+θj)kε
(2.9)

To see the equivalence between (2.9) and (2.4) we may take logs of both
expressions:

7
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logP (aij = w)(x) = log

(

N
K

)

+K log(Pij) + (N −K) log(1 − Pij)

= [log(Pij)− log(1− Pij)]K + log

(

N
K

)

+N log(1− Pij)

logPij(w) = −(θi + θj)w − log

(

N
∑

k=0

e−(θi+θj)kε

)

A comparison of the two expressions leads us to the following identification:

log(Pij)− log(1− Pij) ≡ −(θi + θj)ε

Rearranging we obtain

Pij =
e−(θi+θj)ε

1 + e−(θi+θj)ε

1− Pij =
1

1 + e−(θi+θj)ε

and

(1− Pij)
N−K = (1 + e−(θi+θj)ε)K−N

Thus

Pij(w) =
e−(θi+θj)w

∑N
k=0 e

−(θi+θj)kε

(

1 + e−(θi+θj)ε

1 + e−(θi+θj)ε

)K (
1 + e−(θi+θj)ε

1 + e−(θi+θj)ε

)N

=

(

N
K

)

PK
ij (1 − Pij)

N−K

where
(1 + e−(θi+θj)ε)N
∑N

k=0 e
−(θi+θj)kε

≡
(

N
K

)

. This shows the equivalence of (2.9) and

(2.4), which implies that the solution of problem (2.1) delivers also the maximum
likelihood solution for P (G). In addition, our formulation explains why we
should set x = v̄ to obtain the desired result.

To underline the theoretical convenience of the choice made for P , we can
remark that this expression has a very natural interpretation in economic terms.
In fact, if we think for example in terms of market exchanges, the expression
says that, for a given market price, the probability that a small quantity of
good is sold from a particular seller to a particular buyer is determined by the
joint probability that the former comes to the market to sell (which is given by
d̄outi

v̄ ) and the latter comes to the market to buy (which is given by
d̄inj

v̄ ). This
expression describes the expected behavior on the market, once the expected
individual supply d̄outi and demand d̄inj of each agent are known, and the

8
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following two conditions hold: i) each market transaction for dv is random and
independent; ii) no buyer/seller displays a particular preference or dislike for
any seller/buyer.

To conclude, one final remark is in place: if self-interactions are unsuit-
able for the domain under analysis, the model must incorporate the additional
constraint pij = 0 whenever i and j refer to the same entity. This can be ac-
complished with the help of a specific procedure (see e.g. Censor and Zenios,
1997). Given the fact that the credit networks we are going to consider below
are bipartite, i. e. networks in which nodes at the two poles of interaction never
overlap, we are not going to tackle this problem further in this paper.

3 Basic concepts and facts

In this section we are going to present shortly some basic concepts and facts
which are necessary to state our main results. For a general treatment the
reader can refer to Chung (1997, 2006). The first notion we need to introduce
is the normalized adjacency matrix of G(d̄out, d̄in):

K = D
− 1

2
outAD

− 1
2

in

where D
− 1

2
out , D

− 1
2

in are diagonal matrices with entries respectively equal to
the reciprocal of the square root of out- and in-degree values of A. K, like any
other real or complex matrix, has a unique singular value (SV) decomposition
K = UΣV T , where Σ = diag(σ0, . . . , σp−1) ∈ R

p×p with σ0 > σ1 > · · · >

σp−1 > 0 and p = min {n,m}. Further, since K has real entries, U ∈ R
n×p and

U ∈ R
m×p, which means that the singular vectors ui, vi of K have real entries

too.

The normalization of K is realized with respect to the matrix 2-norm, i. e.
‖K‖2 ≡ 1. To confirm this claim, we need to show that σ0 ≡ 1, where σ0 stands
for the largest SV of K, since by definition ‖K‖2 ≡ σ0. The task can be divided
into two steps: firstly we show that 1 is always a SV of K, secondly we show
that such value is the largest one. The first step consists of finding two real
vectors u and v such that Kv ≡ u. The conclusion readily follows if we choose
uT = (

√

dout1/v, . . .
√

doutn/v) and vT = (
√

din1/v, . . .
√

dinm/v), because we
get the following identity

√

douti
v

= ui =
m
∑

j=1

kijvj =
m
∑

j=1

aij
√

douti
√

dinj

√

dinj

v
=

√

douti
v

Since we can compute such vectors for any normalized adjacency matrix, 1
is always a SV of K.

We can show that 1 is effectively the largest SV of K through the Perron-
Frobenius theorem (PF). In fact, we know that σi(K)2 = λi(KK

T ) = λi(K
TK)

for all λi, σi > 0 (Hogben, 2007, pp.5-11), where λi stands for a real eigenvalue
of the symmetric matrices KKT and KTK, and the λi’s are taken in decreasing
order. In addition, the singular vectors ui, vi associated with σi are equal to
the eigenvectors of KKT and KTK respectively associated with λi. Since 1 is

9
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a SV of K whose associated singular vectors are positive, then 1 is an eigen-
value of both KKT and KTK with positive associated eigenvector. From PF
we know that the spectral radius ρ of an irreducible matrix is a simple and pos-
itive eigenvalue, and that it is the only eigenvalue of that matrix with a positive
eigenvector. But a nonnegative symmetric square matrix X ∈ R

n×n being irre-
ducible is equivalent to the following condition: the graph G(X), with vertices
V (X) = 〈n〉 and edges E(X) = {(ij) : i, j ∈ 〈n〉 ∧ xij = xji 6= 0}, is connected.
Thus, whenever this condition is satisfied for G(KKT ) and G(KTK), the con-
clusion follows.

We must underline that there is no loss of generality with this assumption,
since we know that the spectrum of a Graph with k non trivial connected compo-
nents is the union of the spectra of the disjoint connected Graphs corresponding
to each of its components (Chung, 1997, par 1.2). Thus the conclusion σ0 ≡ 1
follows, together with σ0 = . . . σk−1 = 1 where k is the number of non trivial
connected components in G(KKT ) and G(KTK). Further, it’s easy to see that
G(KKT ) and G(KTK) are connected if and only if G(d̄out, d̄in) is (weakly)
connected. In fact, the latter holds only if G(K), with vertices V (X) = 〈k =
max {n,m}〉 and edges E(X) = {(ij) : i, j ∈ 〈k〉 ∧ (xij 6= 0 ∨ xji 6= 0)}, is
connected too. Then, if we consider in particular the necessity condition, it’s
clear that G(K) being disconnected means that we have a permutation for K
such that

K =

(

A 0
0 B

)

where only A is required to be square. Thus KKT will be of the following
form

KKT =

(

A2 0
0 BBT

)

which implies that G(KKT ) is disconnected. The same conclusion obviously
holds also for KTK since KTK = KT (KT )T = K ′K ′T .

It is possible to say more about the SVs of K with the help of G(KKT ) and
G(KTK). In particular we can state the following theorem:

Theorem 3.1. If K is the normalized adjacency matrix of G(d̄out, d̄in),then
G(KKT ) and G(KTK) are not bipartite.

Proof. Suppose G(KKT ) is bipartite. Then there is a permutation of KKT

such that

KKT =

(

O B
BT O

)

where B 6= 0 and O is an all-zero matrix. But this is impossible, since K has
positive row and column sums, which means that the diagonal elements ofKKT

are all positive

(KKT )ii =

m
∑

j=1

k2ij > 0

10
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The same conclusion is immediately extended to KTK.

From PF we know that |λi(X)| < ρ(X) for all λi(X) 6= ρ(X) if the nonneg-
ative matrix X is aperiodic. For our purposes, this condition can be translated
into the following statement: if G(KKT ) and G(KTK) are non bipartite, then
|λi(KKT )| = |λi(KTK)| < 1 for all λi(KK

T ) = λi(K
TK) 6= 1. Then, using

theorem 3.1, we derive two straightforward conclusions:

1. if G(d̄out, d̄in) is (weakly) connected, then σ0(K) > σ1(K)

2. if G(d̄out, d̄in) has k (weakly) connected components, 1 ≡ σ0(K) = · · · =
σk−1(K) > σk(K)

To summarize, the multi-set of the SVs of K is equal to the union of the
squared spectra of the connected components of KKT and KTK. This state-
ment allows us to assume throughout this paper, without loss of generality, that
G(d̄out, d̄in) is (weakly) connected.

In the next paragraph we will analyze networks’ properties by means of the
SVs of their normalized adjacency matrixK. This choice must be justified, since
it is more common to find in the literature a characterization of the spectrum
of G by means of the so-called Laplacian. In particular Chung (1997) has
introduced into algebraic graph theory the important notion of the normalized
Laplacian of a Graph L(G), to be defined (ibidem, par 1.2) as follows

L(G) ≡def I −D−1/2AD−1/2 = I −K (3.1)

where A is the adjacency matrix of G and D is a diagonal matrix with non
zero entries equal to the degrees of the nodes. From the definition above, it
follows immediately that λi(L) = 1−λi(K) where λi(L) and λi(K) are taken in
increasing and decreasing order respectively. The emphasis on L(G) is motivated
by the connection between its spectral properties and Markov processes defined
over graphs and digraphs, a field of application which falls beyond the limits of
this paper. In addition, L(G) cannot be defined whenever K(G) is rectangular,
while at the same time K(G) retains the most important properties of L(G),
for our purposes, when this happens. Then, since K turns out to be the most
flexible option in our case, in this paper we will refer to the SVs of K as the
SVs of G(d̄out, d̄in).

4 Upper and lower bounds for the subdominant

singular value of G(d̄out, d̄in)

In this section we are going to derive an upper bound for the so-called sub-
dominant singular value of G(d̄out, d̄in), namely σ1(K), which is based on the
Frobenius norm of a peculiar matrix K∗, which will be defined below. Since
we are assuming G(d̄out, d̄in) to be weakly connected, we know in advance that
0 6 σ1 < 1.

The interest for non unit eigenvalues and SVs of normalized matrices derives
from the theory of Markov processes. In fact, a Markov chain is ergodic if the

11
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powers of a stochastic matrix S converge to a rank one matrix. If λ1 < 1,
where λ1 is the second largest eigenvalue of S, then |λ1(Sk)| = |λ1(S)|k → 0 as
k → ∞, i. e. the powers of S converge to a stochastic matrix of rank one. The
magnitude of λ1 estimates the asymptotic rate of convergence, which means
that λ1 can be used as a coefficient of ergodicity (Rothblum and Tan, 1985). If
alternatively the matrices under multiplication are different, we need a different
coefficient, defined over a specific vector or matrix norm, like for example

τ1(S) = max
‖z‖1,zT1=0

‖ST z‖1

The expression above provides the one-norm coefficient of ergodicity for the
stochastic matrix S, which bounds from above the non unit eigenvalues of S, i.
e. λ1(S) 6 τ1(S), and is submultiplicative. Given the relationship between σ1
and λ1, ergodic coefficients could also provide, under appropriate conditions, an
upper bound for σ1(S), a circumstance which explains our interest for this no-
tion. To start with, we can remark that τ1(S) is simply the norm of S restricted
to the subspace that is orthogonal to 1, which is a dominant eigenvector of S.
This fact has suggested the opportunity to extend ergodic coefficients to non-
negative real and complex matrices of arbitrary shape (Selee and Ipsen, 2010).

Before we get into the matter more deeply, it is worth explaining the rele-
vance of σ1(K) for our purposes. In order to do so, it is convenient to intro-
duce the notion of discrepancy (Butler, 2006) between the typical Digraph in
the ensemble G(d̄out, d̄in) of Digraphs generated using p̄ij as defined by (2.3),
and a given Digraph G supposed to belong to G. For each X ⊂ Vout(G) and
Y ⊂ Vin(G) where Vout and Vin are respectively the sets of nodes with positive
out- and in-degree, we can always compute a value β such that

∣

∣

∣

∣

e(X → Y )− volout(X)volin(Y )

v̄

∣

∣

∣

∣

= β
√

volout(X)volin(Y ) (4.1)

Here e(X → Y ) stands for the total weight of edges going from nodes in X
to nodes in Y , and volout(X), volin(Y ) are the volumes of X and Y respectively.
The connection of (4.1) with G(d̄out, d̄in) becomes clear if we look at the second
term on the l.h.s. of the expression, which in fact gives the expected weight of
edges between X and Y according to pX,Y ≡∑i∈X

∑

j∈Y pij . The relationship
between σ1 and β for all X and Y is given by the following

Theorem 4.1. For all G(d̄out, d̄in), X ⊂ Vout(G) and Y ⊂ Vin(G), we have

that disc(G) 6 σ1(K), where K is the normalized adjacency matrix of G and

disc(G) ≡def max(X,Y ) β(X,Y ), with β(X,Y ) taken to be the value such that

4.1 holds for given X and Y .

Proof. (Butler, 2006, see) The proof depends on the inequality |〈a,Mb〉| 6

σ0(M)‖a‖2‖b‖2, where 〈· , · 〉 denotes the usual scalar product, which holds for
any matrixM and vectors a and b. Further, we know that A =

∑r
i=0 σiuiv

T
i for

all A ∈ R
n×m, where the σi are the non zero SVs of A with left and right singular

vectors ui and vi, and r = min {n− 1,m− 1}. Then we have as a consequence
that, if u and v are the dominant singular vectors of K, σ0(K − uvT ) = σ1(K).

Finally,
volout(X)volin(Y )

v̄
=
〈

ψX , D
1
2
outuv

TD
1
2

inψY

〉

, where ψX and ψY are the

12
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characteristic vectors of X and Y , and Dout, Din have been already defined.
Thus we get the following

∣

∣

∣

∣

e(X → Y )− volout(X)volin(Y )

v̄

∣

∣

∣

∣

=
∣

∣

∣

〈

ψX , (A−D
1
2
outuv

TD
1
2
in)ψY

〉∣

∣

∣

=
∣

∣

∣

〈

D
1
2
outψX , (K − uvT )D

1
2

inψY

〉∣

∣

∣

6 σ0(K − uvT )
∥

∥

∥
D

1
2
outψX

∥

∥

∥

2

∥

∥

∥
D

1
2

inψY

∥

∥

∥

2

= σ1(K)
√

volout(X)volin(Y )

Since the inequality holds for all β(X,Y ), then it holds also for disc(G).

Theorem 4.1 provides a powerful insight into the spectral properties of G,
suggesting that if G ∈ G(d̄out, d̄in) w. h. p., which implies that discrepancy is
small, then the subdominant SV of K(G) will be smaller than in the opposite
case, and possibly close to zero. Here two observations are in order. In the first
place, for any digraph it is clearly interesting to test whether it belongs to G
or not, since in the former case we have a fully diversified network, as clarified
above (section 2), while in the latter case the network displays communities as
defined by Newman (2006), a circumstance which may have probably relevant
consequences for the dynamics of networks in case of sudden negative shocks3.
On the other hand, unfortunately, the theorem doesn’t provide any clue as to
determine how small σ1 must be in order to decide whether, w.h.p., G ∈ G. In
order to do so, we need a statistical test to provide us with a reliable estimate
of the probability of finding a Digraph G in G, given the magnitude of σ1(G).

While finding such a test will be the task of the next paragraph, we need to
state some preliminary results here which will be useful for this purpose. First
of all, we must provide a definition of the ergodic coefficient for rectangular
matrices A ∈ R

n×m and arbitrary vectors w ∈ R
n (Seneta, 1984):

τp(w,A) = max
‖z‖p=1

zTw=0

‖AT z‖p

Then it is possible to demonstrate the following (Rothblum and Tan, 1985,
theorem 5.5)

Theorem 4.2. If A ∈ R
n×m and w ∈ R

n with w 6= 0, then for all vectors

x ∈ R
m

τp(w,A) 6 ‖(A− wxT )T ‖p
In particular if p = 2

τ2(w,A) 6 ‖(A− wxT )‖2 6

∥

∥

∥

∥

(

I − wwT

‖w‖22

)

A

∥

∥

∥

∥

F

Proof. see Selee and Ipsen (2010).

3This topic will be treated more extensively in the conclusive section of the paper.

13



Page 17 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

The rightmost expression provides the required upper bound for σ1. In fact,
by combining theorem 7.15 and corollary 7.16 in Selee and Ipsen (2010), we can
state the following

Theorem 4.3. Let A ∈ R
n×m and w ∈ R

n with w 6= 0. Then

τ2(w,A) =

∥

∥

∥

∥

(

I − wwT

‖w‖22

)

A

∥

∥

∥

∥

2

In particular, if u and v are the dominant left and right singular vectors of

A, then

τ2(u,A) = τ2(u,A
T ) = σ1(A)

Proof. For the general proof we refer to Selee and Ipsen (2010). When consider-
ing K, or any other normalized matrix, the derivation of the second statement
from the first becomes straighforward:

τ2(u,K) =
∥

∥

(

I − uuT
)

K
∥

∥

2
=
∥

∥(K − uvT )
∥

∥

2
= σ1(K) (4.2)

where we have used uTK = vT and the fact that the matrix 2-norm is equal
to the largest SV of a matrix.

We can remark that theorem 4.3 provides an alternative proof for theorem
4.2, since we know that ‖· ‖2 6 ‖· ‖F for all matrices (Hogben, 2007, 37.3).
Using this fact and theorem 4.3 we get the desired upper bound for σ1(A)

σ1(A) 6
∥

∥(I − uuT )A
∥

∥

F

In particular, for K like for any other normalized matrix

σ1(K) 6
∥

∥K − uvT
∥

∥

F
(4.3)

Finally, by posing K∗ ≡ K − uvT , we define the matrix mentioned at the
beginning of the section. As it turns out, the same matrix appeared in the proof
of Theorem 4.1, a fact which shows the intimate connection between the latter
and Theorem 4.3. This connection gives us the possibility to combine the two
in order to derive a lower bound for σ1(K) in terms of the volume of K∗:

|vol(K∗)|√
nm

=
| 〈1,K∗1〉 |√

nm
= β(1,1) 6 σ1(K) (4.4)

Here β is defined directly with respect to the characteristic vectors of the
subsets X and Y . Although the bound provided by (4.4) will turn out to be
theoretically useful in the next section, it is of little use in applications. In
fact, it’s clear that if K and E[K] have the same degree sequences, as usually
required from applications, they will have the same volume too, which means
|vol(K∗)| = 0. On the other hand, even if the latter is true, as long asK 6= E[K]
there are characteristic vectors ψX 6= 1 and ψY 6= 1 such that β(ψX , ψY ) > 0,
which provide tighter lower bounds for σ1(K). To extract two such character-
istic vectors it’s natural to resort to spectral partitioning methods (Newman,
2006). This circumstance highlights the connection between our results and the
problem of module detection in networks. Although a full clarification of this
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connection is left for future work, we will provide some preliminary considera-
tions on this matter in the conclusive section.

5 Statistical tests for G
As it is well know, bounds based on entry-wise matrix norms are not very tight,
since these norm are obviously very sensible to the size of matrices. On the
other hand, alternative norms involve invariably some variational characteriza-
tion (Selee and Ipsen, 2010), which becomes difficult to handle if one wishes,
like in this case, to work with expectations. In this section we will show that,
under specific assumptions, entry-wise norms for σ1(K) provide a useful bound
to test if Digraphs based on real data belong w.h.p. to G.

First of all, we need to introduce a result which is essential for our argumen-
tation. To explain its relevance in this context, we should note that, according to
the model presented in section 2, if G ∈ G(d̄out, d̄in), then each entry aij of A(G)
becomes a sum of N independent random variables εk (remember v̄ = εN).

Theorem 5.1. Let X1, . . . , Xn be independent random variables satisfying Xi 6

|M | for all 1 6 i 6 n andM 6= 0. Let X =
∑n

i=1Xi and ‖X‖ =
√

X =
∑n

i=1 E(X2
i ).

Then

P (X 6 E[X ]− λ) = P (X > E[X ] + λ) 6 e
− λ2

2(‖X‖2+|M|λ/3) (5.1)

If the Xi are nonnegative, the lower bound can be strengthened to

P (X 6 E[X ]− λ) 6 e
− λ2

2‖X‖2 (5.2)

Proof. See Chung and Lu (2006).

IfG ∈ G(d̄out, d̄in), we may takeX =
∑N

k=1 εk = aij and E[X ] = āij > ‖X‖2
if we choose ε < 1. Then the following bounds hold:

P (aij > āij + λ) 6 e
− λ2

2(āij+ελ/3) (5.3)

P (aij 6 āij − λ) 6 e
− λ2

2āij (5.4)

These inequalities, when applied to single entries, are of little use as a test
since, generally speaking, it is likely that, as A gets dimensionally larger, there
will be some aij close to its expectation even if G /∈ G(d̄out, d̄in), and likewise
some aij lying far away from its expectation even if G ∈ G(d̄out, d̄in). This
observation provides us with the fundamental justification for a test based on a
global property of G, like the magnitude of σ1(G).

Before we tackle this problem, we must make a fundamental remark. The
validity of inequalities (5.3) and (5.4) is immediately extended to any sum of
entries of A. In particular, they hold for each douti , dinj and for v. Now, since
these values are set for any G ∈ G(d̄out, d̄in) to be equal to their expectation,
an obvious consequence of (5.3) and (5.4) is the following:

15
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P (douti = d̄outi) 6 1 P (dinj = d̄inj ) 6 1 ∀i, j P (v = v̄) 6 1 (5.5)

Up to now we have made the implicit supposition that we know exactly the
out- and in-degree distribution of any G we use to build G. In fact, the latter
ensemble is built using (d̄out, d̄in) as a deterministic input. But then we can
strengthen conditions (5.5) to equality, something which, on its part, implies
that G ∈ G(d̄out, d̄in) if and only if G ∈ G∗ ⊆ G(d̄out, d̄in) where G∗ is populated
by the Digraphs in the ensemble which have exactly the required out- and in-
degree distribution. Using this fact, E[K] is easily determined. In fact, we
get

E[K] = D̄
− 1

2
outĀD̄

− 1
2

in ≡ K̄ (5.6)

which follows since douti ≡ d̄outi and dinj ≡ d̄inj in G∗. We are going to
show that the restriction to G∗ allows some very stark conclusions regarding
G ∈ G∗. As a first step, the following result provides an application of theorem
5.1 to K:

Theorem 5.2. Suppose G ∈ G∗, with K as its normalized adjacency matrix,

and K̄ being as defined above. Then, for any sum X =
∑

kij of elements of K
we have the following

P (X > E[X ] + λ) 6 e
− λ2

2(
∑

sminij
+λ/3)

(5.7)

and, since the kij are nonnegative

P (X 6 E[X ]− λ) 6 e
− λ2

2
∑

sminij (5.8)

where sminij = min
{

srowij , scolij
}

, and the arguments of sminij are defined

respectively as srowij = aij/douti and scolij = aij/dinj .

Proof. The statement follows from theorem 5.1, by observing that, from the
application of Holder inequality, the following holds

E[k2ij ] = E

[

aij
douti

aij
dinj

]

6 min

{

E

[

aij
douti

]

, E

[

aij
dinj

]}

= min

{

āij

d̄outi
,
āij

d̄inj

}

where the latter equality follows from the main hypothesis.

The applicability of theorem 5.2, as well as of expressions (5.3) and (5.4),
relies on the knowledge we have of K̄. Unfortunately, the following results are
going to show that we cannot take this knowledge for granted. This is because
the way G(d̄out, d̄in) is built is not fully consistent.

Lemma 5.1. Suppose G ∈ G∗, with K as its normalized adjacency matrix, K∗

and K̄ defined as above. Then E[K∗] = 0.

16
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Proof. The proof is straightforward:

E[K∗] = E[K − uvT ]

= E[K]− uvT

= K̄ − uvT

= 0

where E[uvT ] = uvT since u and v are constant in G∗ and

k̄ij =
āij

√

d̄outi d̄inj

=

√

d̄outi d̄inj

v̄
= uivj

In order to extend lemma 5.1 to |K∗|, we define two distinct matrices
K∗

+ and K∗
− whose elements are again random variables k∗+ij

= I(ω+)k
∗
ij and

k∗−ij
= −I(ω−)k

∗
ij , with ω+ =

{

k∗ij > 0
}

and ω− =
{

k∗ij < 0
}

. Then it is clear
that |K∗| ≡ K∗

+ +K∗
−. Further, with the help of Holder inequality we get

0 6 E[k∗+ij
] 6 E[k∗ij ] = 0 = −E[k∗ij ] > E[k∗−ij

] > 0

i. e. E[k∗+ij
] = E[k∗−ij

] = 0 which, taken together, imply E[|K∗|] = 0. With
the help of the latter result we are ready to prove the following

Theorem 5.3. Suppose the hypotheses in lemma 5.1 are true. Then K = K̄.

Proof. The statement follows by observing that, as a consequence of the ex-
tension of lemma 5.1 to |K∗|, we have that σ2(K∗) = 0. This means that,
for all G ∈ G∗, it must hold that K∗ = E[K∗] = 0, which on its turn implies
K = K̄.

The paradoxical consequence of theorem 5.3 is that G /∈ G holds whenever
G 6= Ḡ, where the latter is defined to be the Graph corresponding to K̄. This is
a serious inconvenient, since G belongs to the ensemble only if a very restrictive
condition holds. The paradox is solved if we drop the hypothesis of an exact
knowledge of K. In general, the opposite supposition seems more convenient
since, if G is the outcome of a random process, then it is a single instance
of this process, and its degree sequences cannot be warranted to correspond
to the ”true” ones. On the other hand, an uncertainty over the ”true” degree
sequences implies that, on the ground of this instance alone, we have no hints as
to which ensemble G belongs. Let’s take for such a ”true” value the expectation
E[K] = 〈K〉 over an unspecified probability measure and denote with 〈G〉 the
corresponding Graph. Then theorem 5.3 turns out to be extremely useful since
it tells us that K∗ = 0 must hold for the ensemble G obtained from 〈K〉. Using
this fact we state the next theorem

17
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Theorem 5.4. Suppose 〈G〉 ∈ G∗. Then E[K∗] = 0 for each G with a n.a.m.

K such that E[K] = 〈K〉.
Proof. In the first place we remark that, since E[K] = 〈K〉, then E[uvT ] =

〈u〉 〈v〉T , where the two terms of the product stand for the dominant singular
vectors of 〈K〉. This is because E[uvT ] is functionally determined by the row
and column sums of E[K]. Thanks to the main hypothesis, we can use theorem

5.3 to derive 〈K〉 = K̄. From lemma 5.1, then, we know that 〈K〉−〈u〉 〈v〉T = 0.

The conclusion follows from E[K∗] = 〈K〉 − 〈u〉 〈v〉T .

Theorem 5.5. Suppose the hypotheses in theorem 5.4 are true. Then, for any

sum X =
∑ |k∗ij | of elements of |K∗| we have the following

P (X > λ) 6 e−
3
2λ (5.9)

Proof. From theorem 5.4 we derive E[|K∗|] = 0 which implies E[X ] = 0, while
X is necessarily nonnegative. Then the proof follows from (5.1) by observing
that ‖X‖ 6 E[X ] = 0.

Theorem 5.5 provides an upper bound for the probability of observing the
volume of |K∗|. This probability on its part gives an indirect estimation of the
difference between K and 〈K〉, since the volume of K∗ is expected to be equal
to zero for 〈G〉 ∈ G. In the next section this estimation will prove useful for the
analysis of the evolution of networks over time.

Under the hypotheses of theorem 5.4, we have that E[β(1,1)] = 0 and

E [‖K∗‖F ] 6 E
[

√

vol(K∗)
]

6
√

E[vol(K∗)] = 0 which, taken together and

remembering (4.3) and (4.4), imply E[σ1(K)] = 0. This fact reduces the prob-
lem of verifying G ∈ G w.h.p., for some unspecified degree sequence, to that of
verifying whether w.h.p. σ1(G) = 0. This task is drastically simplified by the
following

Theorem 5.6. Suppose the hypotheses of theorem 5.4 are true. Then for any

ǫ ∈ R
+, we have that P (σ1(G) > λ) ≫ 0 only if λ can be chosen to be infinites-

imal of the same order of ǫ.

Proof. Using successively (4.2), the equivalence of matrix norms, Markov in-
equality and Jensen inequality we get

P (σ1(G) > λ) = P (‖K∗‖2 > λ)

6 P (‖K∗‖F > λ)

6 P (
√

vol(|K∗|) + ǫ > λ)

6
E[
√

vol(|K∗|) + ǫ]

λ

6

√

E[vol(|K∗|)] + ǫ

λ

6
ǫ

λ
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In particular, with the help of theorem 5.6 we can state the following

Corollary 5.1. Suppose λ > 0 is a numerically determined value for σ1(G),
while ǫ > 0 is a numerically determined value for σ1(Ḡ), where Ḡ is now com-

puted from G itself. Then we have that H0 : σ1(G) = 0 can be rejected with

confidence level α 6 1− ǫ
λ .

Proof. The statement follows from theorem 5.6 by observing that 1 − ǫ
λ 6

1− P (σ1(G) > λ).

6 Application to credit networks

In this section we are going to apply the tools developed in section 5 to a
dataset of credit relationship data between Japanese firms and banks, which
has been analyzed under different perspectives in previous works (e.g De Masi
et al., 2009; Fujiwara and Aoyama, 2008; Fujiwara, 2009). More in detail, the
dataset refers to firms listed in the Japanese stock-exchange markets. Data
are compiled from firms’ financial statements, integrated by a survey of Nikkei
Media Marketing, Inc. in Tokyo. They include the indication of the amount
of borrowing obtained from each financial institution, subdivided in short-term
debt and long-term debt. Financial institutions, which we refer to as “banks”
in the remaining of this paper, consist of long-term credit banks, city banks,
regional banks (primary and secondary), trust banks and insurance companies,
all of which basically represent the universe of financial institutions in Japan.
Although the dataset covers a long span of years, ranging from 1980 to 2005,
we are going to focus on the most recent years, namely the period 2000-2005.
For an extensive description of this network the reader can refer to De Masi et
al. (2009).

Table 1: Descriptive statistics of the Dataset

Year Firms Banks Links

2000 2,629 211 27,389
2001 2,714 204 26,597
2002 2,739 202 24,555
2003 2,700 192 22,585
2004 2,700 190 21,919
2005 2,674 182 21,811

In Graph theoretic terms, bank-firm relationships are represented by a weighted
bipartite Graph G. In fact, the weights of G are represented by the amounts of
credit/debit and its two bipartite sets are represented by firms F and banks B
respectively. Thanks to our previous theoretical treatment, we can work directly
with A taken as the bi-adjacency matrix of G, which has shape |F | × |B| and
entries equal to the amounts of credit/debit between each bank and firm in G.
Further, since we have two different kinds of credit/debit relationship, we may
denote the graphs where only short term and long term credit/debit amounts
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are included with Gs and Gl respectively. Then we have that G = Gs ⊕Gl. It’s
clear that each of the three networks will have distinct SVs, which means our
analysis will refer to 18 matrices in total. It is worth remarking that the matri-
ces AAT and KKT on the one hand, and ATA and KTK on the other, have in
this case a natural interpretation as the projected networks between firms and
banks respectively (De Masi et al., 2009).

The goal of our analysis is to answer the following two questions: how likely
is it that the considered networks belong to G? And, in that case, how far is
the network from its expectation? Both questions are indeed relevant for eco-
nomics. By answering the first one, we verify how likely it is that real data are
generated by a random process of the kind described in section 2. On its part,
this recognition leads to opposite but, in both cases, relevant conclusions: on
the one hand, it provides a validation of the theoretical model in the domain un-
der consideration; on the other, as already hinted at, it shows that the network
in case is less diversified than what would be optimal according to the model.
Once diversification is unequivocally recognized as beneficial for stability, the
latter conclusion clears the way for a policy intervention seeking to prevent the
build-up of systemic risk within the network. By answering the second question,
on the other hand, we look at the evolution of the network over time, since the
difference between real data and their expected value accounts for the level of
diversification of the network in a given period. As it turns out, diversifica-
tion is intimately connected with the role, within the network, of modules or
communities as defined by Newman (2006), whose existence, we will argue, is
intimately connected with the SVs of K.

As anticipated in section 5, the examination of single cell values cannot an-
swer the global question of whether, and with which probability, our networks
belong to G. Then, in order to answer our first question, we must resort to
corollary 5.1 and take into consideration the sub-dominant SV of K.4 In the
first place, we can observe that the difference between the SVs of K and those
of its expectation K̄ is striking, as depicted by figures 1, 2 and 3, in each year
and for each kind of credit. In particular, many SVs of K are close to unity,
a circumstance which finds an intuitive explanation if we recall the discussion
made in section 3. In fact, whenever K displays a unitary SV, we know that in
K there is an additional (weak) component. Thus, by extension, if a SV is close
to unity, this means that K has an additional quasi-component, i.e. a region
which is weakly connected to the rest of the network. The peculiar feature of
〈K〉 ∈ G is then evident, since the fact that its sub-dominant SV is zero tells us
that in this matrix there are no quasi-components, or communities, like we may
prefer to call them. Finally, this shows, as claimed above, that the difference
between K and 〈K〉, if it exists, lies exactly in the existence of communities in
the former, while, on the other hand, this existence always implies, thanks to
the theoretical properties of 〈K〉, a lack of diversification within K. If such a

4A preliminary analysis showed that some networks in the dataset were not connected, due
to the existence of a second very small component, including very few firms and banks. This
is true in particular for the following years: 2000 (long term data and total data), 2004 (short
term data), 2005 (short term data). In accordance with the hypothesis made at the beginning
of section 5, we have removed these components from the networks. As expected, then, table
2 shows that the subdominant SVs are always smaller than unity.
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difference exists in the first place, then a subsequent deeper analysis of the net-
work is required to identify the communities within it, a point we will examine
again in the conclusive section.

Table 2: Values of σ1(K) and p-values of σ1 > λ if G ∈ G.

Year Short Term Long Term Total

2000 0.8203 0.9828 0.9753
(1.35e-08) (1.29e-08) (1.07e-08)

2001 0.9634 0.7855 0.7671
(1.20e-08) (1.52e-08) (1.40e-08)

2002 0.8822 0.6835 0.6610
(1.58e-08) (1.66e-08) (1.72e-08)

2003 0.8432 0.7075 0.6535
(1.63e-08) (1.87e-08) (1.93e-08)

2004 0.8564 0.7126 0.6627
(1.51e-08) (1.91e-08) (2.00e-08)

2005 0.7826 0.9678 0.7694
(1.77e-08) (1.25e-08) (1.58e-08)

Table 2 finally provides us with the answer to our first question. In fact, the
probabilities of observing the values reported in the table are very small, which
implies that the hypothesis G ∈ G can be rejected at a 99 % confidence level
in all cases. On the other hand, the interpretation advanced for these values
suggests that their variations over time are to be interpreted as a measure of
how close the two main communities within K are to be disconnected. In other
terms, the values in Table 2, while providing a global test forK, convey by them-
selves a local, and not a global, information on the networks. To find a proper
measure for the overall distance between K and K̄ we must resort to theorem
5.5 and apply it to D = vol(|K∗|). In table 3 we reproduce the resulting values
for each of our networks, together with the probabilities computed according
to (5.9). Since D is of course correlated with the dimensions of K∗, which are
progressively shrinking according to table 1, we add to the table D∗, an aver-
age value per cell, in order to make the results comparable across matrices of
different size. According to our results, then, there is evidence of an increasing
deviation of K from 〈K〉, which means that communities have become progres-
sively stronger in the period under analysis or, alternatively, that the network
has become less diversified. The question of whether such differences are indeed
statistically significant is left for future work.

7 Conclusions

In these conclusive remarks we wish to outline some of the general implications
of the results obtained in the previous sections. In our opinion, the most impor-
tant theoretical achievement of our work is the identification of a model which,
while being easily applicable for the interpretation of real data, has also some
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Figure 1: Singular Values of Kst and K̄st.
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Figure 2: Singular Values of Klt and K̄lt
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Figure 3: Singular Values of K and K̄.
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Table 3: Values of D = vol(|K∗|) and of D∗ = vol(|K∗|)
nm 103. P-values of

vol(|K∗|) > λ if G ∈ G in parentheses.

D D∗

Year Short Term Long Term Total Short Term Long Term Total

2000 421.77 403.76 473.38 0.9528 0.8989 0.8534
(1.75e-275) (9.46e-264) (4.18e-309)

2001 419.89 403.03 470.17 0.9959 0.8909 0.8492
(2.93e-274) (2.81e-263) (5.17e-307)

2002 405.10 403.96 462.24 1.0011 0.8892 0.8399
(1.27e-264) (6.96e-264) (7.50e-302)

2003 407.91 394.93 454.14 1.0672 0.9061 0.8760
(1.86e-266) (5.36e-258) (1.43e-296)

2004 405.99 386.59 444.46 1.1761 0.8948 0.8664
(3.33e-265) (1.44e-252) (2.88e-290)

2005 413.95 381.55 442.83 1.2647 0.9227 0.9099
(2.18e-270) (2.78e-249) (3.31e-289)

very attractive theoretical properties, which depend on the probabilistic model
we have adopted. The latter, in fact, is derived from simple, and fairly stan-
dard, assumptions regarding the behavior of agents, which have been already
highlighted in section 2. The application of the model to real data then conveys
a clear cut indication regarding the data generating process of real networks. In
particular, we have argued that, whenever real networks don’t behave consis-
tently with the model, two specular options are open: either modify the model,
e. g. by introducing additional hypotheses, or accept the model for its theoret-
ical benefits, and then act, with the help of policy instruments, to modify real
networks in order to bring them closer to the model itself.

In the final part of the paper we have applied the tests devised in section 5 to
real credit networks data, showing that such networks don’t behave consistently
with the ED model of section 2. Consequently, real credit networks are char-
acterized by the existence of modules as defined by Newman (2006), since the
latter are expected not to exist within the ensemble G. This circumstance may
have either a theoretical or a practical bearing, depending on the stance of the
reader. From the theoretical point of view, it’s clear that we need an alterna-
tive model for modularized networks, encompassing factors, such as asymmetric
information, institutional specificities or geographical proximity, which could
explain the existence of modules. Instead, in order to further develop the prac-
tical implications of our work, the first step we need to take is to rigorously
identify modules within networks, since these correspond to the regions which
may most likely be the epicenter of negative events in case of a unexpected
build-up of systemic risk.

Given the latter consideration, our work turns out to be intimately connected
with the growing stream of literature tackling the problem of community or
module detection in networks (for a recent review see Fortunato, 2010), and
particularly with spectral partitioning methods (e.g. Newman, 2006; Donetti
and Muñoz, 2005). In a nutshell, the connection with our analysis lies in the
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parallel, proposed in section 6, between communities and components. Spectral
partitioning methods show that members of the same community have similar
values in the eigenvectors (excluding the first one) associated with the k largest
positive eigenvalues of A or, alternatively, with the k smallest eigenvalues of the
Laplacian (a recent analysis of the spectral properties of modular networks is
provided by Mitrovi and Tadi, 2009). The representation of the nodes as vectors
in a k-dimensional space then provides us with the information needed to obtain
a partition of the network in its k most relevant communities. Following our
analysis, this possibility comes as no surprise, but the ideas underlying spectral
methods need to be developed further, since we wish to work with nonnegative
matrices of arbitrary shape for which SVD is required, and moreover we have
to address the numerous open questions highlighted by the literature mentioned
above. On the other hand, a SVD-based algorithm for community extraction
may leverage on the results presented in this paper, which may provide a sound
probabilistic foundation for its outcomes.

Finally, our work has some interesting implications for the understanding
of the geometrical properties of any normalized nonnegative matrix K and, by
extension, of its non normalized counterpart A. In fact, while the largest SV
of the latter matrix conveys only, so to speak, a scalar information, since it is
invariant over all normalized matrices, the other SVs depend on the rank of K
and A. Thus, our results provide a probabilistic model, with respect to which
we can evaluate the likelihood of observing the rank of any given nonnegative
matrix, while at the same time giving a clear interpretation of this property in
terms of deviations from such model. In fact, since K̄ is a rank-1 matrix, the
probability of observing K under the ED model is inversely related to the rank
of K itself.
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> We generalize the expected degree model in order to apply it to economic networks 

> We derive new statistical tests for economic networks, based on this theoretical model 

> Applying our tests to credit network data, we show these networks don't follow the model 

> These networks are poorly diversified and contain densely connected communities of nodes  

> Our work suggests ways to improve community detection algorithms for economic networks 

 

*Research Highlights



Page 33 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 50 100 150 200 25010-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

2000 - Long Term

SValues of K
SValues of K̄



Page 34 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 50 100 150 20010-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100 2000 - Short Term

SValues of K
SValues of K̄



Page 35 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 50 100 150 200 25010-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100 2000 - Total

SValues of K
SValues of K̄



Page 36 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 50 100 150 20010-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

2001 - Long Term

SValues of K
SValues of K̄



Page 37 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 20 40 60 80 100 120 140 160 18010-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100 2001 - Short Term

SValues of K
SValues of K̄



Page 38 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 50 100 150 200 25010-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

2001 - Total

SValues of K
SValues of K̄



Page 39 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 50 100 150 20010-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

2002 - Long Term

SValues of K
SValues of K̄



Page 40 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 20 40 60 80 100 120 140 160 18010-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100 2002 - Short Term

SValues of K
SValues of K̄



Page 41 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 50 100 150 20010-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100 2002 - Total

SValues of K
SValues of K̄



Page 42 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 50 100 150 20010-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
2003 - Long Term

SValues of K
SValues of K̄



Page 43 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 20 40 60 80 100 120 140 160 18010-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

2003 - Short Term

SValues of K
SValues of K̄



Page 44 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 50 100 150 20010-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

2003 - Total

SValues of K
SValues of K̄



Page 45 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 50 100 150 20010-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
2004 - Long Term

SValues of K
SValues of K̄



Page 46 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 20 40 60 80 100 120 140 16010-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100 2004 - Short Term

SValues of K
SValues of K̄



Page 47 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 50 100 150 20010-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100 2004 - Total

SValues of K
SValues of K̄



Page 48 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 20 40 60 80 100 120 140 160 18010-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

2005 - Long Term

SValues of K
SValues of K̄



Page 49 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 20 40 60 80 100 120 140 16010-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100 2005 - Short Term

SValues of K
SValues of K̄



Page 50 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

0 20 40 60 80 100 120 140 160 18010-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

2005 - Total

SValues of K
SValues of K̄


