Random Digraphs with Given Expected Degree Sequences: A Model for Economic Networks
Abstract
Building upon the growing interest for complex network theory, the main ambition of this paper is to contribute to a more effective application of network theory to economic phenomena, and particularly to financial networks. We depart from recent contributions on credit networks in two respects. In the first place, we constrain diversification with the out- and in-degree distribution of nodes, by adopting a suitable extension of the expected degree model for random weighted digraphs. In the second place, we focus on real networks by using this extension as null model for statistical analysis. With the help of statistical inference, we provide a rigorous answer to the following question: do real networks obey our null model? Further, we show that this answer is tightly connected to the existence of clusters or modules, as defined by Newman and Girvan (2004), within networks.
Domains
Quantitative Finance [q-fin]
Origin : Files produced by the author(s)
Loading...