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Université François Rabelais, Tours, FRANCE

May 09, 2014

Abstract

In this paper, we study the existence and regularity of the quasilinear parabolic
equations:

ut − div(A(x, t,∇u)) = B(u,∇u) + µ

in three domains R
N+1, R

N × (0,∞) and a bounded domain Ω × (0, T ) ⊂ R
N+1.

Here N ≥ 2, the nonlinearity A fulfills standard growth conditions and B term is a
continuous function and µ is a radon measure. Our first task is to establish the existence
results with B(u,∇u) = ±|u|q−1u, for q > 1. We next obtain global weighted-Lorentz,
Lorentz-Morrey and Capacitary estimates on gradient of solutions with B ≡ 0, under
minimal conditions on the boundary of domain and on nonlinearity A. Finally, due to
these estimates, we solve the existence problems with B(u,∇u) = |∇u|q for q > 1.
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1 Introduction

In this article, we study a class of quasilinear parabolic equations:

ut − div(A(x, t,∇u)) = B(x, t, u,∇u) + µ (1.1)

in R
N+1 or R

N × (0,∞) or a bounded domain ΩT := Ω × (0, T ) ⊂ R
N+1. Where N ≥ 2,

A : RN × R× R
N → R

N is a Carathéodory function which satisfies standard monotonicity
and growth conditions, B : RN+1 × R × R

N → R is also a Carathéodory function and µ is
a Radon measure.

The existence and regularity theory, the Wiener criterion and Harnack inequalities, Blow-
up at a finite time associated with above parabolic quasilinear operator was studied and
developed intensely over the past 50 years, one can found in [55, 42, 28, 46, 47, 23, 48,
57, 81, 73, 71]. Moreover, we also refer to [17]-[20] for Lp−gradient estimates theory in
nonsmooth domains and [60] the wiener criteria for existence of large solutions in time
dependent domains.

First, we are specially interested in the existence of solutions to quasilinear parabolic
equations with absorption, source terms and data measure:

ut − div(A(x, t,∇u)) + |u|q−1u = µ, (1.2)

ut − div(A(x, t,∇u)) = |u|q−1u+ µ (1.3)

in R
N+1 and

ut − div(A(x, t,∇u)) + |u|q−1u = µ, u(0) = σ (1.4)

ut − div(A(x, t,∇u)) = |u|q−1u+ µ, u(0) = σ (1.5)

in R
N ×(0,∞) or a bounded domain ΩT ⊂ R

N+1, where q > 1 and µ, σ are Radon measures.
The linear case A(x, t,∇u) = ∇u was studied in detail by Fujita, Brezis and Friedman,

Baras and Pierre.
For µ = 0 and σ is a Dirac mass in Ω, the problem (1.4) in ΩT (with Dirichlet boundary

condition) with admits a (unique) solution if and only if q < (N + 2)/N , see [16]. Then,
optimal results are stated in [5], for any µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω): there exists a (unique)
solution of (1.4) in ΩT if and only if µ, σ are absolutely continuous with respect to the
capacity Cap2,1,q′ ,CapG2/q,q′ (in ΩT ,Ω) respectively, for simplicity we write µ << Cap2,1,q′

and σ << CapG2/q,q′ , with q′ is the conjugate exponent of q, i.e q′ = q
q−1 . Where these two

capacities will be defined in section 2.
For source case, in [6], showed that for any µ ∈ M+

b (ΩT ) and σ ∈ M+
b (Ω), the problem

(1.5) in bounded domain ΩT has a (unique) nonnegative solution if

µ(E) ≤ CCap2,1,q′(E) and σ(O) ≤ CCapG 2
q
,q′(O)

hold for every compact sets E ⊂ R
N+1, O ⊂ R

N here C = C(N, diam(Ω), T ) is small
enough. Conversely, the existence holds then for compact subset K ⊂⊂ Ω, one find CK > 0
such that

µ(E ∩ (K × [0, T ])) ≤ CKCap2,1,q′(E) and σ(O ∩K) ≤ CKCapG 2
q
,q′(O)

2



NGUYEN QUOC HUNG

hold for every compact sets E ⊂ R
N+1, O ⊂ R

N . In unbounded domain R
N × (0,∞), Fujita

(see [28]) asserted that an inequality

ut −∆u ≥ uq, u ≥ 0 in R
N × (0,∞), (1.6)

i. if q < (N + 2)/N then the only nonnegative global (in time) solution of above inequality
is u ≡ 0.

ii. if q > (N + 2)/N then there exists global positive solution of above inequality.

More general, see [6], for µ ∈ M+(RN × (0,∞)) and σ ∈ M+(RN ), (1.5) has a nonnegative
solution in R

N × (0,∞) (with A(x, t,∇u) = ∇u) if and only if

µ(E) ≤ CCapH2,q′(E) and σ(O) ≤ CCapI 2
q
,q′(O) (1.7)

hold for every compact sets E ⊂ R
N+1, O ⊂ R

N , here C = C(N, q) is small enough, two
capacities CapH2,q′ ,CapI 2

q
,q′ will be defined in section 2. Note that necessary and sufficient

condition for (1.7) holding with µ ∈ M+(RN × (0,∞))\{0} or σ ∈ M+(RN )\{0} is q ≥
(N +2)/N . In particular, (1.6) has a (global) positive solution if and only if q ≥ (N +2)/N .
It is known that conditions for data µ, σ in problems with absorption are softer than source.
Recently, in exponential case, i.e |u|q−1u is replaced by P (u) ≈ exp(a|u|q), for a > 0 and
q ≥ 1 also established in [58].

We consider (1.4) and (1.5) in ΩT with Dirichlet boundary conditions when div(A(x, t,∇u))
is replaced by ∆pu := div(|∇u|p−2∇u) for p ∈ (2 − 1/N,N). In [64], showed that for any
q > p−1, (1.4) admits a (unique renormalized) solution provided σ ∈ L1(Ω) and µ ∈ Mb(ΩT )
is diffuse measure i.e absolutely continuous with respect to Cp−capacity in ΩT defined on a
compact set K ⊂ ΩT :

Cp(K,ΩT ) = inf {||ϕ||X : ϕ ≥ χK , ϕ ∈ C∞
c (ΩT )} ,

where X = {ϕ : ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)), ϕt ∈ Lp′

(0, T ;W−1,p′
(Ω))} endowed with norm

||ϕ||X = ||ϕ||Lp(0,T ;W 1,p
0 (Ω)) + ||ϕt||Lp′ (0,T ;W−1,p′ (Ω)) and χK is the characteristic function of

K. An improving result is presented in [13] for measures that have good behavior in time,
it is based on results of [14] relative to the elliptic case. That is, (1.4) has a (renormalized)
solution if σ ∈ L1(Ω) and |µ| ≤ f + ω ⊗ F , where f ∈ L1

+(ΩT ), F ∈ L1
+((0, T )) and

ω ∈ M+
b (Ω) is absolutely continuous with respect to CapGp,

q
q−p+1

in Ω. Also, (1.5) has a

(renormalized) nonnegative solution if σ ∈ L∞
+ (Ω), 0 ≤ µ ≤ ω ⊗ χ(0,T ) with ω ∈ M+

b (Ω)
and

ω(E) ≤ C1CapGp,
q

q−p+1
(E) ∀ compact E ⊂ R

N , ||σ||L∞(Ω) ≤ C2

for some C1, C2 small enough. Another improving results are also stated in [61], especially
if q ≥ p − 1 + p

N , p > 2, µ ≡ 0 and σ ∈ Mb(Ω) is absolutely continuous with respect to
CapGs,q′ in Ω for some 0 < s < p

q−p+2 then (1.4) has a distribution solution.

In [61], we also obtain the existence of solution for Porous Medium equation with ab-
sorption and data measure: for q > m > 1, a sufficient condition for existence solution to
the problem

ut −∆(|u|m−1u) + |u|q−1u = µ in ΩT , u = 0 on ∂Ω× (0, T ), and u(0) = σ in Ω.

is µ << Cap2,1, q
q−m

and σ << CapG2/q,q′ . A necessary condition is µ << Cap2,1,q′ and

σ << CapG2m/q,
q

q−m
. Moreover, if µ = µ1 ⊗ χ[0,T ] with µ1 ∈ Mb(Ω) and σ ≡ 0 then a

condition µ1 << CapG2,
q

q−m
is not only a sufficient but also a necessary for existence of

solution to above problem.
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We would like to make a brief survey of quasilinear elliptic equations with absorption,
source terms and data measure:

−∆pu+ |u|q−1u = ω, (1.8)

−∆pu = uq + ω, u ≥ 0 (1.9)

in Ω with Dirichlet boundary conditions where 1 < p < N , q > p − 1. In [14], we proved
that the existence solution of equation (1.8) holds if ω ∈ Mb(Ω) is absolutely continuous
with respect to CapGp,

q
q−p+1

. Moreover, a necessary condition for existence was also showed

in [10, 11]. For problem with source term, it was solved in [66] (also see [67]). Exactly, a
sufficient condition for the equation (1.9) with ω ∈ M+

b (Ω) having a (renormalized) solution
is

ω(E) ≤ CCapGp,
q

q−p+1
(E) ∀ compact E ⊂ R

N

for some C small enough and a necessary condition is: for compact subset K ⊂ Ω, there is
CK > 0 such that

ω(E ∩K) ≤ CKCapGp,
q

q−p+1
(E) ∀ compact E ⊂ R

N .

Their construction is based upon sharp estimates of solutions of the problem

−∆pu = ω in Ω, u = 0 on ∂Ω

for Radon measures ω in Ω and profound estimates on Wolff potentials.
Corresponding results in case that uq term is changed by P (u) ≈ exp(auλ) for a > 0, λ > 0,
was given in [14] and [59].

In [25], Duzaar and Mingione gave a local pointwise estimate from above of solutions to
equation

ut − div(A(x, t,∇u)) = µ (1.10)

in ΩT involving the Wolff parabolic potential I2[|µ|] defined by

I2[|µ|](x, t) =
ˆ ∞

0

|µ|(Q̃ρ(x, t))

ρN
dρ

ρ
for all (x, t) ∈ R

N+1,

here Q̃ρ(x, t) := Bρ(x)× (t− ρ2/2, t+ ρ2/2). Specifically if u ∈ L2(0, T ;H1(Ω)) ∩ C(ΩT ) is
a weak solution to above equation with data µ ∈ L2(ΩT ), then

|u(x, t)| ≤ C

 

Q̃R(x,t)

|u|dyds+ C

ˆ 2R

0

|µ|(Q̃ρ(x, t))

ρN
dρ

ρ
, (1.11)

for any Q2R(x, t) := B2R(x)× (t− (2R)2, t) ⊂ ΩT , where a constant C only depends on N
and the structure of operator A. Moreover, in this paper we also show that if u ≥ 0, µ ≥ 0
we also have local pointwise estimate from below:

u(y, s) ≥ C−1
∞∑

k=0

µ(Qrk/8(y, s− 35
128r

2
k))

rNk
(1.12)

for any Qr(y, s) ⊂ ΩT , see section 5, where rk = 4−kr.
From preceding two inequalities, we obtain global pointwise estimates of solution to

(1.10). For example, if µ ∈ M(RN+1) with I2[|µ|](x0, t0) < ∞ for some (x0, t0) ∈ R
N+1

then there exists a distribution solution to (1.10) in R
N+1 such that

−KI2[µ
−](x, t) ≤ u(x, t) ≤ KI2[µ

+](x, t) for a.e (x, t) ∈ R
N+1 (1.13)
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and we emphasize that if u ≥ 0, µ ≥ 0 then

u(x, t) ≥ K−1
∞∑

k=−∞

µ(Q2−2k−3(x, t− 35× 2−4k−7))

2−2Nk
for a.e (x, t) ∈ R

N+1

and we also have a sharp estimate: for q > 1

||u||Lq(RN+1) ≈ ||I2[µ]||Lq(RN+1).

Where a constant K only depends on N and the structure of operator A.

Our first aim is to verify that

i. the equations (1.2) and (1.4) have solutions if µ, σ are absolutely continuous with respect
to the capacity Cap2,1,q′ ,CapG2/q,q′ respectively,

ii. the equations (1.3) in R
N+1 and (1.5) in R

N × (0,∞) with data signed measure µ, σ
admit a solution if

|µ|(E) ≤ CCapH2,q′(E) and |σ|(O) ≤ CCapI 2
q
,q′(O) (1.14)

hold for every compact sets E ⊂ R
N+1, O ⊂ R

N . Also, the equation (1.5) in a
bounded domain ΩT has a solution if (1.14) holds where capacities Cap2,1,q′ ,CapG 2

q
,q′

are exploited instead of CapH2,q′ ,CapI 2
q
,q′ .

It is worth mention that solutions obtained of (1.3) in R
N+1 and (1.5) in R

N × (0,∞) obey
ˆ

E

|u|qdxdt ≤ CCapH2,q′(E) for all compact E ⊂ R
N+1

and we also have an analogous estimate for a solution of (1.5) in ΩT ;
ˆ

E

|u|qdxdt ≤ CCap2,1,q′(E) for all compact E ⊂ R
N+1

for some a constant C > 0.
In case µ ≡ 0, solutions (1.5) in R

N × (0,∞) and ΩT are accepted the deday estimate

−Ct−
1

q−1 ≤ inf
x

u(x, t) ≤ sup
x

u(x, t) ≤ Ct−
1

q−1 for any t > 0.

The strategy we utilize to establish above results relies on on the combination some tech-
niques of quasilinear elliptic equations in two articles [14], [66] with the global pointwise
estimate (1.13), delicate estimates on Wolff parabolic potential and the stability theorem
see [13], Proposition 3.17 of this paper. They will be demonstrated in section 6.

We next are interested in global regularity of solution to quasilinear parabolic equations

ut − div (A(x, t,∇u)) = µ in ΩT , u = 0 on ∂Ω× (0, T ) and u(0) = σ in Ω. (1.15)

where domain ΩT and nonlinearity A are as mentioned at the beginning.
Our aim is to achieve minimal conditions on the boundary of Ω and on nonlinearity A

so that the following statement holds

|||∇u|||K ≤ C||M1[ω]||K.

Here ω = |µ|+ |σ| ⊗ δ{t=0} and M1 is the first order fractional Maximal parabolic potential
defined by

M1[ω](x, t) = sup
ρ>0

ω(Q̃ρ(x, t))

ρN+1
∀ (x, t) ∈ R

N+1,

5
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, a constant C does not depend on u and µ ∈ Mb(ΩT ), σ ∈ Mb(Ω) and K is a function
space. The same question is as above for the elliptic framework studied by N. C. Phuc in
[68],[70] and [69].

First result, K = Lp,s(ΩT ) for 1 ≤ p < θ and 0 < s ≤ ∞ is obtained under a capacity
density condition on the domain Ω where Lp,s(ΩT ) is the Lorentz space and a constant
θ > 2 depends on the structure of this condition and of nonlinearity A. It follows the
recent result in [7], see remark 2.18. The capacity density condition is that, the complement
of Ω satisfies uniformly 2−thick, see section 2. We remark that under this condition, the

Sobolev embedding H1
0 (Ω) ⊂ L

2N
N−2 (Ω) for N > 2 is valid and it is fulfilled by any domain

with Lipschitz boundary, or even of corkscrew type. This condition was used in two papers
[68],[70]. Also, it is essentially sharp for higher integrability results, presented in [39, Remark
3.3]. Furthermore, we also assert that if γ

γ−1 < p < θ, 2 ≤ γ < N +2, 0 < s ≤ ∞ and σ ≡ 0
then

|||∇u|||
L

p,s;(γ−1)p
∗ (ΩT )

≤ C||µ||
L

(γ−1)p
γ

,
(γ−1)s

γ
;(γ−1)p

∗ (ΩT )

for some a constant C where L
p,s;(γ−1)p
∗ (ΩT ), L

(γ−1)p
γ ,

(γ−1)s
γ ;(γ−1)p

∗ (ΩT ) are the Lorentz-
Morrey spaces involving ”calorie” introduced in section 2.

Next, in order to verify better result, K = Lq,s(ΩT , dw), the Lorentz spaces with weighted
w ∈ A∞ for q ≥ 1, 0 < s ≤ s (no restriction of power q), we need stricter conditions on the
domain Ω and nonlinearity A. A condition on Ω is flat enough in the sense of Reifenberg,
essentially, that at boundary point and every scale the boundary of domain is between two
hyperplanes at both sides (inside and outside) of domain by a distance which depends on
the scale. A condition on A is that BMO type of A with respect to the x−variable is small
enough and the derivative of A(x, t, ζ) with respect to ζ is uniformly bounded. By choosing
an appropriate weight we can establish the following important estimates:

a. The Lorentz-Morrey estimates involving ”calorie” for 0 < κ ≤ N + 2 is obtained

|||∇u|||Lq,s;κ
∗ (ΩT ) ≤ C||M1[|ω|]||Lq,s;κ

∗ (ΩT ).

b. Another Lorentz-Morrey estimates is also obtained for 0 < ϑ ≤ N

||M(|∇u|)||Lq,s;ϑ
∗∗ (ΩT ) ≤ C||M1[|ω|]||Lq,s;ϑ

∗∗ (ΩT ),

where Lq,s;ϑ
∗∗ (ΩT ) is introduced in section 2. This estimate implies global Holder-estimate in

space variable and Lq−estimate in time, that is for all ball Bρ ⊂ R
N

(
ˆ T

0

|oscBρ∩Ωu(t)|qdt
) 1

q

≤ Cρ1−
ϑ
q ||M1[|ω|]||Lq;ϑ

∗∗ (ΩT ) provided 0 < ϑ < min{q,N}.

In particular, there hold

(
ˆ T

0

|oscBρ∩Ωu(t)|qdt
) 1

q

≤ C||σ||
L

ϑq
ϑ+2−q

;ϑ
(Ω)

+ C||µ||
L

ϑqq1
(ϑ+2+q)q1−2q

;ϑ
(Ω,Lq1 ((0,T )))

provided

1 < q1 ≤ q < 2,

max

{
2− q

q − 1
,

1

q − 1

(
2 + q − 2q

q1

)}
< ϑ ≤ N.

Where L
ϑq

ϑ+2−q ;ϑ(Ω) is the standard Morrey space and

||µ||Lq2;ϑ(Ω,Lq1 ((0,T ))) = sup
ρ>0,x∈Ω

ρ
ϑ−N
q2



ˆ

Bρ(x)∩Ω

(
ˆ T

0

|µ(y, t)|q1dt
) q2

q1

dy




1
q2

.

6



NGUYEN QUOC HUNG

with q2 = ϑqq1
(ϑ+2+q)q1−2q . Besides, we also find

(
ˆ T

0

|oscBρ∩Ωu(t)|qdt
) 1

q

≤ C||µ||
L

ϑqq1
(ϑ+2+q)q1−2q

;ϑ
(Ω,Lq1 ((0,T )))

provided

σ ≡ 0, q ≥ 2, 1 < q1 ≤ q,

1

q − 1

(
2 + q − 2q

q1

)
< ϑ ≤ N.

c. A global capacitary estimate is also given

sup
compact K⊂R

N+1

CapG1,q′ (K)>0

(´
K
|∇u|qdxdt

CapG1,q′(K)

)
≤ C sup

compact K⊂R
N+1

CapG1,q′ (K)>0

( |ω|(K)

CapG1,q′(K)

)q

.

To obtain this estimate we employ profound techniques in nonlinear potential theory, see
section 4 and Theorem 2.22.

We utilize some ideas (in the quasilinear elliptic framework) in articles of N.C. Phuc [68],
[70] and [69] during we establish above estimates.

We would like to emphasize that above estimates is also true for solutions to equation
(1.15) in R

N+1 with data µ (of course still true for (1.15) in R
N × (0,∞)) with data µ

provided I2[|µ|](x0, t0) < ∞ for some (x0, t0) ∈ R
N+1 see Theorem 2.25 and 2.27. Moreover,

a global pointwise estimates of gradient of solutions is obtained when A is independent of
space variable x, that is

|∇u(x, t)| ≤ CI1[|µ|](x, t) a.e (x, t) ∈ R
N+1

see Theorem 2.5.
Our final aim is to obtain existence results for the quasilinear Riccati type parabolic

problems (1.1) where B(x, t, u,∇u) = |∇u|q for q > 1. The strategy we use in order to
prove these existence results is that using Schauder Fixed Point Theorem and all above
estimates and the stability theorem see [13], Proposition 3.17 in section 3. They will be
implemented in section 9. By our methods in the paper, we can treat general equations
(1.1), where

|B(x, t, u,∇u)| ≤ C1|u|q1 + C2|∇u|q2 , q1, q2 > 1,

with constant coefficients C1, C2 > 0.

Acknowledgements:
The author wishes to express his deep gratitude to his advisors Professor Laurent Véron
and Professor Marie-Françoise Bidaut-Véron for encouraging, taking care and giving many
useful comments during the preparation of the paper. Besides the author would like to
thank Nguyen Phuoc Tai for many interesting comments.

2 Main Results

Throughout the paper, we assume that Ω is a bounded open subset of RN , N ≥ 2 and
T > 0. Besides, we always denote ΩT = Ω × (0, T ), T0 = diam(Ω) + T 1/2 and Qρ(x, t) =

Bρ(x)× (t− ρ2, t) Q̃ρ(x, t) = Bρ(x)× (t− ρ2/2, t+ ρ2/2) for (x, t) ∈ R
N+1 and ρ > 0.
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This article is divided into three parts. First part, we study the existence problems for the
quasilinear parabolic equations with absorption and source terms





ut − div(A(x, t,∇u)) + |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(2.1)

and 



ut − div(A(x, t,∇u)) = |u|q−1u+ µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(2.2)

Where q > 1, A : RN × R × R
N → R

N is a Caratheodory vector valued function, i.e. A is
measurable in (x, t) and continuous with respect to ∇u for each fixed (x, t) and satisfies

|A(x, t, ζ)| ≤ Λ1|ζ| and (2.3)

〈A(x, t, ζ)−A(x, t, λ), ζ − λ〉 ≥ Λ2|ζ − λ|2 (2.4)

for every (λ, ζ) ∈ R
N ×R

N and a.e. (x, t) ∈ R
N ×R, here Λ1 and Λ2 are positive constants.

Throughout this article, we always assume that A satisfies (2.3) and (2.4).
In order to state our results, let us introduce some definitions and notations. If D is

either a bounded domain or whole R
l for l ∈ N, we denote by M(D) (resp Mb(D)) the set

of Radon measure (resp. bounded Radon measures) in D. Their positive cones are M+(D)
and M+

b (D) respectively. For R ∈ (0,∞], we define the R−truncated Riesz parabolic
potential Iα and Fractional Maximal parabolic potential Mα, 0 < α < N + 2, on R

N+1 of a
measure µ ∈ R

N+1 by

I
R
α [µ](x, t) =

ˆ R

0

µ(Q̃ρ(x, t))

ρN+2−α

dρ

ρ
and M

R
α [µ](x, t) = sup

0<ρ<R

µ(Q̃ρ(x, t))

ρN+2−α
(2.5)

for all (x, t) in R
N+1. If R = ∞, we drop it in expressions of (2.5).

We denote by Hα the Heat kernel of order α ∈ (0, N + 2):

Hα(x, t) = Cα

χ(0,∞)(t)

t(N+2−α)/2
exp

(
−|x|2

4t

)
for (x, t) in R

N+1,

and Gα the parabolic Bessel kernel of order α > 0:

Gα(x, t) = Cα

χ(0,∞)(t)

t(N+2−α)/2
exp

(
−t− |x|2

4t

)
for (x, t) in R

N+1,

see [4], where Cα =
(
(4π)N/2Γ(α/2)

)−1
. It is known that F(Hα)(x, t) = (|x|2 + it)−α/2 and

F(Gα)(x, t) = (1 + |x|2 + it)−α/2. We define the parabolic Riesz potential Hα of a measure
µ ∈ M+(RN+1) by

Hα[µ](x, t) = Hα ∗ µ(x, t) =
ˆ

RN+1

Hα(x− y, t− s)dµ(y, s) for (x, t) in R
N+1,

the parabolic Bessel potential Gα of a measure µ ∈ M+(RN+1) by

Gα[µ](x, t) = Gα ∗ µ(x, t) =
ˆ

RN+1

Gα(x− y, t− s)dµ(y, s) for (x, t) in R
N+1.

We also define Iα,Gα, 0 < α < N the Riesz, Bessel potential of a measure µ ∈ M+(RN ) by

Iα[µ](x) =

ˆ ∞

0

µ(Bρ(x))

ρN−α

dρ

ρ
and Gα[µ](x) =

ˆ

RN

Gα(x− y)dµ(y) for all x in R
N .

8
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where Gα is the Bessel kernel of order α, see [2].
Several different capacities will be used over the paper. For 1 < p < ∞, the (Hα, p)-capacity,
(Gα, p)-capacity of Borel set E ⊂ R

N+1 are defined by

CapHα,p(E) = inf{
ˆ

RN+1

|f |p : f ∈ Lp
+(R

N+1),Hα[f ] ≥ χE} and

CapGα,p(E) = inf{
ˆ

RN+1

|f |p : f ∈ Lp
+(R

N+1),Gα[f ] ≥ χE}.

The W 2,1
p −capacity of compact set E ⊂ R

N+1 is defined by

Cap2,1,p(E) = inf{||ϕ||p
W 2,1

p (RN+1)
: ϕ ∈ S(RN+1), ϕ ≥ 1 in a neighborhood of E},

where

||ϕ||W 2,1
p (RN+1) = ||∂ϕ

∂t
||Lp(RN+1) + ||∇ϕ||Lp(RN+1) +

∑

i,j=1,2,...,N

|| ∂2ϕ

∂xi∂xj
||Lp(RN+1).

We would like to remark that thanks to Richard J. Bagby’s result (see [4]) we obtain the
equivalent of capacities Cap2,1,p and CapG2,p i.e for any compact set K ⊂ R

N+1 there holds

C−1Cap2,1,p(K) ≤ CapG2,p(K) ≤ CCap2,1,p(K)

for some C = C(N, p), see Corollary (4.18) in section 4.
The (Iα, p)-capacity, (Gα, p)-capacity of Borel set O ⊂ R

N are defined by

CapIα,p(O) = inf{
ˆ

RN

|g|p : g ∈ Lp
+(R

N ), Iα[g] ≥ χO} and

CapGα,p(O) = inf{
ˆ

RN

|g|p : g ∈ Lp
+(R

N ),Gα[g] ≥ χO}.

In our first three Theorems, we present global point wise potential estimates on solutions to
quasilinear parabolic problems





ut − div (A(x, t,∇u)) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(2.6)

and {
ut − div (A(x, t,∇u)) = µ in R

N × (0,∞),
u(0) = σ in R

N ,
(2.7)

and

ut − div (A(x, t,∇u)) = µ in R
N+1. (2.8)

Theorem 2.1 There exists a constant K depending N,Λ1,Λ2 such that for any µ ∈ Mb(ΩT ), σ ∈
Mb(Ω) there is a distribution solution u of (2.6) satisfying for a.e (x, t) ∈ ΩT

−KI
2T0
2 [µ− + σ− ⊗ δ{t=0}](x, t) ≤ u(x, t) ≤ KI

2T0
2 [µ+ + σ+ ⊗ δ{t=0}](x, t). (2.9)

Remark 2.2 Since supx∈RN Iα[σ
± ⊗ δ{t=0}](x, t) ≤ σ±(Ω)

(N+2−α)(2t)
N+2−α

2

for any t 6= 0 with

0 < α < N + 2. Thus, if µ ≡ 0, then we obtain the decay estimate:

−Kσ−(Ω)

N(2t)
N
2

≤ inf
x∈Ω

u(x, t) ≤ sup
x∈Ω

u(x, t) ≤ Kσ+(Ω)

N(2t)
N
2

for any 0 < t < T.

9
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Theorem 2.3 There exists a constant C depending N,Λ1,Λ2 such that for any µ ∈ M+
b (ΩT ), σ ∈

M+
b (Ω), there is a distribution solution u of (2.6) satisfying for a.e (y, s) ∈ ΩT and

Br(y) ⊂ Ω

u(y, s) ≥ C
∞∑

k=0

µ(Qrk/8(y, s− 35
128r

2
k))

rNk
+ C

∞∑

k=0

(σ ⊗ δ{t=0})(Qrk/8(y, s− 35
128r

2
k))

rNk
(2.10)

where rk = 4−kr.

Remark 2.4 The Theorem 2.3 is also true when we replace the assumption 2.4 by a weaker
one

〈A(x, t, ζ), ζ〉 ≥ Λ2|ζ|2, 〈A(x, t, ζ)−A(x, t, λ), ζ − λ〉 > 0

for every (λ, ζ) ∈ R
N × R

N , λ 6= ζ and a.e. (x, t) ∈ R
N × R.

Theorem 2.5 Let K be the constant in Theorem 2.1. Let ω ∈ M(RN+1) such that I2[|ω|](x0, t0) <
∞ for some (x0, t0) ∈ R

N+1. Then, there is a distribution solution u to (2.8) with data µ = ω
satisfying

−KI2[ω
−] ≤ u ≤ KI2[ω

+] in R
N+1 (2.11)

such that the following statements hold.

a. If ω ≥ 0, there exists C1 = C1(N,Λ1,Λ2) such that for a.e (x, t) ∈ R
N+1

u(x, t) ≥ C1

∞∑

k=−∞

ω(Q2−2k−3(x, t− 35× 2−4k−7))

2−2Nk
(2.12)

In particular, for any q > N+2
N

C−1
2 ||H2[ω]||Lq(RN+1) ≤ ||u||Lq(RN+1) ≤ C2||H2[ω]||Lq(RN+1). (2.13)

with C2 = C2(N,Λ1,Λ2).

b. If A is independent of space variable x and satisfies (2.29), then there exists C2 =
C2(N,Λ1,Λ2) such that

|∇u| ≤ C2I1[|ω|] in R
N+1. (2.14)

c. If ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then u = 0 in
R

N × (−∞, 0) and u|
RN×[0,∞) is a distribution solution to (2.7).

Remark 2.6 For q > N+2
N , we alway have the following claim:

||H2[µ+ ω ⊗ δ{t=0}]||Lq(RN+1) ≈ ||H2[µ]||Lq(RN+1) + ||I2/q[σ]||Lq(RN+1)

for every µ ∈ M+(RN × (0,∞)) and σ ∈ M+(RN ).

Remark 2.7 For ω ∈ M+(RN+1), 0 < α < N + 2 if Iα[ω](x0, t0) < ∞ for some (x0, t0) ∈
R

N+1 then for any 0 < β ≤ α, Iβ [ω] ∈ Ls
loc(R

N+1) for any 0 < s < N+2
N+2−β . However, for

0 < β < α < N + 2, one can find ω ∈ M+(RN+1) such that Iα[ω] ≡ ∞ and Iβ [ω] < ∞ in
R

N+1, see Appendix section.

The next four theorems provide the existence of solutions to quasilinear parabolic equations
with absorption and source terms. For convenience, we always denote by q′ the conjugate
exponent of q ∈ (1,∞) i.e q′ = q

q−1 .

10
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Theorem 2.8 Let q > 1, µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω). Suppose that µ, σ are absolutely
continuous with respect to the capacities Cap2,1,q′ , CapG 2

q
,q′ in ΩT ,Ω respectively. Then

there exists a distribution solution u of (2.1) satisfying

−KI2[µ
− + σ− ⊗ δ{t=0}] ≤ u ≤ KI2[µ

+ + σ+ ⊗ δ{t=0}] in ΩT .

Here the constant K is in Theorem 2.1.

Theorem 2.9 Let K be the constant in Theorem 2.1. Let q > 1, µ ∈ Mb(ΩT ) and σ ∈
Mb(Ω). There exists a constant C1 = C1(N, q,Λ1,Λ2, diam(Ω), T ) such that if

|µ|(E) ≤ C1Cap2,1,q′(E) and |σ|(O) ≤ C1CapG 2
q
,q′(O). (2.15)

hold for every compact sets E ⊂ R
N+1, O ⊂ R

N , then the problem (2.2) has a distribution
solution u satisfying

− Kq

q − 1
I2[µ

− + σ− ⊗ δ{t=0}] ≤ u ≤ Kq

q − 1
I2[µ

+ + σ+ ⊗ δ{t=0}] in ΩT . (2.16)

Besides, for every compact set E ⊂ R
N+1 there holds

ˆ

E

|u|qdxdt ≤ C2Cap2,1,q′(E) (2.17)

where C2 = C2(N, q,Λ1,Λ2, T0).

Remark 2.10 From (2.17) we get if q > N+2
N ,

ˆ

Q̃ρ(y,s)

|u|qdxdt ≤ CρN+2−2q′ for any Q̃ρ(y, s) ⊂ R
N+1,

if q = N+2
N ,

ˆ

Q̃ρ(y,s)

|u|qdxdt ≤ C (log(1/ρ))
− 1

q−1 for any Q̃ρ(y, s) ⊂ R
N+1, 0 < ρ < 1/2

for some C = C(N, q,Λ1,Λ2, T0), see Remark 4.14.

Remark 2.11 In the sub-critical case 1 < q < N+2
N , since the capacity Cap2,1,q′ ,CapG 2

q
,q′

of a single are positive thus the condition (2.15) holds for some constant C1 > 0 provided
µ ∈ Mb(ΩT ), σ ∈ Mb(Ω). Moreover, in the super-critical case q > N+2

N , we have

Cap2,1,q′(E) ≥ c1|E|1− 2q′
N+2 and CapG 2

q
,q′(O) ≥ c2|O|1− 2

(q−1)N

for every Borel sets E ⊂ R
N+1, O ⊂ R

N , thus if µ ∈ L
N+2
2q′ ,∞

(ΩT ) and σ ∈ L
(q−1)N

2 ,∞(Ω)
then (2.15) holds for some constant C1 > 0. In addition, if µ ≡ 0, then (2.16) implies for
any 0 < t < T ,

−c3(T0)t
− 1

q−1 ≤ inf
x∈Ω

u(x, t) ≤ sup
x∈Ω

u(x, t) ≤ c3(T0)t
− 1

q−1 ,

since |σ|(Bρ(x)) ≤ c4(T0)ρ
N− 2

q−1 for all 0 < ρ < 2T0.

11
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Theorem 2.12 Let K be the constant in Theorem 2.1 and q > 1. If ω ∈ M(RN+1) is
absolutely continuous with respect to the capacities Cap2,1,q′ in R

N+1, then there exists a

distribution solution u ∈ Lγ
loc(R;W

1,γ
loc (R

N )) for any 1 ≤ γ < 2q
q+1 to problem

ut − div (A(x, t,∇u)) + |u|q−1u = ω in R
N+1 (2.18)

which satisfies
−KI2[ω

−] ≤ u ≤ KI2[ω
+] in R

N+1. (2.19)

Furthermore, when ω = µ+ σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)), σ ∈ M(RN ) then u = 0
in R

N × (−∞, 0) and u|
RN×[0,∞) is a distribution solution to problem

{
ut − div (A(x, t,∇u)) + |u|q−1u = µ in R

N × (0,∞)
u(0) = σ in R

N .
(2.20)

Remark 2.13 The measure ω = µ+ σ⊗ δ{t=0} is absolutely continuous with respect to the
capacities Cap2,1,q′ in R

N+1 if and only if µ, σ are absolutely continuous with respect to the

capacities Cap2,1,q′ , CapG 2
q
,q′ in R

N+1,RN respectively.

Existence result on R
N+1 or on R

N × (0,∞) is similar to Theorem 2.9 presented in the
following Theorem, where the capacities CapH2,q′ ,CapI 2

q
,q′ are used in place of respectively

Cap2,1,q′ ,CapG 2
q
,q′ .

Theorem 2.14 Let K be the constant in Theorem 2.1 and q > N+2
N , ω ∈ M(RN+1). There

exists a constant C1 = C1(N, q,Λ1,Λ2) such that if

|ω|(E) ≤ C1CapH2,q′(E) (2.21)

for every compact set E ⊂ R
N+1, then the problem

ut − div (A(x, t,∇u)) = |u|q−1u+ ω in R
N+1 (2.22)

has a distribution solution u ∈ Lγ
loc(R;W

1,γ
loc (R

N )) for any 1 ≤ γ < 2q
q+1 satisfying

− Kq

q − 1
I2[ω

−] ≤ u ≤ Kq

q − 1
I2[ω

+] in R
N+1. (2.23)

Moreover, when ω = µ+ σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)), σ ∈ M(RN ) then u = 0 in
R

N × (−∞, 0) and u|
RN×[0,∞) is a distribution solution to problem

{
ut − div (A(x, t,∇u)) = |u|q−1u+ µ in R

N × (0,∞),
u(0) = σ in R

N .
(2.24)

In addition, for any compact set E ⊂ R
N+1 there holds

ˆ

E

|u|qdxdt ≤ C2CapH2,q′(E) (2.25)

for some C2 = C2(N, q,Λ1,Λ2).

Remark 2.15 The measure ω = µ+ σ ⊗ δ{t=0} satisfies (2.21) if and only if

|µ|(E) ≤ CCapH2,q′(E) and |σ|(O) ≤ CCapI 2
q
,q′(O).

for every compact sets E ⊂ R
N+1 and O ⊂ R

N , where C = C3C1, C3 = C3(N, q).

12
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Remark 2.16 If ω ∈ L
N+2
2q′ ,∞

(RN+1) then (2.21) holds for some constant C1 > 0. More-
over, if ω = σ ⊗ δ{t=0} with σ ∈ Mb(R

N ), then from (2.23) we get the decay estimate:

−c1t
− 1

q−1 ≤ inf
x∈RN

u(x, t) ≤ sup
x∈RN

u(x, t) ≤ c1t
− 1

q−1 for any t > 0,

since |σ|(Bρ(x)) ≤ c2ρ
N− 2

q−1 for any Bρ(x) ⊂ R
N .

Second part, we establish global regularity in weighted-Lorentz and Lorentz-Morrey on
gradient of solutions to problem (2.6). For this purpose, an additional condition need to be
imposed on the domain Ω. We say that the complement of Ω satisfies uniformly p−thick
with constants c0, r0 if for all 0 < t ≤ r0 and all x ∈ R

N\Ω there holds

Capp(Bt(x) ∩ (RN\Ω), B2t(x)) ≥ c0Capp(Bt(x), B2t(x)) (2.26)

where the involved capacity of a compact set K ⊂ B2t(x) is given as follows

Capp(K,B2t(x)) = inf{
ˆ

B2t(x)

|∇φ|pdy : φ ∈ C∞
c (B2t(x)), φ ≥ χK}. (2.27)

In order to obtain better regularity we need a stricter condition on Ω which is expressed
in the following way. Given δ ∈ (0, 1) and R0 > 0, we say that Ω is a (δ,R0)− Reifenberg
flat domain if for every x ∈ ∂Ω and every r ∈ (0, R0], there exists a system of coordinates
{y1, y2, ..., yn}, which may depend on r and x, so that in this coordinate system x = 0 and
that

Br(0) ∩ {yn > δr} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {yn > −δr}. (2.28)

We remark that Reifenberg the class of flat domains is rather wide since this class in-
cludes C1, Lipschitz domains with sufficiently small Lipschitz constants and fractal domains.
Besides, Reifenberg flat domains have many important roles in the theory of minimal sur-
faces and free boundary problems, this class was first appeared in a work of Reifenberg (
see [72]) in the context of a Plateau problem. Their properties can be found in [35, 36, 76].

On the other hand, it is well known that in general, conditions (2.3) and (2.4) on the
nonlinearity A(x, t, ζ) are not enough to ensure higher integral of gradient of solutions to
problem (2.6), we need to assume that A satisfies

〈Aζ(x, t, ζ)λ, λ〉 ≥ Λ2|λ|2, |Aζ(x, t, ζ)| ≤ Λ1 (2.29)

for every (λ, ζ) ∈ R
N × R

N\{(0, 0)} and a.e (x, t) ∈ R
N × R, where Λ1,Λ2 are constants

in (2.3) and (2.4). We also require that the nonlinearity A satisfies a smallness condition
of BMO type in the x-variable. We say that A(x, t, ζ) satisfies a (δ,R0)-BMO condition for
some δ,R0 > 0 with exponent s > 0 if

[A]R0
s := sup

(y,s)∈RN×R,0<r≤R0

(
 

Qr(y,s)

(Θ(A,Br(y))(x, t))
s
dxdt

) 1
s

≤ δ

where

Θ(A,Br(y))(x, t) := sup
ζ∈RN\{0}

|A(x, t, ζ)−ABr(y)(t, ζ)|
|ζ|

with ABr(y)(t, ζ) denoting the average of A(t, ., ζ) over the cylinder Br(y), i.e,

ABr(y)(t, ζ) :=

 

Br(y)

A(x, t, ζ)dx =
1

|Br(y)|

ˆ

Br(y)

A(x, t, ζ)dx.

The above condition was appeared in [19]. It is easily seen that the (δ,R0)−BMO
condition on A is satisfied when A is continuous or has small jump discontinuities with
respect to (x, t).
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In this paper, we denote M the Hardy-Littlewood maximal function defined for each
locally integrable f in R

N+1 by

M(f)(x, t) = sup
ρ>0

 

Q̃ρ(x,t)

|f(y, s)|dyds ∀(x, t) ∈ R
N+1.

We verify that M is bounded operator from L1(RN+1) to L1,∞(RN+1) and Ls(RN+1)
(Ls,∞(RN+1)) to itself, see [74, 75].

We recall that a positive function w ∈ L1
loc(R

N+1) is called an A∞ if there are two
positive constants C and ν such that

w(E) ≤ C

( |E|
|Q|

)ν

w(Q)

for every cylinder Q = Q̃ρ(x, t) and every measurable subsets E of Q. The pair (C, ν) is
called the A∞ constant of w and is denoted by [w]A∞ .

For a weight function w ∈ A∞, the weighted Lorentz spaces Lq,s(D, dw) with 0 < q < ∞,
0 < s ≤ ∞ and a Borel set D ⊂ R

N+1, is the set of measurable functions g on D such that

||g||Lq,s(D,dw) :=

(
q

ˆ ∞

0

(ρqw ({(x, t) ∈ D : |g(x, t)| > ρ})) s
q
dρ

ρ

)1/s

< ∞

if s < ∞;

||g||Lq,∞(D,dw) := sup
ρ>0

ρw ({(x, t) ∈ D : |g(x, t)| > ρ})1/q < ∞

if s = ∞. Here we write w(E) =
´

E
dw(x, t) =

´

E
w(x, t)dxdt for a measurable set E ⊂

R
N+1. Obviously, ||g||Lq,q(D,dw) = ||g||Lq(D,dw), thus we have Lq,q(D, dw) = Lq(D, dw). As

usual, when w ≡ 1 we simply write Lq,s(D) instead of Lq,s(D, dw).
We are now ready to state the next results of the paper.

Theorem 2.17 Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω = |µ| + |σ| ⊗ δ{t=0}. There exists
a distribution solution of (2.6) with data µ and σ such that if R

N\Ω satisfies uniformly
2−thick with constants c0, r0 then for any 1 ≤ p < θ and 0 < s ≤ ∞,

||M(|∇u|)||Lp,s(ΩT ) ≤ C1||M1[ω]||Lp,s(Q). (2.30)

Here θ = θ(N,Λ1,Λ1, c0) > 2 and C1 = C1(N,Λ1,Λ2, p, s, c0, T0/r0) and Q = Bdiam(Ω)(x0)×
(0, T ) which Ω ⊂ Bdiam(Ω)(x0).
Especially, if 1 < p < 2, then

||M(|∇u|)||Lp(ΩT ) ≤ C2

(
||G1[|µ|]||Lp(RN+1) + ||G 2

p−1[|σ|]||Lp(RN )

)
, (2.31)

where C2 = C2(N,Λ1,Λ2, p, c0, T0/r0).

Remark 2.18 If N+2
N+1 < p < 2, there hold

||G1[|µ|]||Lp(RN+1) ≤ C1||µ||
L

p(N+2)
N+2+p (ΩT )

and ||G 2
p−1[|σ|]||Lp(RN ) ≤ C1||σ||

L
pN

N+2−p (Ω)

for some C1 = C1(N, p). From (2.31) we obtain

|||∇u|||Lp(ΩT ) ≤ C2||µ||
L

p(N+2)
N+2+p (ΩT )

+ C2||σ||
L

pN
N+2−p (Ω)

provided
N + 2

N + 1
< p < 2.

We should mention that if σ ≡ 0, then

||M1[ω]||Lp,s(RN+1) ≤ C2||µ||
L

q(N+2)
N+2+q

,s
(ΩT )

.

and we get [7, Theorem 1.2] from estimate (2.30).
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In order to state the next results, we need to introduce a Lorentz-Morrey spaces Lq,s;θ
∗ (D)

involving ”calorie”, with Borel set D ⊂ R
N+1, is the set of measurable functions g on D

such that

||g||Lq,s;κ
∗ (D) := sup

0<ρ<diam(D),(x,t)∈D

ρ
κ−N−2

q ||g||Lq,s(Q̃ρ(x,t)∩D) < ∞,

where 0 < κ ≤ N + 2, 0 < q < ∞, 0 < s ≤ ∞. Clearly, Lq,s;N+2
∗ (D) = Lq,s(D). Moreover,

when q = s the space Lq,s;θ
∗ (D) will be denoted by Lq;θ

∗ (D).
The following theorem provides an estimate on gradient in Lorentz-Morrey spaces.

Theorem 2.19 Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω = |µ| + |σ| ⊗ δ{t=0}. There exists
a distribution solution of (2.6) with data µ and σ such that if R

N\Ω satisfies uniformly
2−thick with constants c0, r0 then for any 1 ≤ p < θ and 0 < s ≤ ∞, 2 − γ0 < γ < N + 2,
γ ≤ N+2

p + 1

||M (|∇u|) ||
L

p,s;p(γ−1)
∗ (ΩT )

≤ C1||Mγ [ω]||L∞(ΩT )

+ C2 sup
0<R≤T0,(y0,s0)∈ΩT

(
R

p(γ−1)−N−2
p ||M1[χQ̃R(y0,s0)

ω]||Lp,s(Q̃R(y0,s0))

)
(2.32)

Here θ is in Theorem 2.17, γ0 = γ0(N,Λ1,Λ1, c0) ∈ (0, 1/2] and C1 = C1(N,Λ1,Λ2, p, s, γ, c0, T0/r0),
C2 = C2(N,Λ1,Λ2, p, s, γ, c0). Besides, if γ

γ−1 < p < θ, 2− γ0 < γ < N +2, 0 < s ≤ ∞ and

µ ∈ L
(γ−1)p

γ ,
(γ−1)s

γ ;(γ−1)p
∗ (ΩT ), σ ≡ 0, then u is a unique renormalized solution satisfied

||M (|∇u|) ||
L

p,s;(γ−1)p
∗ (ΩT )

≤ C3||µ||
L

(γ−1)p
γ

,
(γ−1)s

γ
;(γ−1)p

∗ (ΩT )

(2.33)

where C3 = C3(N,Λ1,Λ2, p, s, γ, c0, T0/r0).

Theorem 2.20 Suppose that A satisfies (2.29). Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω = |µ|+
|σ| ⊗ δ{t=0}. There exists a distribution solution of (2.6) with data µ, σ such that following
holds. For any w ∈ A∞, 1 ≤ q < ∞, 0 < s ≤ ∞ one find δ = δ(N,Λ1,Λ2, q, s, [w]A∞) ∈
(0, 1) and s0 = s0(N,Λ1,Λ2) > 0 such that if Ω is (δ,R0)-Reifenberg flat domain Ω and
[A]R0

s0 ≤ δ for some R0 then

||M(|∇u|)||Lq,s(ΩT ,dw) ≤ C||M1[ω]||Lq,s(ΩT ,dw) (2.34)

Here C depends on N,Λ1,Λ2, q, s, [w]A∞ and T0/R0.

Next results are actually consequences of Theorem 2.20. For our purpose, we introduce
another Lorentz-Morrey spaces spaces Lq,s;θ

∗∗ (O1 ×O2), is the set of measurable functions g
on O1 ×O2 such that

||g||Lq,s;ϑ
∗∗ (O1×O2)

:= sup
0<ρ<diam(O1),x∈O1

ρ
ϑ−N

q ||g||Lq,s((Bρ(x)∩O1)×O2)) < ∞

where O1, O2 are Borel sets in R
N and R respectively, 0 < ϑ ≤ N , 0 < q < ∞, 0 < s ≤ ∞.

Obviously, Lq,s;N
∗∗ (D) = Lq,s(D). For simplicity of notation, we write Lq;ϑ

∗∗ (D) instead of

Lq,s;ϑ
∗∗ (D) when q = s. Moreover,

||g||Lq,q;ϑ
∗∗ (O1×O2)

= ||G||Lq;ϑ(O1)

where G(x) = ||g(x, .)||Lq(O1) and Lq;ϑ(O1) is the usual Morrey space, i.e the spaces of all
measurable functions f on O1 with

||f ||Lq;ϑ(O1) := sup
0<ρ<diam(O1),x∈O1

ρ
ϑ−N

q ||f ||Lq(Bρ(x)∩O1) < ∞.
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Theorem 2.21 Suppose that A satisfies (2.29). Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω =
|µ| + |σ| ⊗ δ{t=0}. Let s0 be in Theorem 2.20. There exists a distribution solution of (2.6)
with data µ, σ such that following holds.

a. For any 1 ≤ q < ∞, 0 < s ≤ ∞ and 0 < κ ≤ N + 2 one find δ = δ(N,Λ1,Λ2, q, s, κ) ∈
(0, 1) such that if Ω is (δ,R0)-Reifenberg flat domain Ω and [A]R0

s0 ≤ δ for some R0

then
||M(|∇u|)||Lq,s;κ

∗ (ΩT ) ≤ C1||M1[|ω|]||Lq,s;κ
∗ (ΩT ). (2.35)

Here C1 depend on N,Λ1,Λ2, q, s, κ and T0/R0.

b. For any 1 ≤ q < ∞, 0 < s ≤ ∞ and 0 < ϑ ≤ N one find δ = δ(N,Λ1,Λ2, q, s, ϑ) ∈ (0, 1)
such that if Ω is (δ,R0)-Reifenberg flat domain Ω and [A]R0

s0 ≤ δ for some R0 then

||M(|∇u|)||Lq,s;ϑ
∗∗ (ΩT ) ≤ C2||M1[|ω|]||Lq,s;ϑ

∗∗ (ΩT ). (2.36)

for some C2 = C2(N,Λ1,Λ2, q, s, ϑ, T0/R0). Especially, when q = s and 0 < ϑ <
min{N, q}, there holds for any ball Bρ ⊂ R

N

(
ˆ T

0

|oscBρ∩Ωu(t)|qdt
) 1

q

≤ C3ρ
1−ϑ

q ||M1[|ω|]||Lq;ϑ
∗∗ (ΩT ). (2.37)

for some C3 = C3(N,Λ1,Λ2, q, ϑ, T0/R0).

The following global capacitary estimates on gradient.

Theorem 2.22 Suppose that A satisfies (2.29). Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω =
|µ|+|σ|⊗δ{t=0}. Let s0 be in Theorem 2.20. There exists a distribution solution of (2.6) with
data µ, σ such that following holds. For any 1 < q < ∞, we find δ = δ(N,Λ1,Λ2, q) ∈ (0, 1)
and s0 = s0(N,Λ1,Λ2) > 0 such that if Ω is a (δ,R0)- Reifenberg flat domain and [A]R0

s0 ≤ δ
for some R0 then

sup
compact K⊂R

N+1

CapG1,q′ (K)>0

(
´

K∩ΩT
|∇u|qdxdt

CapG1,q′(K)

)
≤ C1 sup

compact K⊂R
N+1

CapG1,q′ (K)>0

(
ω(K)

CapG1,q′(K)

)q

, (2.38)

and if q > N+2
N+1 ,

sup
compact K⊂R

N+1

CapH1,q′ (K)>0

(
´

K∩ΩT
|∇u|qdxdt

CapH1,q′(K)

)
≤ C2 sup

compact K⊂R
N+1

CapH1,q′ (K)>0

(
ω(K)

CapH1,q′(K)

)q

. (2.39)

Where C1 = C1(N,Λ1,Λ2, q, T0/R0, T0) and C2 = C2(N,Λ1,Λ2, q, T0/R0).

Remark 2.23 We have if 1 < q < 2, then

C−1 sup
compact K⊂R

N+1

CapG1,q′ (K)>0

(
(|σ| ⊗ δ{t=0})(K)

CapG1,q′(K)

)
≤ sup

compact O⊂R
N

Cap
G2/q−1,q′ (O)>0

(
|µ|(K)

CapG2/q−1,q′(O)

)

≤ C sup
compact K⊂R

N+1

CapG1,q′ (K)>0

(
(|σ| ⊗ δ{t=0})(K)

CapG1,q′(K)

)

for C = C(N, q), if N+2
N+1 < q < 2, then above estimate is true when two capacities CapG1,q′ ,

,CapG2/q−1,q′ are replaced by CapH1,q′ ,CapI2/q−1,q′ respectively, see remark 4.34.
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Remark 2.24 Above results also hold when [A]R0
s is replaced by {A}R0

s :

{A}R0
s := sup

(y,s)∈RN×R,0<r≤R0

(
 

Qr(y,s)

(Θ(A,Qr(y, s))(x, t))
s
dxdt

) 1
s

≤ δ

where

Θ(A,Qr(y, s))(x, t) := sup
ζ∈RN\{0}

|A(x, t, ζ)−AQr(y,s)(ζ)|
|ζ|

with AQr(y,s)(ζ) denoting the average of A(., ., ζ) over the cylinder Qr(y, s), i.e,

AQr(y,s)(ζ) :=

 

Qr(y,s)

A(x, t, ζ)dxdt =
1

|Qr(y, s)|

ˆ

Qr(y,s)

A(x, t, ζ)dxdt.

Next results are corresponding estimates of gradient for domain R
N ×(0,∞) or whole RN+1.

Theorem 2.25 Let θ ∈ (2, N + 2) be in Theorem 2.17 and ω ∈ M(RN+1). There exists a
distribution solution u of (2.8) with data µ = ω such that the following statements hold

a. For any N+2
N+1 < p < θ and 0 < s ≤ ∞,

|||∇u|||Lp,s(RN+1) ≤ C1||M1[|ω|]||Lp,s(RN+1). (2.40)

for some C1 = C1(N,Λ1,Λ2, p, s).

b. For any N+2
N+1 < p < θ and 0 < s ≤ ∞, 2− γ0 < γ < N + 2 and γ ≤ N+2

p + 1

|||∇u|||
L

p,s;p(γ−1)
∗ (RN+1)

≤ C2||Mγ [|ω|]||L∞(RN+1)

+ C2 sup
R>0,(y0,s0)∈RN+1

(
R

p(γ−1)−N−2
p ||M1[χQ̃R(y0,s0)

|ω|]||Lp,s(Q̃R(y0,s0))

)
. (2.41)

Also, if ω ∈ L
(γ−1)p

γ ,
(γ−1)s

γ ;(γ−1)p
∗ (RN+1) with p > γ

γ−1 then

|||∇u|||
L

p,s;(γ−1)p
∗ (RN+1)

≤ C3||ω||
L

(γ−1)p
γ

,
(γ−1)s

γ
;(γ−1)p

∗ (RN+1)

(2.42)

for some γ0 = γ0(N,Λ1,Λ2) ∈ (0, 1
2 ] and Ci = Ci(N,Λ1,Λ2, p, s, γ), i = 2, 3.

c. The statement c in Theorem 2.5 is true.

Remark 2.26 Let s > 1. For ω ∈ M+(RN+1), I1[ω] ∈ Ls,∞(RN+1) implies I2[|ω|] < ∞
a.e in R

N+1 if and only if s ≤ N + 2.

Theorem 2.27 Suppose that A satisfies (2.29). Let s0 be in Theorem 2.20. Let ω ∈
M(RN+1) with I2[|ω|](x0, t0) < ∞ for some (x0, t0) ∈ R

N+1. There exists a distribution
solution of (2.8) with data µ = ω such that following statements hold,

a. For any w ∈ A∞, 1 ≤ q < ∞, 0 < s ≤ ∞ one find δ = δ(N,Λ1,Λ2, q, s, [w]A∞) ∈ (0, 1)
such that if [A]∞s0 ≤ δ then

|||∇u|||Lq,s(RN+1,dw) ≤ C1||M1[|ω|]||Lq,s(RN+1,dw) (2.43)

Here C1 depends on N,Λ1,Λ2, q, s, [w]A∞ .

b. For any N+2
N+1 < q < ∞, 0 < s ≤ ∞ and 0 < κ ≤ N+2 one find δ = δ(N,Λ1,Λ2, q, s, κ) ∈

(0, 1) such that if [A]∞s0 ≤ δ then

|||∇u|||Lq,s;κ
∗ (RN+1) ≤ C2||M1[|ω|]||Lq,s;κ

∗ (RN+1). (2.44)

Here C2 depends on N,Λ1,Λ2, q, s, κ.
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c. For any N+2
N+1 < q < ∞, 0 < s ≤ ∞ and 0 < ϑ ≤ N one find δ = δ(N,Λ1,Λ2, q, s, ϑ) ∈

(0, 1) such that if [A]∞s0 ≤ δ then

|||∇u|||Lq,s;ϑ
∗∗ (RN+1) ≤ C3||M1[|ω|]||Lq,s;ϑ

∗∗ (RN+1). (2.45)

Here C3 depends on N,Λ1,Λ2, q, s, ϑ. Especially, when q = s and 0 < ϑ < min{N, q},
there holds for any ball Bρ ⊂ R

N

(
ˆ

R

|oscBρ
u(t)|qdt

) 1
q

≤ C4ρ
1−ϑ

q ||M1[|ω|]||Lq;ϑ
∗∗ (RN+1). (2.46)

for some C4 = C4(N,Λ1,Λ2, q, ϑ).

d. For any N+2
N+1 < q < ∞, one find δ = δ(N,Λ1,Λ2, q) ∈ (0, 1) such that if [A]∞s0 ≤ δ then

sup
compact K⊂R

N+1

CapH1,q′ (K)>0

(´
K
|∇u|qdxdt

CapH1,q′(K)

)
≤ C5 sup

compact K⊂R
N+1

CapH1,q′ (K)>0

( |ω|(K)

CapH1,q′(K)

)q

, (2.47)

for some C5 = C5(N,Λ1,Λ2, q).

e. The statement c in Theorem 2.5 is true.

The following some estimate for norms of M1[ω] in Lq;κ
∗ (RN+1) and Lq;ϑ

∗∗ (RN+1)

Proposition 2.28 Let 1 < κ ≤ N + 2, 0 < ϑ ≤ N and q, q1 > 1. Suppose that µ ∈
M+(RN+1). Then M1[µ] ≤ 2N+2

I1[µ] and

a. If q > κ
κ−1 then

||I1[µ]||Lq;κ
∗ (RN+1) ≤ C1||µ||

L
qκ

q+κ
;κ

∗ (RN+1)
. (2.48)

Here C1 depends on N, q, κ.

b. If 1 < q < 2 then

||I1[µ](x, .)||Lq(R) ≤ I 2
q−1[µ1](x) (2.49)

where µ1 is a nonnegative radon measure in R
N defined by µ1(A) = µ(A×R) for every

Borel set A ⊂ R
N . In particular,

||I1[µ]||Lq;ϑ
∗∗ (RN+1) ≤ ||I 2

q−1[µ1]||Lq;ϑ(RN ) (2.50)

and if ϑ > 2−q
q−1 there holds

||I1[µ]||Lq;ϑ
∗∗ (RN+1) ≤ C2||µ1||

L
ϑq

ϑ+2−q
;ϑ
(RN )

(2.51)

for some C2 = C2(N, q, ϑ).

c. If 2q
q+2 < q1 ≤ q then

||I1[µ](x, .)||Lq(R) ≤ I 2
q+1− 2

q1

[µ2](x) (2.52)

where dµ2(x) = ||µ(x, .)||Lq1 (R)dx. In particular,

||I1[µ]||Lq;ϑ
∗∗ (RN+1) ≤ ||I 2

q+1− 2
q1

[µ2]||Lq;ϑ(RN ) (2.53)

and if ϑ > 1
q−1

(
2 + q − 2q

q1

)
there holds

||I1[µ]||Lq;ϑ
∗∗ (RN+1) ≤ C3||µ2||

L
ϑqq1

(ϑ+2+q)q1−2q
;ϑ
(RN )

= C3||µ||
L

ϑqq1
(ϑ+2+q)q1−2q

;ϑ
(RN ,Lq1 (R))

(2.54)

for some C3 = C3(N, q, ϑ).
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The proof of Proposition 2.28 will performed at the end of section 8.

Remark 2.29 Let 1 < q < 2, 0 < ϑ ≤ N and σ ∈ M(RN ). From (2.50) and (2.51) in
Proposition 2.28 we assert that

||I1[|σ| ⊗ δ{t=0}]||Lq;ϑ
∗∗ (RN+1) ≤ ||I 2

q−1[|σ|]||Lq;ϑ(RN )

and

||I1[|σ| ⊗ δ{t=0}]||Lq;ϑ
∗∗ (RN+1) ≤ C1||σ||

L
ϑq

ϑ+2−q
;ϑ
(RN )

if ϑ >
2− q

q − 1

for some C1 = C1(N, q, ϑ).
Furthermore, from preceding inequality and (2.54) in Proposition 2.28 we can state that

||I1[|σ| ⊗ δ{t=0} + |µ|]||Lq;ϑ
∗∗ (RN+1) ≤ C2||σ||

L
ϑq

ϑ+2−q
;ϑ
(RN )

+ C2||µ||
L

ϑqq1
(ϑ+2+q)q1−2q

;ϑ
(RN ,Lq1 (R))

provided

1 < q1 ≤ q < 2,

max

{
2− q

q − 1
,

1

q − 1

(
2 + q − 2q

q1

)}
< ϑ ≤ N

for some C2 = C2(N, q, ϑ). Where

||µ||Lq2;ϑ(RN ,Lq1 (R)) = sup
ρ>0,x∈RN

ρ
ϑ−N
q2

(
ˆ

Bρ(x)

(
ˆ

R

|µ(y, t)|q1dt
) q2

q1

dy

) 1
q2

with q2 = ϑqq1
(ϑ+2+q)q1−2q .

Final part, we prove the existence solutions for the quasilinear Riccati type parabolic
problems 




ut − div(A(x, t,∇u)) = |∇u|q + µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(2.55)

and {
ut − div (A(x, t,∇u)) = |∇u|q + µ in R

N × (0,∞),
u(0) = σ in R

N ,
(2.56)

and

ut − div (A(x, t,∇u)) = |∇u|q + µ in R
N+1, (2.57)

where q > 1.
The following result is considered in subcritical case this means 1 < q < N+2

N+1 , to obtain
existence solutions in this case we need data µ, σ to be finite measures and small enough.

Theorem 2.30 Let 1 < q < N+2
N+1 and µ ∈ Mb(ΩT ), σ ∈ Mb(Ω). There exists ε0 =

ε0(N,Λ1,Λ2, q) > 0 such that if

|ΩT |−1+ q′
N+2 (|µ|(ΩT ) + |ω|(Ω)) ≤ ε0,

the problem (2.55) has a distribution solution u, satisfied

|||∇u|||
L

N+2
N+1

,∞
(ΩT )

≤ C (|µ|(ΩT ) + |ω|(Ω))

for some C = C(N,Λ1,Λ2, q) > 0.
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In the next results are concerned in critical and supercritical case.

Theorem 2.31 Suppose that RN\Ω satisfies uniformly 2−thick with constants c0, r0. Let

θ be as in Theorem 2.17, q ∈
(

N+2
N+1 ,

N+2+θ
N+2

)
, µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω). Assume that

σ ≡ 0 when q ≥ N+4
N+2 . There exists ε0 = ε0(N,Λ1,Λ2, q, c0, T0/r0) > 0 such that if

||I1[|µ|]||L(N+2)(q−1),∞(RN+1) + ||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN ) ≤ ε0

then the problem (2.55) has a distribution solution u satisfying

|||∇u|||L(q−1)(N+2),∞(ΩT ) ≤ C||I1[|µ|]||L(N+2)(q−1),∞(RN+1)+C||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN )

(2.58)
for some C = C(N,Λ1,Λ2, q, c0, T0/r0).

We can see that a necessary condition for existence σ ∈ Mb(Ω)\{0} with M1[|σ| ⊗ δ{t=0}] ∈
L(N+2)(q−1),∞(RN+1) is N+2

N+1 ≤ q < N+4
N+2 .

Theorem 2.32 Suppose that A satisfies (2.29). Let s0 be the constant in Theorem 2.20.
Let q ≥ N+2

N+1 and µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω = |µ| + |σ| ⊗ δ{t=0}. There exist

δ = δ(N,Λ1,Λ2, q) ∈ (0, 1) such that Ω is (δ,R0)-Reifenberg flat domain Ω and [A]R0
s0 ≤ δ

for some R0 and the following holds. The problem (2.55) has a distribution solution u if one
of the following three cases is true:

Case a. A is a linear operator and

ω(K) ≤ C1CapG1,q′(K) for all compact subset K ⊂ R
N+1 (2.59)

with a constant C1 small enough.

Case b. there holds

ω(K) ≤ C2CapG1,(q+ε)′(K) for all compact subset K ⊂ R
N+1 (2.60)

where ε > 0 and C2 is a constant small enough.

Case c.





q > N+2
N+1 ,

q ≥ N+4
N+2 if σ ≡ 0,

||I1[|µ|]||L(N+2)(q−1),∞(RN+1), ||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN )

is small enough.

A solution u corresponds to Case a, b and c satisfying

ˆ

K

|∇u|qdxdt ≤ C3C
q
1CapG1,q′(K) for all compact subset K ⊂ R

N+1,

ˆ

K

|∇u|q+εdxdt ≤ C4C
q+ε
2 CapG1,(q+ε)′(K) for all compact subset K ⊂ R

N+1,

and

|||∇u|||L(N+2)(q−1),∞(ΩT )

≤ C5||I1[|µ|]||L(N+2)(q−1),∞(RN+1) + C5||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN )

respectively. Where C3, C4, C5 are constants depended on N,Λ1,Λ2, q, ε, T0/R0, besides
C3, C4 also depend on T0.
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Since CapG1,s(Br(0) × {t = 0}) = 0 for all r > 0 and 0 < s ≤ 2, see Remark 4.13 thus if
there is σ ∈ Mb(Ω)\{0} satisfying (|σ| ⊗ δ{t=0})(E) ≤ CapG1,s(E) for all compact subset

E ⊂ R
N+1 then we must have s > 2.

The above results are not sharp in the case A is a nonlinear operator. However, if A is
Holder continuous with respect to x we can prove that problem (2.55) has a distribution
solution with data having compact support in ΩT .

Theorem 2.33 Let Ω be a bounded open subset in R
N such that the boundary of Ω is in

C1,β with β ∈ (0, 1). Suppose that A satisfies (2.29) and

|A(x, t, ζ)−A(y, t, ζ)| ≤ Λ3|x− y|β |ζ| (2.61)

for every x, y ∈ Ω and t > 0, ζ ∈ R
N . Let Ω′ ⊂⊂ Ω and set d = dist (Ω′,Ω) > 0. Then,

there exist C = C(N, q,Λ1,Λ2,Λ3, β, d,Ω, T ) > 0 and Λ = Λ(N, q,Λ1,Λ2,Λ3, β, d,Ω, T ) > 0
such that for any µ ∈ Mb(ΩT ), σ ∈ Mb(Ω) with supp (µ) ⊂ Ω′ × [0, T ], supp (σ) ⊂ Ω′, the
problem (2.55) has a distribution solution u, satisfying

|∇u(x, t)| ≤ ΛI1[|µ|+ |σ| ⊗ δ{t=0}](x, t) a.e (x, t) ∈ ΩT (2.62)

provided that one of the following two cases is true:

Case a. 1 < q < 2 and

|µ|(E) ≤ CCapG1,q′(E) and |σ|(O) ≤ CCapG 2
q
−1

,q′(O) (2.63)

for all compact subsets E ⊂ R
N+1 and O ⊂ R

N .

Case b. q ≥ 2 and σ ≡ 0,
|µ|(E) ≤ CCapG1,q′(E) (2.64)

for all compact subset E ⊂ R
N+1.

Remark 2.34 If q > N+2
N+1 , µ ≡ 0 and Case a. satisfies then (2.62) gives the decay

estimate:
sup
x∈Ω

|∇u(x, t)| ≤ c1t
− 1

2(q−1) ∀ 0 < t < T,

since |σ|(Bρ(x)) ≤ c2(T0)ρ
N− 2−q

q−1 for any Bρ(x) ⊂ R
N .

We have an important Proposition.

Proposition 2.35 All the existence results considered the bounded domain ΩT have re-
cently been presented in above Theorems, if σ ∈ L1(Ω) then the solutions obtained in those
Theorems are renormalized solutions.

Theorem 2.36 Let θ ∈ (2, N + 2) be as in Theorem 2.17, q ∈
(

N+2
N+1 ,

N+2+θ
N+2

)
and ω ∈

M(RN+1) . There exists C1 = C1(N,Λ1,Λ2, q) > 0 such that if

||I1[|ω|]||L(N+2)(q−1),∞(RN+1) ≤ C1

then the problem (2.57) has a distribution solution u ∈ L1
loc(R;W

1,1
loc (R

N )) such that

|||∇u|||L(q−1)(N+2),∞(RN+1) ≤ C2||I1[|ω|]||L(N+2)(q−1),∞(RN+1) (2.65)

for some C2 = C2(N,Λ1,Λ2, q). Furthermore, when ω = µ+ σ ⊗ δ{t=0} with µ ∈ M(RN ×
(0,∞)) and σ ∈ M(RN ) then u = 0 in R

N × (−∞, 0) and u|
RN×[0,∞) is a distribution

solution to problem (2.56).
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Theorem 2.37 Suppose that A satisfies (2.29). Let q > N+2
N+1 and ω ∈ M(RN+1) such that

I2[|ω|](x0, t0) < ∞ for some (x0, t0) ∈ R
N+1. Let s0 be the constant in Theorem 2.20, δ in

Theorem 2.32. There exists C1 = C1(N,Λ1,Λ2, q) > 0 such that if [A]∞s0 ≤ δ and

||I1[|ω|]||L(N+2)(q−1),∞(RN+1) ≤ C1 (2.66)

then the problem (2.57) has a distribution solution u satisfying (2.65). Furthermore, when
ω = µ+ σ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ) then u = 0 in R

N × (−∞, 0)
and u|

RN×[0,∞) is a distribution solution to problem (2.56).

From Remark 2.26, we see that if q ≤ 2 then (2.66) follows the assumption I2[|ω|](x0, t0) < ∞
for some (x0, t0) ∈ R

N+1.

When A is independent of space variable, we can improve the result of Theorem 2.37 as
follows:

Theorem 2.38 Suppose that A is independent of space variable and satisfies (2.29). Let
q > N+2

N+1 and ω ∈ M(RN+1). Assume that I2[|ω|](x0, t0) < ∞ for some (x0, t0) ∈ R
N+1.

There exist constants Λ = Λ(N,Λ1,Λ2, q) and C = C(N,Λ1,Λ2, q) such that the problem

ut − div (A(t,∇u)) = |∇u|q + ω in R
N+1 (2.67)

has a distribution solution u, satisfying

|∇u| ≤ ΛI1[ω] in R
N+1 (2.68)

provided that for all compact subset E ⊂ R
N+1

|ω|(E) ≤ CCapH1,q′(E) (2.69)

Furthermore, when ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ) then
u = 0 in R

N × (−∞, 0) and u|
RN×[0,∞) is a distribution solution to problem

{
ut − div (A(t,∇u)) = |∇u|q + µ in R

N × (0,∞),
u(0) = σ in R

N .
(2.70)

Remark 2.39 If N+2
N+1 < q < 2, ω = µ+ σ ⊗ δ{t=0} satisfies (2.69) if and only if

|µ|(E) ≤ C ′CapH1,q′(E) and |σ|(O) ≤ C ′CapI 2
q
−1

,q′(O) (2.71)

for all compact subsets E ⊂ R
N+1 and O ⊂ R

N , where C ′ = C ′(N, q).

Remark 2.40 If ω = σ ⊗ δ{t=0} then (2.68) gives the decay estimate:

sup
x∈RN

|∇u(x, t)| ≤ c1t
− 1

2(q−1) ∀ 0 < t < T,

since |σ|(Bρ(x)) ≤ c2ρ
N− 2−q

q−1 for any Bρ(x) ⊂ R
N .

3 The notion of solutions and some properties

Although the notion of renormalized solutions becomes more and more familiar in the
theory of quasilinear parabolic equations with measure data, it is still necessary to present
below some main aspects concerning this notion. Let Ω be a bounded domain in R

N ,
(a, b) ⊂⊂ R. If µ ∈ Mb(Ω × (a, b)), we denote by µ+ and µ− respectively its positive and
negative part. We denote by M0(Ω × (a, b)) the space of measures in Ω × (a, b) which are
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absolutely continuous with respect to the C2-capacity defined on a compact setK ⊂ Ω×(a, b)
by

C2(K,Ω× (a, b)) = inf {||ϕ||W : ϕ ≥ χK , ϕ ∈ C∞
c (Ω× (a, b))} . (3.1)

where W = {z : z ∈ L2(a, b,H1
0 (Ω)), zt ∈ L2(a, b,H−1(Ω))} endowed with norm ||ϕ||W =

||ϕ||L2(a,b,H1
0 (Ω)) + ||ϕt||L2(a,b,H−1(Ω)) and χK is the characteristic function of K.

We also denote Ms(Ω×(a, b)) the space of measures in Ω×(a, b) with support on a set of
zero C2-capacity. Classically, any µ ∈ Mb(Ω× (a, b)) can be written in a unique way under
the form µ = µ0 + µs where µ0 ∈ M0(Ω× (a, b))∩Mb(Ω× (a, b)) and µs ∈ Ms(Ω× (a, b)).
We recall that any µ0 ∈ M0(Ω× (a, b))∩Mb(Ω× (a, b)) can be decomposed under the form
µ0 = f − divg+ ht where f ∈ L1(Ω× (a, b)), g ∈ L2(Ω× (a, b),RN ) and h ∈ L2(a, b,H1

0 (Ω))
and (f, g, h) is said to be decomposition of µ0. Set µ̂0 = µ0 − ht = f − divg. In the general
case µ̂0 /∈ M(Ω× (a, b)), but we write, for convenience,
ˆ

Ω×(a,b)

wdµ̂0 :=

ˆ

Ω×(a,b)

(fw + g.∇w)dxdt, ∀w ∈ L2(a, b,H1
0 (Ω))∩L∞(Ω× (a, b)).

However, for σ ∈ Mb(Ω) and t0 ∈ (a, b) then σ ⊗ δ{t=t0} ∈ M0(Ω× (a, b)) if and only if
σ ∈ L1(Ω), see [24]. We also have that for σ ∈ Mb(Ω), σ ⊗ χ[a,b] ∈ M0(Ω × (a, b)) if and
only if σ is absolutely continuous with respect to the CapG1,2-capacity, see [13].

For k > 0 and s ∈ R we set Tk(s) = max{min{s, k},−k}. We recall that if u is a
measurable function defined and finite a.e. in Ω×(a, b), such that Tk(u) ∈ L2(a, b,H1

0 (Ω)) for
any k > 0, there exists a measurable function v : Ω×(a, b) → R

N such that∇Tk(u) = χ|u|≤kv
a.e. in Ω× (a, b) and for all k > 0. We define the gradient ∇u of u by v = ∇u.
We recall the definition of a renormalized solution given in [63].

Definition 3.1 Suppose that B ∈ C(R × R
N ,R). Let µ = µ0 + µs ∈ Mb(Ω × (a, b)) and

σ ∈ L1(Ω). A measurable function u is a renormalized solution of




ut − div(A(x, t,∇u)) = B(u,∇u) + µ in Ω× (a, b),
u = 0 on ∂Ω× (a, b),
u(a) = σ in Ω,

(3.2)

if there exists a decomposition (f, g, h) of µ0 such that

v = u− h ∈ Ls(a, b,W 1,s
0 (Ω)) ∩ L∞(a, b, L1(Ω)) ∀s ∈

[
1,

N + 2

N + 1

)

Tk(v) ∈ L2(a, b,H1
0 (Ω)) ∀k > 0, B(u,∇u) ∈ L1(Ω× (a, b)) (3.3)

and:

(i) for any S ∈ W 2,∞(R) such that S′ has compact support on R, and S(0) = 0,

−
ˆ

Ω

S(σ)ϕ(a)dx−
ˆ

Ω×(a,b)

ϕtS(v)dxdt+

ˆ

Ω×(a,b)

S′(v)A(x, t,∇u)∇ϕdxdt

+

ˆ

Ω×(a,b)

S′′(v)ϕA(x, t,∇u).∇vdxdt =

ˆ

Ω×(a,b)

S′(v)ϕB(u,∇u)dxdt+

ˆ

Ω×(a,b)

S′(v)ϕdµ̂0,

(3.4)

for any ϕ ∈ L2(a, b,H1
0 (Ω))∩L∞(Ω×(a, b)) such that ϕt ∈ L2(a, b,H−1(Ω))+L1(Ω×(a, b))

and ϕ(., b) = 0;

(ii) for any φ ∈ C(Ω× [a, b]),

lim
m→∞

1

m

ˆ

{m≦v<2m}
φA(x, t,∇u)∇vdxdt =

ˆ

Ω×(a,b)

φdµ+
s and (3.5)
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lim
m→∞

1

m

ˆ

{−m≥v>−2m}

φA(x, t,∇u)∇vdxdt =

ˆ

Ω×(a,b)

φdµ−
s . (3.6)

Remark 3.2 If µ ∈ L1(Ω× (a, b)), then we have the following estimates:

||u||
L

N+2
N

,∞(Ω×(a,b))
≤ C1

(
||σ||L1(Ω) + |µ|(Ω× (a, b))

)
and

|||∇u|||
L

N+2
N+1

,∞
(Ω×(a,b))

≤ C1

(
||σ||L1(Ω) + |µ|(Ω× (a, b))

)
,

where C1 = C1(N,Λ1,Λ2), see [13, Remark 4.9].
In particular,

||u||L1(Ω×(a,b)) ≤ C2(diam(Ω) + (b− a)1/2)2
(
||σ||L1(Ω) + |µ|(Ω× (a, b))

)
and

|||∇u|||L1(Ω×(a,b)) ≤ C2(diam(Ω) + (b− a)1/2)
(
||σ||L1(Ω) + |µ|(Ω× (a, b))

)
,

where C2 = C2(N,Λ1,Λ2).

Remark 3.3 It is easy to see that u is a weak solution of problem (3.2) in Ω × (a, b) with
µ ∈ L2(Ω× (a, b)), σ ∈ H1

0 (Ω) and B ≡ 0 then U = χ[a,b]u is a unique renormalized solution
of 




Ut − div (A(x, t,∇U)) = χ(a,b)µ+ (χ[a,b)σ)t in Ω× (c, b),
U = 0 on ∂Ω× (c, b),
U(c) = 0 in Ω,

for any c < a.

Remark 3.4 Let Ω′ ⊂⊂ Ω and a < a′ < b′ < b. For a nonnegative function η ∈ C∞
c (Ω′ ×

(a′, b′)), from (3.4) we have

(ηS(v))t − ηtS(v) + S′(v)A(x, t,∇u)∇η − div (S′(v)ηA(x, t,∇u))

+ S′′(v)ηA(x, t,∇u)∇v = S′(v)ηf +∇ (S′(v)η) .g − div (S′(v)ηg)

in D′(Ω′ × (a′, b′)) Thus, (ηS(v))t ∈ L2(a′, b′, H−1(Ω′)) + L1(D) and we have the following
estimate

|| (ηS(v))t ||L2(a′,b′,H−1(Ω′))+L1(D) ≤ C||S||W 2,∞(R)

(
||ηtv||L1(D)

+ |||∇u||∇η|||L1(D) + ||η|∇u|χ|v|≤M ||L2(D) + ||η|∇u||∇v|χ|v|≤M ||L2(D)

+ ||ηf ||L1(D) + ||η|∇u|2χ|v|≤M |||L1(D) + ||η|g|2||L1(D) +||η|g|||L2(D)

)
(3.7)

with D = Ω′ × (a′, b′) and supp(S′) ⊂ [−M,M ].

We recall the following important results, see [13].

Proposition 3.5 Let {µn} be a bounded in Mb(Ω× (a, b)) and σn a bounded in L1(Ω). Let
un be a renormalized solution of (2.6) with data µn = µn,0+µn,s relative to a decomposition
(fn, gn, hn) of µn,0 and initial data σn. If {fn} is bounded in L1(ΩT ), {gn} bounded in
L2(Ω× (a, b),RN ) and {hn} convergent in L2(a, b,H1

0 (Ω)), then, up to a subsequence, {un}
converges to a function u in L1(Ω× (a, b)). Moreover, if {µn} is a bounded in L1(Ω× (a, b))

then {un} is convergent in Ls(a, b,W 1,s
0 (Ω)) for any s ∈

[
1, N+2

N+1

)
.

We say that a sequence of bounded measures {µn} in Ω× (a, b) converges to some bounded
measure µ in Ω× (a, b) in the narrow topology of measures if

lim
n→∞

ˆ

Ω×(a,b)

ϕdµn =

ˆ

Ω×(a,b)

ϕdµ for all ϕ ∈ C(Ω× (a, b)) ∩ L∞(Ω× (a, b))).

We recall the following fundamental stability result of [13].
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Theorem 3.6 Suppose that B ≡ 0. Let σ ∈ L1(Ω) and

µ = f − div g + ht + µ+
s − µ−

s ∈ Mb(Ω× (a, b)),

with f ∈ L1(Ω× (a, b)), g ∈ L2(Ω× (a, b),RN ), h ∈ L2(a, b,H1
0 (Ω)) and µ+

s , µ
−
s ∈ M+

s (Ω×
(a, b)). Let σn ∈ L1(Ω) and

µn = fn − div gn + (hn)t + ρn − ηn ∈ Mb(Ω× (a, b))

with fn ∈ L1(Ω × (a, b)), gn ∈ L2(Ω × (a, b),RN ), hn ∈ L2(a, b,H1
0 (Ω)), and ρn, ηn ∈

M+
b (Ω× (a, b)), such that

ρn = ρ1n − div ρ2n + ρn,s, ηn = η1n − div η2n + ηn,s,

with ρ1n, η
1
n ∈ L1(Ω× (a, b)), ρ2n, η

2
n ∈ L2(Ω× (a, b),RN ) and ρn,s, ηn,s ∈ M+

s (Ω× (a, b)).
Assume that {µn} is a bounded in Mb(Ω×(a, b)), {σn}, {fn}, {gn}, {hn} converge to σ, f, g, h
in L1(Ω),weakly in L1(Ω × (a, b)),in L2(Ω × (a, b),RN ),in L2(a, b,H1

0 (Ω)) respectively and
{ρn}, {ηn} converge to µ+

s , µ
−
s in the narrow topology of measures; and

{
ρ1n
}
,
{
η1n
}

are

bounded in L1(Ω× (a, b)), and
{
ρ2n
}
,
{
η2n
}
bounded in L2(Ω× (a, b),RN ).

Let {un} be a sequence of renormalized solutions of





(un)t − div(A(x, t,∇un)) = µn in Ω× (a, b),
un = 0 on ∂Ω× (a, b),
un(a) = σn in Ω,

(3.8)

relative to the decomposition (fn + ρ1n − η1n, gn + ρ2n − η2n, hn) of µn,0. Let vn = un − hn.
Then up to a subsequence, {un} converges a.e. in Ω × (a, b) to a renormalized solution u
of (3.2), and {vn} converges a.e. in Ω × (a, b) to v = u − h. Moreover, {∇un} , {∇vn}
converge respectively to ∇u,∇v a.e in Ω × (a, b), and {Tk(vn)} converges to Tk(v) strongly
in L2(a, b,H1

0 (Ω)) for any k > 0.

In order to apply above Theorem, we need some the following properties concerning approx-
imate measures of µ ∈ M+

b (Ω× (a, b)), see [13].

Proposition 3.7 Let µ = µ0 + µs ∈ M+
b (Ω× (a, b)) with µ0 ∈ M0(Ω× (a, b)) ∩M+

b (Ω×
(a, b)) and µs ∈ M+

s (Ω × (a, b)). Let {ϕn} be sequence of standard mollifiers in R
N+1.

Then, there exist a decomposition (f, g, h) of µ0 and fn, gn, hn ∈ C∞
c (Ω × (a, b)), µn,s ∈

C∞
c (Ω × (a, b)) ∩M+

b (Ω × (a, b)) such that {fn} , {gn} , {hn} strongly converge to f, g, h in
L1(Ω× (a, b)), L2(Ω× (a, b),RN ) and L2(a, b,H1

0 (Ω)), µn = fn − div gn + (hn)t + µn,s, µn,s

converge to µ, µs in the narrow topology respectively, 0 ≤ µn ≤ ϕn ∗ µ and

||fn||L1(Ω×(a,b)) + ‖gn‖L2(Ω×(a,b),RN ) + ||hn||L2(a,b,H1
0 (Ω)) + µn,s(Ω× (a, b)) ≤ 2µ(Ω× (a, b)).

Proposition 3.8 Let µ = µ0 + µs, µn = µn,0 + µn,s ∈ M+
b (Ω × (a, b)) with µ0, µn,0 ∈

M0(Ω× (a, b))∩M+
b (Ω× (a, b)) and µn,s, µs ∈ M+

s (Ω× (a, b)) such that {µn} nondecreas-
ingly converges to µ in Mb(Ω× (a, b)). Then, {µn,s} is nondecreasing and converging to µs

in Mb(Ω × (a, b)) and there exist decompositions (f, g, h) of µ0, (fn, gn, hn) of µn,0 such
that {fn} , {gn} , {hn} strongly converge to f, g, h in L1(Ω × (a, b)), L2(Ω × (a, b),RN ) and
L2(a, b,H1

0 (Ω)) respectively satisfying

||fn||L1(Ω×(a,b)) + ‖gn‖L2(Ω×(a,b),RN ) + ||hn||L2(a,b,H1
0 (Ω)) + µn,s(Ω× (a, b)) ≤ 2µ(Ω× (a, b)).

Remark 3.9 For 0 < ρ ≤ 1
3 min{supx∈Ω d(x, ∂Ω), (b− a)1/2}, set

Ωj
ρ = {x ∈ Ω : d(x, ∂Ω) > jρ} × (a+ (jρ)2, a+ ((b− a)1/2 − jρ)2) for j = 0, ..., kρ,
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where kρ =
[
min{supx∈Ω d(x,∂Ω),(b−a)1/2}

2ρ

]
.

We can choose fn, gn, hn in above two Propositions such that for any j = 1, ..., kρ,

||fn||L1(Ωj
ρ)
+ ‖gn‖L2(Ωj

ρ,RN ) + |||hn|+ |∇hn|||L2(Ωj
ρ)

≤ 2µ(Ωj−1
ρ ) ∀n ∈ N (3.9)

In fact, set µj = χ
Ω

kρ−j
ρ \Ωkρ−j+1

ρ
µ if j = 1, ..., kρ − 1, µj = χΩ×(a,b)\Ω1

ρ
µ if j = kρ and

µj = χ
Ω

kρ
ρ
µ if j = 0. From the proof of above two Propositions in [13], for any ε > 0 we

can assume supports of fn, gn, hn containing in supp(µ) + Q̃ε(0, 0). Thus, for any µ = µj

we have f j
n, g

j
n, h

j
n correspondingly such that their supports contain in Ω

kρ−j−1/2
ρ,T \Ωkρ−j+3/2

ρ,T

if j = 1, ..., kρ − 1 and ΩT \Ω3/2
ρ,T if j = kρ and Ω

kρ−1/2
ρ,T if j = 0. By µ =

∑kρ

j=0 µj, thus it is

allowed to choose fn =
∑kρ

j=0 f
j
n, fn =

∑kρ

j=0 g
j
n and hn =

∑kρ

j=0 h
j
n and (3.9) satisfies since

||fn||L1(Ωj
ρ)
+ ‖gn‖L2(Ωj

ρ,RN ) + |||hn|+ |∇hn|||L2(Ωj
ρ)

≤
kρ∑

i=0

(
||f i

n||L1(Ωj
ρ)
+
∥∥gin
∥∥
L2(Ωj

ρ,RN )
+ |||hi

n|+ |∇hi
n|||L2(Ωj

ρ)

)

=

kρ−j+1∑

i=0

(
||f i

n||L1(Ωj
ρ)
+
∥∥gin
∥∥
L2(Ωj

ρ,RN )
+ |||hi

n|+ |∇hi
n|||L2(Ωj

ρ)

)

≤
kρ−j+1∑

i=j−1

2µj(Ω× (a, b)) = 2µ(Ωj−1
ρ ).

Definition 3.10 Let µ ∈ Mb(Ω × (a, b)) and σ ∈ Mb(Ω). A measurable function u is a

distribution solution to problem (3.2) if u ∈ Ls(a, b,W 1,s
0 (Ω)) for any s ∈

[
1, N+2

N+1

)
and

B(u,∇u) ∈ L1(Ω× (a, b)) such that

−
ˆ

Ω×(a,b)

uϕtdxdt+

ˆ

Ω×(a,b)

A(x, t,∇u)∇ϕdxdt

=

ˆ

Ω×(a,b)

B(u,∇u)ϕdxdt+

ˆ

Ω×(a,b)

ϕdµ+

ˆ

Ω

ϕ(a)dσ

for every ϕ ∈ C1
c (Ω× [a, b)).

Remark 3.11 Let σ′ ∈ Mb(Ω) and a′ ∈ (a, b), set ω = µ+σ′⊗δ{t=a′}. If u is a distribution

solution to problem (3.2) with data ω and σ = 0 such that supp (µ) ⊂ Ω × [a′, b], and
u = 0, B(u,∇u) = 0 in Ω× (a, a′), then ũ := u|Ω×[a′,b) is a distribution solution to problem

(3.2) in Ω× (a′, b) with data µ and σ′. Indeed, for any ϕ ∈ C1
c (Ω× [a′, b)) we defined

ϕ̃(x, t) =

{
ϕ(x, t) if (x, t) ∈ Ω× [a′, b),
(1 + ε0)(t− a′)ϕt(x, a

′) + ϕ(x, (1 + ε0)a
′ − ε0t) if (x, t) ∈ Ω× [a, a′),

where ε0 ∈
(
0, b−a′

a′−a

)
.

Clearly, ϕ̃ ∈ C1
c (Ω× [a, b)), thus we have

−
ˆ

Ω×(a,b)

uϕ̃tdxdt+

ˆ

Ω×(a,b)

A(x, t,∇u)∇ϕ̃dxdt

=

ˆ

Ω×(a,b)

B(u,∇u)ϕ̃dxdt+

ˆ

Ω×(a,b)

ϕ̃dω,
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which implies

−
ˆ

Ω×(a′,b)
ũϕtdxdt+

ˆ

Ω×(a′,b)
A(x, t,∇ũ)∇ϕdxdt

=

ˆ

Ω×(a′,b)
B(ũ,∇ũ)ϕdxdt+

ˆ

Ω×(a′,b)
ϕdµ+

ˆ

Ω

ϕ(a′)dσ′.

Definition 3.12 Let µ ∈ M(RN × [a,+∞)), for a ∈ R and σ ∈ M(RN ). A measurable
function u is a distribution solution to problem

{
ut − div (A(x, t,∇u)) = B(u,∇u) + µ in R

N × (a,+∞)
u(a) = σ in R

N (3.10)

if u ∈ Ls
loc(a,∞,W 1,s

loc (R
N )) for any s ∈

[
1, N+2

N+1

)
and B(u,∇u) ∈ L1

loc(R
N × [a,∞)) such

that

−
ˆ

RN×(a,∞)

uϕtdxdt+

ˆ

RN×(a,∞)

A(x, t,∇u)∇ϕdxdt

=

ˆ

RN×(a,∞)

B(u,∇u)ϕdxdt+

ˆ

RN×(a,∞)

ϕdµ+

ˆ

RN

ϕ(a)dσ

for every ϕ ∈ C1
c (R

N × [a,∞)).

Definition 3.13 Suppose that A satisfies (2.3), (2.4). Let ω ∈ M(RN+1). A measurable
function u is a distribution solution to problem

ut − div (A(x, t,∇u)) = B(u,∇u) + ω in R
N+1 (3.11)

if u ∈ Ls
loc(R;W

1,s
loc (R

N )) for any s ∈
[
1, N+2

N+1

)
and B(u,∇u) ∈ L1

loc(R
N+1) such that

−
ˆ

RN+1

uϕtdxdt+

ˆ

RN+1

A(x, t,∇u)∇ϕdxdt =

ˆ

RN+1

B(u,∇u)ϕdxdt+

ˆ

RN+1

ϕdµ

for every ϕ ∈ C1
c (R

N+1).

Remark 3.14 Let µ ∈ M(RN × [a,+∞)), for a ∈ R and σ ∈ M(RN ). If u is a distribution
solution to problem (3.11) with data ω = µ + σ ⊗ δ{t=a} such that u = 0, B(u,∇u) = 0
in R

N × (−∞, a), then ũ := u|
RN×[a,∞) is a distribution solution to problem (3.10) in

R
N × (a,∞) with data µ and σ, see Remark 3.11.

To prove the existence distribution solution of problem (3.10) we need the following results.
First, we have local estimates of the renormalized solution which get from [13, Proposition
4.8 ].

Proposition 3.15 Let u, v be in Definition 3.1. There exists C = C(Λ1,Λ2) > 0 such that
for k ≥ 1 and 0 ≤ η ∈ C∞

c (Ω× (a, b))

ˆ

|v|≤k

η|∇u|2dxdt+
ˆ

|v|≤k

η|∇v|2dxdt ≤ CkA (3.12)

where

A = ||vηt||L1(Ω×(a,b)) + |||∇u||∇η|||L1(Ω×(a,b)) + ||ηf ||L1(Ω×(a,b)) + ||η|g|2||L1(Ω×(a,b))

+ |||∇η||g|||L1(Ω×(a,b)) + ||η|∇h|2||L1(Ω×(a,b)) +

ˆ

Ω×(a,b)

ηd|µs|.
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For our purpose, we recall a time-regularization of functions w belonging to L2(a, b,H1
0 (Ω)),

introduced in [43], used in [22], [15], [8]. For ν > 0 we define

〈w〉ν(x, t) = ν

ˆ min{t,b}

a

w(x, s)eν(s−t)ds for all (x, t) ∈ Ω× (a, b).

We have that 〈w〉ν converges to w strongly in L2(a, b,H1
0 (Ω)) and ||〈w〉ν ||Lq(Ω×(a,b)) ≤

||w||Lq(Ω×(a,b)) for every q ∈ [1,∞]. Moreover,

(〈w〉ν)t = ν (w − 〈w〉ν) in the sense of distributions

if w ∈ L∞(Ω× (a, b)) then
ˆ

Ω×(a,b)

(〈w〉ν)tϕdxdt = ν

ˆ

Ω×(a,b)

(w − 〈w〉ν)ϕdxdt for all ϕ ∈ L2(a, b,H1
0 (Ω)).

Proposition 3.16 Let q0 > 1 and 0 < α < 1/2 such that q0 > α + 1. Let L : R → R be
continuous and nondecreasing such that L(0) = 0. If u is a solution of





ut − div(A(x, t,∇u)) + L(u) = µ in Ω× (a, b),
u = 0 on ∂Ω× (a, b),
u(a) = 0 in Ω,

(3.13)

with µ ∈ C∞
c (Ω× (a, b)) there exists C1 > 0 depending on Λ1,Λ2, α, q0 such that for 0 ≤ η ∈

C∞
c (D) where D = Ω′ × (a′, b′), Ω′ ⊂⊂ Ω and a < a′ < b′ < b, then

1

k

ˆ

D

|∇Tk(u)|2ηdxdt

+

ˆ

D

|∇u|2
(|u|+ 1)α+1

ηdxdt+ |||∇u||∇η|||L1(D) + ||L(u)η||L1(D) ≤ CB (3.14)

where q1 = q0−α−1
2q0

,

B = ||ηt(|u|+ 1)||L1(D) +

ˆ

D

(|u|+ 1)q0ηdxdt+

ˆ

D

|∇η1/q1 |q1dxdt+
ˆ

D

ηd|µ|.

Furthermore, for Tk(w) ∈ L2(a′, b′, H1
0 (Ω

′)), the Landes-time approximation 〈Tk(w)〉ν of the
truncate function Tk(w) in D then for any ε ∈ (0, 1) and ν > 0

ν

ˆ

D

η (Tk(w)− 〈Tk(w)〉ν)Tε(Tk(u)− 〈Tk(w)〉ν)dxdt

+

ˆ

D

ηA(x, t,∇Tk(u))∇Tε(Tk(u)− 〈Tk(w)〉ν)dxdt ≤ C2ε(1 + k)B. (3.15)

for some C2 = C2(Λ1,Λ2, α, q0).

Proposition 3.17 Let q0 > 1, µn = µn,0 + µn,s ∈ Mb(Bn(0) × (−n2, n2)). Let un be a
renormalized solution of





(un)t − div(A(x, t,∇un)) = µn in Bn(0)× (−n2, n2),
un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 in Bn(0),

(3.16)

relative to the decomposition (fn, gn, hn) of µn,0 satisfying (3.15) in Proposition 3.16 with
L ≡ 0. Assume that for any m ∈ N and α ∈ (0, 1/2), Dm := Bm(0)× (−m2,m2)

1

k
|||∇Tk(u)|2||L1(Dm) + |||∇u|2(|u|+ 1)−α−1||L1(Dm) + |||∇u|||L1(Dm) + |µn|(Dm)

+ ||fn||L1(Dm) + ||gn||L2(Dm,RN ) + |||hn|+ |∇hn|||L2(Dm) + ||un||Lq0 (Dm) ≤ C(m,α)
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for all n ≥ m and hn is convergent in L1
loc(R

N+1). Then, there exist subsequence of {un},
still denoted by {un} such that un converges to u a.e in R

N+1 and in Ls
loc(R;W

1,s
loc (R

N )) for
any s ∈ [1, N+2

N+1 ).

Proofs of above two Propositions are given in the Appendix section. The following result is
as a consequence of Proposition 3.17.

Corollary 3.18 Let µn ∈ L1(Bn(0)× (−n2, n2)). Let un be a unique renormalized solution
of problem 3.16. Assume that for any m ∈ N,

sup
n≥m

|µn|(Bm(0)× (−m2,m2)) < ∞ and sup
n≥m

ˆ

Bm(0)×(−m2,m2)

|un|q0dxdt < ∞.

then there exist subsequence of {un}, still denoted by it such that un converges to u a.e in
R

N+1 and in Ls
loc(R;W

1,s
loc (R

N )) for any s ∈ [1, N+2
N+1 ).

Finally, we would like to present a technical lemma which will be used several times in the
paper, specially in the proof of Theorem 2.17, 2.19 and 2.20. It is a consequence of Vitali
Covering Lemma, a proof of lemma can be seen in [20, 19, 52].

Lemma 3.19 Let Ω be a (R0, δ)- Reifenberg flat domain with δ < 1/4 and let w be an A∞
weight. Suppose that the sequence of balls {Br(yi)}Li=1 with centers yi ∈ Ω and a common
radius r ≤ R0/4 covers Ω. Set si = T − ir2/2 for all i = 0, 1, ..., [ 2Tr2 ]. Let E ⊂ F ⊂ ΩT

be measurable sets for which there exists 0 < ε < 1 such that w(E) < εw(Q̃r(yi, sj)) for all

i = 1, ..., L, j = 0, 1, ..., [ 2Tr2 ]; and for all (x, t) ∈ ΩT , ρ ∈ (0, 2r], we have Q̃ρ(x, t) ∩ ΩT ⊂ F

if w(E ∩ Q̃ρ(x, t)) ≥ εw(Q̃ρ(x, t)). Then w(E) ≤ Bεw(F ) for a constant B depending only
on N and [w]A∞ .

Clearly, the Lemma contains the following two Lemmas

Lemma 3.20 Let 0 < ε < 1, R > 0 and cylinder Q̃R := Q̃R(x0, t0) for some (x0, t0) ∈
R

N+1 and w ∈ A∞. let E ⊂ F ⊂ Q̃R be two measurable sets in R
N+1 with w(E) <

εw(Q̃R) and satisfying the following property: for all (x, t) ∈ Q̃R and r ∈ (0, R], we have
Q̃r(x, t)∩ Q̃R ⊂ F provided w(E∩ Q̃r(x, t)) ≥ εw(Q̃r(x, t)). Then w(E) ≤ Bεw(F ) for some
B = B(N, [w]A∞).

Lemma 3.21 Let 0 < ε < 1 and R > R′ > 0 and let E ⊂ F ⊂ Q = BR(x0) × (a, b) be
two measurable sets in R

N+1 with |E| < ε|Q̃R′ | and satisfying the following property: for all
(x, t) ∈ Q and r ∈ (0, R′], we have Qr(x, t) ∩ Q ⊂ F if |E ∩ Q̃r(x, t)| ≥ ε|Q̃r(x, t)|. Then
|E| ≤ Bε|F | for a constant B depending only on N .

4 Estimates on Potential

In this section, we will develop nonlinear potential theory corresponding to Quasilinear
parabolic equations.

Now we introduction the Wolff parabolic potential of µ ∈ M+(RN+1) by

W
R
α,p[µ](x, t) =

ˆ R

0

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1

dρ

ρ
for any (x, t) ∈ R

N+1

where α > 0, 1 < p < α−1(N + 2) and 0 < R ≤ ∞. For convenience, Wα,p[µ] := W
∞
α,p[µ].

The following result is an extension of [34, Theorem 1.1], [14, Proposition 2.2] to Parabolic
potential.
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Theorem 4.1 Let α > 0, 1 < p < α−1(N + 2) and w ∈ A∞, µ ∈ M+(RN+1). There exist
constants C1, C2 > 0 and ε0 ∈ (0, 1) depending on N,α, p, [w]A∞ such that for any λ > 0
and ε ∈ (0, ε0)

w({WR
α,p[µ] > aλ, (MR

αp[µ])
1

p−1 ≤ ελ}) ≤ C1 exp(−C2ε
−1)w({WR

α,p[µ] > λ}) (4.1)

where a = 2 + 3
N+2−αp

p−1 .

Proof of Theorem 4.1. We only consider case R < ∞. Let {Q̃R(xj , tj)} be a cover
of R

N+1 such that
∑

j χQ̃R(xj ,tj)
≤ M in R

N+1 for some constant M = M(N) > 0.

It is enough to show that there exist constants c1, c2 > 0 and ε0 ∈ (0, 1) depending on
N,α, p, [w]A∞ such that for any Q ∈ {Q̃R(xj , tj)}, λ > 0 and ε ∈ (0, ε0)

w(Q ∩ {WR
α,p[µ] > aλ, (MR

αp[µ])
1

p−1 ≤ ελ}) ≤ c1 exp(−c2ε
−1)w(Q ∩ {WR

α,p[µ] > λ}). (4.2)

Fix λ > 0 and 0 < ε < 1/10. We set

E = Q ∩ {WR
α,p[µ] > aλ, (MR

αp[µ])
1

p−1 ≤ ελ} and F = Q ∩ {WR
α,p[µ] > λ}.

Thanks to Lemma 3.20 we will get (4.2) if we verify two the following claims:

w(E) ≤ c3 exp(−c4ε
−1)w(Q) (4.3)

and for any (x, t) ∈ Q, 0 < r ≤ R,

w(E ∩ Q̃r(x, t)) < c5 exp(−c6ε
−1)w(Q̃r(x, t)) (4.4)

provided that Q̃r(x, t) ∩Q ∩ F c 6= ∅ and E ∩ Q̃r(x, t) 6= ∅.
where constants c3, c4, c5 and c6 depend on N,α, p and [w]A∞ .
Claim (4.3): Set

gk(x, t) =

ˆ 2−k+1R

2−kR

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1

dρ

ρ
.

We have for m ∈ N and (x, t) ∈ E

W
R
α,p[µ](x, t) =

∞∑

k=m+1

gk(x, t) +

ˆ R

2−mR

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1

dρ

ρ

≤
∞∑

k=m+1

gk(x, t) +m(MR
αp[µ](x, t))

1
p−1 .

≤
∞∑

k=m+1

gk(x, t) +mελ.

We deduce that for β > 0, m ∈ N

|E| ≤ |Q ∩ {
∞∑

k=m+1

gk > (1−mε)λ}|

= |Q ∩ {
∞∑

k=m+1

gk >

∞∑

k=m+1

2−β(k−m−1)(1− 2−β)(1−mε)λ}|

≤
∞∑

k=m+1

|Q ∩ {gk > 2−β(k−m−1)(1− 2−β)(1−mε)λ}|.
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We can assume that (x0, t0) ∈ Q, (MR
αp[µ])

1
p−1 (x0, t0) ≤ ελ. Thus, by computing see [14,

Proof of Proposition 2.2 ] we have for any k ∈ N

|Q ∩ {gk > s}| ≤ c7
sp−1

2−kαp |Q| (ελ)p−1.

Consequently,

|E| ≤
∞∑

k=m+1

c7(
2−β(k−m−1)(1− 2−β)(1−mε)λ

)p−1 2
−kαp |Q| (ελ)p−1

≤ c72
−(m+1)αp

(
ε

1−mε

)p−1

|Q|
(
1− 2−β

)−p+1
∞∑

k=m+1

2(β(p−1)−αp)(k−m−1).

If we choose ε−1 − 2 < m ≤ ε−1 − 1 and β = β(α, p) so that β(p− 1)− αp < 0, we obtain

|E| ≤ c8 exp(−αp ln(2)ε−1) |Q| .

Thus, we get (4.3).
Claim (4.4). Take (x, t) ∈ Q and 0 < r ≤ R. Now assume that Q̃r(x, t) ∩Q ∩ F c 6= ∅ and
E ∩ Q̃r(x, t) 6= ∅ i.e, there exist (x1, t1), (x2, t2) ∈ Q̃r(x, t)∩Q such that WR

α,p[µ](x1, t1) ≤ λ

and (MR
αp[µ](x2, t2))

1
p−1 ≤ ελ. We need to prove that

w(E ∩ Q̃r(x, t)) < εw(Q̃r(x, t)).

To do this, for all (y, s) ∈ E ∩ Q̃r(x, t). Q̃ρ(y, s) ⊂ Q̃3ρ(x1, t1) if ρ > r.
If r ≤ R/3,

W
R
α,p[µ](y, s) = W

r
α,p[µ](y, s) +

ˆ R/3

r

(
µ(Q̃ρ(y, s))

ρN+2−αp

) 1
p−1

dρ

ρ
+

ˆ R

R/3

(
µ(Q̃ρ(y, s))

ρN+2−αp

) 1
p−1

dρ

ρ

≤ W
r
α,p[µ](y, s) +

ˆ R/3

r

(
µ(Q̃3ρ(x1, t1))

ρN+2−αp

) 1
p−1

dρ

ρ
+ 2(MR

αp[µ](y, s))
1

p−1

≤ W
r
α,p[µ](y, s) + 3

N+2−αp
p−1 λ+ 2ελ.

which follows Wr
α,p[µ](y, s) > λ.

If r ≥ R/3

W
R
α,p[µ](y, s) ≤ W

r
α,p[µ](y, s) +

ˆ R

R/3

(
µ(Q̃ρ(y, s))

ρN+2−αp

) 1
p−1

dρ

ρ

≤ W
r
α,p[µ](y, s) + 2ελ.

which follows Wr
α,p[µ](y, s) > λ.

Thus,

w(E ∩ Q̃r(x, t)) ≤ w(Q̃r(x, t) ∩ {Wr
α,p[µ] > λ})

Since (x2, t2) ∈ Q̃r(x, t), (M
R
αp[µ](x2, t2))

1
p−1 ≤ ελ, so as above we also obtain

w(Q̃r(x, t) ∩ {Wr
α,p[µ] > λ}) ≤ c9 exp(−c10ε

−1)w(Q̃r(x, t))

which implies (4.4). This completes the proof of the Theorem.
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Theorem 4.2 Let α > 0, 1 < p < α−1(N+2), p−1 < q < ∞ and 0 < s ≤ ∞ and w ∈ A∞.
There holds

C−1||(MR
αp[µ])

1
p−1 ||Lq,s(RN+1,dw) ≤ ||WR

α,p[µ]||Lq,s(RN+1,dw) ≤ C||(MR
αp[µ])

1
p−1 ||Lq,s(RN+1,dw)

(4.5)
for all µ ∈ M+(RN+1) and R ∈ (0,∞] where C is a positive constant depending only on
N,α, p, q, s and [w]A∞ .

Proof. From (4.1) in Theorem (4.1), we have for 0 < s < ∞

||WR
α,p[µ]||sLq,s(RN+1,dw) = asq

ˆ ∞

0

λsw({WR
α,p[µ] > aλ}) s

q
dλ

λ

≤ c1 exp(−c2ε
−1)q

ˆ ∞

0

λsw({WR
α,p[µ] > λ}) s

q
dλ

λ
+ c3s

ˆ ∞

0

λsw({(MR
αp[µ])

1
p−1 > ελ}) s

q
dλ

λ

= c1 exp(−c2ε
−1)||WR

α,p[µ]||sLq,s(RN+1,dw) + c3ε
−s||(MR

αp[µ])
1

p−1 ||sLq,s(RN+1,dw).

Choose 0 < ε < ε0 such that c1 exp(−c2ε
−1) < 1/2 we get

||WR
α,p[µ]||sLq,s(RN+1,dw) ≤ c4||(MR

αp[µ])
1

p−1 ||sLq,s(RN+1,dw).

Similarly, we also get above inequality in case s = ∞. So, we proved the right-hand side
inequality of (4.5).
To complete the proof, we prove the left-hand side inequality of (4.5). Since for every
(x, t) ∈ R

N+1

(WR
αp[µ](x, t))

1
p−1 ≤ c5


W

R
α,p[µ](x, t) +

(
µ(Q̃2R(x, t))

RN+2−αp

) 1
p−1


 and

(
µ(Q̃R/2(x, t))

RN+2−αp

) 1
p−1

≤ c6W
R
α,p[µ](x, t),

thus it is enough to show that for any λ > 0

w





(x, t) :

(
µ(Q̃2R(x, t))

RN+2−αp

) 1
p−1

> λ






 ≤ c7w





(x, t) :

(
µ(Q̃R/2(x, t))

RN+2−αp

) 1
p−1

> c8λ






 .

(4.6)

Let {Qj} = {Q̃R/4(xj , tj)} be a cover of RN+1 such that
∑

j χQj
≤ M1 in R

N+1 and for

any Qj ∈ {Qj}, there exist Qj,1, ..., Qj,M2
∈ {Qj} with Qj + Q̃2R(0, 0) ⊂

M2⋃
k=1

Qj,k for some

integer constants M1 = M1(N),M2 = M2(N) > 0. Then,

w





(x, t) :

(
µ(Q̃2R(x, t))

RN+2−αp

) 1
p−1

> λ






 ≤

∑

j

w





(x, t) :

(
µ(Q̃2R(x, t))

RN+2−αp

) 1
p−1

> λ



 ∩Qj




≤
∑

j

w

({
(x, t) :

M2∑

k=1

µ(Qj,k)

RN+2−αp
> λp−1

}
∩Qj

)

≤
∑

j

M2∑

k=1

w

({
(x, t) :

(
µ(Qj,k)

RN+2−αp

) 1
p−1

> M
−1/(p−1)
2 λ

}
∩Qj

)

=
∑

j

M2∑

k=1

aj,kw(Qj)
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where aj,k = 1 if
(

µ(Qj,k)
RN+2−αp

) 1
p−1

> M
−1/(p−1)
2 λ and aj,k = 0 if otherwise.

Using the strong doubling property of w, there is c9 = c9(N, [w]A∞) such that w(Qj) ≤

c9w(Qj,k). On the other hand, if aj,k = 1 thenQj,k ⊂
{
(x, t) :

(
µ(Q̃R/2(x,t))

RN+2−αp

) 1
p−1

> M
−1/(p−1)
2 λ

}
.

Therefore,

w





(x, t) :

(
µ(Q̃2R(x, t))

RN+2−αp

) 1
p−1

> λ






 ≤

∑

j

M2∑

k=1

c9aj,kw(Qj,k)

≤
∑

j

M2∑

k=1

c9w





(x, t) :

(
µ(Q̃R/2(x, t))

RN+2−αp

) 1
p−1

> M
−1/(p−1)
2 λ



 ∩Qj,k




≤
∑

j

M2c9w





(x, t) :

(
µ(Q̃R/2(x, t))

RN+2−αp

) 1
p−1

> M
−1/(p−1)
2 λ



 ∩Qj




which implies (4.6) since
∑

j χQj ≤ M1 in R
N+1.

Theorem 4.3 Let 0 < αp < N + 2 and w ∈ A∞ There exist C1, C2 > 0 depending on
N,α, p and [w]A∞ such that for any µ ∈ M+(RN+1), any cylinder Q̃ρ ⊂ R

N+1 there holds

1

w(Q̃2ρ)

ˆ

Q̃2ρ

exp
(
C1W

R
α,p[µQ̃ρ

](x, t)
)
dw(x, t) ≤ C2 (4.7)

provided
∥∥∥MR

αp[µQ̃ρ
]
∥∥∥
L∞(Q̃ρ)

≤ 1, where µQ̃ρ
= χQ̃ρ

µ.

Proof. Assume that ||MR
αp[µQ̃ρ

]||L∞(Q̃ρ)
≤ 1. We apply (4.2) to µQ̃ρ

. Then, choose ε = λ−1

for all λ ≥ λ0 := max{ε−1
0 , N+2−αp

p−1 }, we obtain

w({WR
α,p[µ] > aλ} ∩ Q̃2ρ) ≤ Mc1 exp(−c2ε

−1)w(Q̃2ρ) ∀ λ ≥ λ0,

since
{
W

R
α,p[µQ̃ρ

] > λ
}
⊂ Q̃2ρ. This can be written under the form

w({WR
α,p[µ] > aλ} ∩ Q̃2ρ) ≤

(
χ(0,t0] +Mc1 exp(−c2ε

−1)
)
w(Q̃2ρ)

for all λ > 0. Therefore, we get (4.7).

In what follows, we need some estimates on Wolff parabolic potential:

Proposition 4.4 Let p > 1, 0 < αp < N + 2 and q > 1, αpq < N + 2. There exist C1, C2

such that

||Wα,p[µ]||
L

(N+2)(p−1)
N+2−αp

,∞
(RN+1)

≤ C1(µ(R
N+1))

1
p−1 ∀ µ ∈ M+

b (R
N+1), (4.8)

||Wα,p[µ]||
L

q(N+2)(p−1)
N+2−αpq

,∞
(RN+1)

≤ C2||µ||
1

p−1

Lq,∞(RN+1)
∀ µ ∈ Lq,∞(RN+1), µ ≥ 0 (4.9)

and

||Wα,p[µ]||
L

q(N+2)(p−1)
N+2−αpq (RN+1)

≤ C2||µ||
1

p−1

Lq(RN+1)
∀ µ ∈ Lq(RN+1), µ ≥ 0 (4.10)

In particular, for s > (p−1)(N+2)
N+2−αp , we define F (µ) := (Wα,p[µ])

s
for all µ ∈ M+

b (R
N+1).

Then,

||F (µ)||
L

(N+2)(s−p+1)
αsp (RN+1)

≤ C3||µ||
s

p−1

L
(N+2)(s−p+1)

αsp (RN+1)

and

||F (µ)||
L

(N+2)(s−p+1)
αsp

,∞
(RN+1)

≤ C3||µ||
s

p−1

L
(N+2)(s−p+1)

αsp
,∞

(RN+1)

for some constant Ci = Ci(N, p, α, s) for i = 3, 4.
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Proof. Let s ≥ 1 such that αsp < N + 2. It is known that if µ ∈ Ls,∞(RN+1) then

|µ|(Q̃ρ(x, t)) ≤ c1||µ||Ls,∞(RN+1)ρ
N+2
s′ ∀ ρ > 0.

Thus for δ = ||µ||
s

N+2

Ls,∞(RN+1)
(M(µ)(x, t))

− s
N+2 we have

Wα,p[µ](x, t) =

ˆ δ

0

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1

dρ

ρ
+

ˆ ∞

δ

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1

dρ

ρ

≤ c2 (M(µ)(x, t))
1

p−1 δ
αp
p−1 + c2||µ||

1
p−1

Ls,∞(RN+1)
δ−

N+2−αsp
s(p−1)

= c3 (M(µ)(x, t))
N+2−αsp

(p−1)(N+2) ||µ||
αsp

(p−1)(N+2)

Ls,∞(RN+1)
.

So, for any λ > 0

|{Wα,p[µ] > λ}| ≤ |{M(µ) > c4||µ||
− αsp

N+2−αsp

Ls,∞(RN+1)
λ

(p−1)(N+2)
N+2−αsp }|.

Hence, sinceM is bounded fromM+
b (R

N+1) to L1,∞(RN+1) and Lq(RN+1) (Lq,∞(RN+1) resp.)
to itself, we get the result.

Remark 4.5 Assume that αp = N + 2 and R > 0. As above we also have for any ε > 0

W
R
α,p[µ](x, t) ≤ C1,ε max

{
(|µ|(RN+1))

1
p−1 ,

(
(M(µ)(x, t))ε(|µ|(RN+1))

αp
p−1Rεαp

) 1
αp+ε(p−1)

}

where C1,ε = C1(N,α, p, ε).

Therefore, for any λ > Cε(|µ|(RN+1))
1

p−1 ,

|{WR
α,p[µ] > λ}| ≤ C2,ε

(
(|µ|(RN+1))

1
p−1

λ

)αp+ε(p−1)
ε

Rαp (4.11)

where C2,ε = C2(N,α, p, ε). In particular, if µ ∈ M+
b (R

N+1) then W
R
α,p[µ] ∈ Ls

loc(R
N+1)

for all s > 0.

Remark 4.6 Assume that p, q > 1, 0 < αpq < N + 2. As in [56, Theorem 3], it is easy to
prove that if w ∈ A q(N+2−α)

N+2−αpq
, i.e 0 < w ∈ L1

loc(R
N+1) and for any Q̃ρ(y, s) ⊂ R

N+1

sup
Q̃ρ(y,s)⊂RN+1



(
 

Q̃ρ(y,s)

wdxdt

)(
 

Q̃ρ(y,s)

w− N+2−αpq
(q−1)(N+2) dxdt

) (q−1)(N+2)
N+2−αpq


 = C1 < ∞

then

(
ˆ

RN+1

(Mαp[|f |])
(N+2)q

N+2−αpq wdxdt

)N+2−αpq
(N+2)q

≤ C2

(
ˆ

RN+1

|f |qw1− αpq
N+2 dxdt

) 1
q

for some a constant C2 = C2(N,αp, q, C1).
Therefore, from (4.5) in Theorem 4.2 we get a weighted version of (4.10)

(
ˆ

RN+1

(Wα,p[|f |])
(N+2)(p−1)q
N+2−αpq wdxdt

)N+2−αpq
(N+2)q

≤ C2

(
ˆ

RN+1

|f |pw1− αp
N+2 dxdt

) 1
p

.

The following another version of (4.10) in the Lorentz-Morrey spaces involving calorie.
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Proposition 4.7 Let p, q > 1, and 0 < αpq < θ ≤ N + 2. There exists a constant C > 0
such that

|| (Wα,p[|µ|])p−1 ||
L

θq
θ−αpq

;θ
(RN+1)

≤ C||µ||Lq;θ(RN+1) ∀µ ∈ Lq;θ(RN+1) (4.12)

Proof. As the proof of Proposition 4.4 we have

Wα,p[|µ|] ≤ c1
(
Mθ/q[|µ|]

) αpq
θ(p−1) (M[|µ|])

θ−αpq
θ(p−1) .

Since Mθ/q[|µ|] ≤ c2 (Mθ[|µ|q])1/q, above inequality becomes

Wα,p[µ] ≤ c3 (Mθ[|µ|q])
αp

θ(p−1) (M[µ])
θ−αpq
θ(p−1) . (4.13)

Take Q̃ρ(y, s) ⊂ R
N+1, we have

ˆ

Q̃ρ(y,s)

(Wα,p[µ])
θq(p−1)
θ−αpq dxdt ≤ c4

(
ˆ

Q̃ρ(y,s)

(
Wα,p[χQ̃2ρ(y,s)

µ]
) θq(p−1)

θ−αpq

dxdt

+

ˆ

Q̃ρ(y,s)

(
Wα,p[χ(Q̃2ρ(y,s))c

µ]
) θq(p−1)

θ−αpq

dxdt

)

= A+B.

Using inequality (4.13) and boundless M from Lq(RN+1) to itself, yield

A ≤ c5

ˆ

RN+1

(Mθ[|µ|q])
αq

θ−αpq

(
M[χQ̃2ρ(y,s)

µ]
)q

dxdt

≤ c6||µ||
αq2

θ−αpq

Lq;θ(RN+1)

ˆ

χQ̃2ρ(y,s)

|µ|qdxdt

≤ c7||µ||
θq

θ−αpq

Lq;θ(RN+1)
ρN+2−θ.

On the other hand, since |µ|(Q̃r(x, t)) ≤ c8||µ||Lq;θ(RN+1)r
N+2− θ

q for all Q̃r(x, t) ⊂ R
N+1,

B ≤
ˆ

Q̃ρ(y,s)



ˆ ∞

ρ

(
|µ|(Q̃r(x, t))

rN+2−αp

) 1
p−1

dr

r




θq(p−1)
θ−αpq

dxdt

≤ c9

ˆ

Q̃ρ(y,s)

(
ˆ ∞

ρ

(
||µ||Lq;θ(RN+1)r

− θ
q+α

) 1
p−1 dr

r

) θq(p−1)
θ−αpq

dxdt

≤ c10||µ||
θq

θ−αpq

Lq;θ(RN+1)
ρN+2−θ.

Therefore,

ˆ

Q̃ρ(y,s)

(Wα,p[µ])
θq(p−1)
θ−αpq dxdt ≤ c11||µ||

θq
θ−αpq

Lq;θ(RN+1)
ρN+2−θ.

which follows (4.12).
In the next result we state a series of equivalent norms concerning potentials Iα[µ], I

R
α [µ],Hα[µ],Gα[µ].

Proposition 4.8 Let q > 1, 0 < α < N + 2 and R > 0. There exist constants C1 =
C1(N,α, q) and C2 = C2(N,α, q, R) such that the following statements hold
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a. for any µ ∈ M+(RN+1)

C−1
1 ||Iα[µ]||Lq(RN+1) ≤ ||Hα[µ]||Lq(RN+1) ≤ C1||Iα[µ]||Lq(RN+1) and (4.14)

C−1||Iα[µ]||Lq(RN+1) ≤ ||
∨
Hα[µ]||Lq(RN+1) ≤ C||Iα[µ]||Lq(RN+1). (4.15)

b. for any µ ∈ M+(RN+1)

C−1
2 ||IRα [µ]||Lq(RN+1) ≤ ||Gα[µ]||Lq(RN+1) ≤ C2||IRα [µ]||Lq(RN+1) and (4.16)

C−1
2 ||IRα [µ]||Lq(RN+1) ≤ ||

∨
Gα[µ]||Lq(RN+1) ≤ C2||IRα [µ]||Lq(RN+1). (4.17)

where
∨
Hα[µ] is the backward parabolic Riesz potential, defined by

∨
Hα[µ](x, t) =

∨
Hα ∗ µ(x, t) =

ˆ

RN+1

Hα(x− y, s− t)dµ(y, s),

and
∨
Gα[µ] is the backward parabolic Bessel potential:

∨
Gα[µ](x, t) =

∨
Gα ∗ µ(x, t) =

ˆ

RN+1

Gα(y − x, s− t)dµ(y, s).

Proof. a. We have:

c−1
1

t
N+2−α

2

χt>0χ|x|≤2
√
t ≤ Hα(x, t) ≤

c1

max{|x|,
√
2|t|}N+2−α

which implies

c−1
2

ˆ ∞

0

χ
Br(0)×( r2

4 ,r2)
(x, t)

rN+2−α

dr

r
≤ Hα(x, t) ≤ c2

ˆ ∞

0

χQ̃r(0,0)
(x, t)

rN+2−α

dr

r

Thus,

c−1
2

ˆ ∞

0

µ
(
B(x, r)× (t− r2, t− r2

4 )
)

rN+2−α

dr

r
≤ Hα[µ](x, t) ≤ c2Iα[µ](x, t) (4.18)

Thanks to Theorem 4.2 we will finish the proof of (4.14) when we show that

ˆ

R



ˆ ∞

0

µ
(
B(x, r)× (t− r2, t− r2

4 )
)

rN+2−α

dr

r




q

dt ≥ c3

ˆ

R

ˆ +∞

0

(
µ(Q̃r(x, t))

rN+2−α

)q
dr

r
dt.

Indeed, we have for rk = ( 2√
3
)−k,

(
ˆ ∞

0

µ
(
B(x, r)× (t− r2, t− r2/4)

)

rN+2−α

dr

r

)q

≥ c4

( ∞∑

k=−∞

µ
(
B(x, rk)× (t− r2k, t− 1

3r
2
k)
)

rN+2−α
k

)q

≥ c4

∞∑

k=−∞

(
µ
(
B(x, rk)× (t− r2k, t− 1

3r
2
k)
)

rN+2−α
k

)q

.
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Thus,

ˆ

R

(
ˆ ∞

0

µ
(
B(x, r)× (t− r2, t− 1

4r
2)
)

rN+2−α

dr

r

)q

dt

≥ c4

∞∑

k=−∞

ˆ

R

(
µ
(
B(x, rk)× (t− r2k, t− 1

3r
2
k)
)

rN+2−α
k

)q

dt

= c4

∞∑

k=−∞

ˆ

R

(
µ
(
B(x, rk)× (t− 1

3r
2
k, t+

1
3r

2
k)
)

rN+2−α
k

)q

dt

≥ c5

ˆ

R

ˆ +∞

0

(
µ(Q̃r(x, t))

rN+2−α

)q
dr

r
dt.

Similarly, we also can prove (4.15).
b. Obviously

c−1
6 exp(−4R2)

t
N+2−α

2

χ0<t<4R2χ|x|≤2
√
t ≤ Gα(x, t)

≤ c6

max{|x|,
√

2|t|}N+2−α
χQ̃R/2(0,0)

(x, t) +
c6

RN+2−α
exp

(
−max{|x|,

√
2|t|}

)
.

Thus, we can assert that

c7(R)

ˆ 2R

0

χ
Br(0)×( r2

4 ,r2)
(x, t)

rN+2−α

dr

r
≤ Gα(x, t) ≤ c8

ˆ R

0

χQ̃r(0,0)
(x, t)

rN+2−α

dr

r

+ c9(R)

ˆ

RN+1

exp
(
−max{|y|,

√
2|s|}

)
χQ̃R/2(0,0)

(x− y, t− s)dyds.

Immediately, we get

c7(R)

ˆ 2R

0

µ
(
B(x, r)× (t− r2, t− r2

4 )
)

rN+2−α

dr

r
≤ Gα[µ](x, t) ≤ c8I

R
α [µ](x, t) + c9(R)F (x, t),

(4.19)

where F (x, t) =
´

RN+1 exp
(
−max{|y|,

√
2|s|}

)
µ
(
Q̃R/2(x− y, t− s)

)
dyds.

As above, we can show that

ˆ ∞

0



ˆ 2R

0

µ
(
B(x, r)× (t− r2, t− r2

4 )
)

rN+2−α

dr

r




q

dt ≥ c10

ˆ ∞

0

ˆ R

0

(
µ(Q̃r(x, t))

rN+2−α

)q
dr

r
.

Thus, thank to Theorem 4.2 we get the left-hand side inequality of (4.16).

To show the right-hand side of (4.16), we use µ
(
Q̃R/2(x− y, t− s)

)
≤ c10R

−(N+2−α)
I
R
α [µ](x−

y, t− s) and Young inequality

||Gα[µ]||Lq(RN+1) ≤ c8||IRα [µ]||Lq(RN+1) + c9(R)||F ||Lq(RN+1)

≤ c8||IRα [µ]||Lq(RN+1) + c11(R)||IRα [µ]||Lq(RN+1)

ˆ

RN+1

exp
(
−max{|x|,

√
2|t|}

)
dxdt

= c12(R)||IRα [µ]||Lq(RN+1).

Similarly, we also can prove (4.17). This completes the proof of the Proposition.
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Remark 4.9 Assume that 0 < α < N+2. From (4.8) in Proposition 4.4 and ||Gα[µ]||L1(RN+1) ≤
c1µ(R

N+1) we deduce that for 1 ≤ s < N+2
N+2−α

||Gα[µ]||Ls(RN+1) ≤ c2µ(R
N+1) ∀ µ ∈ M+

b (R
N+1)

In particular, µ ∈
(
Ls′
α (R

N+1)
)∗

and ||µ||(Ls′
α (RN+1))

∗ = ||Gα[µ]||Ls(RN+1).

Next, we introduce the following kernel:

ER
α (x, t) = max{|x|,

√
2|t|}−(N+2−α)χQ̃R(0,0)(x, t)

where 0 < α < N + 2 and 0 < R ≤ ∞. We denote Eα by E∞
α . It is easy to see that

Eα ∗ µ = (N + 2− α)Iα[µ] and ||ER
α ∗ µ||Ls(RN+1) is equivalent to ||IRα [µ]||Ls(RN+1) for every

µ ∈ M+(RN+1) where 1 ≤ s < ∞.
We obtain equivalences of capacities CapEα,p,CapER

α ,pCapHα,p and CapGα,p.

Corollary 4.10 Let p > 1, 1 < α < N + 2 and R > 0. There exist constants C1 =
C1(N,α, p) and C2 = C2(N,α, p,R) such that the following statements hold

a. for any compact E ⊂ R
N+1

C−1
1 CapHα,p(E) ≤ CapEα,p(E) ≤ C1CapHα,p(E) (4.20)

b. for any compact E ⊂ R
N+1

C−1
2 CapGα,p(E) ≤ CapER

α ,p(E) ≤ C2CapGα,p(E) (4.21)

c. for any compact E ⊂ R
N+1

CapHα,p(E) ≤ CapGα,p(E) ≤ C1

(
CapHα,p(E) +

(
CapHα,p(E)

) N+2
N+2−αp

)
(4.22)

provided 1 < αp < N + 2.

Proof. By [2, Chapter 2], we have

CapEα,p(E)1/p = sup{µ(E) : µ ∈ M+(E)||Eα ∗ µ||Lp′ (RN+1) ≤ 1},
CapER

α ,p(E)1/p = sup{µ(E) : µ ∈ M+(E), ||ER
α ∗ µ||Lp′ (RN+1) ≤ 1},

CapHα,p(E)1/p = sup{µ(E) : µ ∈ M+(E), ||
∨
Hα[µ]||Lp′ (RN+1) ≤ 1} and

CapGα,p(E)1/p = sup{µ(E) : µ ∈ M+(E), ||
∨
Gα[µ]||Lp′ (RN+1) ≤ 1}.

Thanks to (4.15), (4.17) in Proposition 4.8 and Iα[µ] = Eα ∗ µ and ||ER
α ∗ µ||Ls(RN+1) is

equivalent to ||IRα [µ]||Ls(RN+1), we get (4.20) and (4.21).

Since Gα ≤ Hα, thus CapHα,p(E) ≤ CapGα,p(E) for any compact E ⊂ R
N+1. Put

CapEα,p(E) = a > 0. We need to prove that

CapE1
α,p(E) ≤ c1

(
a+ a

N+2
N+2−αp

)
. (4.23)

We will follow a proof of Yu.V. Netrusov in [2, Chapter 5]. First, we can find f ∈ Lp
+(R

N+1)
such that ||f ||Lp(RN+1) ≤ 2a and Eα ∗ f ≥ χE . Set Fα = Eα −E1

α, we have c2Fα ≤ E1
α ∗ Fα

for some c1 > 0. Thus, E ⊂ {E1
α ∗ f ≥ 1/2} ∪ {E1

α ∗ (Fα ∗ f) ≥ c2/2}.
Since ||E1

α||L1(RN+1) < ∞, for c3 = c2(4||E1
α||L1(RN+1))

−1

E1
α ∗ (Fα ∗ f) ≤ c2/4 + E1

α ∗ g with g = χFα∗f≥c3Fα ∗ f
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which follows E ⊂ {E1
α ∗ f ≥ 1/2} ∪ {E1

α ∗ g ≥ c2/4}.
Using the subadditivity of capacity, we have

CapE1
α,p(E) ≤ CapE1

α,p({E1
α ∗ f ≥ 1/2}) + CapE1

α,p({E1
α ∗ g ≥ c1/4})

≤ 2p||f ||p
Lp(RN+1)

+ (4/c2)
p||g||p

Lp(RN+1)

≤ 2p||f ||p
Lp(RN+1)

+ (4/c2)
pcp∗−p

3 ||Eα ∗ f ||p∗
Lp∗(RN+1)

, with p∗ =
(N + 2)p

N + 2− αp
.

On the other hand, from (4.10) in Proposition 4.4 we have

||Eα ∗ f ||Lp∗(RN+1) ≤ c4||f ||Lp(RN+1).

Hence, we get (4.23).

Remark 4.11 Since Gα ∈ L1(RN+1),
ˆ

RN+1

(Gα ∗ f)p dxdt ≤ ||Gα||pL1(RN+1)

ˆ

RN+1

fpdxdt ∀f ∈ Lp
+(R

N+1)

Thus, for any Borel set E ⊂ R
N+1

CapGα,p(E) ≥ C|E| with C = ||Gα||−p
L1(RN+1)

. (4.24)

Remark 4.12 It is well know that H2 is the fundamental solution of the heat operator
∂
∂t −∆. In [29], R. Gariepy and W. P. Ziemer introduced the following capacity:

CH2
(K) = sup{µ(K) : µ ∈ M+(K),H2[µ] ≤ 1}

whenever K ⊂ R
N+1 is compact. Thanks to [2, Theorem 2.5.5], we obtain

CapH1,2(K) = CH2(K).

Remark 4.13 For any Borel set E ⊂ R
N , then we always have CapG1,2(E × {t = 0}) = 0

In fact,

CapE1
1 ,2

(B1(0)× {t = 0}) = sup{ω(B1(0)) : ω ∈ M+(B1(0)), ||E1
1 ∗ (ω ⊗ δ0)||L2(RN+1) ≤ 1}.

Since ||E1
1 ∗ (ω ⊗ δ0)||L2(RN+1) = ∞ if ω 6= 0, thus CapG1,2(B1(0)× {t = 0}) = 0.

In particular, CapG1,2 is not absolutely continuous with respect to capacity C1,2(.,Ω× (a, b)).
This capacity will be defined in next section.

Remark 4.14 Let p > 1 and α > 0. Case αp ≥ p+1, we always have ||Hα[µ]||Lp′ (RN ) = ∞
for any µ ∈ M+(RN )\{0} which implies CapHα,p(Q̃1(0, 0)) = 0. If 0 < αp < N + 2,

CapHα,p(Q̃ρ(0, 0)) = cρN+2−αp for some constant c. From (4.22) in Corollary 4.10 we get

CapGα,p(Q̃ρ(0, 0)) ≈ ρN+2−αp for 0 < ρ < 1 if αp < N +2. Since ||Gα[δ(0,0)]||Lp′ (RN+1) < ∞
thus CapGα,p((0, 0)) > 0 if αp > N + 2.

If αp = N+2, CapGα,p(Q̃ρ(0, 0)) ≈ (log(1/ρ))
1−p

for any 0 < ρ < 1/2. In fact, we can prove

that ||I1/2α [µ]||Lp′ (RN ) ≤ c1 for any dµ(x, t) = (log(1/ρ))
−1/p′

ρ−N−2χQ̃ρ(0,0)
dxdt it follows

CapGα,p(Q̃ρ(0, 0)) ≥ c2 (log(1/ρ))
1−p

. Moreover, for µ ∈ M+(Q̃ρ), if ||I3α[µ]||p
′

Lp′ (RN+1)
≤ 1,

1 ≥
ˆ

Q̃1(0,0)\Q̃ρ(0,0)

(
ˆ 3

2max{|x|,|2t|1/2}

µ(Q̃r(x, t))

rN+2−α

dr

r

)p′

dxdt

≥
ˆ

Q̃1(0,0)\Q̃ρ(0,0)

(
ˆ 3

2max{|x|,|2t|1/2}

1

rN+2−α

dr

r

)p′

dxdtµ(Q̃ρ(0, 0))
p′

≥ c3 log(1/ρ)µ(Q̃ρ(0, 0))
p′
.

So CapGα,p(Q̃ρ(0, 0)) ≤ c4µ(Q̃ρ(0, 0))
p ≤ c5 (log(1/ρ))

1−p
.
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Definition 4.15 The parabolic Bessel potential Lp
α(R

N+1), α > 0 and p > 1 is defined by

Lp
α(R

N+1) = {f : f = Gα ∗ g, g ∈ Lp(RN+1)} (4.25)

with the norm ||f ||Lp
α(RN+1) := ||g||Lp(RN+1). We denote its dual space by

(
Lp
α(R

N+1)
)∗
.

Definition 4.16 For k a positive integer, the Sobolev space W 2k,k
p (RN+1) is defined by

W 2k,k
p (RN+1) = {ϕ :

∂i1+...+iN+iϕ

∂xi1
1 ...∂xiN

N ∂ti
∈ Lp(RN+1) for any i1 + ...+ iN + 2i ≤ 2k}

with the norm

||ϕ||W 2k,k
p (RN+1) =

∑

i1+...+iN+2i≤2k

|| ∂
i1+...+iN+iϕ

∂xi1
1 ...∂xiN

N ∂ti
||Lp(RN+1).

We denote its dual space by
(
W 2k,k

p (RN+1)
)∗
. We also define a corresponding capacity on

compact set E ⊂ R
N+1,

Cap2k,k,p(E) = inf{||ϕ||p
W 2k,k

p (RN+1)
: ϕ ∈ S(RN+1), ϕ ≥ 1 in a neighborhood of E}.

Let us recall Richard J. Bagby’s result, proved in [4].

Theorem 4.17 Let p > 1 and k be a positive integer. Then, there exists a constant C
depending on N, k, p such that for any u ∈ Lp

2k(R
N+1),

C−1||u||W 2k,k
p (RN+1) ≤ ||u||Lp

2k(R
N+1) ≤ C||u||W 2k,k

p (RN+1).

Above Theorem gives the assertion of equivalence of capacity Cap2k,k,p,CapG2k,p
.

Corollary 4.18 Let p > 1 and k be a positive integer. There exists a constant C depending
on N, k, p such that for any compact set E ⊂ R

N+1

C−1Cap2k,k,p(E) ≤ CapG2k,p
(E) ≤ CCap2k,k,p(E). (4.26)

Next result provides some relations of Riesz, Bessel parabolic potential and Riesz, Bessel
potential.

Proposition 4.19 Let q > 1 and 2
q′ < α < N + 2

q′ . There exists a constant C depending

on N, q, α such that for any ω ∈ M+(RN )

C−1||Iα− 2
q′
[ω]||Lq(RN )

≤ ||Hα[ω ⊗ δ{t=0}]||Lq(RN+1), ||
∨
Hα[ω ⊗ δ{t=0}]||Lq(RN+1) ≤ C||Iα− 2

q′
[ω]||Lq(RN ) (4.27)

and

C−1||Gα− 2
q′
[ω]||Lq(RN )

≤ ||Gα[ω ⊗ δ{t=0}]||Lq(RN+1), ||
∨
Gα[ω ⊗ δ{t=0}]||Lq(RN+1) ≤ C||Gα− 2

q′
[ω]||Lq(RN ) (4.28)

where δ{t=0} is the Dirac mass in time at 0.

Proof. We have

Iα[ω ⊗ δ{t=0}](x, t) =

ˆ ∞

√
2|t|

ω(B(x, r))

rN+2−α

dr

r
, I

1
α[ω ⊗ δ{t=0}](x, t) =

ˆ 1

min{1,
√

2|t|}

ω(B(x, r))

rN+2−α

dr

r
.
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By [14, Theorem 2.3 ] and Proposition 4.8, we only show that

c−1
1

ˆ ∞

0

(
ω(B(x, r))

rN+2−α−2/q

)q
dr

r
≤
ˆ

R

(
ˆ ∞

√
2|t|

ω(B(x, r))

rN+2−α

dr

r

)q

dt ≤ c1

ˆ ∞

0

(
ω(B(x, r))

rN+2−α−2/q

)q
dr

r

(4.29)

and

c−1
1

ˆ 1/2

0

(
ω(B(x, r))

rN+2−α−2/q

)q
dr

r

≤
ˆ

R

(
ˆ 1

min{1,
√

2|t|}

ω(B(x, r))

rN+2−α

dr

r

)q

dt ≤ c1

ˆ 1

0

(
ω(B(x, r))

rN+2−α−2/q

)q
dr

r
(4.30)

Indeed, by changing of variables

ˆ ∞

−∞

(
ˆ ∞

√
2|t|

ω(B(x, r))

rN+2−α

dr

r

)q

dt = 2

ˆ ∞

0

t

(
ˆ ∞

t

ω(B(x, r))

rN+2−α

dr

r

)q

dt. (4.31)

Using Hardy’s inequality, we have

ˆ ∞

0

t

(
ˆ ∞

t

ω(B(x, r))

rN+2−α

dr

r

)q

dt ≤ c2

ˆ ∞

0

r

(
ω(B(x, r))

rN+2−α

)q

dr

and using the fact that
ˆ ∞

t

ω(B(x, r))

rN+2−α

dr

r
≥ c3

ω(B(x, r))

rN+2−α
,

we get

ˆ ∞

0

t

(
ˆ ∞

t

ω(B(x, r))

rN+2−α

dr

r

)q

dt ≥ c3

ˆ ∞

0

r

(
ω(B(x, r))

rN+2−α

)q

dr.

Thus, we get (4.29). Likewise, we also obtain (4.29).
We have comparisons of CapHα,p,CapGα,p,CapI

α− 2
p
,p,CapG

α− 2
p
,p.

Corollary 4.20 Let p > 1 and 2
p < α < N + 2

p . There exists a constant C depending on

N, q, α such that for any compact K ⊂ R
N

C−1CapI
α− 2

p
,p(K) ≤ CapHα,p(K × {0}) ≤ CCapI

α− 2
p
,p(K) (4.32)

and
C−1CapG

α− 2
p
,p(K) ≤ CapGα,p(K × {0}) ≤ CCapG

α− 2
p
,p(K) (4.33)

Proof. By [2, Chapter 2], we have

CapHα,p(K × {0})1/p = sup{µ(K × {0}) : µ ∈ M+(K × {0}), ||
∨
Hα[µ]||Lp′ (RN+1) ≤ 1}

= sup{ω(K) : ω ∈ M+(K), ||
∨
Hα[ω ⊗ δ{t=0}]||Lp′ (RN+1) ≤ 1} and

CapGα,p(K × {0})1/p = sup{ω(K) : ω ∈ M+(K), ||
∨
Gα[ω ⊗ δ0]||Lp′ (RN+1) ≤ 1},

CapI
α− 2

p
,p(K)1/p = sup{ω(K) : ω ∈ M+(K), ||Iα− 2

p
[ω]||Lp′ (RN+1) ≤ 1},

CapG
α− 2

p
,p(K)1/p = sup{ω(K) : ω ∈ M+(K), ||Gα− 2

p
[ω]||Lp′ (RN+1) ≤ 1}.

Therefore, thanks to Proposition (4.19) we get the result.
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Corollary 4.21 Let p > 1 and k be a positive integer such that 2k < N +2/p. There exists
a constant C depending on N, k, p such that for any compact set K ⊂ R

N

C−1CapG
2k− 2

p
,p(K) ≤ Cap2k,k,p(K × {0}) ≤ CCapG

2k− 2
p
,p(K) (4.34)

We also have comparisons of CapGα,p,CapGα,p.

Proposition 4.22 Let 0 < α < N , p > 1. For a > 0 there exists a constant C depending
on N,α, p, a such that for any compact K ⊂ R

N ,

C−1CapGα,p(K) ≤ CapGα,p(K × [−a, a]) ≤ CCapGα,p(K).

Proof. By [2], we have
Cap

I

√
a

2
α ,p

(K) ≤ c1CapGα,p(K),

for some c1 = c1(N,α, p, a) > 0. So, we can find f ∈ Lp
+(R

N ) such that I

√
a

2
α ∗ f ≥ χK and

ˆ

RN

|f |pdx ≤ 2c1CapGα,p(K).

Note that (E
√
a

α ∗ f̃)(x, t) ≥ c2(I

√
a

2
α ∗ f)(x, t) for all (x, t) ∈ R

N × [−a, a] where f̃(x, t) =
f(x)χ[−2a,2a](t) and constant c2 = c2(N,α, p). So,

Cap
E

√
a

α ,p
(K × [−a, a]) ≤ c−p

2

ˆ

RN+1

|f̃ |pdxdt

= 4c−p
2 a

ˆ

RN

|f |pdx.

By Corollary 4.10, there is c1 = c1(N,α, p, a) > 0 such that

CapGα,p(K × [−a, a]) ≤ c1CapE
√

a
α ,p

(K × [−a, a])

Thus, we get
CapGα,p(K × [−a, a]) ≤ c3CapGα,p(K)

for some c3 = c3(N,α, p, a).
Finally, we prove other one. It is easy to see that

||I
√

a
2

α [ω ⊗ χ[−a,a]]||Lp′ (RN+1) ≤ c4||I
√

a
2

α [ω]||Lp′ (RN ) ∀ ω ∈ M+(RN )

for some c4 = c4(N,α, p), which implies

||Gα[ω ⊗ χ[−a,a]]||Lp′ (RN+1) ≤ c5||Gα[ω]||Lp′ (RN ) ∀ ω ∈ M+(RN+1)

for some c4 = c4(N,α, p, a).
It follows,

CapGα,p(K × [−a, a]) ≥ c6CapGα,p(K)

for some c6 = c6(N,α, p, a).
Let

ER,δ
α (x, t) = max{|x|,

√
2|t|}−(N+2−α) min



1,

(
max{|x|,

√
2|t|}

R

)−δ


 .

where 0 < R ≤ ∞, 0 < δ < α < N + 2. The (ER,δ
α , p)-capacity of a measurable set

E ⊂ R
N+1 is defined by

CapER,δ
α ,p(E) = inf{

ˆ

RN+1

|f |pdxdt : f ∈ Lp
+(R

N+1), ER,δ
α ∗ f ≥ χE}.
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Remark 4.23 For 0 < αq < N + 2, the inequality (4.10) in Proposition 4.4 implies

(
ˆ

RN+1

(
ER,δ

α ∗ f
) q(N+2)

N+2−αq dxdt

)1− αq
N+2

≤ C

ˆ

RN+1

fqdxdt ∀f ∈ Lq(RN+1), f ≥ 0. (4.35)

Hence, we get the isoperimetric inequality:

|E|1− αp
N+2 ≤ CCapER,δ

α ,p(E), (4.36)

Next, we recall that a positive function w ∈ L1
loc(R

N+1) is called an A1 weight, if the quality

[w]A1 := sup

((
 

Q

wdyds

)
ess sup
(x,t)∈Q

1

w(x, t)

)
< ∞,

where the supremum is taken over all cylinder Q = Q̃R(x, t) ⊂ R
N+1. The constant [w]A1

is called the A1 constant of w.

Proposition 4.24 Let 0 < R ≤ ∞, 1 < p ≤ α−1(N +2), 0 < δ < α and f, g ∈ L1
loc(R

N+1).
Suppose that

1. there exists a positive constant C1 such that
ˆ

K

|f |dxdt ≤ C1CapER,δ
α ,p(K) for any compact set K ⊂ R

N+1 (4.37)

2. for all weights w ∈ A1,
ˆ

RN+1

|g|wdxdt ≤ C2

ˆ

RN+1

|f |wdxdt (4.38)

where the constant C2 depends only on N and [w]A1
.

Then,
ˆ

K

|g|dxdt ≤ C3CapER,δ
α ,p(K) for any compact set K ⊂ R

N+1 (4.39)

where the constant C3 depends only on N,α, p, δ and C1, C2.

For our purpose, we need to introduce the (R, δ)−Wolff parabolic potential,

W
R,δ
α,p [µ](x, t) =

ˆ ∞

0

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1

min

{
1,
( ρ

R

)−δ
}

dρ

ρ
for any (x, t) ∈ R

N+1.

where p > 1, 0 < αp ≤ N + 2, 0 < δ < αp′ and R ∈ (0,∞] and µ ∈ M+(RN+1).
It is easy to see that

W
R,δ
α,p [µ](x, t) ≤ C sup

(y,s)∈suppµ

W
R,δ
α,p [µ](y, s). (4.40)

for some a constant C = C(N,α, p, δ) > 0.

Remark 4.25 We easily verify that the Theorem 4.1 also holds for WR,δ,R1
α,p [µ] and M

R,δ,R1
αp [µ]:

W
R,δ,R1
α,p [µ](x, t) =

ˆ R1

0

(
µ(Q̃ρ(x, t))

ρN+2−αp

) 1
p−1

min

{
1,
( ρ

R

)−δ
}

dρ

ρ
and

M
R,δ/(p−1),R1
α,p [µ](x, t) = sup

0<ρ<R1

(
µ(Q̃ρ(x, t))

ρN+2−αp
min

{
1,
( ρ

R

)−δ(p−1)
})

for any (x, t) ∈ R
N+1.
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where 0 < δ < αp′, 1 < p < α−1(N + 2) and R1 > R > 0. This means, for w ∈ A∞, µ ∈
M+(RN+1), there exist constants C1, C2 > 0 and ε0 ∈ (0, 1) depending on N,α, p, δ, [w]A∞
such that for any λ > 0 and ε ∈ (0, ε0)

w({WR,δ,R1
α,p [µ] > aλ, (MR,δ(p−1),R1

αp [µ])
1

p−1 ≤ ελ}) ≤ C1 exp(−C2ε
−1)w({WR,δ,R1

α,p [µ] > λ})
(4.41)

where a = 2 + 3
N+2−αp+δ(p−1)

p−1 .
Therefore, for q > p− 1

||WR,δ,R1
α,p [µ]||Lq(RN+1,dw) ≤ C3||(MR,δ(p−1),R1

αp [µ])
1

p−1 ||Lq(RN+1,dw).

where C3 = C3(N,α, p, δ, q). Letting R1 → ∞, we get

||WR,δ
α,p [µ]||Lq(RN+1,dw) ≤ C3||(MR,δ(p−1)

αp [µ])
1

p−1 ||Lq(RN+1,dw). (4.42)

where M
R,δ(p−1)
αp [µ] := M

R,δ(p−1),∞
αp [µ].

Lemma 4.26 Let 0 < β < (N+2)(p−1)
N+2−αp+δ(p−1) . There exists a constant c depending on δ such

that for each Q̃r = Q̃r(x, t)
 

Q̃r

(WR,δ
α,p [µ](y, s))

βdyds ≤ c(WR,δ
α,p [µ](x, t))

β . (4.43)

Proof. We set

Ur
α,p[µ](y, s) =

ˆ ∞

r

(
|µ|(Q̃ρ(y, s))

ρN+2−αp

) 1
p−1

min

{
1,
( ρ

R

)−δ
}

dρ

ρ
and

Lr
α,p[µ](y, s) =

ˆ r

0

(
µ(Q̃ρ(y, s))

ρN+2−αp

) 1
p−1

min

{
1,
( ρ

R

)−δ
}

dρ

ρ
.

Thus,
 

Q̃r

(WR,δ
α,p [µ](y, s))

δdyds ≤ c1

 

Q̃r

(Ur
α,p[µ](y, s))

δdyds+ c1

 

Q̃r

(Lr
α,p[µ](y, s))

δdyds.

Since for each (y, s) ∈ Q̃r and ρ ≥ r we have Q̃ρ(y, s) ⊂ Q̃2ρ(x, t), thus for each (y, s) ∈ Q̃r,

Ur
α,p[µ](y, s) ≤

ˆ ∞

r

(
µ(Q̃2ρ(x, t))

ρN+2−αp

) 1
p−1 (

max{1, ρ
R
}
)−δ dρ

ρ

≤ c2W
R,δ
α,p [µ](x, t),

which implies
 

Q̃r

(Ur
α,p[µ](y, s))

δdyds ≤ c2(W
R,δ
α,p [µ](x, t))

δ.

Since for each (y, s) ∈ Q̃r and ρ ≤ r we have Q̃ρ(y, s) ⊂ Q̃2r(x, t) thus, Lr
α,p[µ] =

Lr
α,p[µχQ̃2r(x,t)

] ≤ W
R,δ
α,p [µχQ̃2r(x,t)

] in Q̃r(x, t). We now consider two cases.
Case 1: r ≤ R. We have for a > 0

 

Q̃r

(Lr
α,p[µ](y, s))

βdyds ≤
 

Q̃r

(Wr
α,p[µχQ̃2r(x,t)

](y, s))βdyds

=
1

|Q̃r|
β

ˆ ∞

0

λβ−1|{Wr
α,p[µχQ̃2r(x,t)

] > λ} ∩ Q̃r|dλ

≤ aβ + c2r
−N−2

ˆ ∞

a

λβ−1|{Wr
α,p[µχQ̃2r(x,t)

] > λ}|dλ
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If αp = N + 2, we use (4.11) in Remark 4.5 with ε = αp
β and take a = (µ(Q̃2r(x, t)))

1
p−1

 

Q̃r

(Lr
α,p[µ](y, s))

βdyds ≤ aβ + c3r
−N−2

ˆ ∞

a

λβ−1

(
(µ(Q̃2r(x, t)))

1
p−1

λ

)αp+ε(p−1)
ε

rαpdλ

≤ c4(µ(Q̃2r(x, t)))
β

p−1

≤ c5(W
R,δ
α,p [µ](x, t))

β .

If αp < N + 2, we use (4.8) in Proposition 4.4 and take a = µ(Q̃2r(x, t))
1

p−1 r−
N+2−αp

p−1 , we
get

 

Q̃r

(Lr
α,p[µ](y, s))

βdyds ≤ c6

(
µ(Q̃2r(x, t))

1
p−1 r−

N+2−αp
p−1

)β

≤ c7(W
R,δ
α,p [µ](x, t))

β .

Case 2: r ≥ R. As above case, we have

 

Q̃r

(Wα− δ
p′ ,p

[µχQ̃2r(x,t)
](y, s))βdyds ≤ c6

(
µ(Q̃2r(x, t))

1
p−1 r−

N+2−αp+δ(p−1)
p−1

)β

Since W
R,δ
α,p [µχQ̃2r(x,t)

] ≤ Rδ
Wα− δ

p′ ,p
[µχQ̃2r(x,t)

], thus

 

Q̃r

(Lr
α,p[µ](y, s))

βdyds ≤ c6

(
µ(Q̃2r(x, t))

1
p−1 r−

N+2−αp+δ(p−1)
p−1 Rδ

)β

≤ c5(W
R,δ
α,p [µ](x, t))

β .

Therefore, we get (4.43). The proof completes.

Remark 4.27 It is easy to see that the inequality (4.43) does not true for WR
α,p[δ(0,0)] where

δ(0,0) is Dirac mass at (x, t) = (0, 0).

Remark 4.28 For µ ∈ M+(RN+1), if there exists (x0, t0) ∈ R
N+1 such that WR,δ

α,p [µ](x0, t0) <

∞ then W
R,δ
α,p [µ] ∈ Lβ

loc(R
N+1) for any 0 < β < (N+2)(p−1)

N+2−αp+δ(p−1) .

Lemma 4.29 Let R ∈ (0,∞], 1 < p ≤ α−1(N + 2) and 0 < δ < αp′. Assume that
αp < N + 2 if R = ∞. Then, for any compact set K there exists a µ ∈ M+(K), called a
capacitary measure of K such that

C−1
1 Cap

E
R,δ/p′
α ,p

(K) ≤ µ(K) ≤ C1CapER,δ/p′
α ,p

(K)

and W
R,δ
α,p [µ](x, t) ≥ C2 a.e in K and W

R,δ
α,p [µ] ≤ C3 a.e in R

N+1 for some constants Ci =
Ci(N,α, p), i = 1, 2, 3.

Proof. We consider a measure ν on M = R
N+1 × Z as follows

ν = m⊗
∞∑

n=−∞
δn

where m is Lebesgue measure, and δn denotes unit mass at n. Thus, f ∈ Lp(M,dν), means
f = {fn}∞−∞, with

||f ||pLp(M,dν) =

∞∑

n=−∞
||fn||pLp(RN+1)

.
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Let nR ∈ Z ∪ {+∞} such that 2−nR ≤ R < 2−nR+1 if R < +∞ and nR = +∞ if R = +∞.
We define a kernel Pα in R

N+1 ×M = R
N+1 × R

N+1 × Z by

Pα(x, t, x
′, t, n) = min{1, 2(n−nR)δ/p′}2n(N+2−α)χQ̃2−n

(x− x′, t− t′).

If f is ν−measurable and nonnegative and µ ∈ M+(RN+1), the corresponding potentials

Pαf ,
∨
Pαµ and V µ

Pα,p are everywhere well defined and given by

Pαf =
∞∑

n=−∞
min{1, 2(n−nR)δ/p′}2n(N+2−α)χQ̃2−n

∗ fn, and

∨
Pαµ =

{
min{1, 2(n−nR)δ/p′}2n(N+2−α)χQ̃2−n

∗ µ
}∞

−∞
,

V µ
Pα,p = Pα(

∨
Pαµ)

p′−1 =

∞∑

n=−∞
min{1, 2(n−nR)δ}2np′(N+2−α)χQ̃2−n

∗
(
χQ̃2−n

∗ µ
)p′−1

.

We now define the Lp−capacity with 1 < p < ∞

CapPα,p(E) = inf{||f ||pLp(M,dν) : f ∈ Lp
+(M,dν),Pαf ≥ χE}.

for any Borel set E ⊂ R
N+1. By [2, Chapter 2], for any compact set K ⊂ R

N+1

CapPα,p(K)1/p = sup{µ(K) : µ ∈ M+(K), ||
∨
Pαµ||Lp′ (RN+1,dν) ≤ 1}.

By [2, Theorem 2.5.6], for any compact set K in R
N+1, there exists µ ∈ M+(K), called a

capacitary measure for K, such that V µ
Pα,p ≥ 1 CapPα,p−q.e. in K, V µ

Pα,p ≤ 1 a.e in supp (µ)

and µ(K) = CapPα,p(K). Since c−1
1 V µ

Pα,p ≤ W
R,δ
α,p [µ] ≤ c1V

µ
Pα,p for some a positive constant

c1 and (4.40), thus W
R,δ
α,p [µ] ≥ c−1

1 CapPα,p − q.e. in K, WR,δ
α,p [µ] ≤ c2 a.e in R

N+1 and
µ(K) = CapPα,p(K). We have

||
∨
Pαµ||p

′

Lp′ (RN+1,dν)
=

∞∑

n=−∞
||min{1, 2(n−nR)δ/p′}2n(N+2−α)χQ̃2−n

∗ µ||p
′

Lp′ (RN+1)

=

∞∑

n=−∞
min{1, 2(n−nR)δ}2np′(N+2−α)

ˆ

RN+1

(χQ̃2−n
∗ µ)p′

dxdt,

this quantity is equivalent to

ˆ

RN+1

ˆ ∞

0

(
µ(Q̃ρ(x, t))

ρN+2−α

)p′

min{1,
( ρ

R

)−δ

}dρ
ρ
dxdt.

So, thanks to (4.42) in Remark 4.25, we obtain

c−1
2 ||ER,δ/p′

α ∗ µ||p
′

Lp′ (RN+1)
≤ ||

∨
Pαµ||p

′

Lp′ (RN+1,dν)
≤ c2||ER,δ/p′

α ∗ µ||p
′

Lp′ (RN+1)
.

for c2 = c2(N, p, α, δ). It follows that two capacities CapPα,pand Cap
E

R,δ/p′
α ,p

are equivalent.

Therefore, we obtain the desired results.

Lemma 4.30 Let R ∈ (0,∞], 1 < p ≤ α−1(N + 2) and 0 < δ < αp′. Assume that
αp < N+2 if R = ∞. Then there exists C = C(N,α, p, δ) such that for any µ ∈ M+

b (R
N+1)

Cap
E

R,δ/p′
α ,p

(WR,δ
α,p [µ] > λ) ≤ Cλ−p+1µ(RN+1) ∀ λ > 0. (4.44)

In particular W
R,δ
α,p [µ] < ∞ Cap

E
R,δ/p′
α ,p

−q.e. in R
N+1.
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Proof. By Lemma 4.29, there is the capacitary measure σ for a compact subset K of
{WR,δ

α,p [µ] > λ} such that W
R,δ
α,p [σ](x, t) ≤ c1 on suppσ and Cap

E
R,δ/p′
α ,p

(K) ≈ σ(K) where

c1 = c1(N,α, p, δ).

Set M[µ, σ](x, t) = sup
ρ>0

µ(Q̃ρ(x,t))

σ(Q̃3ρ(x,t))
for any (x, t) ∈ suppσ. Then, for any (x, t) ∈ suppσ

λ < W
R,δ
α,p [µ](x, t) ≤ (M[µ, σ](x, t))

1
p−1

ˆ ∞

0

(
σ(Q̃3ρ(x, t))

ρN+2−αp

) 1
p−1

min{1,
( ρ

R

)−δ

}dρ
ρ

≤ c2 (M[µ, σ](x, t))
1

p−1 .

Thus, for any λ > 0, suppσ ⊂ {c2 (M[µ, σ])
1

p−1 > λ} = {M[µ, σ] >
(

λ
c2

)p−1

}. By Vitali

Covering Lemma one can cover suppσ with a union of Q̃3ρi
(xi, ti) for i = 1, ..., L(K) so that

Q̃ρi(xi, ti) are disjoint and σ(Q̃3ρi(xi, ti)) < (λ/c2)
−p+1µ(Q̃ρi(xi, ti)). It follows that

CapER
α ,p(K) ≤ c3

L(K)∑

i=1

σ(Q̃3ρi(xi, ti))

≤ c3c
p−1
2 λ−p+1

L(K)∑

i=1

µ(Q̃ρi
(xi, ti))

≤ c3c
p−1
2 λ−p+1µ(RN+1).

So, for all compact subset K of {Wα,p[µ] > λ} ∩ Q̃d(x0, t0),

Cap
E

R,δ/p′
α ,p

(K) ≤ c1c
p−1
2 λ−p+1µ(RN+1).

Therefore we obtain (4.44).

Remark 4.31 Let 0 < δ < α < N + 2 and δ ≤ 1. From the following inequality

|max{|x1 − z|,
√

2|t1 − s|}−N−2+α −max{|x2 − z|,
√
2|t2 − s|}−N−2+α|

≤ c1

(
max{|x1 − z|,

√
2|t1 − s|}−N−2+α−δ +max{|x2 − z|,

√
2|t2 − s|}−N−2+α−δ

)

×
(
|x1 − x2|+ |t1 − t2|1/2

)δ

for all (x1, t1), (x2, t2), (z, s) ∈ R
N+1, where c1 is a constant depending on N,α, δ.

Thus, for
mu ∈ M+

b (R
N+1)

|Iα[µ](x1, t1)−Iα[µ](x2, t2)| ≤ c2 (Iα−δ[µ](x1, t1) + Iα−δ[µ](x2, t2))
(
|x1 − x2|+ |t1 − t2|1/2

)δ

for all (x1, t1), (x2, t2) ∈ R
N+1 and c2 = c1

N+2−α+δ
N+2−α .

Consequently, for any µ ∈ M+
b (R

N+1), Iα[µ] is δ−Holder CapEα−δ
2

,2-quasicontinuous this

means, for any ε > 0 there exists a Borel set Oε ⊂ R
N+1 and cε > 0 such that

|Iα[µ](x1, t1)− Iα[µ](x2, t2)| ≤ cε

(
|x1 − x2|+ |t1 − t2|1/2

)δ
∀(x1, t1), (x2, t2) ∈ Oε

and CapEα−δ
2

,2(R
N+1\Oε) < ε.

Here we only prove Proposition 4.24.
Proof of Proposition 4.24. By Lemma 4.26, (4.29) and (4.30), there is the capaci-
tary measure µ of a compact subset K ⊂ R

N+1 such that W
R,δp′
α,p [µ](x, t) ≥ c1 a.e in K,
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W
R,δp′
α,p [µ](x, t) ≤ c2 a.e in R

N+1 and CapER,δ
α ,p(W

R,δp′
α,p [µ] > λ) ≤ c2λ

−p+1CapER,δ
α ,p(K) for

all λ > 0, (WR,δp′
α,p [µ])β ∈ A1 for any 0 < β < (N+2)(p−1)

N+2−αp+δp . From second assumption we have

ˆ

RN+1

|g|(WR,δp′
α,p [µ])βdxdt ≤ C2

ˆ

RN+1

|f |(WR,δp′
α,p [µ])βdxdt.

Thus
ˆ

K

|g|dxdt ≤ c−δ
1

ˆ

RN+1

|g|(WR,δp′
α,p [µ])βdxdt

≤ c3

ˆ

RN+1

|f |(WR,δp′
α,p [µ])βdxdt

= c3β

ˆ c1

0

ˆ

W
R,δp′
α,p [µ]>λ

|f |dxdtλβ−1dλ.

By first assumption we get

ˆ

W
R,δp′
α,p [µ]>λ

|f |dxdt ≤ C1CapER,δ
α ,p({WR,δp′

α,p [µ] > λ}) ≤ c4λ
−p+1CapER,δ

α ,p(K).

Therefore,

ˆ

K

|g|dxdt ≤ c5δ

ˆ c1

0

λ−p+1CapER,δ
α ,p(K)λδ−1dλ = c6CapER,δ

α ,p(K),

since one can choose δ > p− 1. This completes the proof of the Proposition.

Definition 4.32 Let s > 1, α > 0. We define the space MHα,s(RN+1) (MGα,s(RN+1)
resp.) to be the set of all measure µ ∈ M(RN+1) such that

[µ]MHα,s(RN+1) := sup

{ |µ|(K)

CapHα,s(K)
: compact K ⊂ R

N+1s.t CapHα,s(K) > 0

}
< ∞,

(
[µ]MGα,s(RN+1) := sup

{ |µ|(K)

CapGα,s(K)
: compact K ⊂ R

N+1s.t CapGα,s(K) > 0

}
< ∞ resp.

)

For simplicity, we will write MHα,s,MGα,s to denote MHα,s(RN+1),MGα,s(RN+1) resp.

We see that if αs ≥ N+2,MHα,s(RN+1) = ∅, if αs < N+2,MHα,s(RN+1) ⊂ MGα,s(RN+1).
On the other hand, MGα,s(RN+1) ⊃ Mb(R

N+1) if αs > N + 2.
We now have the following two remarks:

Remark 4.33 For s > 1, there is C = C(N,α, s) > 0 such that

[f ]MGα,p ≤ C[|f |s]1/sMGα,p for all function f. (4.45)

Indeed, set a = [|f |s]MGα,p(RN+1), so for any compact set K in R
N+1

ˆ

K

|f |sdxdt ≤ aCapGα,p(K)

This gives 2aCapGα,p(K) ≥
´

K
(|f |s + c1a) dxdt ≥ c2a

1−1/s
´

K
|f |dxdt, here we used (4.24)

in Remark 4.11 at the first inequality and Holder’s inequality at the second one. It follows
(4.45).
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Remark 4.34 Assume that p > 1 and 2
p < α < N + 2

p . Clearly, from Corollary 4.20 we

assert that for ω ∈ M+(RN )

C−1
1 [ω]MIα−2/p,p ≤

[
ω ⊗ δ{t=0}

]
MHα,p ≤ C1 [ω]MIα−2/p,p and

C−1
2 [ω]MGα−2/p,p ≤

[
ω ⊗ δ{t=0}

]
MGα,p ≤ C2 [ω]MGα−2/p,p

for some Ci = Ci(N, p, α), i = 1, 2. Where MIα−2/p,p := MIα−2/p,p(RN ) , MGα−2/p,p :=
MGα−2/p,p(RN ) and

[ω]MIα−2/p,p
(RN )

:= sup

{
ω(K)

CapIα−2/p,p
(K)

: compact K ⊂ R
N s.t CapIα−2/p,p

(K) > 0

}

and

[ω]MGα−2/p,p
(RN )

:= sup

{
ω(K)

CapGα−2/p,p
(K)

: compact K ⊂ R
N s.t CapGα−2/p,p

(K) > 0

}
.

Clearly, Theorem 4.2 and Proposition 4.24 lead to the following result.

Proposition 4.35 Let q > p− 1, s > 1 and 0 < αp < N +2. Then the following quantities
are equivalent

[(
W

R
α,p[µ]

)q]
MHα,s

,
[(
I
R
αp[µ]

) q
p−1

]
MHα,s

and
[(
M

R
αp[µ]

) q
p−1

]
MHα,s

for every µ ∈ M+(RN+1) and 0 < R ≤ ∞.

In the next result, we present a characterization of the following trace inequality:

||ER,δ
α ∗ f ||Lp(RN+1,dµ) ≤ c1||f ||Lp(RN+1) ∀f ∈ Lp(RN+1). (4.46)

Theorem 4.36 Let 0 < R ≤ ∞,1 < p < α−1(N + 2), 0 < δ < α and µ be a nonnegative
Radon measure on R

N+1. Then the following statements are equivalent.

1. The trace inequality (4.46) holds.

2. There holds
||ER,δ

α ∗ f ||Lp(RN+1,dω) ≤ c2||f ||Lp(RN+1) ∀f ∈ Lp(RN+1). (4.47)

where dω = (IR,δ
α µ)p

′
ddxdt.

3. There holds

||ER,δ
α ∗ f ||Lp,∞(RN+1,dµ) ≤ c3||f ||Lp(RN+1) ∀f ∈ Lp(RN+1). (4.48)

4. For every compact set E ⊂ R
N+1,

µ(E) ≤ c4CapER,δ
α ,p(E). (4.49)

5. Iαµ < ∞ a.e and
I
R,δ
α [(IR,δ

α [µ])p
′
] ≤ c5I

R,δ
α [µ] a.e. (4.50)

6. For every compact set E ⊂ R
N+1,

ˆ

E

(IR,δ
α [µ])p

′
dxdt ≤ c6CapER,δ

α ,p(E). (4.51)
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7. For every compact set E ⊂ R
N+1,

ˆ

RN+1

(IR,δ
α [µχE ])

p′
dxdt ≤ c7µ(E). (4.52)

8. For every compact set E ⊂ R
N+1,

ˆ

E

(IR,δ
α [µχE ])

p′
dxdt ≤ c8µ(E). (4.53)

We can find a simple sufficient condition on µ so that trace inequality (4.46) is satisfied from
the isoperimetric inequality (4.36).
Proof of Theorem 4.36. As in [78] we can show that 1 ⇔ 2 ⇔ 3 ⇔ 4 ⇔ 6 ⇔ 7 and
7 ⇒ 8, 5 ⇒ 2. Thus, it is enough to show that 8. ⇒ 5. First, we need to show that

(
ˆ ∞

r

µ(Q̃ρ(x, t))

ρN+2−α
min{1,

( ρ

R

)−δ

}dρ
ρ

)p′−1

≤ c1r
−α

(
min{1,

( r

R

)−δ

}
)−1

(4.54)

We have for any (y, s) ∈ Q̃r(x, t)

I
R,δ
α [µχQ̃r(x,t)

](y, s) =

ˆ ∞

0

µ(Q̃r(x, t) ∩ Q̃ρ(y, s))

ρN+2−α
min{1,

( ρ

R

)−δ

}dρ
ρ

≥
ˆ 4r

2r

µ(Q̃r(x, t) ∩ Q̃ρ(y, s))

ρN+2−α
min{1,

( ρ

R

)−δ

}dρ
ρ

≥ c2
µ(Q̃r(x, t))

rN+2−α
min{1,

( r

R

)−δ

}.

In (4.53), we take E = Q̃r(x, t)

cµ(Q̃r(x, t)) ≥
ˆ

Q̃r(x,t)

(Iα[µχQ̃r(x,t)
])p

′

≥ cp
′

2

(
µ(Q̃r(x, t))

rN+2−α
min{1,

( r

R

)−δ

}
)p′

|Q̃r(x, t)|.

So µ(Q̃r(x, t)) ≤ c3r
N+2−αp

(
min{1,

(
r
R

)−δ}
)−p

which implies (4.54).

Next we set

Lr[µ](x, t) =

ˆ +∞

r

µ(Q̃ρ(x, t))

ρ
min{1,

( ρ

R

)−δ

}dρ
ρ
,

Ur[µ](x, t) =

ˆ r

0

µ(Q̃ρ(x, t))

ρ
min{1,

( ρ

R

)−δ

}dρ
ρ
,

and
dω = (Iαµ)

p′
dxdt, dσ1,r = (Lr[µ])

p′
dxdt, dσ2,r = (Ur[µ])

p′
dxdt.

We have dω ≤ 2p
′−1 (dσ1,r + dσ2,r) . To prove (4.50) we need to show that

ˆ ∞

0

σ1,r(Q̃r(x, t))

rN+2−α
min{1,

( r

R

)−δ

}dr
r

≤ c4I
R,δ
α [µ](x, t) and (4.55)

ˆ ∞

0

σ2,r(Q̃r(x, t))

rN+2−α
min{1,

( r

R

)−δ

}dr
r

≤ c5I
R,δ
α [µ](x, t) (4.56)
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Since, for all r > 0, 0 < ρ < r and (y, s) ∈ Q̃r(x, t) we have Q̃ρ(y, s) ⊂ Q̃2r(x, t). So,

σ2,r(Q̃r(x, t)) =

ˆ

Q̃r(x,t)

(Ur[µ](y, s))
p′
dyds =

ˆ

Q̃r(x,t)

(
Ur[µχQ̃2r(x,t)

](y, s)
)p′

dyds.

Thus, from (4.53) we get

σ2,r(Q̃r(x, t)) ≤
ˆ

Q̃2r(x,t)

(
Ur[µχQ̃2r(x,t)

](y, s)
)p′

dyds

≤
ˆ

Q̃2r(x,t)

(
I
R,δ
α [µχQ̃2r(x,t)

](y, s)
)p′

dyds

≤ c6µ(Q̃2r(x, t)).

Therefore, (4.56) follows.
Since, for all r > 0, ρ ≥ r and (y, s) ∈ Q̃r(x, t) we have Q̃ρ(y, s) ⊂ Q̃2ρ(x, t). So, for all

(y, s) ∈ Q̃r(x, t) we have

Lr[µ](y, s) ≤
ˆ +∞

r

µ(Q̃2ρ(x, t))

ρN+2−α
min{1,

( ρ

R

)−δ

}dρ
ρ

≤ c7Lr[µ](x, t).

Hence,

σ1,r(Q̃r(x, t)) =

ˆ

Q̃r(x,t)

(Lr[µ](y, s))
p′
dyds

≤ c8r
N+2 (Lr[µ](x, t))

p′
.

Since rα−1 min{1,
(
r
R

)−δ} ≤ 1
α−δ

d
dr

(
rα min{1,

(
r
R

)−δ}
)
, we deduce that

ˆ ∞

0

σ1,r(Q̃r(x, t))

rN+2−α
min{1,

( r

R

)−δ

}dr
r

≤ c7

ˆ ∞

0

rα−1 (Lr[µ](x, t))
p′
min{1,

( r

R

)−δ

}dr

≤ c7
α− δ

ˆ ∞

0

d

dr

(
rα min{1,

( r

R

)−δ

}
)
(Lr[µ](x, t))

p′
dr

≤ c8

ˆ ∞

0

rα (Lr[µ](x, t))
p′−1 µ(Q̃r(x, t))

rN+2−α
min{1,

( r

R

)−δ

}2 dr
r
.

Therefore, we get (4.55) from (4.54). This completes the proof of Theorem.

Remark 4.37 It is easy to assert that if 8. holds then for any 0 < β < N + 2

Iβ

[(
I
R,δ
α [µ]

)p′]
≤ CIβ [µ], (4.57)

for some C = C(N,α, β, δ, p) > 0.

Corollary 4.38 Let p > 1, α > 0 such that 0 < αp < N + 2. There holds

C−1
1 [µ]

p′

MHα,p ≤
[
(Iα[µ])

p′]
MHα,p

≤ C1 [µ]
p′

MHα,p (4.58)

for all µ ∈ M+(RN+1). Furthermore,

[ϕn ∗ µ]MHα,p ≤ C2 [µ]MHα,p (4.59)

for n ∈ N, µ ∈ M+(RN+1) where {ϕn} is a sequence of mollifiers in R
N+1. Here Ci =

Ci(N, p, α), i = 1, 2.
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Proof. For R = ∞ we have I
R,δ
α [µ] = Iα[µ] and ER,δ

α = Eα. Thus, by (4.20) in Corollary
4.10 and Theorem 4.36 we get for every compact set E ⊂ R

N+1,

µ(E) ≤ c1CapHα,p(E)

if and only if for every compact set E ⊂ R
N+1,

ˆ

E

(Iα[µ])
p′
dxdt ≤ c2CapHα,p(E).

It follows (4.58).
Since Iα[ϕn ∗ µ] = ϕn ∗ Iα[µ] ≤ M (Iα[µ]) and M is bounded in Lp′

(RN+1, dw) with w ∈ Ap′

yield
ˆ

RN+1

(Iα[ϕn ∗ µ])p
′
dw ≤ c3([w]Ap′ )

ˆ

RN+1

(Iα[µ])
p′
dw.

Thanks to Proposition 4.24 we have

[
(Iα[ϕn ∗ µ])p

′]
MHα,p

≤ c4

[
(Iα[µ])

p′]
MHα,p

which implies (4.59).

Corollary 4.39 Let p > 1, α > 0 with 0 < αp ≤ N + 2, 0 < δ < α and R, d > 0. There
holds [(

I
R,δ
α [µ]

)p′]
MGα,p(RN+1)

≤ C1(d/R,R) [µ]
p′

MGα,p(RN+1) (4.60)

for all µ ∈ M+(RN+1) with diam(supp (µ)) ≤ d. Furthermore,

[ϕn ∗ µ]MGα,p(RN+1) ≤ C2(d) [µ]MGα,p(RN+1) (4.61)

for n ∈ N, µ ∈ M+(RN+1) with diam(supp (µ)) ≤ d where {ϕn} is a sequence of standard
mollifiers in R

N+1.

Proof. It is easy to see that

(c1(d/R))−1||ER
α [µ]||Lp′ (RN+1) ≤ ||ER,δ

α ∗ µ||Lp′ (RN+1) ≤ c1(d/R)||ER
α [µ]||Lp′ (RN+1)

for any µ ∈ M+(RN+1) with diam(supp (µ)) ≤ d, thus two quantities CapER,δ
α ,p(E) and

CapER
α ,p(E) are equivalent for every compact set E ⊂ R

N+1, diam(E) ≤ d where equiv-
alent constants depend only on N, p, α and d/R. Therefore, by Corollary 4.10 we get
CapER,δ

α ,p(E) ≈ CapGα,p(E) for every compact set E ⊂ R
N+1, diam(E) ≤ d where equiva-

lent constants depend on d/R and R. Thus, by Theorem 4.36 and diam(supp (µ)) ≤ d we
get, if for every compact set E ⊂ R

N+1,

µ(E) ≤ c2(d/R,R)CapGα,p(E)

then for every compact set E ⊂ R
N+1,

ˆ

E

(
I
R,δ
α [µ]

)p′
dxdt ≤ c3(d/R,R)CapER,δ

α ,p(E)

≤ c4(d/R,R)CapGα,p(E).

It follows (4.60). As in the Proof of Corollary 4.38 we also have for w ∈ Ap′

ˆ

RN+1

(
I
1,δ
α [ϕn ∗ µ]

)p′
dw ≤ c5([w]Ap′ )

ˆ

RN+1

(
I
1,δ
α [µ]

)p′
dw

Thanks to Proposition 4.24 and Theorem 4.36 we obtain (4.61).
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Remark 4.40 Likewise (see [69, Lemma 5.7]), we can verify that if 2
p < α < N + 2

p ,

[ϕ1,n ∗ ω1]MIα−2/p,p ≤ C1 [ω1]MIα−2/p,p and

[ϕ1,n ∗ ω2]MGα−2/p,p ≤ C2(d) [ω2]MGα−2/p,p ,

for n ∈ N and ω1, ω2 ∈ M+(RN ) with diam(supp (ω2)) ≤ d where C1 = C1(N,α, p), C2(d) =
C2(N,α, p, d), {ϕ1,n} is sequence of standard mollifiers in R

N and [.]MIα−2/p,p , [.]MGα−2/p,p

was defined in Remark 4.34. Hence, we obtain

[
(ϕ1,n ∗ ω1)⊗ δ{t=0}

]
MHα,p ≤ C3

[
ω1 ⊗ δ{t=0}

]
MHα,p ,[

(ϕ1,n ∗ ω2)⊗ δ{t=0}
]
MGα,p ≤ C4(d)

[
ω2 ⊗ δ{t=0}

]
MGα,p ,

for n ∈ N and ω1, ω2 ∈ M+(RN+1), diam(supp (µ)) ≤ d where C3 = C3(N,α, p), C4(d) =
C4(N,α, p, d).

Proposition 4.41 Let q > 1, 0 < αq < N + 2, 0 < R ≤ ∞, 0 < δ < α and K > 0. Let
0 ≤ f ∈ Lq

loc(R
N+1). Let C4, C5 be constants in inequalities (4.49) and (4.50) in Theorem

4.36 with p = q′. Suppose that {un} is a sequence of nonnegative measurable functions in
R

N+1 satisfying

un+1 ≤ KI
R,δ
α [uq

n] + f ∀n ∈ N

u0 ≤ f (4.62)

Then, if for every compact set E ⊂ R
N+1,

ˆ

E

fqdxdt ≤ CCapER,δ
α ,q′(E). (4.63)

with

C ≤ C4

(
2−q+1

C5(q − 1)

(
q − 1

qK2q−1

)q)q−1

(4.64)

then

un ≤ Kq2q−1

q − 1
I
R,δ
α [fq] + f ∀n ∈ N. (4.65)

Proof. From (4.49) and (4.50) in Theorem 4.36, we see that (4.63) implies

I
R,δ
α [(IR,δ

α [fq])q] ≤
(

C

C4

) 1
q−1

C5I
R,δ
α [fq] (4.66)

Now we prove (4.65) by induction. Clearly, (4.65) holds with n = 0. Next we assume that
(4.65) holds with n = m. Then, by (4.64), (4.66) and (4.62) we have

um+1 ≤ KI
R,δ
α [uq

n] + f

≤ K2q−1

(
Kq2q−1

q − 1

)q

I
R,δ
α [(IR,δ

α [fq])q] +K2q−1
I
R,δ
α [fq] + f

≤ K2q−1

(
Kq2q−1

q − 1

)q (
C

C4

) 1
q−1

C5I
R,δ
α [fq] +K2q−1

I
R,δ
α [fq] + f

≤ Kq2q−1

q − 1
I
R,δ
α [fq] + f.

Therefore (4.65) also holds true with n = m+ 1. This completes the proof of the Theorem.
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Corollary 4.42 Let q > N+2
N+2−α , α > 0 and f ∈ Lq

+(R
N+1). There exists a constant

C > 0 depending on N,α, q such that if for every compact set E ⊂ R
N+1,

´

E
fqdxdt ≤

CCapHα,q′(E), then u = Hα[u
q] + f admits a positive solution u ∈ Lq

loc(R
N+1).

Proof. Consider the sequence {un} of nonnegative functions defined by u0 = f and un+1 =
Hα[u

q
n] + f ∀ n ≥ 0 It is easy to see that un+1 ≤ c1I2[u

q
n] + f ∀n ≥ 0 By Proposition

4.41 and Corollary 4.38, there exists a constant c2 = c2(N,α, q) > 0 such that if for every
compact set E ⊂ R

N+1,
´

E
fqdxdt ≤ c2CapHα,q′(E) then un is well defined and

un ≤ c1q3
q−1

q − 1
Iα[f

q] + f ∀n ≥ 0.

Since {un} is nondecreasing, thus thanks to the dominated convergence theorem we obtain
u(x, t) = lim

n→∞
un(x, t) is a solution of u = Hα[u

q]+f which u ∈ Lq
loc(R

N+1). This completes

the proof of the Corollary.

Corollary 4.43 Let q > 1, α > 0, 0 < R ≤ ∞, 0 < δ < α and µ ∈ M+(RN+1). The
following two statements are equivalent.

a. for every compact set E ⊂ R
N+1,

´

E
fq ≤ CCapER,δ

α ,q′(E) for some a constant C > 0

b. There exists a function u ∈ Lq
loc(R

N+1) such that u = I
R,δ
α [uq] + εf for some ε > 0.

Proof. We will prove b. ⇒ a. Set dω(x, t) =
((
I
R,δ
α [uq]

)q
+ εqfq

)
dxdt, thus we have

dw(x, t) ≥
(
IR,δ
α [ω]

)q
dxdt. LetMω denote the centered Hardy-littlewoood maximal function

which is defined for g ∈ L1
loc(R

N+1, dω),

Mωg(x, t) = sup
ρ>0

1

ω(Q̃ρ(x, t))

ˆ

Q̃ρ(x,t)

|g|dω(x, t).

For E ⊂ R
N+1 is a compact set, we have

ˆ

RN+1

(MωχE)
q (

I
R,δ
α [ω]

)q
dxdt ≤

ˆ

RN+1

(MωχE)
q
dω(x, t).

Since Mω is bounded on Ls(RN+1, dω) for s > 1 and (MωχE)
q (

I
R,δ
α [ω]

)q ≥
(
I
R,δ
α [ωχE ]

)q
,

thus
ˆ

RN+1

(
I
R,δ
α [ωχE ]

)q
dxdt ≤ c1ω(E).

By Theorem 4.36, we get for any compact set E ⊂ R
N+1

ω(E) ≤ c2CapER,δ
α ,q′(E).

It follows the results.

5 Global point wise estimates of solutions to the parabolic

equations

First, we recall Duzzar and Mingione’s result which involves local pointwise estimates for
solution of equations (2.6).

Theorem 5.1 ([25]) Suppose that A satisfies (2.3) and (2.4). Then, there exists a constant
C depending only N,Λ1,Λ2 such that if u ∈ L2(0, T,H1(Ω)) ∩ C(ΩT ) is a weak solution to
(2.6) with µ ∈ L2(ΩT ) and u(0) = 0

|u(x, t)| ≤ C

 

Q̃R(x,t)

|u|dyds+ CI
2R
2 [|µ|](x, t) (5.1)
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for all Q2R(x, t) ⊂ Ω× (−∞, T ).
Furthermore, if A is independent of space variable x, (2.29) satisfies and ∇u ∈ C(ΩT ) then

|∇u(x, t)| ≤ C

 

Q̃R(x,t)

|∇u|dyds+ CI
2R
1 [|µ|](x, t) (5.2)

for all Q2R(x, t) ⊂ Ω× (−∞, T ).

Proof of Theorem 2.1. Let µ = µ0 + µs ∈ Mb(ΩT ), with µ0 ∈ M0(ΩT ), µs ∈ Ms(ΩT ).
By Proposition 3.7, there exist sequences of nonnegative measures µn,0,i = (fn,i, gn,i, hn,i)
and µn,s,i such that fn,i, gn,i, hn,i ∈ C∞

c (ΩT ) and strongly converge to some fi, gi, hi in
L1(ΩT ), L

2(ΩT ,R
N ) and L2(0, T,H1

0 (Ω)) respectively and µn,1, µn,2, µn,s,1, µn,s,2 ∈ C∞
c (ΩT )

converge to µ+, µ−, µ+
s , µ

−
s resp. in the narrow topology with µn,i = µn,0,i+µn,s,i, for i = 1, 2

and satisfying µ+
0 = (f1, g1, h1), µ

−
0 = (f2, g2, h2) and 0 ≤ µn,1 ≤ ϕn∗µ+, 0 ≤ µn,2 ≤ ϕn∗µ−

, where {ϕn} is a sequence of standard mollifiers in R
N+1.

Let σ1,n, σ2,n ∈ C∞
c (Ω) be convergent to σ+ and σ− in the narrow topology and in L1(Ω)

in σ ∈ L1(Ω) resp. such that 0 ≤ σ1,n ≤ ϕ1,n ∗ σ+, 0 ≤ σ2,n ≤ ϕ1,n ∗ σ− where {ϕ1,n} is a
sequence of standard mollifiers in R

N . Set µn = µn,1 − µn,2 and σn = σ1,n − σ2,n.
Let un, un,1, un,2 be solutions of equations





(un)t − div(A(x, t,∇un)) = µn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn on Ω,

(5.3)

and 



(un,1)t − div(A(x, t,∇un,1)) = χΩT
µn,1 in B2T0

(x0)× (0, 2T 2
0 ),

un,1 = 0 on ∂B2T0(x0)× (0, 2T 2
0 ),

un,1(0) = σ1,n on B2T0(x0),
(5.4)

and 



(un,2)t + div(A(x, t,−∇un,2)) = χΩT
µn,2 in B2T0

(x0)× (0, 2T 2
0 ),

un,2 = 0 on ∂B2T0(x0)× (0, 2T 2
0 ),

un,2(0) = σ2,n on B2T0(x0),
(5.5)

where Ω ⊂ BT0(x0) for x0 ∈ Ω.
We see that un,1, un,2 ≥ 0 in B2T0

(x0)× (0, 2T 2
0 ) and −un,2 ≤ un ≤ un,1 in ΩT .

Now, we estimate un,1. By Remark 3.3 and Theorem 3.6, a sequence {un,1,m} of solutions
to equations




(un,1,m)t − div(A(x, t,∇un,1,m)) = (gn,m)t + χΩT
µn,1 in B2T0(x0)× (−2T 2

0 , 2T
2
0 ),

un,1,m = 0 on ∂B2T0
(x0)× (−2T 2

0 , 2T
2
0 ),

un,1,m(−2T 2
0 ) = 0 on B2T0

(x0),
(5.6)

converges to un,1 in B2T0
(x0) × (0, 2T 2

0 ), where gn,m(x, t) = σ1,n(x)
´ t

−2T 2
0
ϕ2,m(s)ds and

{ϕ2,m} is a sequence of mollifiers in R.
By Remark 3.2, we have

||un,1,m||L1(Q̃2T0
(x0,0))

≤ c1T
2
0An,m. (5.7)

where An,m = µn,1(ΩT ) +
´

Q̃2T0
(x0,0)

σ1,n(x)ϕ2,m(t)dxdt.

Hence, thanks to Theorem 5.1 we have for (x, t) ∈ ΩT

un,1,m(x, t) ≤ c8T
−N−2
0 ||un,1,m||L1(Q̃2T0

(x0,0))
+ c8I2[µn,1](x, t) + c8I2[σ1,nϕm](x, t)

≤ c9I2[µn,1](x, t) + c9I2[σ1,nϕm](x, t).

Since 0 ≤ µn,1 ≤ ϕn ∗ µ+, σ1,n ≤ ϕ1,n ∗ σ+,

un,1,m(x, t) ≤ c9ϕn ∗ I2[µ+](x, t) + c9(ϕ1,nϕ2,m) ∗ I2[σ+ ⊗ δ{t=0}](x, t) ∀ (x, t) ∈ ΩT .
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Letting m → ∞, we get

un,1(x, t) ≤ c9ϕn ∗ I2[µ+](x, t) + c9ϕ1,n ∗
(
I2[σ

+ ⊗ δ{t=0}](., t)
)
(x) ∀ (x, t) ∈ ΩT .

Similarly, we also get

un,2(x, t) ≤ c9ϕn ∗ I2[µ−](x, t) + c9ϕ1,n ∗
(
I2[σ

− ⊗ δ{t=0}](., t)
)
(x) ∀ (x, t) ∈ ΩT

Consequently, by Proposition 3.5 and Theorem 3.6 , up to a subsequence, {un} converges
to a distribution solution ( a renormalized solution if σ ∈ L1(Ω) ) u of (2.6) and satisfied
(2.9).

Remark 5.2 Obviously, if σ ≡ 0 and supp (µ) ⊂ Ω× [a, T ], a > 0 then u = 0 in Ω× (0, a).

Remark 5.3 If A is independent of space variable x, (2.29) satisfies then

|∇u(x, t)| ≤ C(N,Λ1,Λ2, T0/d)I
2T0
1 [|µ|+ |σ| ⊗ δ{t=0}](x, t) (5.8)

for any (x, t) ∈ Ωd × (0, T ) and 0 < d ≤ 1
2 min{supx∈Ω d(x, ∂Ω), T

1/2
0 } where Ωd = {x ∈ Ω :

d(x, ∂Ω) > d}. Indeed, by Remark 3.3 and Theorem 3.6, a sequence {vn,m} of solutions to
equations





(vn,m)t − div(A(t,∇un,m)) = (gn,m)t + χΩT
µn in Ω× (−2T 2

0 , T ),
vn,m = 0 on ∂Ω× (−2T 2

0 , T ),
vn,m(−2T 2

0 ) = 0 on Ω,
(5.9)

converges to un in L1(0, T,W 1,1
0 (Ω)), where gn,m(x, t) = σn(x)

´ t

−2T 2
0
ϕ2,m(s)ds and {ϕ2,m}

is a sequence of mollifiers in R.
By Theorem 5.1, we have for any (x, t) ∈ Ωd × (0, T )

|∇vn,m(x, t)| ≤ c1

 

Q̃d/2(x,t)

|∇vn,m|dyds+ c1I
d
1[|µn|+ |σn| ⊗ ϕ2,m](x, t).

On the other hand, by remark 3.2,

|||∇vn,m|||L1(Ω×(−T 2
0 ,T )) ≤ c2T0(|µn|+ |σn| ⊗ ϕ2,m)(Ω× (−T 2

0 , T )).

Therefore, for any (x, t) ∈ Ωd × (0, T )

|∇vn,m(x, t)| ≤ c3I1[|µn|+ |σn| ⊗ ϕ2,m](x, t)

where c3 depends on T0/d.
Finally, letting m → ∞ and n → ∞ we get for any (x, t) ∈ Ωd × (0, T )

|∇u(x, t)| ≤ c3I1[|µ|+ |σ| ⊗ δ{t=0}](x, t)

We concludes (5.8) since I1[|µ|+ |σ| ⊗ δ{t=0}] ≤ c4I
2T0
1 [|µ|+ |σ| ⊗ δ{t=0}] in ΩT .

Next, we will establish pointwise estimates from below.

Theorem 5.4 If u ∈ C(Qr(y, s)) ∩L2(s− r2, s,H1(Br(y))) is a nonnegative weak solution
of (2.6) with data µ ∈ M+(Qr(y, s)) and u(s − r2) ≥ 0, then there exists a constant C
depending on N,Λ1,Λ2 such that

u(y, s) ≥ C
∞∑

k=0

µ(Qrk/8(y, s− 35
128r

2
k))

rNk
(5.10)

where rk = 4−kr.
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Proof. It is enough to show that for ρ ∈ (0, r)

µ(Qρ/8(y, s− 35
128ρ

2))

ρN
≤ c1( inf

Qρ/4(y,s)
u− inf

Qρ(y,s)
u) (5.11)

By [48, Theorem 6.18, p. 122 ], we have for any θ ∈ (0, 1 + 2/N),

(
 

Qρ/4(y,s−ρ2/4)

(u− a)θ

)1/θ

≤ c2(b− a) (5.12)

where b = infQρ/4(y,s) u, a = infQρ(y,s) u and a constant c2 depends on N,Λ1,Λ2, θ.

Let η ∈ C∞
c (Qρ(y, s)) such that 0 ≤ η ≤ 1, suppη ⊂ Qρ/4(y, s − 1

4ρ
2), η = 1 in

Qρ/8(y, s− 35
128ρ

2) and |∇η| ≤ c3/ρ
2, |ηt| ≤ c3/ρ

2 where c3 = c3(N). We have

µ(Qρ/8(y, s−
35

128
ρ2)) ≤

ˆ

Qρ(y,s)

η2dµ(x, t)

=

ˆ

Qρ(y,s)

utη
2dxdt+ 2

ˆ

Qρ(y,s)

ηA(x, t,∇u)∇ηdxdt

= −2

ˆ

Qρ(y,s)

(u− a)ηtηdxdt+ 2

ˆ

Qρ(y,s)

ηA(x, t,∇u)∇ηdxdt

≤ c3r
−2

ˆ

Qρ/4(y,s− 1
4ρ

2)

(u− a)dxdt+ 2Λ1

ˆ

Qρ(y,s)

η|∇u||∇η|dxdt

≤ c4r
N (b− a) + c4

ˆ

Qρ(y,s)

η|∇u||∇η|dxdt

Here we have used (5.12) with θ = 1 and (2.3) in the last inequality. It remains to show
that

ˆ

Qr(y,s)

η|∇u||∇η|dxdt ≤ c5r
N (b− a). (5.13)

First, we verify that for ε ∈ (0, 1)

ˆ

Qρ(y,s)

|∇u|2(u− a)−ε−1η2dxdt ≤ c6

ˆ

Qρ(y,s)

(u− a)1−ε
(
η|ηt|+ |∇η|2

)
dxdt. (5.14)

Indeed, for δ ∈ (0, 1) we choose ϕ = (u− a+ δ)−εη2 as test function in (2.6),

0 ≤
ˆ

Qρ(y,s)

ut(u− a+ δ)−εη2dxdt+

ˆ

Qρ(y,s)

A(x, t,∇u)∇
(
(u− a+ δ)−εη2

)
dxdt

≤ 2(1− ε)

ˆ

Qρ(y,s)

(u− a+ δ)1−ε|ηt|ηdxdt− εΛ2

ˆ

Qρ(y,s)

|∇u|2(u− a+ δ)−ε−1η2dxdt

+ 2Λ1

ˆ

Qρ(y,s)

η|∇u|(u− a+ δ)−ε|∇η|dxdt.
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So, we deduce (5.14) from using the Holder inequality and letting δ → 0.
Therefore, for ε ∈ (0, 2/N) using the Holder inequality and we get
ˆ

Qr(y,s)

η|∇u||∇η|dxdt

≤
(
ˆ

Qρ(y,s)

|∇u|2(u− a)−ε−1η2dxdt

)1/2(
ˆ

Qρ(y,s)

(u− a)ε+1|∇η|2dxdt
)1/2

≤ c7

(
ˆ

Qρ(y,s)

(u− a)1−ε
(
η|ηt|+ |∇η|2

)
dxdt

)1/2(
ˆ

Qρ(y,s)

(u− a)ε+1|∇η|2dxdt
)1/2

≤ c8ρ
−2

(
ˆ

Qρ/4(y,s− 1
4ρ

2)

(u− a)1−εdxdt

)1/2(
ˆ

Qρ/4(y,s− 1
4ρ

2)

(u− a)ε+1dxdt

)1/2

.

Consequently, we get (5.11) from (5.12).

Proof of Theorem 2.3. Let µn ∈ (C∞
c (ΩT ))

+, σn ∈ (C∞
c (Ω))+ be as in Theorem 2.1.

Let un be a weak solution of equation




(un)t − div(A(x, t,∇un)) = µn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn on Ω.

By Remark 3.3 and Theorem 3.6, a sequence {un,m} of solutions to equations




(un,m)t − div(A(x, t,∇un,m)) = (gn,m)t + χΩT
µn in Ω× (−diam(Ω), T ),

un,m = 0 on ∂Ω× (−diam(Ω), T ),
un,m(−diam(Ω)) = 0 on Ω,

converges to un in ΩT , where gn,m(x, t) = σn(x)
´ t

−diam(Ω)
ϕ2,m(s)ds and {ϕ2,m} is a se-

quence of mollifiers in R.
Thus, by Theorem 5.4 we have for any Qr(y, s) ⊂ Ω× (−diam(Ω), T ) and rk = 4−kr

un,m(y, s) ≥ c1

∞∑

k=0

µn(Qrk/8(y, s− 35
128r

2
k))

rNk
+ c1

∞∑

k=0

(σn ⊗ ϕm)(Qrk/8(y, s− 35
128r

2
k))

rNk
.

Letting m → ∞, we get

un(y, s) ≥ c1

∞∑

k=0

µn(Qrk/8(y, s− 35
128r

2
k))

rNk
+ c1

∞∑

k=0

(σn ⊗ δ{t=0})(Qrk/8(y, s− 35
128r

2
k))

rNk
.

Finally, by Proposition 3.5 and Theorem 3.6 we get the results.

Remark 5.5 If u ∈ Lq(ΩT ) satisfies (2.10) then G2[χEµ] ∈ Lq(RN+1) and G 2
q
[χFσ] ∈

Lq(RN ) for every E ⊂⊂ Ω × [0, T ) and F ⊂⊂ Ω. Indeed, for E ⊂⊂ Ω × [0, T ), ε =
dist (E, (Ω× (0, T )) ∪ (Ω× {t = T})) > 0, we can see that for any (y, s) ∈ ΩT , rk = 4−kε/4

u(y, s) ≥ c1

∞∑

k=0

µ̃(E ∩Qrk/8(y, s− 35
128r

2
k))

rNk
(5.15)

where µ̃ = µ+ σ ⊗ δ{t=0}.
Moreover, for any (y, s) /∈ ΩT

∞∑

k=0

µ̃(E ∩Qrk/8(y, s− 35
128r

2
k))

rNk
= 0
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Thus,

∞ >

ˆ

RN+1

∞∑

k=0

(
µ̃(E ∩Qrk/8(y, s− 35

128r
2
k))

rNk

)q

dyds

=

ˆ

RN

∞∑

k=0

ˆ

R

(
µ̃(E ∩Qrk/8(y, s− 35

128r
2
k))

rNk

)q

dsdy

≥
ˆ

RN

∞∑

k=0

ˆ

R

(
µ̃(E ∩ Q̃rk/8(y, s))

rNk

)q

dsdy

≥ c2

ˆ

RN+1

ˆ ε/64

0

(
µ̃(E ∩ Q̃ρ(y, s))

ρN

)q
dρ

ρ
dsdy

≥ c3(ε)

ˆ

RN+1

(G2[µ̃χE ])
q
dsdy.

Thus, from Proposition 4.19, we get the results.

Proof of Theorem 2.5. Set Dn = Bn(0) × (−n2, n2). For n ≥ 4, by Theorem 2.1, there
exists a renormalized solution un to problem





(un)t − div(A(x, t,∇un)) = χDn−1ω in Dn,
un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 on Bn(0).

relative to a decomposition (fn, gn, hn) of χDn−1ω0 satisfying

−KI2[ω
−](x, t) ≤ un(x, t) ≤ KI2[ω

+](x, t) ∀ (x, t) ∈ Dn. (5.16)

From the proof of Theorem 2.1 and Remark 3.9, we can assume that un satisfies (3.14) and
(3.15) in Proposition 3.16 with 1 < q0 < N+2

N , L ≡ 0 and

||fn||L1(Di) + ||gn||L2(Di) + |||hn|+ |∇hn|||L2(Di) ≤ 2|ω|(Di+1) (5.17)

for any i = 1, ..., n− 1 and hn is convergent in L1
loc(R

N+1).
On the other hand, by Proposition 4.26 we have for any s ∈ (1, N+2

N )

ˆ

Dm

|un|sdxdt ≤ Ks

ˆ

Dm

(I2[|ω|])sdxdt

≤ Ks

ˆ

Q̃4m(x0,t0)

(I2[|ω|])sdxdt

≤ c1MmN+2 (5.18)

for n ≥ m ≥ |x0|+ |t0|1/2. Consequently, we can apply Proposition 3.17 and obtain that un

converges to some u in L1
loc(R;W

1,1
loc (R

N )).
Since for any α ∈ (0, 1/2)

ˆ

Dm

|∇un|2
(|un|+ 1)α+1

dxdt ≤ Cm(α) ∀ n ≥ m,

thus using (5.18) and Holder inequality, we get for any 1 ≤ s1 < N+2
N+1

ˆ

Dm

|∇un|s1dxdt ≤ Cm(s1) for all n ≥ m ≥ |x0|+ |t0|1/2.
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This yields un → u in Ls1
loc(R;W

1,s1
loc (RN )).

Take ϕ ∈ C∞
c (RN+1) and m0 ∈ N with supp (ϕ) ⊂ Dm0

, we have for n ≥ m0 + 1

−
ˆ

RN+1

unϕtdxdt+

ˆ

RN+1

A(x, t,∇un)∇ϕdxdt =

ˆ

RN+1

ϕdω

Letting n → ∞, we conclude that u is a distribution solution to problem (2.8) with data
µ = ω which satisfies (2.11).
Claim 1. If ω ≥ 0. By Theorem 2.3, we have for n ≥ 4k0+1, (y, s) ∈ B4k0 × (0, n2)

un(y, s) ≥ c2

∞∑

k=0

ω(Qrk/8(y, s− 35
128r

2
k) ∩Dn−1)

rNk

where rk = 4−k+k0 . This gives

un(y, s) ≥ c2

∞∑

k=−k0

ω(Q2−2k−3(y, s− 35× 2−4k−7) ∩Bn−1(0)× (0, (n− 1)2))

2−2Nk
.

Letting n → ∞ and k0 → ∞ we have (2.12). Finally, thanks to Proposition 4.8 and Theorem
4.2, we will assert (2.13) if we show that for q > N+2

N

ˆ

R

( ∞∑

k=−∞

ω(Q2−2k−3(x, t− 35× 2−4k−7))

2−2Nk

)q

dxdt ≥ c3

ˆ

R

ˆ +∞

0

(
ω(Q̃ρ(x, t))

ρN

)q
dρ

ρ
dxdt.

Indeed,

ˆ

R

( ∞∑

k=−∞

ω(Q2−2k−3(x, t− 35× 2−4k−7))

2−2Nk

)q

dxdt

≥
∞∑

k=−∞

ˆ

R

(
ω(Q2−2k−3(x, t− 35× 2−4k−7))

2−2Nk

)q

dtdx

=

∞∑

k=−∞

ˆ

R

(
ω(Q̃2−2k−3(x, t))

2−2Nk

)q

dt

≥ c4

ˆ

RN+1

ˆ +∞

0

(
ω(Q̃ρ(x, t))

ρN

)q
dρ

ρ
dxdt.

Claim 2. If A is independent of space variable x and (2.29) is satisfied. By Remark 5.3 we
get for any (x, t) ∈ Dn/4

|∇un(x, t)| ≤ c5I1[|ω|](x, t).

Letting n → ∞, we get (2.14).
Claim 3. If ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then by
Remark (5.2) we can assume that un = 0 in Bn(0)× (−n2, 0). So, u = 0 in R

N × (−∞, 0).
Therefore, clearly u|

RN×[0,∞) is a distribution solution to (2.7). The proof is complete.

Remark 5.6 If ω ∈ Mb(R
N+1) then u satisfies

|||∇u|||
L

N+2
N+1

,∞
(RN+1)

≤ C(N,Λ1,Λ2)|ω|(RN+1).

Moreover, I2[|ω|] ∈ L
N+2
N ,∞(RN+1) and I2[|ω|] < ∞ a.e in R

N+1.
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6 Quasilinear Lane-Emden Type Parabolic Equations

6.1 Quasilinear Lane-Emden Parabolic Equations in ΩT

To prove Theorem 2.8 we need the following proposition which was proved in [6].

Proposition 6.1 Assume O is an open subset of RN+1. Let p > 1 and µ ∈ M+(O). If µ
is absolutely continuous with respect to Cap2,1,p in O, there exists a nondecreasing sequence

{µn} ⊂ M+
b (O) ∩

(
W 2,1

p (RN+1)
)∗
, with compact support in O which converges to µ weakly

in M(O). Moreover, if µ ∈ M+
b (O) then ||µn − µ||Mb(O) → 0 as n → ∞.

Remark 6.2 By Theorem 4.17, W 2,1
p (RN+1) = Lp

2(R
N+1), it follows {µn} ⊂ M+

b (O) ∩
(
Lp
2(R

N+1)
)∗
. Note that ||µn||(Lp

2(R
N+1))

∗ = ||
∨
G2[µn]||Lp′ (RN+1). So

∨
G2[µn] ∈ Lp′

(RN+1).

Consequently, from (4.17) in Proposition 4.8, we obtain I
R
2 [µn] ∈ Lp′

(RN+1) for any n ∈ N

and R > 0. In particular, I2[µn] ∈ Lp′

loc(R
N ) for any n ∈ N.

Remark 6.3 As in the proof of Theorem 2.5 in [14], we can prove a general version of
Proposition 6.1, that is: for p > 1, if µ is absolutely continuous with respect to CapGα,p

in O, there exists a nondecreasing sequence {µn} ⊂ M+
b (O) ∩

(
Lp
α(R

N+1)
)∗
, with compact

support in O which converges to µ weakly in M(O). Furthermore, Iα[µn] ∈ Lp′

loc(R
N+1) for

all n ∈ N. Besides, we also obtain that for µ ∈ Mb(O) is absolutely continuous with respect
to CapGα,p in O if and only if µ = f + ν where f ∈ L1(O) and ν ∈

(
Lp
α(R

N+1)
)∗

Proof of Theorem 2.8. First, assume that σ ∈ L1(Ω). Because µ is absolutely contin-
uous with respect to the capacity Cap2,1,q′ , so are µ+ and µ−. Applying Proposition 6.1
there exist two nondecreasing sequences {µ1,n} and {µ2,n} of positive bounded measures
with compact support in ΩT which converge to µ+ and µ− in Mb(ΩT ) respectively and
such that I2[µ1,n], I2[µ2,n] ∈ Lq(ΩT ).
For i = 1, 2, set µ̃i,1 = µi,1 and µ̃i,j = µi,j−µi,j−1 ≥ 0, so µi,n =

∑n
j=1 µ̃i,j . We write µi,n =

µi,n,0 + µi,n,s, µ̃i,j = µ̃i,j,0 + µ̃i,j,s with µi,n,0, µ̃i,n,0 ∈ M0(ΩT ), µi,n,s, µ̃i,n,s ∈ Ms(ΩT ).
As in the proof of Theorem 2.1, for any j ∈ N and i = 1, 2, there exist sequences of nonneg-
ative measures µ̃m,i,j,0 = (fm,i,j , gm,i,j , hm,i,j) and µ̃m,i,j,s such that fm,i,j , gm,i,j , hm,i,j ∈
C∞

c (ΩT ) and strongly converge to some fi,j , gi,j , hi,j in L1(ΩT ), L
2(ΩT ,R

N ) and L2(0, T,H1
0 (Ω))

respectively and µ̃m,i,j , µ̃m,i,j,s ∈ C∞
c (ΩT ) converge to µ̃i,j , µ̃i,j,s resp. in the narrow topol-

ogy with µ̃m,i,j = µ̃m,i,j,0 + µ̃m,i,j,s which satisfy µ̃i,j,0 = (fi,j , gi,j , hi,j) and 0 ≤ µ̃m,i,j ≤
ϕm ∗ µ̃i,j and

||fm,i,j ||L1(ΩT )+‖gm,i,j‖L2(ΩT ,RN )+||hm,i,j ||L2(0,T,W 1,2
0 (Ω))+µm,i,j,s(ΩT ) ≤ 2µ̃i,j(ΩT ). (6.1)

Here {ϕm} is a sequence of mollifiers in R
N+1.

For any n, k,m ∈ N, let un,k,m, u1,n,k,m, u2,n,k,m ∈ W withW = {z : z ∈ L2(0, T,H1
0 (Ω)), zt ∈

L2(0, T,H−1(Ω))} be solutions of problems




(un,k,m)t − div(A(x, t,∇un,k,m)) + Tk(|un,k,m|q−1un,k,m) =
∑n

j=1(µ̃m,1,j − µ̃m,2,j) in ΩT ,

un,k,m = 0 on ∂Ω× (0, T ),
un,k,m(0) = Tn(σ

+)− Tn(σ
−) on Ω,

(6.2)



(u1,n,k,m)t − div(A(x, t,∇u1,n,k,m)) + Tk(u
q
1,n,k,m) =

∑n
j=1 µ̃m,1,j in ΩT ,

u1,n,k,m = 0 on ∂Ω× (0, T ),
u1,n,k,m(0) = Tn(σ

+) in Ω,
(6.3)

and




(u2,n,k,m)t − div(Ã(x, t,∇u2,n,k,m)) + Tk(u
q
2,n,k,m) =

∑n
j=1 µ̃m,2,j in ΩT

u2,n,k,m = 0 on ∂Ω× (0, T ),
u2,n,k,m(0) = Tn(σ

−) in Ω

(6.4)

61



NGUYEN QUOC HUNG

where Ã(x, t, ξ) = −A(x, t,−ξ).
By Comparison Principle Theorem and Theorem 2.1, there holds, for any m, k the sequences
{u1,n,k,m}n and {u2,n,k,m}n are increasing and

−KI2[Tn(σ
−)⊗ δ{t=0}]−KI2[µ2,n ∗ ϕm] ≤ −u2,n,k,m ≤ un,k,m ≤ u1,,n,k,m

≤ KI2[µ1,n ∗ ϕm] +KI2[Tn(σ
+)⊗ δ{t=0}],

where a constant K is in Theorem 2.1. Thus,

−KI2[Tn(σ
−)⊗ δ{t=0}]−KI2[µ2,n] ∗ ϕm ≤ −u2,n,k,m ≤ un,k,m ≤ u1,,n,k,m

≤ KI2[µ1,n] ∗ ϕm +KI2[Tn(σ
+)⊗ δ{t=0}].

Moreover,

ˆ

ΩT

Tk(u
q
i,n,k,m)dxdt ≤

ˆ

ΩT

ϕm ∗ µi,ndxdt+ |σ|(Ω)

≤ |µ|(ΩT ) + |σ|(Ω).

As in [13, Proof of Lemma 6.4], thanks to Proposition 3.5 and Theorem 3.6, there exist subse-
quences of {un,k,m}m {u1,n,k,m}m, {u2,n,k,m}m, still denoted them, converging to renormal-
ized solutions un,k u1,n,k, u2,n,k of equations (6.2) with data µ1,n−µ2,n, un,k(0) = Tn(σ

+)−
Tn(σ

−) and the decomposition (
∑n

j=1 f1,j −
∑n

j=1 f2,j ,
∑n

j=1 g1,j −
∑n

j=1 g2,j ,
∑n

j=1 h1,j −∑n
j=1 h2,j) of µ1,n,0−µ2,n,0, (6.3) with data µ1,n, u1,n,k(0) = Tn(σ

+) and the decomposition

(
∑n

j=1 f1,j ,
∑n

j=1 g1,j ,
∑n

j=1 h1,j) of µ1,n,0, (6.4) with data µ2,n, u2,n,k(0) = Tn(σ
−) and the

decomposition (
∑n

j=1 f2,j ,
∑n

j=1 g2,j ,
∑n

j=1 h2,j) of µ2,n,0 respectively, which satisfy

−KI2[Tn(σ
−)⊗ δ{t=0}]−KI2[µ2,n] ≤ −u2,n,k ≤ un,k ≤ u1,n,k

≤ KI2[µ1,n] +KI2[Tn(σ
+)⊗ δ{t=0}].

Next, as in [13, Proof of Lemma 6.5] since I2[µi,n] ∈ Lq(ΩT ) for any n, thanks to Proposition
3.5 and Theorem 3.6, there exist subsequences of {un,k}k {u1,n,k}k, {u2,n,k}k, still denoted
them, converging to renormalized solutions un u1,n, u2,n of equations





(un)t − div(A(x, t,∇un)) + |un|q−1un = µ1,n − µ2,n in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = Tn(σ

+)− Tn(σ
−) in Ω,

(6.5)





(u1,n)t − div(A(x, t,∇u1,n)) + uq
1,n = µ1,n in ΩT ,

u1,n = 0 on ∂Ω× (0, T ),
u1,n(0) = Tn(σ

+) in Ω,
(6.6)

and 



(u2,n)t − div(Ã(x, t,∇u2,n)) + uq
2,n = µ2,n in ΩT ,

u2,n = 0 on ∂Ω× (0, T ),
u2,n(0) = Tn(σ

−) in Ω,

(6.7)

which satisfy

−KI2[Tn(u
−
0 )⊗ δ{t=0}]−KI2[µ2,n] ≤ −u2,n ≤ un ≤ u1,n

≤ KI2[µ1,n] +KI2[Tn(u
+
0 )⊗ δ{t=0}].

and the sequences {u1,n}n and {u2,n}n are increasing and

ˆ

ΩT

uq
i,ndxdt ≤ |µ|(ΩT ) + |σ|(Ω).
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Note that from (6.1) we have

||fi,j ||L1(ΩT ) + ‖gi,j‖L2(ΩT ,RN ) + ||hi,j ||L2(0,T,W 1,2
0 (Ω)) ≤ 2µ̃i,j(ΩT )

which implies

||
n∑

j=1

fi,j ||L1(ΩT ) + ||
n∑

j=1

gi,j ||L2(ΩT ,RN ) + ||
n∑

j=1

hi,j ||L2(0,T,W 1,2
0 (Ω)) ≤ 2µ̃i,n(ΩT ) ≤ 2|µ|(ΩT ).

Finally, as in [13, Proof of Theorem 6.3] thanks to Proposition 3.5, Theorem 3.6 and Mono-
tone Convergence Theorem there exist subsequences of {un}n, {u1,n}n, {u2,n}n, still denoted
them, converging to renormalized solutions u, u1, u2 of equations (6.5) with data µ, u(0) = σ
and the decomposition (

∑∞
j=1 f1,j−

∑∞
j=1 f2,j ,

∑∞
j=1 g1,j−

∑∞
j=1 g2,j ,

∑∞
j=1 h1,j−

∑∞
j=1 h2,j)

of µ0, (6.6) with data µ+, u1(0) = σ+ and the decomposition (
∑∞

j=1 f1,j ,
∑∞

j=1 g1,j ,∑∞
j=1 h1,j) of µ

+
0 , (6.7) with data µ−, u2(0) = σ− and the decomposition (

∑∞
j=1 f2,j ,

∑∞
j=1 g2,j ,∑∞

j=1 h2,j) of µ
−
0 , respectively and

−KI2[σ
− ⊗ δ{t=0}]−KI2[µ

−] ≤ −u2 ≤ u ≤ u1 ≤ KI2[µ
+] +KI2[σ

+ ⊗ δ{t=0}].

We now have remark: if σ ≡ 0 and supp (µ) ⊂ Ω × [a, T ], a > 0, then u = u1 = u2 = 0 in
Ω× (0, a) since un,k = u1,n,k = u2,n,k = 0 in Ω× (0, a).
Next, we will consider σ ∈ Mb(Ω) such that σ is absolutely continuous with respect to the
capacity CapG 2

q
,q′

in Ω. So, χΩT
µ + σ ⊗ δ{t=0} is absolutely continuous with respect to

the capacity Cap2,1,q′ in Ω× (−T, T ). As above, we verify that there exists a renormalized
solution u of





ut − div(A(x, t,∇u)) + |u|q−1u = χΩT
µ+ σ ⊗ δ{t=0} in Ω× (−T, T )

u = 0 on ∂Ω× (−T, T ),
u(−T ) = 0 on Ω,

(6.8)

satisfying u = 0 in Ω× (−T, 0) and

−KI2[σ
− ⊗ δ{t=0}]−KI2[µ

−] ≤ u ≤ KI2[µ
+] +KI2[σ

+ ⊗ δ{t=0}].

Finally, from remark 3.11 we get the result. This completes the proof of the theorem.

Proof of Theorem 2.9. Let {µn,i} ⊂ C∞
c (ΩT ), σi,n ∈ C∞

c (Ω) for i = 1, 2 be as in
the proof of Theorem 2.1. We have 0 ≤ µn,1 ≤ ϕn ∗ µ+, 0 ≤ µn,2 ≤ ϕn ∗ µ−, 0 ≤ σ1,n ≤
ϕ1,n ∗ σ+, 0 ≤ σ2,n ≤ ϕ1,n ∗ σ− for any n ∈ N where {ϕn} and {ϕ1,n} are sequences of
standard mollifiers in R

N+1,RN respectively.
We prove that the problem (2.2) has a solution with data µ = µn0

= µn0,1 − µn0,2, σ =
σn0 = σ1,n0 − σ2,n0 for n0 ∈ N. Put

E =

{
u ∈ Lq(ΩT ) : u

+ ≤ qK

q − 1
I
2T0,δ
2 [µn0,1 + σ1,n0 ⊗ δ{t=0}]

and u− ≤ qK

q − 1
I
2T0,δ
2 [µn0,2 + σ2,n0

⊗ δ{t=0}]

}
.

where max{−N+2
q′ + 2, 0} < δ < 2.

Clearly, E is closed under the strong topology of Lq(ΩT ) and convex.
We consider a map S : E → E defined for each v ∈ EΛ by S(v) = u, where u ∈ L1(ΩT ) is
the unique renormalized solution of





ut − div(A(x, t,∇u)) = |v|q−1v + µn0,1 − µn0,2 in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ1,n0

− σ2,n0
in Ω.

(6.9)
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By Theorem 2.1, we have

u+ ≤ KI
2T0
2 [(v+)q] +KI

2T0
2 [µn0,1 + σ1,n0 ⊗ δ{t=0}] and

u− ≤ KI
2T0
2 [(v−)q] +KI

2T0
2 [µn0,2 + σ2,n0 ⊗ δ{t=0}],

where K is the constant in Theorem 2.1. Thus,

u+ ≤ K

(
qK

q − 1

)q

I
2T0,δ
2

[(
I
2T0,δ
2 [µn0,1 + σ1,n0

⊗ δ{t=0}]
)q]

+KI
2T0,δ
2 [µn0,1 + σ1,n0

⊗ δ{t=0}],

u− ≤ K

(
qK

q − 1

)q

I
2T0,δ
2

[(
I
2T0,δ
2 [µn0,2 + σ2,n0

⊗ δ{t=0}]
)q]

+KI
2T0,δ
2 [µn0,2 + σ2,n0

⊗ δ{t=0}].

Thus, thanks to Theorem 4.36 there exists c1 = c1(N,K, δ, q) such that if for every compact
sets E ⊂ R

N+1,

|µn0,i|(E) + (|σi,n0
| ⊗ δ{t=0})(E) ≤ c1CapE2T0,δ

2 ,q′
(E). (6.10)

then I
2T0,δ
2 [µn0,i + σi,n0 ⊗ δ{t=0}] ∈ Lq(RN+1) and

I
2T0,δ
2

[(
I
2T0,δ
2 [µn0,i + σi,n0

⊗ δ{t=0}]
)q]

≤ (q − 1)q−1

(Kq)q
I
2T0,δ
2 [µn0,i + σi,n0

⊗ δ{t=0}] i = 1, 2.

which implies u ∈ Lq(ΩT ) and

u+ ≤ qK

q − 1
I
2T0
2 [µn0,1 + σ1,nn ⊗ δ{t=0}] and

u− ≤ qK

q − 1
I
2T0
2 [µn0,2 + σ2,n0 ⊗ δ{t=0}].

Now we assume that (6.10) is satisfied, so S is well defined. Therefore, if we can show that
the map S : E → E is continuous and S(E) is pre-compact under the strong topology of
Lq(ΩT ) then by Schauder Fixed Point Theorem, S has a fixed point on EΛ. Hence the
problem (2.2) has a solution with data µ = µn0

, σ = σn0
.

Now we show that S is continuous. Let {vn} be a sequence in E such that vn converges
strongly in Lq(ΩT ) to a function v ∈ E. Set un = S(vn). We need to show that un → S(v)
in Lq(ΩT ).
By Proposition 3.5, there exists a subsequence of {un}, still denoted by it, converging to u
a.e in ΩT . Since

|un| ≤
∑

i=1,2

qK

q − 1
I
2T0,δ
2 [µn0,i + σi,n0

⊗ δ{t=0}] ∈ Lq(ΩT ) ∀ n ∈ N

Applying Dominated Convergence Theorem, we have un → u in Lq(ΩT ). Hence, thanks to
Theorem 3.6 we get u = S(v).
Next we show that S is pre-compact. Indeed if {un} = {S(vn)} is a sequence in S(E).
By Proposition 3.5, there exists a subsequence of {un}, still denoted by it, converging to u
a.e in ΩT . Again, using get Dominated Convergence Theorem we get un → u in Lq(ΩT ).
So S is pre-compact.
Next, thanks to Corollary 4.39 and Remark 4.40 we have

[µn,i + σi,n ⊗ δ{t=0}]MG2,q′ ≤ c2[|µ|+ |σ| ⊗ δ{t=0}]MG2,q′ ∀ n ∈ N, i = 1, 2,

for some c2 = c2(N, q).
In addition, by the proof of Corollary 4.39 we get

(c3(T0))
−1CapG2,q′(E) ≤ Cap

E
2T0,δ
2 ,q′

(E) ≤ c3(T0)CapG2,q′(E)
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for every compact set K with diam(E) ≤ 2T0. Thus, there is c4 = c4(N,K, δ, q, T0) such
that if

[|µ|+ |σ| ⊗ δ{t=0}]MG2,q′ ≤ c4, (6.11)

then (6.10) holds for any n0 ∈ N.
Now we suppose that (6.11) holds, it is equivalent to (2.15) holding for some constant
C1 = C1(T0) by Remark 4.34. Therefore, for any n ∈ N there exists a renormalized solution
un of 




(un)t − div(A(x, t,∇un)) = |un|q−1un + µn,1 − µn,2 in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σ1,n − σ2,n in Ω,

(6.12)

which satisfies

− qK

q − 1
I
2T0,δ
2 [µn,2 + σ2,n ⊗ δ{t=0}] ≤ un ≤ qK

q − 1
I
2T0,δ
2 [µn,1 + σ1,n ⊗ δ{t=0}].

Thus, for every (x, t) ∈ ΩT ,

− qK

q − 1
ϕn ∗ I2T0,δ

2 [µ−](x, t)− qK

q − 1
ϕ1,n ∗ (I2T0,δ

2 [σ− ⊗ δ{t=0}](., t))(x) ≤ un(x, t)

≤ qK

q − 1
ϕn ∗ (I2T0,δ

2 [µ−])(x, t) +
qK

q − 1
ϕ1,n ∗ (I2T0,δ

2 [σ− ⊗ δ{t=0}](., t))(x).

Since ϕn∗I2T0,δ
2 [µ±](x, t), ϕ1,n∗(I2T0,δ

2 [σ±⊗δ{t=0}](., t))(x) converge to I
2T0,δ
2 [µ±](x, t), I2T0,δ

2 [σ±⊗
δ{t=0}](x, t) in Lq(RN+1) as n → ∞, respectively, so |un|q is equi-integrable.
By Proposition 3.5, there exists a subsequence of {un}, still denoted by its, converging to u
a.e in ΩT . It follows |un|q−1un → |u|q−1u in L1(ΩT ).
Consequently, by Proposition 3.5 and Theorem 3.6, we obtain that u is a distribution ( a
renormalized solution if σ ∈ L1(Ω)) of (2.2) with data µ, σ, and satisfies (2.16). Further-
more, by Corollary 4.39 we have

(c5(T0))
−1
[
|µ|+ |σ| ⊗ δ{t=0}

]q
MG2,q′

≤
[(

I
2T0,δ
2 [|µ|+ |σ| ⊗ δ{t=0}]

)q]
MG2,q′

≤ c5(T0)
[
|µ|+ |σ| ⊗ δ{t=0}

]q
MG2,q′

which implies [|u|q]MG2,q′ ≤ c4(T0) and we get (2.17). This completes the proof of the
Theorem.

Remark 6.4 In view of above proof, we can see that

i. The Theorem 2.9 also holds when we replace assumption (2.15) by

|µ|(E) ≤ CCapH2,q′(E) and |σ|(F ) ≤ CCapI 2
q
,q′(F ).

for every compact sets E ⊂ R
N+1, F ⊂ R

N where C = C(NΛ1,Λ2, q) is some a
constant.

ii. If σ ≡ 0 and supp (µ) ⊂ Ω× [a, T ], a > 0, then we can show that a solution u in Theorem
2.9 satisfies u = 0 in Ω× (0, a) since we can replace the set E by E′:

E′ =

{
u ∈ Lq(ΩT ) : u = 0 in Ω× (0, a) and u+ ≤ qK

q − 1
I
2T0,δ
2 [µn0,1 + σ1,n0

⊗ δ{t=0}]

and u− ≤ qK

q − 1
I
2T0,δ
2 [µn0,2 + σ2,n0

⊗ δ{t=0}]

}
.
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6.2 Quasilinear Lane-Emden Parabolic Equations in R
N×(0,∞) and

R
N+1

This section is devoted to proofs of Theorem 2.12 and 2.14.
Proof of the Theorem 2.12. Since ω is absolutely continuous with respect to the
capacity Cap2,1,q′ in R

N+1, |ω| is too. Set Dn = Bn(0) × (−n2, n2). From the proof of
Theorem 2.8, there exist renormalized solutions un, vn of





(un)t − div(A(x, t,∇un)) + |un|q−1un = χDn
ω in Dn,

un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 in Bn(0),

and 



(vn)t − div(A(x, t,∇vn)) + vqn = χDn |ω| in Dn,
vn = 0 on ∂Bn(0)× (−n2, n2),
vn(−n2) = 0 in Bn(0),

relative to decompositions (fn, gn, hn) of χDnω0 and (fn, gn, hn) of χBn(0)×(0,n2)|ω0|, satis-
fied (3.14), (3.15) in Proposition 3.16 with 1 < q0 < q, L(un) = |un|q−1un, L(vn) = vqn and
µ is replaced by χDnω and χDn |ω| respectively. Moreover, there hold

−KI2[ω
−] ≤ un ≤ KI2[ω

+], 0 ≤ vn ≤ KI2[|ω|] in Dn (6.13)

and vn+1 ≥ vn, |un| ≤ vn in Dn.
By Remark 3.9, we can assume that

||fn||L1(Di) + ||gn||L2(Di,RN ) + |||hn|+ |∇hn|||L2(Di) ≤ 2|ω|(Di+1) and

||fn||L1(Di) + ||gn||L2(Di,RN ) + |||hn|+ |∇hn|||L2(Di) ≤ 2|ω|(Di+1)

for any i = 1, ..., n − 1 and hn, hn are convergent in L1
loc(R

N+1). On the other hand, since
un, vn satisfy (3.14) in Proposition 3.16 with 1 < q0 < q, L(un) = |un|q−1un, L(vn) = vqn
and thanks to Holder inequality: for any ε ∈ (0, 1)

(|un|+ 1)
q0 ≤ ε|un|q + c1(ε) and (|vn|+ 1)

q0 ≤ ε|vn|q + c1(ε)

Thus we get

ˆ

Di

|un|qdxdt+
ˆ

Di

|un|q0dxdt+
ˆ

Di

vqndxdt+

ˆ

Di

vq0n dxdt ≤ C(i) + c2|ω|(Di+1). (6.14)

for i = 1, ..., n− 1, where the constant C(i) depends on N,Λ1,Λ2, q0, q and i.
Consequently, we can apply Proposition 3.17 with µn = −|un|q−1un + χDnω,−vqn + χDn |ω|
and obtain that there are subsequences of un, vn, still denoted by them, converging to some

u, v in L1
loc(R;W

1,1
loc (R

N )). So, |∇u|2
(|u|+1)α+1 ∈ L1

loc(R
N+1) for all α > 0 and u ∈ Lq

loc(R
N+1)

satisfies (2.19). In addition, using Holder inequality we get u ∈ Lγ
loc(R;W

1,γ
loc (R

N )) for any
1 ≤ γ < 2q

q+1 .

Thanks to (6.14) and Monotone Convergence Theorem we get vn → v in Lq
loc(R

N+1) (2.23).
After, we also have un → u in Lq

loc(R
N+1) by |un| ≤ vn and Dominated Convergence Theo-

rem. Consequently, u is a distribution solution of problem (2.18) which satisfies (2.19).
If ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then by the proof of
Theorem 2.8 we can assume that un = 0 in Bn(0) × (−n2, 0). So, u = 0 in R

N × (−∞, 0).
Therefore, clearly u|

RN×[0,∞) is a distribution solution to (2.20).
This completes the proof of the theorem.

Proof of the Theorem 2.14. By the proof of Theorem 2.9 and Remark 6.4, 4.34,
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there exists a constant c1 = c1(N, q,Λ1,Λ2) such that if µ, σ satisfy for every compact
sets E ⊂ R

N+1,
|ω|(E) ≤ c1CapH2,q′(E) (6.15)

then there is a nonnegative renormalized solution un of




(un)t − div(A(x, t,∇un)) = |un|q−1un + χDn
ω in Dn

un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 in Bn(0),

relative to a decomposition (fn, gn, hn) of χDn
ω0, satisfying (3.14), (3.15) in Proposition

3.16 with q0 = q, L ≡ 0 and µ is replaced by |un|q−1un + χDnω and

− qK

q − 1
I2[ω

−](x, t) ≤ un ≤ qK

q − 1
I2[ω

+]](x, t) (6.16)

for a.e (x, t) in Dn and I2[ω
±] ∈ Lq

loc(R
N+1).

Besides, thanks to Remark 3.9, we can assume that fn, gn, hn satisfies (5.17) in proof of
Theorem (2.5) and hn is convergent in L1

loc(R
N+1).

Consequently, we can apply Proposition 3.17 and obtain that there exist a subsequence of
un, still denoted by it, converging to some u a.e in R

N+1 and in L1
loc(R;W

1,1
loc (R

N )). Also,

un → u in Lq
loc(R

N+1) by Dominated Convergence Theorem, |∇u|2
(|u|+1)α+1 ∈ L1

loc(R
N+1) for

all α > 0. Using Holder inequality we get u ∈ Lγ
loc(R;W

1,γ
loc (R

N )) for any 1 ≤ γ < 2q
q+1 .

Thus we obtain that u is a distribution solution of (2.22) which satisfies (2.23). Since (6.15)
holds, thus by Theorem 4.36 we get

c−1
2 [|ω|]qMH2,q′ ≤ [(I2[|ω|])q]MH2,q′ ≤ c2 [|ω|]qMH2,q′ ,

so we have [|u|q]MH2,q′ ≤ c3. It follows (2.25).
If ω = µ+ σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then by Remark 6.4 we
can assume that un = 0 in Bn(0)× (−n2, 0). So, u = 0 in R

N × (−∞, 0). Therefore, clearly
u|

RN×[0,∞) is a distribution solution to (2.24).
This completes the proof of the theorem.

7 Interior Estimates and Boundary Estimates for Parabolic

Equations

In this section we always assume that u ∈ C(−T, T ;L2(Ω))∩L2(−T, T ;H1
0 (Ω)) is a solution

to equation (2.6) in Ω × (−T, T ) with µ ∈ L2(Ω × (−T, T )) and u(−T ) = 0. We extend u
by zero to Ω× (−∞,−T ), clearly u is a solution to equation

{
ut − div (A(x, t,∇u)) = χ(−T,T )(t)µ in Ω× (−∞, T ),
u = 0 on ∂Ω× (−∞, T ).

(7.1)

7.1 Interior Estimates

For each ball B2R = B2R(x0) ⊂⊂ Ω and t0 ∈ (−T, T ), we consider the unique solution

w ∈ C(t0 − 4R2, t0;L
2(B2R)) ∩ L2(t0 − 4R2, t0;H

1(B2R)) (7.2)

to the following Cauchy-Dirichlet problem
{

wt − div (A(x, t,∇w)) = 0 in Q2R

w = u on ∂pQ2R
(7.3)

whereQ2R = B2R×(t0−4R2, t0) and ∂pQ2R =
(
∂B2R × (t0 − 4R2, t0)

)
∪
(
B2R ×

{
t = t0 − 4R2

})
.
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Theorem 7.1 There exist constant θ1 > 2, β1 ∈ (0, 1
2 ] and C1, C2, C3 depending on N,Λ1,Λ2

such that the following estimates are true

 

Q2R

|∇u−∇w|dxdt ≤ C1
|µ|(Q2R)

RN+1
, (7.4)

(
 

Qρ/2(y,s)

|∇w|θ1dxdt
) 1

θ1

≤ C2

 

Qρ(y,s)

|∇w|dxdt, (7.5)

(
 

Qρ1 (y,s)

|w − wQρ1
(y,s)|2dxdt

)1/2

≤ C3

(
ρ1
ρ2

)β1
(
 

Qρ2 (y,s)

|w − wQρ2
(y,s)|2dxdt

)1/2

,

(7.6)
and (

 

Qρ1
(y,s)

|∇w|2dxdt
)1/2

≤ C3

(
ρ1
ρ2

)β1−1
(
 

Qρ2
(y,s)

|∇w|2dxdt
)1/2

(7.7)

for any Qρ(y, s) ⊂ Q2R, and Qρ1
(y, s) ⊂ Qρ2

(y, s) ⊂ Q2R.

Proof. Inequalities (7.4), (7.5) and (7.6) were proved by F. Duzaar and G. Mingione in
[25]. So, it remains to prove (7.7) in case ρ1 ≤ ρ2/2. By interior Caccioppoli inequality we
have (

 

Qρ1
(y,s)

|∇w|2dxdt
)1/2

≤ c1
ρ1

(
 

Q2ρ1
(y,s)

|w − wQ2ρ1
(y,s)|2dxdt

)1/2

.

On the other hand, by a Sobolev inequality there holds

(
 

Qρ2
(y,s)

|w − wQρ2
(y,s)|2dxdt

)1/2

≤ c2ρ2

(
 

Qρ2
(y,s)

|∇w|2dxdt
)1/2

.

Therefore, (7.7) follows from (7.6).

Corollary 7.2 Let β1 be the constant in Theorem 7.1. For 2−β1 < θ < N +2, there exists
a constant C = C(N,Λ1,Λ2, θ) > 0 such that for any Bρ(y) ⊂ Bρ0

(y) ⊂⊂ Ω, s ∈ (−T, T )

ˆ

Qρ(y,s)

|∇u|dxdt ≤ CρN+3−θ

((
T0

ρ0

)N+3−θ

+ 1

)
||Mθ[µ]||L∞(Ω×(−T,T )) (7.8)

Proof. Take Bρ2
(y) ⊂⊂ Ω and s ∈ (−T, T ). For any Qρ1

(y, s) ⊂ Qρ2
(y, s) with ρ1 ≤ ρ2/2,

we take w as in Theorem 3.4 with Q2R = Qρ2(y, s). Thus,

ˆ

Qρ1
(y,s)

|∇w|dxdt ≤ c1

(
ρ1
ρ2

)N+β1+1 ˆ

Qρ2
(y,s)

|∇w|dxdt,

ˆ

Qρ2
(y,s)

|∇u−∇w|dxdt ≤ c2ρ2|µ|(Qρ2
(y, s)),

and we also have

c−1
3

ˆ

Qρ2 (y,s)

|∇u|dxdt ≤
ˆ

Qρ2 (y,s)

|∇w|dxdt ≤ c3

ˆ

Qρ2 (y,s)

|∇u|dxdt.
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They follow that
ˆ

Qρ1
(y,s)

|∇u|dxdt ≤
ˆ

Qρ1
(y,s)

|∇w|dxdt+
ˆ

Qρ1
(y,s)

|∇u−∇w|dxdt

≤ c4

(
ρ1
ρ2

)N+β1+1 ˆ

Qρ2
(y,s)

|∇w|dxdt+
ˆ

Qρ2
(y,s)

|∇u−∇w|dxdt

≤ c5

(
ρ1
ρ2

)N+β1+1 ˆ

Qρ2
(y,s)

|∇u|dxdt+ c5ρ2|µ|(Qρ2(y, s)).

Which implies

ˆ

Qρ1
(y,s)

|∇u|dxdt ≤ c5

(
ρ1
ρ2

)N+β1+1 ˆ

Qρ2
(y,s)

|∇u|dxdt+ c5ρ
N+3−θ
2 ||Mθ[µ]||L∞(Ω×(−T,T )).

Since N + 3− β < N + β1 + 1, applying [48, Lemma 4.6, page 54] we obtain

ˆ

Qρ(y,s)

|∇u|dxdt ≤ c6

(
ρ

ρ0

)N+3−θ

||∇u||L1(Ω×(−T,T )) + c6ρ
N+3−θ||Mθ[µ]||L∞(Ω×(−T,T ))

for any Bρ(y) ⊂ Bρ0(y) ⊂⊂ Ω, s ∈ (−T, T ). On the other hand, by Remark 3.2

||∇u||L1(Ω×(−T,T )) ≤ c7T0|µ|(Ω× (−T, T )) ≤ c8T
N+3−θ
0 ||Mθ[µ]||L∞(Ω×(−T,T )).

Hence, we get the desired result.

To continue, we consider the unique solution

v ∈ C(t0 −R2, t0;L
2(BR)) ∩ L2(t0 −R2, t0;H

1(BR)) (7.9)

to the following Cauchy-Dirichlet problem

{
vt − div

(
ABR(x0)(t,∇v)

)
= 0 in QR

v = w on ∂pQR
(7.10)

whereQR = BR(x0)×(t0−R2, t0) and ∂pQR =
(
∂BR × (t0 −R2, t0)

)
∪
(
BR ×

{
t = t0 −R2

})
.

Lemma 7.3 Let θ1 be the constant in Theorem 7.1. There exist constants C1 = C1(N,Λ1,Λ2),
C2 = C2(Λ1,Λ2) such that

(
 

QR

|∇w −∇v|2dxdt
)1/2

≤ C1[A]
R
s1

 

Q2R

|∇w|dxdt (7.11)

with s1 = 2θ1
θ1−2 and

C−1
2

ˆ

QR

|∇v|2dxdt ≤
ˆ

QR

|∇w|2dxdt ≤ C2

ˆ

QR

|∇v|2dxdt (7.12)

Proof. We can choose ϕ = w− v as a test function for equations (7.3), (7.10) and since

ˆ

QR

wt(w − v)dxdt−
ˆ

QR

vt(w − v)dxdt =
1

2

ˆ

BR

(w − v)2(t0)dx ≥ 0,

we find

−
ˆ

QR

ABR(x0)(t,∇v)∇(w − v)dxdt ≤ −
ˆ

QR

A(x, t,∇w)∇(w − v)dxdt.
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By using inequalities (2.3) and (2.4) together with Holder’s inequality we get

c−1
1

ˆ

QR

|∇v|2dxdt ≤
ˆ

QR

|∇w|2dxdt ≤ c1

ˆ

QR

|∇v|2dxdt (7.13)

and we also have

Λ2

ˆ

QR

|∇w −∇v|2dxdt ≤
ˆ

QR

(
ABR(x0)(t,∇w)−ABR(x0)(t,∇v)

)
(∇w −∇v) dxdt

≤
ˆ

QR

(
ABR(x0)(t,∇w)−A(x, t,∇w)

)
(∇w −∇v) dxdt

≤
ˆ

QR

Θ(A,BR(x0))(x, t)|∇w||∇w −∇v|dxdt.

Here we used the definition of Θ(A,BR(x0)) in the last inequality. Using Holder’s inequality
with exponents s1 = 2θ1

θ1−2 , θ1 and 2 gives

Λ2

 

QR

|∇w −∇v|2 ≤
(
 

QR

Θ(A,BR(x0))(x, t)
s1dxdt

)1/s1 ( 

QR

|∇w|θ1dxdt
)1/θ1

×
(
 

QR

|∇w −∇v|2dxdt
)1/2

.

In other words,

(
 

QR

|∇w −∇v|2dxdt
)1/2

≤ Λ−1
2 [A]Rs1

(
 

QR

|∇w|θ1dxdt
)1/θ1

.

After using the inequality (7.5) in Theorem 7.1 we get (7.11).

Lemma 7.4 Let θ1 be the constant in Theorem 7.1. There exists a functions v ∈ C(t0 −
R2, t0;L

2(BR)) ∩ L2(t0 −R2, t0;H
1(BR)) ∩ L∞(t0 − 1

4R
2, t0;W

1,∞(BR/2)) such that

||∇v||L∞(QR/2) ≤ C

 

Q2R

|∇u|dxdt+ C
|µ|(Q2R)

RN+1
(7.14)

and
 

QR

|∇u−∇v|dxdt ≤ C
|µ|(Q2R)

RN+1
+ C[A]Rs1

(
 

Q2R

|∇u|dxdt+ |µ|(Q2R)

RN+1

)

where s1 = 2θ1
θ1−2 and C = C(N,Λ1,Λ2).

Proof. Let w and v be as in (7.3) and (7.10). By standard interior regularity and inequality
(7.5) in Theorem 7.1 and (7.12) in Lemma 7.3 we have

||∇v||L∞(QR/2) ≤ c1

(
 

QR

|∇v|2dxdt
)1/2

≤ c2

(
 

QR

|∇w|2dxdt
)1/2

≤ c3

 

Q2R

|∇w|dxdt.

Thus, we get (7.14) from (7.4) in Theorem 7.1.
On the other hand, by (7.11) in Lemma 7.3 and Holder’s inequality yield

 

QR

|∇w −∇v|dxdt ≤ c4[A]
R
s1

 

Q2R

|∇w|dxdt.
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Leads to
 

QR

|∇u−∇v|dxdt ≤
 

QR

|∇u−∇w|dxdt+ c4[A]
R
s1

 

Q2R

|∇w|dxdt.

Consequently, we get (7.15) from (7.4) in Theorem 7.1. The proof is complete.

7.2 Boundary Estimates

In this subsection, we focus the corresponding estimates near the boundary.
Let x0 ∈ ∂Ω be a boundary point and for R > 0 and t0 ∈ (−T, T ), we set Ω̃6R =
Ω̃6R(x0, t0) = (Ω ∩B6R(x0))× (t0 − (6R)2, t0) and Q6R = Q6R(x0, t0).
We consider the unique solution w to the equation

{
wt − div (A(x, t,∇w)) = 0 in Ω̃6R

w = u on ∂pΩ̃6R
(7.15)

In what follows we extend µ and u by zero to (Ω× (−∞, T ))
c
and then extend w by u to

R
N+1\Ω̃6R.

In order to obtain estimates for w as in Theorem 7.1 we need the domain Ω satisfied
2−Capacity uniform thickness condition.

7.2.1 2-Capacity uniform thickness domain

It is well known that if RN\Ω satisfies uniformly 2−thick with constants c0, r0 > 0, there
exist p0 ∈ ( 2N

N+2 , 2) and C = C(N, c0) > 0 such that

Capp0
(Br(x) ∩ (RN\Ω), B2r(x)) ≥ CrN−p0 (7.16)

for all 0 < r ≤ r0 and all x ∈ R
N\Ω, see [45, 54].

Theorem 7.5 Suppose that RN\Ω satisfies uniformly 2−thick with constants c0, r0. Let w
be in (7.15) with 0 < 6R ≤ r0. There exist constants θ2 > 2, β2 ∈ (0, 1

2 ], C2, C3 depending
on N,Λ1,Λ2, c0 and C1 depending on N,Λ1,Λ2 such that

 

Q6R

|∇u−∇w|dxdt ≤ C1
|µ|(Ω̃6R)

RN+1
, (7.17)

(
 

Qρ/2(z,s)

|∇w|θ2dxdt
) 1

θ2

≤ C2

 

Q3ρ(z,s)

|∇w|dxdt, (7.18)

(
 

Qρ1 (y,s)

|w|2dxdt
)1/2

≤ C3

(
ρ1
ρ2

)β2
(
 

Qρ2 (y,s)

|w|2dxdt
)1/2

, (7.19)

and (
 

Qρ1
(z,s)

|∇w|2dxdt
)1/2

≤ C3

(
ρ1
ρ2

)β2−1
(
 

Qρ2
(z,s)

|∇w|2dxdt
)1/2

(7.20)

for any Q3ρ(z, s) ⊂ Q6R, y ∈ ∂Ω, Qρ1
(y, s) ⊂ Qρ2

(y, s) ⊂ Q6R and Qρ1
(z, s) ⊂ Qρ2

(z, s) ⊂
Q6R
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Proof. 1. For η ∈ C∞
c ([t0 − (6R)2, t0)) , 0 ≤ η ≤ 1, ηt ≤ 0 and η(t0 − (6R)2) = 1. Using

ϕ = Tk(u− w)η, for any k > 0, as a test function for (7.1) and (7.15), we get
ˆ

Ω̃6R

(u− w)tTk(u− w)ηdxdt

+

ˆ

Ω̃6R

(A(x, t,∇u)−A(x, t,∇w))∇Tk(u− w)ηdxdt =

ˆ

Ω̃6R

Tk(u− w)ηdµ.

Thanks to (2.4), gives

−
ˆ

Ω̃6R

T k(u− w)ηtdxdt+ Λ2

ˆ

Ω̃6R

|∇Tk(u− w)|2ηdxdt ≤ k|µ|(Ω̃6R),

where T k(s) =
´ s

0
Tk(τ)dτ . As in [13, Proposition 4.8], we also verify that

|||∇(u− w)|||
L

N+2
N+1

,∞
(Ω̃6R)

≤ c1|µ|(Ω̃6R)

Immediately, it follows (7.17).

2. We need to prove that

 

Qr/4(z,s)

|∇w|2dxdt ≤ 1

2

 

Q 26
10

r
(z,s)

|∇w|2dxdt+ c7



 

Q 26
10

r
(z,s)

|∇w|p0dxdt




2
p0

(7.21)

for all Q 26
10 r

(z, s) ⊂ Q6R = Q6R(x0, t0). Here the constant p0 is in inequality (7.16).

Suppose that Br(z) ⊂ Ω. Take ρ ∈ (0, r]. Let ϕ ∈ C∞
c (Bρ(z)), η ∈ C∞

c ((s− ρ2, s]) be such
that 0 ≤ ϕ, η ≤ 1, ϕ = 1 in Bρ/2(z), η = 1 in [s − ρ2/4, s] and |∇ϕ| ≤ c1/ρ, |ηt| ≤ c1/ρ

2.
We denote

w̃Bρ(z)(t) =

(
ˆ

Bρ(z)

ϕ(x)2dx

)−1
ˆ

Bρ(z)

w(x, t)ϕ(x)2dx.

Using ϕ = (w − w̃Bρ(z))ϕ
2η2 as a test function for the equation (7.15) we have for all

s′ ∈ [s− ρ2/4, s]
ˆ

Bρ(z)×(s−ρ2,s′)
(w − w̃Bρ(z))t(w − w̃Bρ(z))ϕ

2η2dxdt

+

ˆ

Bρ(z)×(s−ρ2,s′)
A(x, t,∇w)∇

(
(w − w̃Bρ(z))ϕ

2η2
)
dxdt = 0.

Here we used an equality
´

Bρ(z)×(s−ρ2,s′)

(
w̃Bρ(z)

)
t
(w − w̃Bρ(z))ϕ

2η2dxdt = 0.

Thus, we can write

1

2

ˆ

Bρ(z)

(w(s′)− w̃Bρ(z)(s
′))2ϕ2dx+

ˆ

Bρ(z)×(s−ρ2,s′)
A(x, t,∇w)∇wϕ2η2dxdt

= −2

ˆ

Bρ(z)×(s−ρ2,s′)
A(x, t,∇w)∇ϕϕη2(w − w̃Bρ(z))dxdt

+

ˆ

Bρ(z)×(s−ρ2,s′)
(w − w̃Bρ(z))

2ϕ2ηηtdxdt.

From conditions (2.3) and (2.4), yield

1

2

ˆ

Bρ(z)

(w(s′)− w̃Bρ(z)(s
′))2ϕ2dx+ Λ2

ˆ

Bρ(z)×(s−ρ2,s′)
|∇w|2ϕ2η2dxdt

≤ 2Λ1

ˆ

Bρ(z)×(s−ρ2,s′)
|∇w||∇ϕ|ϕη2|w − w̃Bρ(z)|dxdt+

c8
ρ2

ˆ

Qρ(z,s)

(w − w̃Bρ(z))
2dxdt.
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Using Holder’s inequality we can verify that

sup
s′∈[s−ρ2/4,s]

ˆ

Bρ(z)

(w(s′)− w̃Bρ(z)(s
′))2ϕ2dx

+

ˆ

Qρ/2(z,s)

|∇w|2dxdt ≤ c9
ρ2

ˆ

Qρ(z,s)

|w − w̃Bρ(z)|2dxdt. (7.22)

On the other hand, for any s′ ∈ [s− ρ2/4, s]

ˆ

Bρ/2(z)

(w(s′)− w̃Bρ/2(z)(s
′))2dx ≤ 2(1 + 2N+2)

ˆ

Bρ(z)

(w(s′)− w̃Bρ(z)(s
′))2ϕ2dx (7.23)

where ϕ1(x) = ϕ(z + 2(x− z)) for all x ∈ Bρ/2(z) and

w̃Bρ/2(z) =

(
ˆ

Bρ/2(z)

ϕ1(x)
2dx

)−1
ˆ

Bρ/2(z)

w(x, t)ϕ1(x)
2dx.

In fact, since 0 ≤ ϕ ≤ 1 and ϕ = 1 in Bρ/2(z) thus

ˆ

Bρ/2(z)

(w(s′)− w̃Bρ/2(z)(s
′))2dx

≤ 2

ˆ

Bρ/2(z)

(w(s′)− w̃Bρ(z)(s
′))2dx+ 2N+1(w̃Bρ/2(z)(s

′)− w̃Bρ
(z)(s′))2|Bρ/4(z)|

≤ 2

ˆ

Bρ(z)

(w(s′)− w̃Bρ(z)(s
′))2ϕ2dx+ 2N+2

ˆ

Bρ/2(z)

(w(s′)− w̃Bρ/2(z)(s
′))2ϕ2

1dx

+ 2N+2

ˆ

Bρ/2(z)

(w(s′)− w̃Bρ(z)(s
′))2ϕ2

1dx.

which yields (7.23) from the following inequality

ˆ

Bρ/2(z)

(w(s′)− w̃Bρ/2(z)(s
′))2ϕ2

1dx ≤
ˆ

Bρ/2(z)

(w(s′)− l)2ϕ2
1dx ∀l ∈ R.

Therefore,

sup
s′∈[s−ρ2/4,s]

ˆ

Bρ/2(z)

(w(s′)− w̃Bρ/2(z)(s
′))2dx

+

ˆ

Qρ/2(z,s)

|∇w|2dxdt ≤ c10
ρ2

ˆ

Qρ(z,s)

|w − w̃Bρ(z)|2dxdt. (7.24)

Now we use estimate (7.24) for ρ = r/2, we have

ˆ

Qr/4(z,s)

|∇w|2dxdt ≤ c10
r2

ˆ

Qr/2(z,s)

(w − w̃Br/2(z))
2dxdt

≤ c10
r2

(
sup

s′∈[s−r2/4,s]

ˆ

Br/2(z)

(w(s′)− w̃Br/2(z)(s
′))2dx

) 2
N+2

×
ˆ s

s−r2/4

(
ˆ

Br/2(z)

(w − w̃Br/2(z))
2dx

) N
N+2

dt.
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After we again use estimate (7.24) for ρ = r we get

ˆ

Qr/4(z,s)

|∇w|2dxdt ≤ c11
r2

(
1

r2

ˆ

Qr(z,s)

|w − w̃Br(z)|2dxdt
) 2

N+2

×
ˆ s

s−r2/4

(
ˆ

Bρ/2(z)

(w − w̃Br/2(z))
2dx

) N
N+2

dt.

Thanks to a Sobolev-Poincare inequality, leads to

ˆ

Qr/4(z,s)

|∇w|2dxdt ≤ c12
r2

(
ˆ

Qr(z,s)

|∇w|2dxdt
) 2

N+2 ˆ

Qr/2(z,s)

|∇w| 2N
N+2 dxdt.

Since p0 ∈ ( 2N
N+2 , 2), thanks to Holder’s inequality we get (7.21).

Finally, we consider the case Br(z) ∩ Ω 6= ∅. In this case we choose z0 ∈ ∂Ω such that
|z − z0| = dist(z, ∂Ω). Then |z0 − z| < r and thus 1

4r ≤ ρ1 ≤ 1
2r,

B 1
4 r
(z) ⊂ B 5

4 r
(z0) ⊂ Bρ1+r(z0) ⊂ Bρ1+

11
10 r

(z0) ⊂ B 16
10 r

(z0) ⊂ B 26
10 r

(z) ⊂ B6R(x0). (7.25)

Let ϕ ∈ C∞
c (Bρ1+

11
10 r

(z0)) be such that 0 ≤ ϕ ≤ 1, ϕ = 1 in Bρ1+r(z0) and |∇ϕ| ≤ C/r.

For 1
2r ≤ ρ2 ≤ r, let η ∈ C∞

c ((s− ρ22, s]) be such that 0 ≤ η ≤ 1, η = 1 in [s− ρ22/4, s] and
|ηt| ≤ c/r2. Using φ = wϕ2η2 as a test function for (7.15) we have for any s′ ∈ (s− ρ22, s)

ˆ

(B
ρ1+ 11

10
r
(z0)∩Ω)×(s−ρ2

2,s
′)
wtwϕ

2η2dxdt

+

ˆ

(B
ρ1+ 11

10
r
(z0)∩Ω)×(s−ρ2

2,s
′)
A(x, t,∇w)∇

(
wϕ2η2

)
dxdt = 0.

As above we also get

sup
s′∈[s−ρ2

2/4,s]

ˆ

Bρ1+r(z0)

w2(s′)dx

+

ˆ

Bρ1+r(z0)×(s−ρ2
2/4,s)

|∇w|2dxdt ≤ c13
r2

ˆ

B
ρ1+ 11

10
r
(z0)×(s−ρ2

2,s)

w2dxdt.

In particular, for ρ1 = 1
4r, ρ2 = 1

2r and using (7.25) yield

ˆ

Q 1
4
r
(z,s)

|∇w|2dxdt ≤ c14
r2

ˆ

B 29
20

r
(z0)×(s−r2/4,s)

w2dxdt (7.26)

and ρ1 = ( 14 + 1
10 )r, ρ2 = r,

sup
s′∈[s−r2/4,s]

ˆ

B 1
4
r+11

10
r
(z0)

w2(s′)dx ≤ c15
r2

ˆ

B 29
20

r
(z0)×(s−r2,s)

w2dxdt.

Set K1 = {w = 0} ∩ B 29
20 r

(z0) and K2 = {w = 0} ∩ B 1
4 r+

11
10 r

(z0), Since R
N\Ω satisfies an

uniformly 2−thick,we have the following estimates

Cap2(K1, B 29
10 r

(z0)) ≥ c16r
N−2 and Capp0

(K2, B 1
2 r+

11
5 r(z0)) ≥ c16r

N−p0 .

So, by Sobolev-Poincare’s inequality we get
 

B 29
20

r
(z0)

w2dx ≤ c17r
2

 

B 5
2
r
(z)

|∇w|2dx, (7.27)
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and

 

B 1
4
r+11

10
r
(z0)

w2dxdt ≤ c18r
2



 

B 1
4
r+11

10
r
(z0)

|∇w|p0dx




2
p0

≤ c19r
2



 

B 5
2
r
(z0)

|∇w|p0dx




2
p0

.

Leads to

sup
s′∈[s−r2/4,s]

ˆ

B 1
4
r+11

10
r
(z0)

w2(s′)dx ≤ c20

ˆ

Q 5
2
r
(z,s)

|∇w|2dxdt (7.28)

and

ˆ

B 1
4
r+11

10
r
(z0)

w2(t)dx ≤ c21r
N+2



 

B 5
2
r
(z0)

|∇w|p0(t)dx




2
p0

. (7.29)

From (7.26), we have

 

Q 1
4
r
(z,s)

|∇w|2dxdt ≤ c22
rN+4

ˆ

B 1
4
r+11

10
r
(z0)×(s−r2/4,s)

w2dxdt

≤ c22
rN+4


 sup

s′∈[s−r2/4,s]

ˆ

B 1
4
r+11

10
r
(z0)

w2(s′)dx




1− p0
2
ˆ s

s−r2/4



ˆ

B 1
4
r+11

10
r
(z0)

w2(t)dx




p0
2

dt

Using (7.29), (7.28) and Holder’s inequality we get

 

Q 1
4
r
(z,s)

|∇w|2dxdt ≤ c23
rN+4



ˆ

Q 5
2
r
(z,s)

|∇w|2dxdt




1− p0
2

r
N+2

2 p0−N

ˆ

Q 5
2
r
(z,s)

|∇w|p0dxdt

= c24



 

Q 5
2
r
(z,s)

|∇w|2dxdt




1− p0
2
 

Q 5
2
r
(z,s)

|∇w|p0dxdt

≤ 1

2

 

Q 26
10

r
(z,s)

|∇w|2dxdt+ c25



 

Q 26
10

r
(z,s)

|∇w|p0dxdt




2
p0

.

So we proved (7.21).
Therefore, By Gehring’s Lemma (see [57]) we get (7.18).
3. Now we prove (7.19). Let y ∈ ∂Ω, Qρ1

(y, s) ⊂ Qρ2
(y, s) ⊂ Q6R with ρ1 ≤ ρ2/4. First,

we will show that there exists a constant β2 = β2(N,Λ1,Λ2, c0) ∈ (0, 1/2] such that

osc(w,Qρ1(y, s)) ≤ c26

(
ρ1
ρ2

)β2

osc(w,Qρ2/2(y, s)) (7.30)

where osc(w,A) = supA w − infA w.
Indeed, since

ˆ 1

0

Cap1,2(Ω
c ∩Br(z), B2r(z))

rN−2

dr

r
= +∞ ∀z ∈ ∂Ω.

thus by the Wiener criterion (see [81]), we have w is continuous up to ∂pΩ̃6R. So, we can
choose ϕ = (V −M4ρ1) η

2 ∈ L2(−∞, T ;H1
0 (Ω ∩B6R(x0))) as test function in (7.15), where

a. η ∈ C∞(Q4ρ1(y, s)), 0 ≤ η ≤ 1 such that η = 1 in Qρ1/2(y, s − 17
4 ρ21), supp (η) ⊂⊂

Qρ1
(y, s− 4ρ21) and |∇η| ≤ c27/ρ1, |ηt| ≤ c28/ρ

2
1.
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b. M4ρ1 = supQ4ρ1
(y,s) w and V = inf{M4ρ1 − w,M4ρ1} in Ω̃6R, V = M4ρ1 outside Ω̃6R.

We have
ˆ

Ω̃6R

wt (V −M4ρ1
) η2dxdt

+

ˆ

Ω̃6R

2ηA(x, t,∇w)∇η (V −M4ρ1) dxdt+

ˆ

Ω̃6R

η2A(x, t,∇w)∇V dxdt = 0

which implies

ˆ

Ω̃6R

η2A(x, t,−∇V )(−∇V )dxdt =

ˆ

Ω̃6R

2ηA(x, t,−∇V )∇η (V −M4ρ1
) dxdt

−
ˆ

Ω̃6R

(V −M4ρ1
)t (V −M4ρ1

) η2dxdt.

Using (2.3) and (2.4) we get

Λ2

ˆ

Ω̃6R

η2|∇V |2dxdt

≤ 2Λ1

ˆ

Ω̃6R

η|∇V ||∇η||V −M4ρ1
|dxdt− 1/2

ˆ

Ω̃6R

(
(V −M4ρ1

)
2 −M2

4ρ1

)
(η2)tdxdt

≤ 2Λ1M4ρ1

ˆ

Ω̃6R

η|∇V ||∇η|dxdt+ 2M4ρ1

ˆ

Ω̃6R

ηV |ηt|dxdt

Since supp(|∇V |) ∩ supp(η) ⊂ Ω̃6R, thus

ˆ

RN+1

|∇(ηV )|2dxdt ≤ c29M4ρ1

(
ˆ

RN+1

η|∇V ||∇η|dxdt+
ˆ

RN+1

V
(
η|ηt|+ |∇η|2

)
dxdt

)

≤ c30M4ρ1

(
ˆ

RN+1

η|∇V ||∇η|dxdt+ 1

ρ21

ˆ

Qρ1
(y,s−4ρ2

1)

V dxdt

)
. (7.31)

By [48, Theorem 6.31, p. 132], for any σ ∈ (0, 1 + 2/N) there holds

(
 

Qρ1
(y,s−4ρ2

1)

V σdxdt

)1/σ

≤ c31 inf
Qρ1 (y,s)

V = c31(M4ρ1
− sup

Qρ1
(y,s)

w) = c31(M4ρ1
−Mρ1

).

(7.32)
In particular,

1

ρ21

ˆ

Qρ1 (y,s−4ρ2
1)

V dxdt ≤ c32ρ
N
1 (M4ρ1 −Mρ1). (7.33)

We need to estimate
´

Ω̃6R
η|∇V ||∇η|dxdt. Using Holder inequality and (7.32), for ε ∈

(0,min{2/N, 1}) we have

ˆ

Ω̃6R

η|∇V ||∇η|dxdt ≤
(
ˆ

Ω̃6R

η2V −(1+ε)|∇V |2dxdt
)1/2(ˆ

Ω̃6R

V 1+ε|∇η|2dxdt
)1/2

≤ c28

(
ˆ

Ω̃6R

η2V −(1+ε)|∇V |2dxdt
)1/2

(
ˆ

Qρ1
(y,s−4ρ2

1)

V 1+εdxdt

)1/2

≤ c33

(
ˆ

Ω̃6R

η2V −(1+ε)|∇V |2dxdt
)1/2

ρ
N/2
1 (M4ρ1

−Mρ1
)(1+ε)/2.
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To estimate
(
´

Ω̃6R
η2V −(1+ε)|∇V |2dxdt

)1/2
, we can choose ϕ = ((V +δ)−ε−(M4ρ1+δ)−ε)η2,

for δ > 0, as test function in (7.15), we will get
ˆ

Ω̃6R

η2(V + δ)−(1+ε)|∇V |2dxdt

≤ c34

ˆ

Ω̃6R

η(V + δ)−ε|∇V ||∇η|dxdt+ c34

ˆ

Ω̃6R

η(V + δ)1−ε|ηt|dxdt.

Thanks to Holder’s inequality, yields
ˆ

Ω̃6R

η2(V + δ)−(1+ε)|∇V |2dxdt ≤ c35

ˆ

Ω̃6R

(V + δ)1−ε
(
η|ηt|+ |∇η|2

)
dxdt

≤ c36

ˆ

Qρ1 (y,s−4ρ2
1)

(V + δ)1−εdxdt.

Letting δ → 0 and using (7.32),
ˆ

Ω̃6R

η2V −(1+ε)|∇V |2dxdt ≤ c36

ˆ

Qρ1
(y,s−4ρ2

1)

(V + δ)1−εdxdt

≤ c37ρ
N
1 (M4ρ1

−Mρ1
)
1−ε

.

Thus,
ˆ

Ω̃6R

η|∇V ||∇η|dxdt ≤ c38ρ
N
1 (M4ρ1 −Mρ1).

Combining this with (7.31) and (7.33),
ˆ

RN+1

|∇(ηV )|2dxdt ≤ c39ρ
N
1 M4ρ1 (M4ρ1 −Mρ1) .

Note that ηV = M4ρ1
in
(
Ωc ∩Bρ1/2(y)

)
× (s− 9

2ρ
2
1, s− 17

4 ρ21) thus

ˆ

RN+1

|∇(ηV )|2dxdt ≥
ˆ s− 17

4 ρ2
1

s− 9
2ρ

2
1

ˆ

RN

|∇(ηV )|2dxdt

≥
ˆ s− 17

4 ρ2
1

s− 9
2ρ

2
1

M2
4ρ1

Cap1,2(Ω
c ∩Bρ1/2(y), Bρ1(y))dt

≥ c40M
2
4ρ1

ρN1 .

Here we used Cap1,2(Ω
c ∩Bρ1/2(y), Bρ1(y)) ≥ cρN−2

1 in the last inequality. It follows

M4ρ1
≤ c41(M4ρ1

−Mρ1
).

So
sup

Qρ1
(y,s)

w ≤ γ sup
Q4ρ1

(y,s)

w where γ =
c41

c41 + 1
< 1.

Of course, above estimate is also true when we replace w by −w. These give,

osc(w,Qρ1
(y, s)) ≤ γosc(w,Q4ρ1

(y, s))

It follows (7.30).
We come back the proof of (7.19).
Since w = 0 outside ΩT this leads to

(
 

Qρ1
(y,s)

|w|2dxdt
)1/2

≤ c42osc(w,Qρ2/2(y, s)).
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On the other hand, By [48, Theorem 6.30, p. 132] we have

sup
Qρ2/2(y,s)

w ≤ c43

(
 

Qρ2
(y,s)

(w+)2dxdt

)1/2

and

sup
Qρ2/2(y,s)

(−w) ≤ c44

(
 

Qρ2
(y,s)

(w−)2dxdt

)1/2

.

Thus, we get (7.19).
Next, we have (7.20) for case z = y ∈ ∂Ω since from Caccippoli’s inequality,

ˆ

Qρ1 (z,s)

|∇w|2dxdt ≤ c45
ρ21

ˆ

Q2ρ1
(z,s)

|w|2dxdt

and using Sobolev-Poincare’s inequality as in (7.27),
ˆ

Qρ2
(z,s)

|w|2dxdt ≤ c46ρ
2
2

ˆ

Qρ2
(z,s)

|∇w|2dxdt.

We now prove (7.20). Take Qρ1
(z, s) ⊂ Qρ2

(z, s) ⊂ Q6R, is enough to consider the case
ρ1 ≤ ρ2/20. Clearly, Bρ2/4(z) ⊂ Ω then (7.20) is followed from (7.7) in Theorem 7.1. We
consider Bρ2/4(z) ∩ ∂Ω 6= ∅, let z0 ∈ Bρ2/4(z) ∩ ∂Ω such that |z − z0| = dist(z, ∂Ω) ≤ ρ2/4.
Obviously, if ρ1 < |z − z0|/4 and z /∈ Ω, then (7.20) is trivial. If ρ1 < |z − z0|/4 and z ∈ Ω,
then (7.20) is followed from (7.7) in Theorem 7.1.
Now assume ρ1 ≥ |z − z0|/4 then since Qρ1

(z, s) ⊂ Q5ρ1
(z0, s)

(
 

Qρ1
(z,s)

|∇w|2dxdt
)1/2

≤ c47

(
 

Q5ρ1
(z0,s)

|∇w|2dxdt
)1/2

≤ c48

(
ρ1
ρ2

)β2−1
(
 

Qρ2/4(z0,s)

|∇w|2dxdt
)1/2

≤ c49

(
ρ1
ρ2

)β2−1
(
 

Qρ2/2(z,s)

|∇w|2dxdt
)1/2

,

which implies (7.20).

Corollary 7.6 Suppose that R
N\Ω satisfies uniformly 2−thick with constants c0, r0. Let

β2 be the constant in Theorem 7.5. For 2 − β2 < θ < N + 2, there exists a constant
C = C(N,Λ1,Λ2, θ) > 0 such that for any Bρ(y) ∩ ∂Ω 6= ∅, s ∈ (−T, T ), 0 < ρ ≤ r0

ˆ

Qρ(y,s)

|∇u|dxdt ≤ CρN+3−θ

((
T0

r0

)N+3−θ

+ 1

)
||Mθ[µ]||L∞(Ω×(−T,T )) (7.34)

where T0 = diam(Ω) + T 1/2.

Proof. Take Bρ2/4(y)∩∂Ω 6= ∅ and s ∈ (−T, T ), ρ2 ≤ 2r0. Let y0 ∈ Bρ2/4(y)∩∂Ω such that
|y − y0| = dist(y, ∂Ω) ≤ ρ2/4, thus Qρ2/4(y, s) ⊂ Qρ2/2(y0, s) For any Qρ1

(y, s) ⊂ Qρ2
(y, s)

with ρ1 ≤ ρ2/4, we take w as in Theorem 7.5 with Q6R = Qρ2/2(y0, s). Thus,

ˆ

Qρ1
(y,s)

|∇w|dxdt ≤ c1

(
ρ1
ρ2

)N+β1+1 ˆ

Qρ2/4(y,s)

|∇w|dxdt

and
ˆ

Qρ2/2(y0,s)

|∇u−∇w|dxdt ≤ c2ρ2|µ|(Qρ2/2(y0, s)).

As in the proof of Corollary 7.2, we get the result.
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7.2.2 Reifenberg flat domain

In this subsection, we alway assume that A satisfies (2.29). Also, we assume that Ω is a
(δ,R0)- Reifenberg flat domain with 0 < δ < 1/2 . Fix x0 ∈ ∂Ω and 0 < R < R0/6. We
have a density estimate

|Bt(x) ∩ (RN\Ω)| ≥ c|Bt(x)| ∀x ∈ ∂Ω, 0 < t < R0 (7.35)

with c = ((1− δ)/2)N ≥ 4−N .
In particular, RN\Ω satisfies uniformly 2−thick with constants c, r0 = R0.
Next we set ρ = R(1− δ) so that 0 < ρ/(1− δ) < R0/6. From the definition of Reifenberg
flat domains we deduce that there exists a coordinate system {z1, z2, ..., zN} with the origin
0 ∈ Ω such that in this coordinate system x0 = (0, ..., 0− ρδ/(1− δ)) and

B+
ρ (0) ⊂ Ω ∩Bρ(0) ⊂ Bρ(0) ∩ {z = (z1, z2, ...., zN ) : zN > −2ρδ/(1− δ)}

Since δ < 1/2 we have

B+
ρ (0) ⊂ Ω ∩Bρ(0) ⊂ Bρ(0) ∩ {z = (z1, z2, ...., zN ) : zN > −4ρδ}

where B+
ρ (0) := Bρ(0) ∩ {z = (z1, z2, ..., zN ) : zN > 0}.

We further consider the unique solution

v ∈ C(t0 − ρ2, t0;L
2(Ω ∩Bρ(0))) ∩ L2(t0 − ρ2, t0;H

1(Ω ∩Bρ(0))) (7.36)

to the following Cauchy-Dirichlet problem
{

vt − div
(
ABρ(0)(t,∇v)

)
= 0 in Ω̃ρ(0),

v = w on ∂pΩ̃ρ(0),
(7.37)

where Ω̃ρ(0) = (Ω ∩Bρ(0))× (t0 − ρ2, t0) (−T < t0 < T ).

We set v to be equal to w outside Ω̃ρ(0). As Lemma 7.3 we have the following Lemma.

Lemma 7.7 Let θ2 be the constant in Theorem 7.5. There exists constants C1 = C1(N,Λ1,Λ2),
C2 = C2(Λ1,Λ2) such that

(
 

Qρ(0,t0)

|∇w −∇v|2
)1/2

≤ [A]Rs2

 

Qρ(0,t0)

|∇w|dxdt (7.38)

with s2 = 2θ2
θ2−2 and

C−1
2

ˆ

Qρ(0,t0)

|∇v|2dxdt ≤
ˆ

Qρ(0,t0)

|∇w|2dxdt ≤ C2

ˆ

Qρ(0,t0)

|∇v|2dxdt. (7.39)

We can see that if the boundary of Ω is bad enough, then the L∞-norm of ∇v up to
∂Ω ∩ Bρ(0) × (t0 − ρ2, t0) could be unbounded. For our purpose, we will consider another
Cauchy-Dirichlet problem:

{
Vt − div

(
ABρ(0)(t,∇V )

)
= 0 in Q+

ρ (0, t0)
V = 0 on Tρ(0, t0)

(7.40)

where Q+
ρ (0, t0) = B+

ρ (0)× (t0 − ρ2, t0) and Tρ(0, t0) = Qρ(0, t0) ∩ {xN = 0}.
A weak solution V of above problem is understood in the following sense: the zero extension
of V to Qρ(0, t0) is in V ∈ C(t0 − ρ2, t0;L

2(Bρ(0))) ∩ L2
loc(t0 − ρ2, t0;H

1(Bρ(0))) and for
every ϕ ∈ C1

c (Q
+
ρ (0, t0)) there holds

−
ˆ

Q+
ρ (0,t0)

V ϕtdxdt+

ˆ

Q+
ρ (0,t0)

ABρ(0)(t,∇V )∇ϕdxdt = 0.

We have the following gradient L∞ estimate up to the boundary for V .
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Lemma 7.8 (see [46, 47]) For any weak solution V ∈ C(t0−ρ2, t0;L
2(B+

ρ (0)))∩L2
loc(t0−

ρ2, t0;H
1(B+

ρ (0))) of (7.40), we have

||∇V ||L∞(Q+

ρ′/2(0,t0))
≤ c

 

Q+

ρ′ (0,t0)
|∇V |2dxdt ∀ 0 < ρ′ ≤ ρ (7.41)

Moreover, ∇V is continuous up to Tρ(0, t0).

Lemma 7.9 If V ∈ C(t0−ρ2, t0;L
2(B+

ρ (0)))∩L2(t0−ρ2, t0;H
1(B+

ρ (0))) is a weak solution
of (7.40), then its zero extension from Q+

ρ (0, t0) to Qρ(0, t0) solves

Vt − div
(
ABρ(0)(t,∇V )

)
=

∂F

∂xN
(7.42)

weakly in Qρ(0, t0), for (x, t) = (x′, xN , t) ∈ Qρ(0, t0),

ABρ(0) = (A
1

Bρ(0), A
2

Bρ(0), ..., A
N

Bρ(0)), and F (x, t) = χxN<0A
N

Bρ(0)(t,∇V (x′, 0, t)).

Proof. Let h ∈ C∞(R) with h = 0 on (−∞, 1/2) and h = 1 on (1,∞). Then, for
any ϕ ∈ C∞

c (Qρ(0, t0)) and n ∈ N. We have ϕn(x, t) = ϕn(x
′, xN , t) = h(nxN )ϕ(x, t) ∈

C∞
c (Q+

ρ (0, t0). Thus, we get

ˆ

Q+
ρ (0,t0)

Vtϕndxdt+

ˆ

Q+
ρ (0,t0

ABρ(0)(t,∇V )∇ (h(nxN )ϕ(x, t)) dxdt = 0

which implies
ˆ

Q+
ρ (0,t0)

Vtϕndxdt+

ˆ

Q+
ρ (0,t0)

ABρ(0)(t,∇V )∇ϕ(x, t)h(nxN )dxdt

= −
ˆ ρ

0

G(xN )h′(nxN )ndxN .

where

G(xN ) =

ˆ t0

t0−ρ2

ˆ

|x′|<
√

ρ2−x2
N

A
N

Bρ(0)(t,∇V )ϕ(x′, xN , t)dx′dt ∈ C([0,∞)).

Letting n → ∞ we get
ˆ

Q+
ρ (0,t0)

Vtϕdxdt+

ˆ

Q+
ρ (0,t0)

ABρ(0)(t,∇V )∇ϕ(x, t)dxdt = −G(0)

= −
ˆ

Qρ(0,t0)

F
∂ϕ

∂xN
dxdt.

Since ∇V = 0, V = 0 outside Q+
ρ , therefore we get the result.

We now consider a scaled version of equation (7.37)

{
vt − div

(
AB1(0)(t,∇v)

)
= 0 in Ω̃1(0)

v = 0 on ∂pΩ̃1(0)\ (Ω× (−T, T ))
(7.43)

under assumption
B+

1 (0) ⊂ Ω ∩B1(0) ⊂ B1(0) ∩ {xN > −4δ}. (7.44)

Lemma 7.10 For any ε > 0 there exists a small δ = δ(N,Λ1,Λ2, ε) > 0 such that if
v ∈ C(t0 − 1, t0;L

2(Ω ∩ B1(0))) ∩ L2(t0 − 1, t0;H
1(Ω ∩ B1(0))) is a solution of (7.43) and

(7.44) is satisfied and the bounded
 

Q1(0,t0)

|∇v|2dxdt ≤ 1, (7.45)
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then there exist a weak solution V ∈ C(t0 − 1, t0;L
2(B+

1 (0))) ∩ L2(t0 − 1, t0;H
1(B+

1 (0))) of
(7.40) with ρ = 1, whose zero extension to Q1(0, t0) satisfies

 

Q1(0,t0)

|v − V |2dxdt ≤ ε2, (7.46)

Proof. We argue be contradiction. Suppose that the conclusion were false. Then, there
exist a constant ε0 > 0, t0 ∈ R and a sequence of nonlinearities {Ak} satisfying (2.3) and
(2.29), a sequence of domains {Ωk}, and a sequence of functions {vk} ⊂ C(t0−1, t0;L

2(Ωk∩
B1(0))) ∩ L2(t0 − 1, t0;H

1(Ωk ∩B1(0))) such that

B+
1 (0) ⊂ Ωk ∩B1(0) ⊂ B1(0) ∩ {xN > −1/2k}, (7.47)

{
(vk)t − div

(
Ak,B1(0)(t,∇vk)

)
= 0 in Ω̃k

1(0),

vk = 0 on ∂pΩ̃
k
1(0)\(Ωk × (−T, T ))

(7.48)

and the zero extension of each vk to Q1(0, t0) satisfies

 

Q1(0,t0)

|∇vk|2dxdt ≤ 1 but (7.49)

 

Q1(0,t0)

|vk − Vk|2dxdt ≥ ε20 (7.50)

for any weak solution Vk of

{
(Vk)t − div

(
Ak,B1(0)(t,∇Vk)

)
= 0, in Q+

1 (0, t0)
Vk = 0 on T1(0, t0).

(7.51)

By (7.47) and (7.49) and Poincare’s inequality it following that

||vk||L2(t0−1,t0;H1(B1(0))) ≤ c1||∇vk||L2(Q1(0,t0) ≤ c2,

and

||(vk)t||L2(t0−1,t0;H−1(B1(0))) = ||Ak,Q1(0,t0)(∇vk)||L2(t0−1,t0;H−1(B1(0)))

≤
ˆ

Q1(0,t0)

|Ak,B1(0)(t,∇vk)|2dxdt

≤ c3

ˆ

Q1(0,t0)

|∇vk|2dxdt

≤ c4.

Therefore, using Aubin−Lions Lemma, one can find v0 and a subsequence, still denoted by
{vk} such that

vk → v0 weakly in L2(t0 − 1, t0, H
1(B1(0))) and strongly in L2(t0 − 1, t0, L

2(B1(0)))

and
(vk)t → (v0)t weakly in L2(t0 − 1, t0, H

−1(B1(0))).

Moreover, v0 = 0 in Q−
1 (0, t0) := (B1(0) ∩ {xN < 0}) × (1 − t0, 1) since vk = 0 on outside

Ωk ∩Q1(0, t0) for all k.
To find a contradiction we take Vk to be the unique solution of (Vk)t−div

(
Ak,B1(0)(t,∇Vk)

)
=

0 in Q+
1 (0, t0) and Vk−v0 ∈ L2(t0−1, t0, H

1
0 (B

+
1 (0))) and Vk(t0−1) = v0(t0−1). As above,

one can find V0 and a subsequence, still denoted by {Vk} such that

Vk → V0 weakly in L2(t0 − 1, t0, H
1(B1(0))) and strongly in L2(t0 − 1, t0, L

2(B1(0)))
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and
(Vk)t → (V0)t weakly in L2(t0 − 1, t0, H

−1(B1))

for some V0 ∈ v0 + L2(t0 − 1, t0, H
1
0 (B

+
1 (0)) and V0(t0 − 1) = v0(t0 − 1).

Since (7.50), thus we will complete the proof if we show v0 = V0. In fact,
Let Jk : X → L2(Q+

1 (0, t0),R
N ) determined by

Jk(φ(x, t)) = Ak,B1(0)(t,∇φ(x, t)) for any φ ∈ X,

whereX ⊂ L2(t0−1, t0, H
1(B1(0))) is closures (in the strong topology of L2(t0−1, t0, H

1(B1(0))))
of convex combinations of {vk}k≥1 ∪ {Vk}k≥1 ∪ {0}.
Since vk, Vk converge weakly to v0, V0 in L2(t0−1, t0, H

1(B1(0))) resp., thus by Mazur The-
orem, X is compact subset of L2(t0 − 1, t0, H

1(B1(0))) and v0, V0 ∈ X.
Thanks to (2.3) and (2.29), we get Jk(0) = 0 and

||Jk(φ1)− Jk(φ2)||L2(Q+
1 (0,t0),RN ) ≤ Λ1||φ1 − φ2||L2(t0−1,t0,H1(B1(0)))

for every φ1, φ2 ∈ X and k ∈ N. Thus, by Ascoli Theorem, there exist J ∈ C(X,L2(Q+
1 (0, t0),R

N ))
and a subsequence of {Jk}, still denote by its, such that

sup
φ∈X

||Jk(φ)− J(φ)||L2(Q+
1 (0,t0),RN ) → 0 as k → ∞ (7.52)

and also for any φ1, φ2 ∈ X,

ˆ

Q+
1 (0,t0)

(J(φ1)− J(φ2)) . (∇φ1 −∇φ2) dxdt ≥ Λ2|||∇φ1 −∇φ2|||L2(Q+
1 (0,t0))

. (7.53)

From (7.47), gives

ˆ

Q+
1 (0,t0)

(vk − Vk)t(v0 − V0)dxdt

+

ˆ

Q+
1 (0,t0)

(
Ak,B1(0)(t,∇vk)−Ak,B1(0)(t,∇Vk)

)
.∇(v0 − V0)dxdt = 0.

We have
ˆ

Q+
1 (0,t0)

|Ak,B1(0)(∇vk)|2dxdt ≤ c9

ˆ

Q+
1 (0,t0)

|∇vk|2dxdt ≤ c10 and

ˆ

Q+
1 (0,t0)

|Ak,B1(0)(∇Vk)|2dxdt ≤ c9

ˆ

Q+
1 (0,t0)

|∇Vk|2dxdt ≤ c11.

for every k.
Thus there exists a subsequence, still denoted by {Ak,B1(0)(t,∇vk), Ak,B1(0)(t,∇Vk)} and a

vector field A1, A2 belonging to L2(Q+
1 (0, t0),R

N ) such that

Ak,B1(0)(t,∇vk) → A1 and Ak,B1(0)(t,∇Vk) → A2

weakly in L2(Q+
1 (0, t0),R

N ). It follows

ˆ

Q+
1 (0,t0)

(v0 − V0)t(v0 − V0)dxdt+

ˆ

Q+
1 (0,t0)

(A1 −A2).∇(v0 − V0)dxdt = 0.

Since
ˆ

Q+
1 (0,t0)

(v0 − V0)t(v0 − V0)dxdt =

ˆ

B+
1 (0)

(v0 − V0)
2(t0)dx ≥ 0,
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we get

ˆ

Q+
1 (0,t0)

(A1 −A2).∇(v0 − V0)dxdt ≤ 0. (7.54)

For our purpose, we need show that

ˆ

Q+
1 (0,t0)

(A1 − J(v0)).∇(v0 − V0)dxdt ≥ 0 and (7.55)

ˆ

Q+
1 (0,t0)

(A2 − J(V0)).∇(V0 − v0)dxdt ≥ 0. (7.56)

To do this, we fix a function g ∈ X and any ϕ ∈ C1
c (Q

+
1 (0, t0)) such that ϕ ≥ 0. We have

0 ≤
ˆ

Q+
1 (0,t0)

ϕ
(
Ak,B1(0)(t,∇vk)−Ak,B1(0)(t,∇g)

)
(∇vk −∇g) dxdt

=

ˆ

Q+
1 (0,t0)

ϕAk,B1(0)(t,∇vk)∇vkdxdt−
ˆ

Q+
1 (0,t0)

ϕAk,B1(0)(t,∇vk)∇gdxdt

−
ˆ

Q+
1 (0,t0)

ϕAk,B1(0)(t,∇g) (∇vk −∇g) dxdt

:= I1 + I2 + I3.

It is easy to see that

lim
k→∞

I2 = −
ˆ

Q+
1 (0,t0)

ϕA1∇gdxdt and lim
k→∞

I3 = −
ˆ

Q+
1 (0,t0)

ϕJ(g) (∇v0 −∇g) dxdt.

Moreover, we have

I1 = −
ˆ

Q+
1 (0,t0)

(vk)tϕvkdxdt−
ˆ

Q+
1 (0,t0)

Ak,Q1(0,t0)(∇vk)∇ϕvkdxdt

=
1

2

ˆ

Q+
1 (0,t0)

v2kϕtdxdt−
ˆ

Q+
1 (0,t0)

Ak,Q1(0,t0)(∇vk)∇ϕvkdxdt.

Thus,

lim
k→∞

I1 =
1

2

ˆ

Q+
1 (0,t0)

v20ϕtdxdt−
ˆ

Q+
1 (0,t0)

A1∇ϕv0dxdt

= −
ˆ

Q+
1 (0,t0)

(v0)tϕv0dxdt−
ˆ

Q+
1 (0,t0)

A1∇(ϕv0)dxdt+

ˆ

Q+
1 (0,t0)

ϕA1∇v0dxdt

=

ˆ

Q+
1 (0,t0)

ϕA1∇v0dxdt.

Hence,

0 ≤
ˆ

Q+
1 (0,t0)

ϕ (A1 − J(g)) (∇v0 −∇g) dxdt,

holds for all ϕ ∈ C1
c (Q

+
1 (0, t0)), ϕ ≥ 0 and g ∈ X. Now we choose g = v0 − ξ(v0 − V0) =

(1− ξ)v0 + ξV0 ∈ X for ξ ∈ (0, 1), so

0 ≤
ˆ

Q+
1 (0,t0)

ϕ (A− J(v0 − ξ(v0 − V0))) (∇v0 −∇V0) dxdt
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Letting ξ → 0+ and ϕ → χQ+
1 (0,t0)

, we get (7.55). Similarly, we also obtain (7.56).

Thus,
ˆ

Q+
1 (0,t0)

(A1 −A2)∇(v0 − V0)dxdt ≥
ˆ

Q+
1 (0,t0)

(J(v0)− J(V0))∇(v0 − V0)dxdt.

Combining this with (7.53), (7.54) and v0 − V0 ∈ L2(t0 − 1, t0, H
1
0 (B

+
1 (0))), yields v0 = V0.

This completes the proof of Lemma.

Lemma 7.11 For any ε > 0 there exists a small δ = δ(N,Λ1,Λ2, ε) > 0 such that if
v ∈ C(t0 − 1, t0;L

2(Ω ∩ B1(0))) ∩ L2(t0 − 1, t0;H
1(Ω ∩ B1(0))) is a solution of (7.43) and

(7.44) is satisfied and the bounded
 

Q1(0,t0)

|∇v|2dxdt ≤ 1, (7.57)

then there exist a weak solution V ∈ C(t0 − 1, t0;L
2(B+

1 (0))) ∩ L2(t0 − 1, t0;H
1(B+

1 (0))) of
(7.40) with ρ = 1, whose zero extension to Q1(0, t0) satisfies

||∇V ||L∞(Q1/4(0,t0)) ≤ C and (7.58)
 

Q1/8(0,t0)

|∇v −∇V |2dxdt ≤ ε2 (7.59)

for some C = C(N,Λ1,Λ2) > 0.

Proof. Given ε1 ∈ (0, 1) by applying Lemma 7.10. We find a small δ = δ(N,Λ1,Λ2, ε1) > 0
and a weak solution V ∈ C(t0 − 1, t0;L

2(B+
1 (0)))∩L2(t0 − 1, t0;H

1(B+
1 (0))) of (7.40) with

ρ = 1 such that
 

Q1(0,t0)

|v − V |2dxdt ≤ ε21, (7.60)

Using φ2V with φ ∈ C∞
c (B1 × (t0 − 1, t0]), 0 ≤ φ ≤ 1 and φ = 1 in Q1/2(0, t0) as test

function in (7.40), we can obtain
ˆ

Q1/2(0,t0)

|∇V |2dxdt ≤ c1

ˆ

Q1(0,t0)

|V |2dxdt.

This implies
ˆ

Q1/2(0,t0)

|∇V |2dxdt ≤ c2

ˆ

Q1(0,t0)

(
|v − V |2 + |v|2

)
dxdt

≤ c3

ˆ

Q1(0,t0)

(
|v − V |2 + |∇v|2

)
dxdt

≤ c4,

since (7.57), (7.60) and Poincare’s inequality. Thus, using Lemma 7.8 we get (7.58).
Next, we will prove(7.59). By Lemma 7.9, the zero extension of V to Q1(0, t0) satisfies

Vt − div
(
AB1(0)(t,∇V )

)
=

∂F

∂xN
in weakly Q1(0, t0).

where F (x, t) = χxN<0A
N

Bρ(0)(t,∇V (x′, 0, t)). Thus, we can write

ˆ

Ω̃1(0,t0)

(V − v)tϕdxdt

+

ˆ

Ω̃1(0,t0)

(
AB1(0)(t,∇V )−AB1(0)(t,∇v)

)
∇ϕdxdt = −

ˆ

Ω̃1(0,t0)

F
∂ϕ

∂xN
dxdt,
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for any ϕ ∈ L2(t0 − 1, t0, H
1
0 (Ω ∩B1(0))).

We take ϕ = φ2(V − v) where ϕ ∈ C∞
c (B1/4 × (t0 − (1/4)2, t0]) , 0 ≤ φ ≤ 1 and φ = 1 on

Q1/8(0, t0), so

ˆ

Ω̃1(0,t0)

φ2
(
AB1(0)(t,∇V )−AB1(0)(t,∇v)

)
(∇V −∇v) dxdt

= −2

ˆ

Ω̃1(0,t0)

φ(V − v)
(
AB1(0)(t,∇V )−AB1(0)(t,∇v)

)
∇φdxdt

−
ˆ

Ω̃1(0,t0)

φ2(V − v)t(V − v)dxdt

−
ˆ

Ω̃1(0,t0)

(
φ2F

∂(V − v)

∂xN
+ 2φF (V − v)

∂φ

∂xN

)
dxdt.

We can rewrite I1 = I2 + I3 + I4.
We see that

I1 ≥ c5

ˆ

Ω̃1(0,t0)

φ2|∇V −∇v|2dxdt

and using Holder’s inequality

|I2| ≤ c6

ˆ

Ω̃1(0,t0)

φ|V − v|(|∇V |+ |∇v|)|∇φ|dxdt

≤ ε2

ˆ

Ω̃1(0,t0)

φ2(|∇V |2 + |∇v|2)dxdt+ c7(ε2)

ˆ

Ω̃1(0,t0)

|V − v|2|∇φ|2dxdt.

Similarly, we also have

|I4| ≤ ε2

ˆ

Ω̃1(0,t0)

φ2(|∇V |2 + |∇v|2)dxdt+ c8(ε2)

ˆ

Ω̃1(0,t0)

|V − v|2|∇φ|2dxdt

+ c8(ε2)

ˆ

Ω̃1(0,t0)

|F |2φ2dxdt

and

I3 ≤
ˆ

Ω̃1(0,t0)

φtφ(V − v)2dxdt ≤ c9

ˆ

Ω̃1/4(0,t0)

|V − v|2dxdt.

Hence,
ˆ

Ω̃1/8(0,t0)

|∇V −∇v|2

≤ c10ε2

ˆ

Ω̃1/4(0,t0)

(|∇V |2 + |∇v|2) + c11(ε2)

ˆ

Ω̃1/4(0,t0)

(|V − v|2 + |F |2)

≤ c12ε2 + c13(ε2)

(
ε21 +

ˆ

Ω̃1/4(0,t0)∩{−4δ<xN<0}
|∇V (x′, 0, t)|2dxdt

)

≤ c12ε2 + c14(ε2)
(
ε21 + δ

)
.

Finally, for any ε > 0 by choosing ε2, ε1 and δ appropriately we get (7.59). This completes
the proof of Lemma.

Lemma 7.12 For any ε > 0 there exists a small δ = δ(N,Λ1,Λ2, ε) > 0 such that if
v ∈ C(t0 − ρ2, t0;L

2(Ω ∩Bρ(0))) ∩ L2(t0 − ρ2, t0;H
1(Ω ∩Bρ(0))) is a solution of

{
vt − div

(
ABρ(0)(t,∇v)

)
= 0 in Ω̃ρ(0)

v = 0 on ∂pΩ̃ρ(0)\(Ω× (−T, T ))
(7.61)
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and
B+

ρ (0) ⊂ Ω ∩Bρ(0) ⊂ Bρ(0) ∩ {xN > −4ρδ}. (7.62)

then there exists a weak solution V ∈ C(t0 − ρ2, t0;L
2(B+

ρ (0)))∩L2(t0 − ρ2, t0;H
1(B+

ρ (0)))
of (7.40), whose zero extension to Q1(0, t0) satisfies

||∇V ||2L∞(Qρ/4(0,t0))
≤ C

 

Qρ(0,t0)

|∇v|2dxdt and (7.63)

 

Qρ/8(0,t0)

|∇v −∇V |2dxdt ≤ ε2
 

Qρ(0,t0)

|∇v|2dxdt. (7.64)

for some C = C(N,Λ1,Λ2) > 0.

Proof. We set

A(x, t, ξ) = A(ρx, t0 + ρ2(t− t0), κξ)/κ and ṽ(x, t) = v(ρx, t0 + ρ2(t− t0))/(ρκ)

where κ =
(

1
|Qρ(0,t0)|

´

Qρ(0,t0)
|∇v|2dxdt

)1/2
. Then A satisfies conditions (2.3) and (2.29)

with the same constants Λ1 and Λ2. We can see that ṽ is a solution of
{

ṽt − div
(
AB1(0)(t,∇ṽ)

)
= 0 in Ω̃ρ

1(0)
ṽ = 0 on ((∂Ωρ ∩B1(0))× (t0 − 1, t0)) ∪ ((Ωρ ∩B1(0))× {t = t0 − 1}) (7.65)

where Ωρ = {z = x/ρ : x ∈ Ω} and satisfies
ffl

Q1(0,t0)
|∇ṽ|2dxdt = 1. We also have

B+
1 (0) ⊂ Ωρ ∩B1(0) ⊂ B1(0) ∩ {xN > −4δ}.

Therefore, applying Lemma 7.11 for any ε > 0, there exist a constant δ = δ(N,Λ1,Λ2, ε) > 0
and Ṽ satisfies

||∇Ṽ ||L∞(Q1/4(0,t0)) ≤ c1 and

 

Q1/8(0,t0)

|∇ṽ −∇Ṽ |2dxdt ≤ ε2.

We complete the proof by choosing V (x, t) = kρṼ (x/ρ, t0 + (t− t0)/ρ
2).

Lemma 7.13 Let s2 be as in Lemma 7.7. For any ε > 0 there exists a small δ =
δ(N,Λ1,Λ2, ε) > 0 such that the following holds. If Ω is a (δ,R0)-Reifenberg flat domain and
u ∈ C(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) is a solution to equation (2.6) with µ ∈ L2(Ω×(−T, T ))
and u(−T ) = 0, for x0 ∈ ∂Ω, −T < t0 < T and 0 < R < R0/6 then there is a function
V ∈ L2(t0 − (R/9)2, t0;H

1(BR/9(x0))) ∩ L∞(t0 − (R/9)2, t0;W
1,∞(BR/9(x0))) such that

||∇V ||L∞(QR/9(x0,t0)) ≤ c

 

Q6R(x0,t0)

|∇u|dxdt+ c
|µ|(Q6R(x0, t0))

RN+1
(7.66)

and
 

QR/9(x0,t0)

|∇u−∇V |dxdt

≤ c(ε+ [A]R0
s2 )

 

Q6R(x0,t0)

|∇u|dxdt+ c(ε+ 1 + [A]R0
s2 )

|µ|(Q6R(x0, t0))

RN+1
(7.67)

for some c = c(N,Λ1,Λ2) > 0.

Proof. Let x0 ∈ ∂Ω, −T < t0 < T and ρ = R(1 − δ), we may assume that 0 ∈ Ω,
x0 = (0, ...,−δρ/(1− δ)) and

B+
ρ (0) ⊂ Ω ∩Bρ(0) ⊂ Bρ(0) ∩ {xN > −4ρδ}. (7.68)
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We also have

QR/9(x0, t0) ⊂ Qρ/8(0, t0) ⊂ Qρ/4(0, t0) ⊂ Qρ(0, t0) ⊂ Q6ρ(0, t0) ⊂ Q6R(x0, t0) (7.69)

provided that 0 < δ < 1/625.
Let w and v be as in Theorem 7.5 and Lemma 7.7. By Lemma 7.12 for any ε > 0 we
can find a small positive δ = δ(N,α, β, ε) < 1/625 such that there is a function V ∈
L2(t0 − ρ2, t0;H

1(Bρ(0))) ∩ L∞(t0 − ρ2, t0;W
1,∞(Bρ(0))) satisfying

||∇V ||2L∞(Qρ/4(0,t0))
≤ c1

 

Qρ(0,t0)

|∇v|2dxdt and
 

Qρ/8(0,t0)

|∇v −∇V |2 ≤ ε2
 

Qρ(0,t0)

|∇v|2dxdt.

Then, by (7.39) in Lemma 7.7 and (7.18) in theorem 7.5 and (7.69) we get

||∇V ||L∞(QR/9(x0,t0)) ≤ c2

(
 

Qρ(0,t0)

|∇w|2dxdt
)1/2

≤ c3

 

Q6R(x0,t0)

|∇w|dxdt (7.70)

and

 

Qρ/8(0,t0)

|∇v −∇V |dxdt ≤ c4ε

(
 

Qρ(0,t0)

|∇w|2dxdt
)1/2

≤ c7ε

 

Q6R(x0,t0)

|∇w|dxdt. (7.71)

Therefore, from (7.17) in Theorem 7.5 and (7.70) we get (7.66).
Now we prove (7.67), we have

 

QR/9(x0,t0)

|∇u−∇V |dxdt ≤ c8

 

Qρ/8(0,t0)

|∇u−∇V |dxdt

≤ c8

 

Qρ/8(0,t0)

|∇u−∇w|dxdt+ c8

 

Qρ/8(0,t0)

|∇w −∇v|dxdt

+ c8

 

Qρ/8(0,t0)

|∇v −∇V |dxdt.

From Lemma 7.7 and Theorem 7.5 and (7.71) lead to
 

Qρ/8(0,t0)

|∇u−∇w|dxdt ≤ c9
|µ|(Q6R(x0, t0))

RN+1
,

 

Qρ/8(0,t0)

|∇v −∇w|dxdt ≤ c10[A]
R0
s2

 

Q6ρ(0,t0)

|∇w|dxdt

≤ c11[A]R0
s2

 

Q6R(x0,t0)

|∇w|dxdt

≤ c12[A]R0
s2

(
 

Q6R(x0,t0)

|∇u|dxdt+ |µ|(Q6R(x0, t0))

RN+1

)
and

 

Qρ/8(0,t0)

|∇v −∇V |dxdt ≤ c13ε

 

Q6R(x0,t0)

|∇w|dxdt

≤ c14ε

(
 

Q6R(x0,t0)

|∇u|dxdt+ |µ|(Q6R(x0, t0))

RN+1

)
.
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Hence we get (7.67).

8 Global Integral Gradient Bounds for Parabolic equa-

tions

8.1 Global estimates on 2-Capacity uniform thickness domains

We use the Theorem 7.4, 7.5 to prove the following theorem.

Theorem 8.1 Suppose that R
N\Ω satisfies uniformly 2−thick with constants c0, r0. Let

θ1, θ2 be in Theorem 7.1 and 7.5. Set θ = min{θ1, θ2} and T0 = diam(Ω) + T 1/2. Let Q =
Bdiam(Ω)(x0) × (0, T ) that contains ΩT . Let B1 = Q̃R1

(y0, s0), B2 = 4B1 := Q̃4R1
(y0, s0)

for R1 > 0. For µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω = |µ| + |σ| ⊗ δ{t=0}, there ex-
ist a distribution solution u of equation (2.6) with data µ, u0 = σ and constants C1 =
C1(N,Λ1,Λ2, c0, T0/r0), c2 > 0, ε1 = ε1(N,Λ1,Λ2, c0, T0/r0), ε2 = ε1(N,Λ1,Λ2, c0) > 0
such that

|{M(|∇u|) > ε−1/θλ,M1[ω] ≤ ε1−
1
θ λ} ∩Q| ≤ C1ε|{M(|∇u|) > λ} ∩Q| (8.1)

for all λ > 0, ε ∈ (0, ε1) and

|{M(χB2 |∇u|) > ε−1/θλ,M1[χB2ω] ≤ ε1−
1
θ λ}∩B1| ≤ C1ε|{M(χB2 |∇u|) > λ}∩B1| (8.2)

for all λ > ε−1+ 1
θ ||∇u||L1(ΩT∩B2)R

−N−2
2 , ε ∈ (0, ε2) with R2 = inf{r0, R1}/16.

Moreover, if σ ∈ L1(Ω) then u is a renormalized solution.

Proof of Theorem 8.1. Let {µn} ⊂ C∞
c (ΩT ), {σn} ⊂ C∞

c (Ω) be as in the proof of
Theorem 2.1. We have |µn| ≤ ϕn ∗ |µ| and |σn| ≤ ϕ1,n ∗ |σ| for any n ∈ N, {ϕn}, {ϕ1,n} are
sequences of standard mollifiers in R

N+1,RN , respectively.
Let un be solutions of equations





(un)t − div(A(x, t,∇un)) = µn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn in Ω.

(8.3)

By Proposition 3.5 and Theorem 3.6, there exist a subsequence of {un}, still denoted by
{un} converging to a distribution solution u of (2.6) with data µ ∈ Mb(ΩT ) and u0 = σ

such that un → u in Ls(0, T,W 1,s
0 (Ω)) for any s ∈

[
1, N+2

N+1

)
and if σ ∈ L1(Ω) then u is a

renormalized solution.
By Remark 3.3 and Theorem 3.6, a sequence {un,m}m of solutions to equations





(un,m)t − div(A(x, t,∇un,m)) = µn,m in Ω× (−T, T ),
un,m = 0 on ∂Ω× (−T, T ),
un,m(−T ) = 0 on Ω,

converges to χΩT
un in Ls(−T, T,W 1,s

0 (Ω)) for any s ∈
[
1, N+2

N+1

)
, where µn,m = (gn,m)t +

χΩT
µn, gn,m(x, t) = σn(x)

´ t

−T
ϕ2,m(s)ds and {ϕ2,m} is a sequence of mollifiers in R.

Set

E1
λ,ε = {M(|∇u|) > ε−1/θλ,M1[ω] ≤ ε1−

1
θ λ} ∩Q, F 1

λ = {M(|∇u|) > λ} ∩Q and

E2
λ,ε = {M(χB2

|∇u|) > ε−1/θλ,M1[χB2ω] ≤ ε1−
1
θ λ} ∩B1, F 2

λ = {M(χB2
|∇u|) > λ} ∩B1.
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for ε ∈ (0, 1) and λ > 0.
We verify that

|E1
λ,ε| ≤ c1ε|Q̃R3

| ∀ λ > 0, ε ∈ (0, 1) and (8.4)

|E2
λ,ε| ≤ c2ε|Q̃R2 | ∀ λ > ε−1+ 1

θ ||∇u||L1(ΩT∩A)R
−N−2
2 , ε ∈ (0, 1) (8.5)

for some c1 = c1(T0/r0), c2 > 0 and R3 = inf{r0, T0}/16.
In fact, we can assume that E1

λ,ε 6= ∅ so (|µ|(ΩT ) + |σ|(Ω)) ≤ TN+1
0 ε1−

1
θ λ. We have

|E1
λ,ε| ≤

c3
ε−1/θλ

ˆ

ΩT

|∇u|dxdt.

By Remark 3.2,
´

ΩT
|∇un|dxdt ≤ c4T0 (|µn|(ΩT ) + |σn|(Ω)) for all n. Letting n → ∞ we

get
´

ΩT
|∇u|dxdt ≤ c4T0 (|µ|(ΩT ) + |σ|(Ω)). Thus,

|E1
λ,ε| ≤

c3c4
ε−1/θλ

T0 (|µ|(ΩT ) + |σ|(Ω)) ≤ c3c4
ε−1/θλ

TN+2
0 ε1−

1
θ λ = c5ε|Q̃R3 |.

Hence, (8.4) holds with c1 = c5(T0/r0).

For any λ > ε−1+ 1
θ ||∇u||L1(ΩT∩B2)R

−N−2
2 we have

|E2
λ,ε| ≤

c3
ε−1/θλ

ˆ

ΩT

χB2
|∇u|dxdt < c2ε|Q̃R2

|.

Hence, (8.5) holds.
Next we verify that for all (x, t) ∈ Q and r ∈ (0, R3] and λ > 0, ε ∈ (0, 1) we have Q̃r(x, t)∩
Q ⊂ F 1

λ if |E1
λ,ε ∩ Q̃r(x, t)| ≥ c6ε|Q̃r(x, t)| where a constant c6 does not depend on λ and

ε. Indeed, take (x, t) ∈ Q and 0 < r ≤ R3. Now assume that Q̃r(x, t) ∩Q ∩ (F 1
λ)

c 6= ∅ and

E1
λ,ε∩Q̃r(x, t) 6= ∅ i.e, there exist (x1, t1), (x2, t2) ∈ Q̃r(x, t)∩Q such that M(|∇u|)(x1, t1) ≤

λ and M1[ω](x2, t2) ≤ ε1−
1
θ λ. We need to prove that

|E1
λ,ε ∩ Q̃r(x, t))| < c6ε|Q̃r(x, t)| (8.6)

Obviously, we have for all (y, s) ∈ Q̃r(x, t) there holds

M(|∇u|)(y, s) ≤ max{M
(
χQ̃2r(x,t)

|∇u|
)
(y, s), 3N+2λ}.

Leads to, for all λ > 0 and ε ∈ (0, ε0) with ε0 ≤ 3−(N+2)θ,

E1
λ,ε ∩ Q̃r(x, t) = {M

(
χQ̃2r(x,t)

|∇u|
)
> ε−1/θλ,M1[ω] ≤ ε1−

1
θ λ} ∩Q ∩ Q̃r(x, t). (8.7)

In particular, E1
λ,ε ∩ Q̃r(x, t) = ∅ if B4r(x) ⊂⊂ R

N\Ω. Thus, it is enough to consider the
case B4r(x) ⊂⊂ Ω and B4r(x) ∩ Ω 6= ∅.
We consider the case B4r(x) ⊂⊂ Ω. Let wn,m be as in Theorem 7.1 with Q2R = Q4r(x, t0)
and u = un,m where t0 = min{t+ 2r2, T}. We have

 

Q4r(x,t0)

|∇un,m −∇wn,m|dxdt ≤ c7
|µn,m|(Q4r(x, t0))

rN+1
and (8.8)

 

Q2r(x,t0)

|∇wn,m|θdxdt ≤ c8

(
 

Q4r(x,t0)

|∇wn,m|dxdt
)θ

. (8.9)
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From (8.7), we have

|E1
λ,ε ∩ Q̃r(x, t)| ≤ |{{M

(
χQ̃2r(x,t)

|∇wn,m|
)
> ε−1/θλ/4} ∩ Q̃r(x, t)}|

+ |{M
(
χQ̃2r(x,t)

|∇un,m −∇wn,m|
)
> ε−1/θλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇un,m −∇un|
)
> ε−1/θλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇un −∇u|
)
> ε−1/θλ/4} ∩ Q̃r(x, t)|

≤ c9ελ
−θ

ˆ

Q̃2r(x,t)

|∇wn,m|θdxdt+ c9ε
1/θλ−1

ˆ

Q̃2r(x,t)

|∇un,m −∇wn,m|dxdt

+ c9ε
1/θλ−1

ˆ

Q̃2r(x,t)

|∇un,m −∇un|dxdt+ c9ε
1/θλ−1

ˆ

Q̃2r(x,t)

|∇un −∇u|dxdt.

Thanks to (8.8) and (8.9) we can continue

|E1
λ,ε ∩ Q̃r(x, t)| ≤ c10ελ

−θ|Q̃r(x, t)|
(
 

Q4r(x,t0)

|∇un,m|dxdt
)θ

+ c10ελ
−θ|Q̃r(x, t)|

( |µn,m|(Q4r(x, t0))

rN+1

)θ

+ c10ε
1/θλ−1|Q̃r(x, t)|

|µn,m|(Q4r(x, t0))

rN+1

+ c10ε
1/θλ−1

ˆ

Q2r(x,t0)

|∇un,m −∇un|dxdt+ c10ε
1/θλ−1

ˆ

Q2r(x,t0)

|∇un −∇u|dxdt.

Letting m → ∞ and n → ∞, we get

|Eλ,ε ∩ Q̃r(x, t)| ≤ c10ελ
−θ|Q̃r(x, t)|

(
 

Q4r(x,t0)

|∇u|dxdt
)θ

+ c10ελ
−θ|Q̃r(x, t)|

(
ω(Q4r(x, t0))

rN+1

)θ

+ c10ε
1/θλ−1|Q̃r(x, t)|

ω(Q4r(x, t0))

rN+1
.

Since, M(|∇u|)(x1, t1) ≤ λ and M1[ω](x2, t2) ≤ ε1−
1
θ λ we have

ˆ

Q4r(x,t0)

|∇u|dxdt ≤
ˆ

Q̃8r(x,t)

|∇u|dxdt ≤
ˆ

Q̃9r(x1,t1)

|∇u|dxdt ≤ |Q̃9r(x1, t1)|λ,

and

ω(Q4r(x, t0)) ≤ ω(Q̃8r(x, t)) ≤ ω(Q̃9r(x2, t2) ≤ ε1−
1
θ λ(9r)N+1.

Thus
|Eλ,ε ∩ Q̃r(x, t)| ≤ c11ε|Q̃r(x, t)|.

Next, we consider the case B4r(x)∩Ω 6= ∅. Let x3 ∈ ∂Ω such that |x3−x| = dist (x, ∂Ω). Let
wn be as in Theorem 7.5 with Ω̃6R = Ω̃16r(x3, t0) and u = un,m where t0 = min{t+2r2, T}.
We have Q12r(x, t0) ⊂ Q16r(x3, t0),

 

Q12r(x,t0)

|∇un,m −∇wn,m|dxdt ≤ c12
|µn,m|(Ω̃16r(x3, t0))

rN+1
and

(
 

Q2r(x,t0)

|∇wn,m|θdxdt
) 1

θ

≤ c13

 

Q12r(x,t0)

|∇wn,m|dxdt.
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As above we also obtain

|E1
λ,ε ∩ Q̃r(x, t)| ≤ c14ελ

−θ|Q̃r(x, t)|
(
 

Q12r(x,t0)

|∇u|dxdt
)θ

+ c14ελ
−θ|Q̃r(x, t)|

(
ω(Q16r(x3, t0))

rN+1

)θ

+ c14ε
1/θλ−1|Q̃r(x, t)|

ω(Q16r(x3, t0))

rN+1
.

Since, M(|∇u|)(x1, t1) ≤ λ and M1[ω](x2, t2) ≤ ε1−
1
θ λ we have

ˆ

Q12r(x,t0)

|∇u|dxdt ≤
ˆ

Q̃24r(x,t)

|∇u|dxdt ≤
ˆ

Q̃25r(x1,t1)

|∇u|dxdt ≤ |Q̃25r(x1, t1)|λ

and

ω(Q16r(x3, t0)) ≤ ω(Q̃32r(x3, t)) ≤ ω(Q̃36r(x, t)) ≤ ω(Q̃37r(x2, t2)) ≤ ε1−
1
θ λ(37r)N+1.

Thus
|E1

λ,ε ∩ Q̃r(x, t)| ≤ c15ε|Q̃r(x, t)|.
Hence, (8.6) holds with c6 = 2max{c11, c15}.
Similarly, we also prove that for all (x, t) ∈ B1 and r ∈ (0, R2] and λ > 0, ε ∈ (0, 1) we have
Q̃r(x, t)∩B1 ⊂ F 2

λ if |E2
λ,ε ∩ Q̃r(x, t)| ≥ c16ε|Q̃r(x, t)| where a constant c26 does not depend

on λ and ε. Now, choose ε1 = (2max{1, c1, c6})−1 and ε2 = (2max{1, c2, c16}−1. We apply
Lemma 3.21 for E = E1

λ,ε, F = F 1
λ and ε is replaced by max{c1, c6}ε for any 0 < ε < ε1

and λ > 0 we get (8.1), for E = E2
λ,ε, F = F 2

λ and ε is replaced by max{c1, c17}ε for any

0 < ε < ε2 and λ > ε−1+ 1
θ ||∇u||L1(ΩT∩B2)R

−N−2
2 we get (8.2).

This completes the proof of Theorem.
Proof of Theorem 2.17. By theorem 8.1, there exist constants c1 > 0, 0 < ε0 < 1 and

a renormalized solution u of equation (2.6) with data µ, u0 = σ such that for any ε ∈ (0, 1),
λ > 0

|{M(|∇u|) > ε−1/θλ,M1[ω] ≤ ε1−
1
θ λ} ∩Q| ≤ c1ε|{M(|∇u|) > λ} ∩Q|.

Therefore, if 0 < s < ∞

||M(|∇u|)||sLp,s(Q) = ε−s/θp

ˆ ∞

0

λs|{(x, t) ∈ Q : M(|∇u|) > ε−1/θλ}| sp dλ
λ

≤ c
s/p
1 ε

s(θ−p)
θp p

ˆ ∞

0

λs|{(x, t) ∈ Q : M(|∇u|) > λ}| sp dλ
λ

+ ε−s/θp

ˆ ∞

0

λs|{(x, t) ∈ Q : M1[ω] > ε1−
1
θ λ}| sp dλ

λ

= c
s/p
1 ε

s(θ−p)
θp ||M(|∇u|)||sLp,s(Q) + ε−s||M1[ω]||sLp,s(Q)

Since p < θ, we can choose 0 < ε < ε0 such that c
s/p
1 ε

s(θ−p)
θp ≤ 1/2 we get the result for case

0 < s < ∞. Similarly, we also get the result for case s = ∞.
Also, we get (2.31) by using (4.16) in Proposition 4.8, (4.28) in Proposition 4.19. This
completes the proof.

Remark 8.2 Thanks to Proposition 4.4 we have for any s ∈
(

N+2
N+1 ,

N+2+θ
N+2

)
if µ ∈ L

(s−1)(N+2)
s ,∞(ΩT )

and σ ≡ 0 then
|||∇u|s||

L
(s−1)(N+2)

s
,∞(ΩT )

≤ c2||µ||s
L

(s−1)(N+2)
s

,∞(ΩT )

where constant c2 depends on N,Λ1,Λ2, s, c0, T0/r0.

As the proof of Theorem 8.1, we also get
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Theorem 8.3 Suppose that R
N\Ω satisfies uniformly 2−thick with constants c0, r0. Let

θ be as in Theorem 8.1. Let 1 ≤ p < θ, 0 < s ≤ ∞ and µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set
ω = |µ|+ |σ|⊗δ{t=0}. There exist C1 = C1(N,Λ1,Λ2, p, s, c0) > 0 and a distribution solution
u of equation (2.6) with data µ and u0 = σ such that

||M(χQ̃4R(y0,s0)
|∇u|)||Lp,s(Q̃R(y0,s0))

≤ C1R
N+2

p inf{r0, R}−N−2||∇u||L1(Q̃4R(y0,s0))

+ C1||M1[χQ̃4R(y0,s0)
ω]||Lp,s(Q̃R(y0,s0))

(8.10)

for any Q̃R(y0, s0) ⊂ R
N+1 and if σ ∈ L1(Ω) then u is a renormalized solution.

Proof of Theorem 2.19. Let {un,m} and µn,m be in the proof of Theorem 8.1. From
Corollary 7.2 and 7.6 we assert: for 2 − inf{β1, β2} < γ < N + 2, there exists a constant
C = C(N,Λ1,Λ2, c0, γ) > 0 such that for any 0 < ρ ≤ T0

ˆ

Qρ(y,s)

|∇un,m|dxdt ≤ C(N,Λ1,Λ2, γ, c0, T0/r0)ρ
N+3−γ ||Mγ [|µn,m|]||L∞(Ω×(−T,T ))

where β1, β2 are constants in Theorem 7.1 and Theorem 7.5. It is easy to see that

||Mγ [|µn,m|]||L∞(Ω×(−T,T )) ≤ ||Mγ [ω]||L∞(Ω×(−T,T )) = ||Mγ [ω]||L∞(ΩT )

for any n,m large enough.
Letting m → ∞, n → ∞, yield

ˆ

Qρ(y,s)

|∇u|dxdt ≤ C(N,Λ1,Λ2, γ, c0, T0/r0)ρ
N+3−γ ||Mγ [ω]||L∞(ΩT )

By Theorem 8.3 we get

|||∇u|||Lp,s(Q̃R(y0,s0)∩ΩT ) ≤ c1(T0/r0)R
N+2

p +1−γ ||Mγ [ω]||L∞(ΩT )

+ c2||M1[χQ̃R(y0,s0)
ω]||Lp,s(Q̃R(y0,s0))

for any Q̃R(y0, s0) ⊂ R
N+1 and 0 < R ≤ T0. It follows (2.32). Finally, if µ ∈ L

(γ−1)p
γ ,

(γ−1)s
γ ;(γ−1)p

∗ (ΩT )
and σ ≡ 0, then clearly u is a unique renormalized solution. It suffices to show that

||Mγ [|µ|]||L∞(ΩT ) ≤ c3||µ||
L

(γ−1)p
γ

,
(γ−1)s

γ
;(γ−1)p

∗ (ΩT )

and (8.11)

R
p(γ−1)−N−2

p ||M1[χQ̃R(y,s0)
|µ|]||Lp,s(Q̃R(y0,s0))

≤ c3||µ||
L

(γ−1)p
γ

,
(γ−1)s

γ
;(γ−1)p

∗ (ΩT )

(8.12)

for any Q̃R(y0, s0) ⊂ R
N+1 and 0 < R ≤ T0, where c3 = c3(N,Λ1,Λ2, p, s, γ, c0, T0/r0).

In fact, for 0 < ρ < T0 and (x, t) ∈ ΩT we have

||µ||
L

(γ−1)p
γ

,
(γ−1)s

γ
;(γ−1)p

∗ (ΩT )

≥ ||µ||
L

(γ−1)p
γ

,∞;(γ−1)p

∗ (ΩT )

≥ ρ

(γ−1)p−N−2
(γ−1)p

γ ||µ||
L

(γ−1)p
γ

,∞
(Q̃ρ(x,t)∩ΩT )

≥ c4ρ

(γ−1)p−N−2
(γ−1)p

γ |Q̃ρ(x, t)|−1+ γ
(γ−1)p |µ|(Q̃ρ(x, t) ∩ ΩT )

= c5
|µ|(Q̃ρ(x, t) ∩ ΩT )

ρN+2−γ
,

which obviously implies (8.11).
Next, we note that

M1[χQ̃R(y0,s0)
|µ|](x, t) ≤ c6

(
M

(
χQ̃R(y0,s0)

|µ|
)
(x, t)

)1− 1
γ ||µ||

1
γ

L

(γ−1)p
γ

,
(γ−1)s

γ
;(γ−1)p

∗ (ΩT )

.
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We derive

R
p(γ−1)−N−2

p ||M1[χQ̃R(y,s0)
|µ|]||Lp,s(Q̃R(y0,s0))

≤ c6R
p(γ−1)−N−2

p ||M
(
χQ̃R(y0,s0)

|µ|
)
||1−

1
γ

L
(γ−1)p

γ
,
(γ−1)s

γ (Q̃R(y0,s0))

||µ||
1
γ

L

(γ−1)p
γ

,
(γ−1)s

γ
;(γ−1)p

∗ (ΩT )

≤ c7R
p(γ−1)−N−2

p |||µ|||1−
1
γ

L
(γ−1)p

γ
,
(γ−1)s

γ (Q̃R(y0,s0))

||µ||
1
γ

L

(γ−1)p
γ

,
(γ−1)s

γ
;(γ−1)p

∗ (ΩT )

.

Here we used the boundedness property of M in L
(γ−1)p

γ ,
(γ−1)s

γ (RN+1) for (γ−1)p
γ > 1. There-

fore, immediately we get (8.12). This completes the proof of theorem.

8.2 Global estimates on Reifenberg flat domains

Now we prove results for Reifenberg flat domain. First, we will use Lemma 7.4, 7.13 and
Lemma 3.19 to get the following result.

Theorem 8.4 Suppose that A satisfies (2.29). Let s1, s2 be in Lemma 7.3 and 7.7, set
s0 = max{s1, s2}. Let w ∈ A∞, µ ∈ Mb(ΩT ), σ ∈ Mb(Ω), set ω = |µ| + |σ| ⊗ δ{t=0}.
There exists a distribution solution of (2.6) with data µ and u0 = σ such that following
holds. For any ε > 0, R0 > 0 one find δ1 = δ1(N,Λ1,Λ2, ε, [w]A∞) ∈ (0, 1) and δ2 =
δ2(N,Λ1,Λ2, ε, [w]A∞ , T0/R0) ∈ (0, 1) and Λ = Λ(N,Λ1,Λ2) > 0 such that if Ω is (δ1, R0)-
Reifenberg flat domain and [A]R0

s0 ≤ δ1 then

w({M(|∇u|) > Λλ,M1[ω] ≤ δ2λ} ∩ ΩT ) ≤ Bεw({M(|∇u|) > λ} ∩ ΩT ) (8.13)

for all λ > 0, where the constant B depends only on N,Λ1,Λ2, T0/R0, [w]A∞ .
Furthermore, if σ ∈ L1(Ω) then u is a renormalized solution.

Proof. Let {µn}, {σn}, {µn,m}, {un}, {un,m}, u be as in the proof of Theorem 8.1. Let ε be
in (0, 1). Set Eλ,δ2 = {M(|∇u|) > Λλ,M1[ω] ≤ δ2λ} ∩ ΩT and Fλ = {M(|∇u|) > λ} ∩ ΩT

for ε ∈ (0, 1) and λ > 0. Let {yi}Li=1 ⊂ Ω and a ball B0 with radius 2T0 such that

Ω ⊂
L⋃

i=1

Br0(yi) ⊂ B0

where r0 = min{R0/1080, T0}. Let sj = T − jr20/2 for all j = 0, 1, ..., [ 2T
r20

] and Q2T0
=

B0 × (T − 4T 2
0 , T ). So,

ΩT ⊂
⋃

i,j

Qr0(yi, sj) ⊂ Q2T0 .

We verify that
w(Eλ,δ2) ≤ εw(Q̃r0(yi, sj)) ∀ λ > 0 (8.14)

for some δ2 small enough, depended on n, p, α, β, ǫ, [w]A∞ , T0/R0.
In fact, we can assume that Eλ,δ2 6= ∅ so |µ|(ΩT ) + |σ|(Ω) ≤ TN+1

0 δ2λ. We have

|Eλ,δ2 | ≤
c1
Λλ

ˆ

ΩT

|∇u|dxdt.

We also have
ˆ

ΩT

|∇u|dxdt ≤ c2T0(|µ|(ΩT ) + |σ|(Ω)).

Thus,

|Eλ,ε| ≤
c3
Λλ

T0(|µ|(ΩT ) + |σ|(Ω)) ≤ c3
Λλ

TN+2
0 δ2λ = c4δ2|Q2T0

|.
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which implies

w(Eλ,δ2) ≤ A

( |Eλ,δ2 |
|Q2T0 |

)ν

w(Q2T0
) ≤ A (c4δ2)

ν
w(Q2T0

)

where (A, ν) is a pair of A∞ constants of w. It is known that (see, e.g [31]) there exist
A1 = A1(N,A, ν) and ν1 = ν1(N,A, ν) such that

w(Q̃2T0)

w(Q̃r0(yi, sj))
≤ A1

(
|Q̃2T0 |

|Q̃r0(yi, sj)|

)ν1

∀i, j.

So,

w(Eλ,δ2) ≤ A (c4δ2)
ν
A1

(
|Q̃T0

|
|Q̃r0(yi, sj)|

)ν1

w(Q̃r0(yi, sj)) < εw(Q̃r0(yi, sj)) ∀ i, j

where δ2 ≤
(

ε
2c5(T0r

−1
0 )(N+2)ν1

)1/ν
. It follows (8.14).

Next we verify that for all (x, t) ∈ ΩT and r ∈ (0, 2r0] and λ > 0 we have Q̃r(x, t)∩ΩT ⊂ Fλ

if w(Eλ,δ2 ∩ Q̃r(x, t)) ≥ εw(Qr(x, t)) for some δ2 ≤
(

ε
2c5(T0r

−1
0 )(N+2)ν1

)1/ν
.

Indeed, take (x, t) ∈ ΩT and 0 < r ≤ 2r0. Now assume that Q̃r(x, t)∩ΩT∩F c
λ 6= ∅ and Eλ,δ2∩

Q̃r(x, t) 6= ∅ i.e, there exist (x1, t1), (x2, t2) ∈ Q̃r(x, t) ∩ ΩT such that M(|∇u|)(x1, t1) ≤ λ
and M1[ω](x2, t2) ≤ δ2λ. We need to prove that

w(Eλ,δ2 ∩ Q̃r(x, t))) < εw(Q̃r(x, t)). (8.15)

Clearly,

M(|∇u|)(y, s) ≤ max{M
(
χQ̃2r(x,t)

|∇u|
)
(y, s), 3N+2λ} ∀(y, s) ∈ Q̃r(x, t).

Therefore, for all λ > 0 and Λ ≥ 3N+2,

Eλ,δ2 ∩ Q̃r(x, t) = {M
(
χQ̃2r(x,t)

|∇u|
)
> Λλ,M1[ω] ≤ δ2λ} ∩ ΩT ∩ Q̃r(x, t). (8.16)

In particular, Eλ,δ2 ∩ Q̃r(x, t) = ∅ if B8r(x) ⊂⊂ R
N\Ω. Thus, it is enough to consider the

case B8r(x) ⊂⊂ Ω and B8r(x) ∩ Ω 6= ∅.
We consider the case B8r(x) ⊂⊂ Ω. Let vn,m be as in Lemma 7.4 with Q2R = Q8r(x, t0)
and u = un,m where t0 = min{t+ 2r2, T}. We have

||∇vn,m||L∞(Q2r(x,t0)) ≤ c6

 

Q8r(x,t0)

|∇un,m|dxdt+ c6
|µn,m|(Q8r(x, t0))

rN+1
(8.17)

and
 

Q4r(x,t0)

|∇un,m −∇vn,m|dxdt ≤ c8
|µn,m|(Q8r(x, t0))

rN+1
+ c8[A]

R0
s0

(
 

Q8r(x,t0)

|∇un,m|dxdt

+
|µn,m|(Q8r(x, t0))

rN+1

)
.

Thanks to M(|∇u|)(x1, t1) ≤ λ and M1[ω](x2, t2) ≤ δ2λ with (x1, t1), (x2, t2) ∈ Qr(x, t), we
get

lim sup
n→∞

lim sup
m→∞

||∇vn,m||L∞(Q2r(x,t)) ≤ c9

 

Q̃17r(x1,t1)

|∇u|dxdt+ c9
ω(Q̃17r(x2, t2))

rN+1

≤ c9λ+ c9δ2λ

≤ c10λ
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and

lim sup
n→∞

lim sup
m→∞

 

Q4r(x,t0)

|∇un −∇vn|dxdt

≤ c11
ω(Q̃17r(x2, t2))

rN+1
+ c11[A]

R0
s0

(
 

Q̃17r(x1,t1)

|∇u|dxdt+ ω(Q̃17r(x2, t2))

rN+1

)

≤ c11δ2λ+ c11[A]
R0
s0 (λ+ δ2λ)

≤ c11 (δ2 + δ1(1 + δ2))λ.

Here we used [A]R0
s0 ≤ δ1 in the last inequality.

So, we can find n0 large enough and a sequence {kn} such that

||∇vn,m||L∞(Q̃2r(x,t))
= ||∇vn,m||L∞(Q2r(x,t0)) ≤ 2c10λ and (8.18)

 

Q4r(x,t0)

|∇un,m −∇vn,m|dxdt ≤ 2c11 (δ2 + δ1(1 + δ2))λ (8.19)

for all n ≥ n0 and m ≥ kn.
In view of (8.18) we see that for Λ ≥ max{3N+2, 8c10} and n ≥ n0, m ≥ kn,

|{M
(
χQ̃2r(x,t)

|∇vn,m|
)
> Λλ/4} ∩ Q̃r(x, t)| = 0.

Leads to

|Eλ,δ2 ∩ Q̃r(x, t)| ≤ |{M
(
χQ̃2r(x,t)

|∇un,m −∇vn,m|
)
> Λλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇un −∇un,m|
)
> Λλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇u−∇un|
)
> Λλ/4} ∩ Q̃r(x, t)|.

Therefore, by (8.19) and Q̃2r(x, t) ⊂ Q4r(x, t0) we obtain for any n ≥ n0 and m ≥ kn

|Eλ,δ2 ∩ Q̃r(x, t)| ≤
c12
λ

ˆ

Q̃2r(x,t)

|∇un,m −∇vn,m|dxdt

+
c12
λ

ˆ

Q̃2r(x,t)

|∇un −∇un,m|dxdt+ c12
λ

ˆ

Q̃2r(x,t)

|∇u−∇un|dxdt

≤ c13 (δ2 + δ1(1 + δ2)) |Qr(x, t)|

+
c12
λ

ˆ

Q̃2r(x,t)

|∇un −∇un,m|dxdt+ c12
λ

ˆ

Q̃2r(x,t)

|∇u−∇un|dxdt.

Letting m → ∞ and n → ∞ we get

|Eλ,δ2 ∩ Q̃r(x, t)| ≤ c13 (δ2 + δ1(1 + δ2)) |Q̃r(x, t)|.
Thus,

w(Eλ,δ2 ∩ Q̃r(x, t)) ≤ C

(
|Eλ,δ2 ∩ Q̃r(x, t)|

|Q̃r(x, t)|

)ν

w(Q̃r(x, t))

≤ C (c13 (δ2 + δ1(1 + δ2)))
ν
w(Q̃r(x, t))

< εw(Q̃r(x, t)).

where δ2, δ1 are appropriately chosen, (C, ν) is a pair of A∞ constants of w.
Next we consider the case B8r(x) ∩ Ω 6= ∅. Let x3 ∈ ∂Ω such that |x3 − x| = dist (x, ∂Ω).
Set t0 = min{t+ 2r2, T}. We have

Q2r(x, t0) ⊂ Q10r(x3, t0) ⊂ Q540r(x3, t0) ⊂ Q̃1080r(x3, t) ⊂ Q̃1088r(x, t) ⊂ Q̃1089r(x1, t1)
(8.20)

95



NGUYEN QUOC HUNG

and
Q540r(x3, t0) ⊂ Q̃1080r(x3, t) ⊂ Q̃1088r(x, t) ⊂ Q̃1089r(x2, t2) (8.21)

Let Vn,m be as in Lemma 7.13 with Q6R = Q540r(x3, t0), u = un,m and ε = δ3 ∈ (0, 1). We
have

||∇Vn,m||L∞(Q10r(x3,t0)) ≤ c14

 

Q540r(x3,t0)

|∇un,m|dxdt+ c14
|µn,m|(Q540r(x3, t0))

RN+1

and
 

Q10r(x3,t0)

|∇un,m −∇Vn,m|dxdt

≤ c15(δ3 + [A]R0
s0 )

 

Q540r(x3,t0)

|∇un,m|dxdt+ c15(δ3 + 1 + [A]R0
s0 )

|µn,m|(Q540r(x3, t0))

RN+1
.

Since M(|∇u|)(x1, t1) ≤ λ, M1[ω](x2, t2) ≤ δ2λ and (8.20), (8.21) we get

lim sup
n→∞

lim sup
m→∞

||∇Vn,m||L∞(Q2r(x,t0)) ≤ lim sup
n→∞

lim sup
m→∞

||∇Vn,m||L∞(Q10r(x3,t0))

≤ c14

 

Q540r(x3,t0)

|∇u|dxdt+ c14
ω(Q540r(x3, t0))

RN+1

≤ c15

 

Q̃1089r(x1,t1)

|∇u|dxdt+ c15
ω(Q̃1089r(x2, t2))

RN+1

≤ c16λ+ c16δ2λ

≤ c17λ

and

lim sup
n→∞

lim sup
m→∞

 

Q2r(x,t0)

|∇un,m −∇Vn,m|dxdt

≤ c18(δ3 + [A]R0
s0 )

 

Q540r(x3,t0)

|∇u|dxdt+ c18(δ3 + 1 + [A]R0
s0 )

ω(Q540r(x3, t0))

rN+1

≤ c19(δ3 + [A]R0
s0 )

 

Q̃1089r(x1,t1)

|∇u|dxdt+ c19(δ3 + 1 + [A]R0
s0 )

ω(Q̃1089(x2, t2))

rN+1

≤ c20(δ3 + [A]R0
s0 )λ+ c21(δ3 + 1 + [A]R0

s0 )δ2λ

≤ c20 ((δ3 + δ1) + (δ3 + 1 + δ1)δ2)λ.

Here we used [A]R0
s ≤ δ1 in the last inequality.

So, we can find n0 large enough and a sequence {kn} such that

||∇Vn,m||L∞(Q̃2r(x,t))
= ||∇Vn,m||L∞(Q2r(x,t0)) ≤ 2c17λ and (8.22)

 

Q2r(x,t0)

|∇un,m −∇Vn,m|dxdt ≤ 2c21 ((δ3 + δ1) + (δ3 + 1 + δ1)δ2)λ (8.23)

for all n ≥ n0 and m ≥ kn.
Now set Λ = max{3N+2, 8c10, 8c17}. As above we also have for n ≥ n0, m ≥ kn

|Eλ,δ2 ∩ Q̃r(x, t)| ≤ |{M
(
χQ̃2r(x,t)

|∇un,m −∇Vn,m|
)
> Λλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇un −∇un,m|
)
> Λλ/4} ∩ Q̃r(x, t)|

+ |{M
(
χQ̃2r(x,t)

|∇u−∇un|
)
> Λλ/4} ∩ Q̃r(x, t)|.
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Therefore from (8.23) we obtain

|Eλ,δ2 ∩ Q̃r(x, t)| ≤
c22
λ

ˆ

Q̃2r(x,t)

|∇un,m −∇Vn,m|dxdt

+
c22
λ

ˆ

Q̃2r(x,t)

|∇un −∇un,m|dxdt+ c22
λ

ˆ

Q̃2r(x,t)

|∇u−∇un|dxdt

≤ c23 ((δ3 + δ1) + (δ3 + 1 + δ1)δ2) |Q̃r(x, t)|

+
c22
λ

ˆ

Q̃2r(x,t)

|∇un −∇un,m|dxdt+ c22
λ

ˆ

Q̃2r(x,t)

|∇u−∇un|dxdt.

Letting m → ∞ and n → ∞ we get

|Eλ,δ2 ∩ Q̃r(x, t)| ≤ c22 ((δ3 + δ1) + (δ3 + 1 + δ1)δ2) |Q̃r(x, t)|.

Thus

w(Eλ,δ2 ∩ Q̃r(x, t)) ≤ C

(
|Eλ,δ2 ∩ Q̃r(x, t)|

|Q̃r(x, t)|

)ν

w(Q̃r(x, t))

≤ C (c22 ((δ3 + δ1) + (δ3 + 1 + δ1)δ2))
ν
w(Q̃r(x, t))

< εw(Q̃r(x, t))

where δ3, δ1, δ2 are appropriately chosen, (C, ν) is a pair of A∞ constants of w.
Therefore, for all (x, t) ∈ ΩT and r ∈ (0, 2r0] and λ > 0 if w(Eλ,δ2 ∩ Q̃r(x, t)) ≥ εw(Q̃r(x, t))

then Q̃r(x, t)∩ΩT ⊂ Fλ where δ1 = δ1(N,Λ1,Λ2, ε, [w]A∞) ∈ (0, 1) and δ2 = δ2(N,Λ1,Λ2, ε,
[w]A∞ , T0/R0) ∈ (0, 1). Applying Lemma 3.19 we get the result.

Proof of Theorem 2.20. As in the proof of Theorem 2.17, we can prove (2.34) by
using estimate (8.13) in Theorem 8.4. In particular, thanks to Proposition 4.4 for q > N+2

N+1 ,

µ ∈ L
(N+2)(q−1)

q ,∞(ΩT ) and σ ≡ 0,

|||∇u|q||
L

(N+2)(q−1)
q

,∞
(ΩT )

≤ c||µ||q
L

(N+2)(q−1)
q

,∞
(ΩT )

(8.24)

where the constant c depends only on N,Λ1,Λ2, q and T0/R0.
Proof of Theorem 2.22. By Theorem 2.20, there exists a renormalized solution of (2.6)
with data µ, u0 = σ satisfied

ˆ

ΩT

|∇u|qdw ≤ c1

ˆ

ΩT

(M1[ω])
q
dw (8.25)

for any w ∈ A∞, where c1 = c1(N,Λ1,Λ2, q, T0/R0, [w]A∞).

For 0 < δ < 1 we have M1[ω] ≤ c2I
2T0,δ
1 [ω] in ΩT . Thus, (8.25) can be rewritten

ˆ

ΩT

|∇u|qdw ≤ c1c
q
2

ˆ

ΩT

(
I
2T0,δ
1 [ω]

)q
dw. (8.26)

Thanks to Proposition 4.24 and Corollary 4.39 and 4.38 we obtain the result.

In follow that we usually employ the the Minkowski inequality, for convenience we recall
it, for any 0 < q1 ≤ q2 < ∞ there holds

(
ˆ

X

(
ˆ

Y

|f(x, y)|q1dµ2(y)

) q2
q1

dµ1(x)

) 1
q2

≤
(
ˆ

Y

(
ˆ

X

|f(x, y)|q2dµ1(x)

) q1
q2

dµ2(y)

) 1
q1

for any measure function f in X × Y , where µ1, µ2 are nonnegative measure in X and Y
respectively.
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Proof of Theorem 2.21. We will consider only the case s 6= ∞ and leave the case
s = ∞ to the readers. Take κ1 ∈ (0, κ). It is easy to see that for (x0, t0) ∈ ΩT and
0 < ρ < diam(Ω) + T 1/2

w(x, t) = min{ρ−N−2+κ−κ1 ,max{|x− x0|,
√
2|t− t0|}−N−2+κ−κ1} ∈ A∞

where [w]A∞ is independent of (x0, t0) and ρ. Thus, from (2.34) in Theorem 2.20 we have

||M(|∇u|)||s
Lq,s(Q̃ρ(x0,t0)∩ΩT )

= ρ
(N+2−κ+κ1)s

q ||M(|∇u|)||s
Lq,s(Q̃ρ(x0,t0)∩ΩT ,dw)

≤ c1ρ
(N+2−κ+κ1)s

q ||M1[ω]||sLq,s(ΩT ,dw)

= qc1ρ
(N+2−κ+κ1)s

q

ˆ ∞

0

(λqw({M1[ω] > λ} ∩ ΩT ))
s
q
dλ

λ

= qc1ρ
(N+2−κ+κ1)s

q

ˆ ∞

0

(
λq

ˆ ∞

0

|{M1[ω] > λ,w > τ} ∩ ΩT |dτ
) s

q dλ

λ

=: c1ρ
(N+2−κ+κ1)s

q A. (8.27)

Since w ≤ ρ−N−2+κ−κ1 and {M1[ω] > λ,w > τ} ⊂ {M1[ω] > λ} ∩ Q̃
τ

1
−N−2+κ−κ1

(x0, t0),

A ≤ q

ˆ ∞

0

(
λq

ˆ ρ−N−2+κ−κ1

0

|{M1[ω] > λ} ∩ Q̃
τ

1
−N−2+κ−κ1

(x0, t0) ∩ ΩT |dτ
) s

q
dλ

λ
.

We divide to two cases.
Case 1: 0 < s ≤ q. We can verify that for any nonincreasing function F in (0,∞) and
0 < a ≤ 1 we have

(
ˆ ∞

0

F (τ)dτ

)a

≤ 4

ˆ ∞

0

(τF (τ))a
dτ

τ
.

Hence,

A ≤ 4q

ˆ ∞

0

ˆ ρ−N−2+κ−κ1

0

(
λqτ |{M1[ω] > λ} ∩ Q̃

τ
1

−N−2+κ−κ1
(x0, t0) ∩ ΩT |

) s
q dτ

τ

dλ

λ

= 4q

ˆ ρ−N−2+κ−κ1

0

ˆ ∞

0

(
λq|{M1[ω] > λ} ∩ Q̃

τ
1

−N−2+κ−κ1
(x0, t0) ∩ ΩT |

) s
q dλ

λ
τ

s
q
dτ

τ

= 4

ˆ ρ−N−2+κ−κ1

0

||M1[ω]||sLq,s(Q̃
τ

1
−N−2+κ−κ1

(x0,t0)∩ΩT )
τ

s
q
dτ

τ

≤ 4

ˆ ρ−N−2+κ−κ1

0

||M1[ω]||sLq,s;κ(ΩT )τ
(N+2−κ)s

(−N−2+κ−κ1)q τ
s
q
dτ

τ

= c2||M1[ω]||sLq,s;κ(ΩT )ρ
− sκ1

q .

Case 2: s > q. Using the Minkowski inequality, yields

A ≤ c3

(
ˆ ρ−N−2+κ−κ1

0

(
ˆ ∞

0

(
λq|{M1[ω] > λ} ∩ Q̃

τ
1

−N−2+κ−κ1
(x0, t0) ∩ ΩT |

) s
q dλ

λ

) q
s

dτ

) s
q

≤ c4

(
ˆ ρ−N−2+κ−κ1

0

(
||M1[ω]||sLq,s;κ(ΩT )τ

(N+2−κ)s
(−N−2+κ−κ1)q

) q
s

dτ

) s
q

= c5||M1[ω]||sLq,s;κ(ΩT )ρ
− sκ1

q .
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Therefore, we always have

A ≤ c6||M1[ω]||sLq,s;κ(ΩT )ρ
− sκ1

q .

which implies (2.35) from (8.27).
Similarly, we obtain estimate (2.48) by adapting

w(x, t) = min{ρ−N+ϑ−ϑ1 , |x− x0|−N+ϑ−ϑ1} ∈ A∞

in above argument, where 0 < ϑ1 < ϑ, x0 ∈ Ω and 0 < ρ < diam(Ω) and [w]A∞ is
independent of x0 and ρ.
Next, to archive (2.37) we need to show that for any ball Bρ ⊂ R

N

(
ˆ T

0

|oscBρ∩Ωu(t)|qdt
) 1

q

≤ c7ρ
1−ϑ

q |||∇u|||Lq;ϑ
∗∗ (ΩT ) (8.28)

Since the extension of u over (ΩT )
c is zero and u ∈ L1(0, T,W 1,1

0 (Ω)) thus we have for a.e
t ∈ (0, T ), u(., t) ∈ W 1,1(RN ). Applying [30, Lemma 7.16] to a ball Bρ ⊂ R

N , we get for a.e
t ∈ (0, T ) and x ∈ Bρ

|u(x, t)− uBρ(t)| ≤
2N

N |B1(0)|

ˆ

Bρ

|∇u(y, t)|
|x− y|N−1

dy

≤ 2N

N |B1(0)|

ˆ

B2ρ(x)

|∇u(y, t)|
|x− y|N−1

dy

≤ c8

ˆ 3ρ

0

´

Br(x)
|∇u(y, t)|dy
rN−1

dr

r
,

here uBρ(t) is the average of u(., t) over Bρ, i.e uBρ(t) =
1

|Bρ|
´

Bρ
u(x, t)dx.

Using the Minkowski and the Holder inequality, we discover that for a.e x ∈ Bρ

(
ˆ T

0

|u(x, t)− uBρ(t)|qdt
) 1

q

≤ c8

(
ˆ T

0

(
ˆ 3ρ

0

´

Br(x)
|∇u(y, t)|dy
rN−1

dr

r

)q

dt

) 1
q

≤ c8

ˆ 3ρ

0

ˆ

Br(x)

(
ˆ T

0

|∇u(y, t)|qdt
) 1

q

dy
dr

rN

≤ c8

ˆ 3ρ

0

(
ˆ

Br(x)

ˆ T

0

|∇u(y, t)|qdtdy
) 1

q

|Br(x)|
q−1
q

dr

rN

≤ c8|B1(x)|
q−1
q

ˆ 3ρ

0

r
N−ϑ

q r
N(q−1)

q
dr

rN
|||∇u|||Lq;ϑ

∗∗ (ΩT )

= c9ρ
1−ϑ

q |||∇u|||Lq;ϑ
∗∗ (ΩT ).

Therefore, we find (8.28) with c7 = 2c9.
Proof of Proposition 2.28. Clearly, estimate (2.48) is followed by (4.12) in Propo-

sition 4.7. We want to emphasize that almost every estimates in this proof will be used the
Minkowski inequality. For a ball Bρ ⊂ R

N , we have for a.e x ∈ R
N

||I1[µ](x, .)||Lq(R) =

(
ˆ +∞

−∞

(
ˆ ∞

0

µ(Q̃r(x, t))

rN+1

dr

r

)q

dt

) 1
q

≤
ˆ ∞

0

(
ˆ +∞

−∞
(µ(Q̃r(x, t)))

qdt

) 1
q dr

rN+2
. (8.29)
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Now, we need to estimate
(
´ +∞
−∞ (µ(Q̃r(x, t)))

qdt
) 1

q

.

b. We have

(
ˆ +∞

−∞
(µ(Q̃r(x, t)))

qdt

) 1
q

=

(
ˆ +∞

−∞

(
ˆ

RN+1

χQ̃r(x,t)
(x1, t1)dµ(x1, t1)

)q

dt

) 1
q

≤
ˆ

RN+1

(
ˆ +∞

−∞
χQ̃r(x,t)

(x1, t1)dt

) 1
q

dµ(x1, t1)

= r
2
q µ1(Br(x))

Combining this with (8.29) we obtain (2.49) and (2.51).
Thus, we also assert (2.51) from [1, Theorem 3.1 ].
c. Set dµ2(x) = ||µ(x, .)||Lq1 (R)dx. Using Holder’s inequality, yields

µ(Q̃r(x, t)) ≤ r
2(q1−1)

q1

ˆ

Br(x)



ˆ t+ ρ2

2

t− ρ2

2

(w(x1, t1))
q1dt1




1
q1

dx1.

Leads to

(
ˆ +∞

−∞
(µ(Q̃r(x, t)))

qdt

) 1
q

≤ r
2(q1−1)

q1

ˆ

Br(x)



ˆ +∞

−∞



ˆ t+ ρ2

2

t− ρ2

2

(w(x1, t1))
q1dt1




q
q1

dt




1
q

dx1.

Note that



ˆ +∞

−∞



ˆ t+ ρ2

2

t− ρ2

2

(w(x1, t1))
q1dt1




q
q1

dt




q1
q

=

(
ˆ +∞

−∞

(
ˆ +∞

−∞
χ(

t− ρ2

2 ,t+ ρ2

2

)(t1)(w(x1, t1))
q1dt1

) q
q1

dt

) q1
q

≤
ˆ +∞

−∞

(
ˆ +∞

−∞
χ(

t− ρ2

2 ,t+ ρ2

2

)(t1)dt

) q1
q

(w(x1, t1))
q1dt1

= ρ
2q1
q

ˆ +∞

−∞
(w(x1, t1))

q1dt1.

Hence

(
ˆ +∞

−∞
(µ(Q̃r(x, t)))

qdt

) 1
q

≤ r
2(q1−1)

q1
+ 2

q

ˆ

Br(x)

||µ(x1, .)||Lq1 (R)dx1

= r
2(q1−1)

q1
+ 2

q µ2(Br(x)).

Consequently, since (8.29) we derive (2.52) and (2.53).
We also obtain (2.54) from [1, Theorem 3.1 ].

8.3 Global estimates in R
N × (0,∞) and R

N+1

Now, we present the proofs of Theorem 2.25 and 2.27.
Proof of Theorem 2.25 and Theorem 2.27. For any n ≥ 1, it is easy to see that

i. R
N\Bn(0) satisfies uniformly 2−thick with constants c0 =

Capp(B1/4(z0),B2(0))

Capp(B1(0),B2(0))
, z0 =

(1/2, 0, ..., 0) ∈ R
N and r0 = n.
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ii. for any δ ∈ (0, 1), Bn(0) is a (δ, 2nδ)− Reifenberg flat domain.

iii. [A]ns0 ≤ [A]∞s0 .

a. Assume that ||M1[ω]||Lp,s(RN+1) < ∞. Thus by Remark 2.26 we have

I2[ω](x, t) < ∞ for a.e (x, t) ∈ R
N+1. (8.30)

In view of the proof of the Theorem 2.5 and applying Theorem 2.17 to Bn(0)×(−n2, n2) and
with data χBn−1(0)×(−(n−1)2,(n−1)2)ω for any n ≥ 2, there exists a sequence renormalized
solution {un} ( we will take its subsequence if need ) of





(un)t − div(A(x, t,∇un)) = χBn−1(0)×(−(n−1)2,(n−1)2)ω in Bn(0)× (−n2, n2),
un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 in Bn(0),

converging to a distribution solution u in L1
loc(R;W

1,1
loc (R

N )) of 2.8 with data µ = ω such
that

|||∇un|||Lp,s(Bn(0)×(−n2,n2)) ≤ c1||M1[χBn−1(0)×(−(n−1)2,(n−1)2)|ω|]||Lp,s(B2n(0)×(−n2,n2))

≤ c1||M1[|ω|]||Lp,s(RN+1).

Here c1 = c1(N,Λ1,Λ2, p, s) is not depending on n since T0

r0
= 2n+(1+n2)1/2

n ≈ 1.
Using Fatou Lemma, we get estimate (2.40).
b. Assume that ||Mγ [ω]||L∞(RN×(0,∞)) < ∞. Since I2[χQ̃2(0,0)

ω] < ∞ a.e in R
N+1 thus for

a.e (x, t) ∈ Q̃1(0, 0)

I2[ω](x, t) = I2[χQ̃2(0,0)
ω](x, t) +

ˆ ∞

1

ω(Q̃ρ(x, t))

ρN
dρ

ρ

≤ I2[χQ̃2(0,0)
ω](x, t) + ||Mγ [ω]||L∞(RN×(0,∞))

ˆ ∞

1

ρ−γ+2 dρ

ρ

< ∞.

which implies that (8.30) holds for a.e (x, t) ∈ R
N+1. As above, we also obtain (2.41).

And similarly, we can prove Theorem 2.27 by this way.
This completes the proof of Theorem.

Remark 8.5 (sharpness) The inequality (2.43) is in a sense optimal as follows:

C−1||M1[ω]||Lq(RN+1) ≤ |||∇H2| ∗ ω||Lq(RN×(0,∞)) ≤ C||M1[ω]||Lq(RN+1) (8.31)

for every q > 1 where C = C(N, q). Indeed, we have

∇H2(x, t) = −Cα

2

χ(0,∞)(t)

t(N+1)/2
exp(−|x|2

4t
)
x√
t
,

leads to

c−1
1

t
N+1

2

χt>0χ 1
2

√
t≤|x|≤2

√
t ≤ |∇Hα(x, t)| ≤

c1

max{|x|,
√
2|t|}N+1

.

Immediately, we get

c−1
2

ˆ ∞

0

ω
(
(Br(x)\Br/2(x))× (t− r2, t− r2/4)

)

rN+1

dr

r
≤ |∇H2| ∗ ω(x, t) ≤ c2I1[ω](x, t).
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By Theorem 4.2, give the right-hand side inequality of (8.31). So, it is enough to show that

A :=

ˆ

RN+1

(
ˆ ∞

0

ω
(
(Br(x)\Br/2(x))× (t− r2, t− r2/4)

)

rN+1

dr

r

)q

dxdt ≥ c3||M1[ω]||qLq(RN+1)

(8.32)

To do this, we take rk = (3/2)k for k ∈ Z,

(
ˆ ∞

0

ω
(
(Br(x)\Br/2(x))× (t− r2, t− r2/4)

)

rN+1

dr

r

)q

≥ c4

∞∑

k=−∞

(
ω
(
(Brk(x)\B3rk/4(x))× (t− r2k, t− 9r2k/16)

)

rN+1
k

)q

.

We deduce that

A ≥ c4

∞∑

k=−∞

ˆ

RN+1

(
ω
(
(Brk(x)\B3rk/4(x))× (t− r2k, t− 9r2k/16)

)

rN+1
k

)q

dxdt.

For any k, put y = x+ 7
8rk and s = t− 25

32r
2
k, so Brk(x)\B3rk/4(x) ⊃ Brk/8(y) and

ˆ

RN+1

(
ω
(
(Brk(x)\B3rk/4(x))× (t− r2k, t− 9r2k/16)

)

rN+1
k

)q

dxdt

≥
ˆ

RN+1

(
ω
(
Brk/8(y)× (s− 7r2k/32, t+ 7r2k/32)

)

rN+1
k

)q

dyds.

Consequently,

A ≥ c4

ˆ

RN+1

∞∑

k=−∞

(
ω
(
Brk/8(y)× (s− 7r2k/32, t+ 7r2k/32)

)

rN+1
k

)q

dyds.

It follows (8.32).

9 Quasilinear Riccati Type Parabolic Equations

9.1 Quasilinear Riccati Type Parabolic Equation in ΩT

We provide below only the proof of Theorem 2.30, 2.32 and 2.33. The proof of Theorem
2.31 can be proceeded by a similar argument.

Proof of Theorem 2.30. Let {µn} ⊂ C∞
c (ΩT ) be as in the proof of Theorem 2.1.

We have |µn|(ΩT ) ≤ |µ|(ΩT ) for any n ∈ N. Let σn ∈ C∞
c (Ω) be converging to σ in the

narrow topology of measures and in L1(Ω) if σ ∈ L1(Ω) such that ||σn||L1(Ω) ≤ |σ|(Ω). For
n0 ∈ N, we prove that the problem (2.55) has a solution with data µ = µn0 and σ = σn0 .
Now we put

EΛ = {u ∈ L1(0, T,W 1,1
0 (Ω)) : |||∇u|||

L
N+2
N+1

,∞
(ΩT )

≤ Λ}

where L
N+2
N+1 ,∞(ΩT ) is Lorent space with norm

||f ||
L

N+2
N+1

,∞
(ΩT )

:= sup
0<|D|<∞

(
|D|− 1

N+2

ˆ

D∩ΩT

|f |
)
.
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By Fatou’s lemma, EΛ is closed under the strong topology of L1(0, T,W 1,1
0 (Ω)) and convex.

We consider a map S : EΛ → EΛ defined for each v ∈ EΛ by S(v) = u, where u ∈
L1(0, T,W 1,1

0 (Ω)) is the unique solution of





ut − div (A(x, t,∇u)) = |∇v|q + µn0
in ΩT ,

u = 0 on ∂Ω× (0, T ).
u(0) = σn0

(9.1)

By Remark 3.2, we have

|||∇u|||
L

N+2
N+1

,∞
(ΩT )

≤ c1
(
|||∇v|q||L1(ΩT ) + |µn0

|(ΩT ) + ||σn0
||L1(Ω)

)

for some c1 = c1(N,Λ1,Λ2). It leads to

|||∇u|||
L

N+2
N+1

,∞
(ΩT )

≤ c1

(
c2|ΩT |1−

q(N+1)
N+2 |||∇v|||q

L
N+2
N+1

,∞
(ΩT )

+ |µ|(ΩT ) + |σ|(Ω)
)

≤ c1

(
c2|ΩT |1−

q(N+1)
N+2 Λq + |µ|(ΩT ) + |σ|(Ω)

)

for some c2 = c2(N, q) > 0. Thus, we suppose that

|ΩT |−1+ q′
N+2 (|µ|(ΩT ) + |σ|(Ω)) ≤ (2c1)

−q′c
− 1

q−1

2

then
|||∇u|||

L
N+2
N+1

,∞
(ΩT )

≤ Λ := 2c1(|µ|(Ω) + |σ|(Ω))

which implies that S is well defined.
Now we show that S is continuous. Let {vn} be a sequence in EΛ such that vn converges
strongly in L1(0, T,W 1,1

0 (Ω)) to a function v ∈ EΛ. Set un = S(vn). We need to show that
un → S(v) in L1(0, T,W 1,1

0 (Ω)). We have





(un)t − div (A(x, t,∇un)) = |∇vn|q + µn0 in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn0

in Ω,
(9.2)

satisfied
|||∇un|||

L
N+2
N+1

,∞
(ΩT )

≤ Λ, |||∇vn|||
L

N+2
N+1

,∞
(ΩT )

≤ Λ.

Thus, |∇vn|q → |∇v|q in L1(ΩT ). Therefore, it is easy to see that we get un → S(v) in
L1(0, T,W 1,1

0 (Ω)) by Theorem 3.6.
Next we show that S is pre-compact. Indeed if {un} = {S(vn)} is a sequence in S(EΛ).
By Proposition 3.5, there exists a subsequence of {un} converging to u in L1(0, T,W 1,1

0 (Ω)).
Consequently, by Schauder Fixed Point Theorem, S has a fixed point on EΛ this means:
the problem (2.55) has a solution with data µn0

, σn0
.

Therefore, for any n ∈ N, there exists a renormalized solution un of




(un)t − div (A(x, t,∇un)) = |∇un|q + µn in ΩT ,
u = 0 on ∂Ω× (0, T ).
un(0) = σn

(9.3)

which satisfies
|||∇un|||

L
N+2
N+1

,∞
(ΩT )

≤ 2c1(|µ|(Ω) + |σ|(Ω)).

Thanks to Proposition 3.5, there exists a subsequence of {un} converging to u in L1(0, T,W 1,1
0 (Ω)).

So, |||∇u|||
L

N+2
N+1

,∞
(ΩT )

≤ 2c1(|µ|(Ω) + |σ|(Ω)) and |∇un|q → |∇u|q in L1(Ω) since {|∇un|q}
is equi-integrable. It follows the results by Proposition 3.5 and Theorem 3.6.
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Proof of Theorem 2.32. Case 1. A is linear operator. By Theorem 2.22, there
exist δ = δ(N,Λ1,Λ2, q) ∈ (0, 1) and s0 = s0(N,Λ1,Λ2) > 0 such that Ω is (δ,R0)- Reifen-
berg flat domain and [A]R0

s0 ≤ δ for some R0 and a sequence {un}n as distribution solutions
of





(u1)t − div(A(x, t,∇u1)) = µ in ΩT ,
u1 = 0 on ∂Ω× (0, T ),
u1(0) = σ in Ω,

and




(un+1)t − div(A(x, t,∇un+1)) = |∇un|q + µ in ΩT ,
un+1 = 0 on ∂Ω× (0, T ),
un+1(0) = σ in Ω,

which satisfy
[|∇un+1|q]MG1,q′ ≤ c1[|∇un|q + ω]MG1,q′ ∀n ≥ 0 (9.4)

where u0 ≡ 0 and constant c1 depends only on N,Λ1,Λ2, q and T0/R0, T0. Moreover, if
σ ∈ L1(Ω) then {un} is the sequence of renormalized solutions.
Clearly, un+1 − un is the unique renormalized solution of





ut − div (A(x, t,∇u)) = |∇un|q − |∇un−1|q in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = 0 in Ω.

(9.5)

So, we have

[|∇un+1 −∇un|q]MG1,q′ ≤ c1[|∇un|q − |∇un−1|q]qMG1,q′ ∀n ≥ 0. (9.6)

We set Dn = [|∇un+1−∇un|q]MG1,q′ for any n, since ||∇un|q−|∇un−1|q| ≤ |∇un−∇un−1|q.
Thus Dn ≤ c1D

q
n−1 ∀n ≥ 1, which implies Dn ≤ c

qn−1
q−1

1 [ω]q
n

MG1,q′ ∀n ≥ 1. Therefore,

∞∑

n=1

Dn ≤
c1[ω]

q

MG1,q′

1− c
q2

q−1

1 [ω]q
2

MG1,q′

provided that c
q2

q−1

1 [ω]q
2

MG1,q′ < 1.

In particular, if [ω]MG1,q′ ≤ 2
− 1

q2 c
− 1

q−1

1 then un converges to u = u1 +
∑∞

n=1(un+1 − un) in

Lq(0, T,W 1,q
0 (Ω)) and satisfied

[|∇u|q]MG1,q′ ≤ 2c1[µ]
q

MG1,q′ .

By Theorem 3.6 we get the result.
Next, we will prove Case 1. and Case 2..
Let {µn} ⊂ C∞

c (ΩT ), σn ∈ C∞
c (Ω) be as in the proof of Theorem 2.1. We have |µn| ≤

ϕn ∗ |µ|, |σn| ≤ ϕ1,n ∗ |σ| for any n ∈ N, {ϕn}, {ϕ1,n} are sequences of standard mollifiers in
R

N+1,RN respectively. Set ωn = |µn|+ |σn| ⊗ δ{t=0} and ω = |µ|+ |σ| ⊗ δ{t=0}.
Case 2. For n0 ∈ N, ε > 0, we prove that the problem (2.55) has a solution with data
µ = µn0 , σ = σn0 . Now we put

EΛ = {u ∈ L1(0, T,W 1,1
0 (Ω)) : [|∇u|q+ε]MG1,(q+ε)′ (ΩT ) ≤ Λ}.

By Fatou’s lemma, EΛ is closed under the strong topology of L1(0, T,W 1,1
0 (Ω)) and convex.

We consider a map S : EΛ → EΛ defined for each v ∈ EΛ by S(v) = u, where u ∈
L1(0, T,W 1,1

0 (Ω)) is the unique solution of problem (9.1). By Theorem 2.22, there exist
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δ = δ(N,Λ1,Λ2, q+ ε) ∈ (0, 1) and s0 = s0(N,Λ1,Λ2) > 0 such that Ω is (δ,R0)- Reifenberg
flat domain and [A]R0

s0 ≤ δ for some R0 we have

[|∇u|q+ε]MG1,(q+ε)′ ≤ c2[|∇v|q + ωn0
]q+ε

MG1,(q+ε)′

where c2 = c2(N,Λ1,Λ2, q + ε, T0/R0, T0). By Remark 4.33, we deduce that

[|∇v|q]MG1,(q+ε)′ ≤ c3[|∇v|q+ε]
q

q+ε

MG1,(q+ε)′

where a constant c3 depends on N, q + ε.
Thus,

[|∇u|q+ε]MG1,(q+ε)′ ≤ c2
(
[|∇v|q]MG1,(q+ε)′ + [ωn0

]MG1,(q+ε)′
)q+ε

≤ c2

(
c3[|∇u|q+ε]

q
q+ε

MG1,(q+ε)′ + [ωn0
]MG1,(q+ε)′

)q+ε

≤ c2

(
c3Λ

q
q+ε + [ωn0

]MG1,(q+ε)′

)q+ε

≤ Λ

provided that [ωn0
]MG1,(q+ε)′ ≤ c4 := 2−q′c

− q′
q+ε

2 c
− 1

q−1

3 and Λ := 2q+εc2[ωn0
]q+ε

MG1,(q+ε)′ .

which implies that S is well defined with [ωn0
]MG1,(q+ε)′ ≤ c4.

Now we show that S is continuous. Let {vn} be a sequence in EΛ such that vn converges
strongly in L1(0, T,W 1,1

0 (Ω)) to a function v ∈ EΛ. Set un = S(vn). We need to show that
un → S(v) in L1(0, T,W 1,1

0 (Ω)). We have un satisfied (9.2) and

[|∇un|q+ε]MG1,(q+ε)′ ≤ Λ, [|∇vn|q+ε]MG1,(q+ε)′ ≤ Λ.

In particular, ||∇vn||Lq+ε(ΩT ) ≤ ΛCapG1,(q+ε)′(ΩT ) for all n. Thus, |∇vn|q → |∇v|q in

L1(ΩT ). Therefore, it is easy to see that we get un → S(v) in L1(0, T,W 1,1
0 (Ω)) by Theorem

3.6. On the other hand, S is pre-compact. Therefore, by Schauder Fixed Point Theorem, S
has a fixed point on EΛ. Hence the problem (2.55) has a solution with data µ = µn0 , σ = σn0 .
Thanks to Corollary 4.39 and Remark 4.40 we get

[ωn]MG1,(q+ε)′ ≤ c5[ω]MG1,(q+ε)′ ∀ n ∈ N (9.7)

where c5 = c5(N, q + ε, T0).
Assume that [ω]MG1,(q+ε)′ ≤ c4c

−1
5 . So [ωn]MG1,(q+ε)′ ≤ c4 for all n.

Therefore, for any n ∈ N, there exists a renormalized solution un of problem (9.3) which
satisfies

[|∇un|q+ε]MG1,(q+ε)′ ≤ 2q+εc2[ωn]
q+ε

MG1,(q+ε)′ ≤ 2q+εc2c
q+ε
5 [ω]q+ε

MG1,(q+ε)′ .

By Proposition 3.5, there exists a subsequence of {un} converging to u in L1(0, T,W 1,1
0 (Ω)).

So, [|∇u|q+ε]MG1,(q+ε)′ (ΩT ) ≤ 2q+εc2c
q+ε
5 [ω]q+ε

MG1,(q+ε)′ (ΩT )
and |∇un|q → |∇u|q in L1(Ω) since

{|∇un|q} is equi-integrable. It follows the result by Proposition 3.5 and Theorem 3.6.

Case 3. For n0 ∈ N. We prove that the problem (2.55) has a solution with data
µ = µn0

, σ = σn0
. Now we put

EΛ = {u ∈ L1(0, T,W 1,1
0 (Ω)) : |||∇u|||L(N+2)(q−1),∞(ΩT ) ≤ Λ}

where L(N+2)(q−1),∞(ΩT ) is Lorent space with norm

||f ||L(N+2)(q−1),∞(ΩT ) := sup
0<|D|<∞

(
|D|−1+ 1

(N+2)(q−1)

ˆ

D∩ΩT

|f |dxdt
)
.
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By Fatou’s lemma, EΛ is closed under the strong topology of L1(0, T,W 1,1
0 (Ω)) and convex.

We consider a map S : EΛ → EΛ defined for each v ∈ EΛ by S(v) = u, where u ∈
L1(0, T,W 1,1

0 (Ω)) is the unique solution of problem (9.1). By Theorem 2.20, there exist
δ = δ(N,Λ1,Λ2, q) ∈ (0, 1) and s0 = s0(N,Λ1,Λ2) > 0 such that Ω is (δ,R0)- Reifenberg
flat domain and [A]R0

s0 ≤ δ for some R0 we have

|||∇u|||L(N+2)(q−1),∞(ΩT ) ≤ c6||M1[|∇v|q + ωn0 ]||L(N+2)(q−1),∞(ΩT )

≤ c6
(
||M1[|∇v|q]||L(N+2)(q−1),∞(ΩT ) + ||M1[ωn0 ]||L(N+2)(q−1),∞(ΩT )

)

where c6 = c6(N,Λ1,Λ2, q, T0/R0) and T0 = diam(Ω) + T 1/2.
By Proposition 4.4 we have

||M1[|f |q]||L(N+2)(q−1),∞(Rn+1) ≤ c7||I1[|f |q]||L(N+2)(q−1),∞(Rn+1)

≤ c8||f ||qL(N+2)(q−1),∞(Rn+1)
∀f ∈ L(N+2)(q−1),∞(Rn+1)

where a constant c8 only depends on N, q. Thus,

|||∇u|||L(N+2)(q−1),∞(ΩT ) ≤ c6

(
c8|||∇v|||q

L(N+2)(q−1),∞(ΩT )
+ ||M1[ωn0 ]||L(N+2)(q−1),∞(ΩT )

)

≤ c6
(
c8Λ

q + ||M1[ωn0 ]||L(N+2)(q−1),∞(ΩT )

)
,

which implies that S is well defined with ||M1[ωn0
]||L(N+2)(q−1),∞(ΩT ) ≤ c9 := (2c6)

−q′c
− 1

q−1

8

and Λ := 2c6||M1[ωn0
]||L(N+2)(q−1),∞(ΩT ).

As in Case 1 we can show that S : EΛ → EΛ is continuous, thus by Schauder Fixed Point
Theorem, S has a fixed point on EΛ. Hence the problem (2.55) has a solution with data
µ = µn0 , σ = σn0 .
To continue, we need to show that

||M1[ωn]||L(N+2)(q−1),∞(RN+1)

≤ c10||I1[|µ|]||L(N+2)(q−1),∞(RN+1) + c10||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN ) (9.8)

for every n ≥ k0. Where k0 is a constant large enough and c10 = c10(N, q) Indeed, we have
M1[ωn] ≤ c11I1[ϕn ∗ |µ|] + c11I1[(ϕ1,n ∗ |σ|)⊗ δ{t=0}]. Thus, by Proposition 4.19 we deduce

||M1[ωn]||L(N+2)(q−1),∞(RN+1)

≤ c11||I1[ϕn ∗ |µ|]||L(N+2)(q−1),∞(RN+1) + c12||I 2
(N+2)(q−1)

−1[ϕ1,n ∗ |σ|]||L(N+2)(q−1)(RN )

= c11||ϕn ∗ I1[|µ|]||L(N+2)(q−1),∞(RN+1) + c12||ϕ1,n ∗ I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN )

→ c11||I1[|µ|]||L(N+2)(q−1),∞(RN+1) + c12||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN ) as n → ∞.

It implies (9.8).
Now we assume that

||I1[|µ|]||L(N+2)(q−1),∞(RN+1), ||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN ) ≤ c9(2c10)
−1

then ||M1[ωn]||L(N+2)(q−1),∞(RN+1) ≤ c9 for all n ≥ k0. Consequently, there exists a renor-
malized solution un of problem (9.3) satisfied

|||∇un|||L(N+2)(q−1),∞(ΩT ) ≤ 2c6||M1[ωn]||L(N+2)(q−1),∞(ΩT )

≤ 2c6c10||I1[|µ|]||L(N+2)(q−1),∞(RN+1) + 2c6c10||I 2
(N+2)(q−1)

−1[|σ|]||L(N+2)(q−1)(RN ) =: C

for any n ≥ k0. Thanks to Proposition 3.5, there exists a subsequence of {un} converging
to u in L1(0, T,W 1,1

0 (Ω)). So, |||∇u|||L(N+2)(q−1),∞(ΩT ) ≤ C and |∇un|q → |∇u|q in L1(Ω)
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since {|∇un|q} is equi-integrable.
It follows the result by Proposition 3.5 and Theorem 3.6. This completes the proof.

Proof of Theorem 2.33. Let {µn} ⊂ C∞
c (ΩT ), σn ∈ C∞

c (Ω) be as in the proof of
Theorem 2.1. We have |µn| ≤ ϕn ∗ |µ|, |σn| ≤ ϕ1,n ∗ |σ| for any n ∈ N, {ϕn}, {ϕ1,n} are
sequences of standard mollifiers in R

N+1,RN respectively. We can assume that supp (µn) ⊂
(Ω′+Bd/4(0))×[0, T ] and supp (σn) ⊂ Ω′+Bd/4(0) for any n ∈ N. Set ωn = |µn|+|σn|⊗δ{t=0}
and ω = |µ|+ |σ| ⊗ δ{t=0}.
First, we prove that the problem (2.55) has a solution with data µ = µn0

, σ = σn0
for

n0 ∈ N. By Corollary 4.39 and Remark 4.40, we have

[ωn]MG1,q′ ≤ c1ε0 ∀n ∈ N (9.9)

where c1 = c1(N, q, T0) and ε0 = [ω]MG1,q′ . By Proposition 4.36 and Remark 4.37, we have

I
2T0,δ
1

[(
I
2T0,δ
1 [ωn]

)q]
≤ c2ε

q−1
0 I

2T0,δ
1 [ωn] a.e in R

N+1 and (9.10)

I2[
(
I
2T0,δ
1 [ωn]

)q
] ≤ c2ε

q−1
0 I2[ωn] a.e in R

N+1 (9.11)

for any n ∈ N, where c2 = c2(N, δ, q, T0) and 0 < δ < 1. We set

EΛ = {u ∈ L1(0, T,W 1,1
0 (Ω)) : |∇u| ≤ ΛI2T0,δ

1 [ωn0
]}.

Clearly, EΛ is closed under the strong topology of L1(0, T,W 1,1
0 (Ω)) and convex.

We consider a map S : EΛ → L1(0, T,W 1,1
0 (Ω)) defined for each v ∈ EΛ by S(v) = u, where

u ∈ L1(0, T,W 1,1
0 (Ω)) is the unique renormalized solution of problem (9.1). We will show

that S(EΛ) is subset of EΛ for some Λ > 0 and ε0 small enough.
We have

|∇v| ≤ ΛI1[ωn0 ] (9.12)

In particular, |||∇v|||L∞(Ωd/2×(0,T )) ≤ Λ(N + 1)−1(d/2)−N−1ωn0
(ΩT ), where Ωd/2 = {x ∈

Ω : d(x, ∂Ω) ≤ d/2}.
From (9.10) and (9.11) lead to

I
2T0,δ
1 [|∇v|q] ≤ Λq

I
2T0,δ
1

[(
I
2T0,δ
1 [ωn0

]
)q]

≤ c2Λ
qεq−1

0 I
2T0,δ
1 [ωn0

] and

I2[|∇v|q] ≤ Λq
I2

[(
I
2T0,δ
1 [ωn0

]
)q]

≤ c2Λ
qεq−1

0 I2[ωn0
].

Clearly, from [25, Theorem 1.2], we have for any Qr(x, t) ⊂⊂ Ω× (−∞, T ) with r ≤ r0

|∇u(x, t)| ≤ c3

 

Qr(x,t)

|∇u|dyds+ c3I
2T0,δ
1 [|∇v|q + ωn0 ](x, t)

≤ c3

 

Qr(x,t)

|∇u|dyds+ c3I
2T0,δ
1 [|∇v|q](x, t) + c3I

2T0,δ
1 [ωn0 ](x, t)

≤ c3

 

Qr(x,t)

|∇u|dyds+ c3

(
c2Λ

qεq−1
0 + 1

)
I
2T0,δ
1 [ωn0 ](x, t) (9.13)

where c3 = c3(N,Λ1) and r0 = r0(N,Λ1,Λ2,Λ3, β) > 0.

Since |||∇u|||L1(ΩT ) ≤ c4T0

(
|||∇v|||qLq(ΩT ) + ωn0

(ΩT )
)
, for any (x, t) ∈ (Ω\Ωd/4)× (−∞, T )

where Ωd/4 = {x ∈ Ω : d(x, ∂Ω) ≤ d/4},
1

|Qd0
(x, t)|

ˆ

Qd0
(x,t)

|∇u|dyds ≤ c5d
−N−2
0 T0

(
|||∇v|||qLq(ΩT ) + ωn0

(ΩT )
)

≤ c6I
2T0,δ
1 [|∇v|q + ωn0

](x, t)

≤ c6

(
c2Λ

qεq−1
0 + 1

)
I
2T0,δ
1 |[ωn0

](x, t) (9.14)
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where d0 = min{d/8, r0} and c6 = c6(N, p,Λ1,Λ2, T0/d0).
By regularity theory, we have

||∇u||L∞(Ωd/4×(0,T )) ≤ c7(||u||L∞(Ωd/2×(0,T )) + |||∇v|q||L∞(Ωd/2×(0,T )))

where c7 = c7(N,Λ1,Λ2,Λ3,Ω, T ).
a. Estimate |||∇v|q||L∞(Ωd/2×(0,T )). Thanks to (9.12),

|||∇v|q||L∞(Ωd/2×(0,T )) ≤
(
Λ(d/2)−N−1(ωn0

(ΩT ))
)q

.

Since ωn0(ΩT ) ≤ c1ε0CapG1,q′(Q̃T0(x0, t0)) = c8(N, q, p, T0)ε0 with (x0, t0) ∈ ΩT , thus

|||∇v|q||L∞(Ωd/2×(0,T )) ≤ c9Λ
qεq−1

0 I
2T0,δ
1 [ωn0

](x, t) ∀(x, t) ∈ ΩT

where c9 = c9(N,Λ1,Λ2,Λ3, q, d,Ω, T ).
b. Estimate ||u||L∞(Ωd/2). By Theorem 2.1 we have

|u(x, t)| ≤ c10I2[|∇v|q + ωn0
](x, t) ∀(x, t) ∈ ΩT

where c10 = c10(N,Λ1,Λ2). Thus,

|u(x, t)| ≤ c10I2[|∇v|q](x, t) + c10I2[ωn0
](x, t)

≤ c10

(
c2Λ

qεq−1
0 + 1

)
I2[ωn0 ](x, t)

which implies

||u||L∞(Ωd/2×(0,T )) ≤ c11

(
c2Λ

qεq−1
0 + 1

)
d−Nωn0

(ΩT )

≤ c12

(
c2Λ

qεq−1
0 + 1

)
I
2T0,δ
1 [ωn0

](x, t) ∀(x, t) ∈ ΩT

where c12 = c12(N,Λ1,Λ2,Λ3, q, T0/d). Therefore,

||∇u||L∞(Ωd/4×(0,T )) ≤ c13

(
c14Λ

qεq−1
0 + 1

)
inf

(x,t)∈ΩT

I
2T0,δ
1 [ωn0

](x, t) (9.15)

where c13 = c13(N,Λ1,Λ2,Λ3, q, d,Ω, T ).
Finally from (9.14) (9.15) and (9.13) we get for all (x, t) ∈ ΩT

|∇u(x, t)| ≤ c14

(
c15Λ

qεq−1
0 + 1

)
I
2T0,δ
1 [ωn0

](x, t).

where c14 = c14(N,Λ1,Λ2,Λ3, q, d,Ω, T ) and c15 = c15(N, δ, q).

So, we suppose that Λ = 2c14 and ε0 ≤ c
− 1

q−1

15 (2c14)
− q

q−1 , it is equivalent to (2.63), (2.64)
holding for some C > 0. Then for any (x, t) ∈ ΩT

|∇u(x, t)| ≤ ΛI2T0,δ
1 [ωn0 ](x, t)

and S is well defined.
On the other hand, we can see that S : EΛ → EΛ is continuous and S(E) is pre-compact
under the strong topology of L1(0, T,W 1,1

0 (Ω)).
Thus, by Schauder Fixed Point Theorem, S has a fixed point on EΛ. This means: the
problem (2.55) has a solution with data µ = µn0 , σ = σn0 .
Therefore, for any n ∈ N, there exists a renormalized solution un of problem (9.3) which
satisfies

|∇un(x, t)| ≤ ΛI2T0,δ
1 [ωn](x, t) ∀ (x, t) ∈ ΩT .

Since I2T0,δ
1 [ωn](x, t) ≤ ϕn∗I2T0,δ

1 [|µ|](x, t)+ϕ1,n∗(I2T0,δ
1 [|σ|⊗δ{t=0}](., t))(x) =: An(x, t) and

An converges to I
2T0,δ
1 [|µ|] + I

2T0,δ
1 [|σ| ⊗ δ{t=0}] in Lq(RN+1), thus |∇un|q is equi-integrable.

As in the proof of Theorem 2.32, we get the result by using Proposition 3.5 and Theorem
3.6. This completes the proof.
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9.2 Quasilinear Riccati Type Parabolic Equation in R
N × (0,∞) and

R
N+1

In this subsection, we only provide the proofs of Theorem 2.37 and 2.38. In the same way,
we can prove Theorem 2.36.
Proof of Theorem 2.37. As in the proof of Theorem 2.25 and Theorem 2.27, we can
apply Theorem 2.32 to obtain: there exists a constant c1 = c1(N,Λ1,Λ2, q) that if [A]∞s0 ≤ δ
and (2.66) holds with constant c1 then we can find a sequence of renormalized solutions
{unk

} of 



(unk
)t − div(A(x, t,∇unk

)) = |∇unk
|q + χDnk−1

ω in Dnk
,

unk
= 0 on ∂Bnk

(0)× (−n2
k, n

2
k),

unk
(−n2

k) = 0 on Bnk
(0).

converging to some u in L1
loc(R;W

1,1
loc (R

N )) and satisfying

|||∇unk
|||L(q−1)(N+2),∞(Dnk

) ≤ c2||I1[|ω|]||L(N+2)(q−1),∞(RN+1)

for some c2 = c2(N,Λ1,Λ2, q), where Dn = Bn(0) × (−n2, n2). It follows |∇unk
|q → |∇u|q

in L1
loc(R

N+1). Thus, u is a distribution solution of (2.57) which satisfies (2.65).
Furthermore, if ω = µ + σ ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then
unk

= 0 in Bnk
(0)× (−n2

k, 0). So, u = 0 in R
N × (−∞, 0). Therefore, clearly u|

RN×[0,∞) is

a distribution solution to (2.56).

Proof of Theorem 2.38. Let ωn = ϕn∗(χDn−1
ω) for any n ≥ 2. We have µn ∈ C∞

c (RN+1)
with supp (ωn) ⊂ Dn and ωn → ω weakly in M(RN+1).
According to Corollary 4.39 and Remark 4.40, we have

[ωn]MH1,q′ ≤ c1ε0 ∀n ∈ N

where c1 = c1(N, q) and [ω]MH1,q′ ≤ ε0. Thus, thanks to Theorem 1.3 we get

I1 [(I1[ωn])
q
] ≤ c2ε

q−1
0 I1[ωn] and (9.16)

I2 [(I1[ωn])
q
] ≤ c2ε

q−1
0 I2[ωn] ∀n ∈ N (9.17)

where c2 = c2(N, q, c1).
We fix n0 ∈ N, put:

EΛ =
{
u ∈ L1(−n2

0, n
2
0,W

1,1
0 (Bn0

(0))) : |∇u| ≤ ΛI1[ωn0
] in Bn0/4(0)× (−n2

0, n
2
0)
}
.

By using estimate (5.8) in Remark 5.3, we can apply the argument of the proof of Theorem
2.9, with problem (6.9) replaced by





ut − div (A(t,∇u)) = χBn0/4(0)×(−n2
0,n

2
0)
|∇v|q + ωn0 in Dn0 ,

u = 0 on ∂Bn0(0)× (−n2
0, n

2
0),

u(−n2
0) = 0 in Bn0(0),

to obtain: the operator S (in the proof of Theorem 2.9) has a fixed point on EΛ for some
Λ = Λ(N,Λ1,Λ2, q) > 0 and ε0 = ε0(N,Λ1,Λ2, q) > 0. Therefore, for any n ∈ N there exists
a solution un of problem





(un)t − div (A(t,∇un)) = χBn/4(0)×(−n2,n2)|∇un|q + ωn in Dn,

un = 0 on ∂Bn(0)× (−n2, n2),
un(−n2) = 0 in Bn(0),

which satisfies

|∇un(x, t)| ≤ ΛI1[ωn](x, t) ∀(x, t) ∈ Bn/4(0)× (−n2, n2).
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Moreover, combining this with (9.17) and Theorem 2.1 we also obtain

|un(x, t)| ≤ KI2

[
χBn/4(0)×(−n2,n2)|∇un|q + |ωn|

]
(x, t)

≤ KΛq
I2 [(I1[|ωn|])q] +KI2 [|ωn|] (x, t)

≤ c3I2 [|ωn|] (x, t)
≤ c3ϕn ∗ I2

[
|χDn−1ω|

]
(x, t)

for any (x, t) ∈ Bn(0)× (−n2, n2).
Since I2[ω](x0, t0) < ∞ for some (x0, t0) ∈ R

N+1, thus supn
´

Dm
(I2[ωn])

q0dxdt < ∞ for all

m ∈ N, 1 < q0 < N+2
N , so supn

´

Dm
χDn

|un|q0dxdt < ∞.

In addition, since I1[ω] ∈ Lq
loc(R

N+1), thus ϕn ∗ I1

[
|χDn−1ω|

]
→ I1[ω] in Lq

loc(R
N+1) and

{χBn/4(0)×(−n2,n2)|∇un|q} is equi local integrable in R
N+1.

Therefore, we can apply Corollary 3.18 to obtain: un → u in L1
loc(R;W

1,1
loc (R

N )) ( we will
take its subsequence if need) and u satisfies (2.68). Also, |∇un|q → |∇u|q in L1

loc(R
N+1).

Finally, we can conclude that u is a distribution solution of problem (2.67). Note that the
assumption [ω]MH1,q′ ≤ ε0 is equivalent to (2.69) holding with C = ε0.
Furthermore, if ω = µ+σ⊗ δ{t=0} with µ ∈ M(RN × (0,∞)) and σ ∈ M(RN ), then un = 0
in Bn(0) × (−n2, an) where supp (ωn) ⊂ R

N × (an,∞) and an → 0− as n → ∞. So, u = 0
in R

N × (−∞, 0). Therefore, clearly u|
RN×[0,∞) is a distribution solution to (2.70).

This completes the proof of the Theorem.

10 Appendix

Proof of the Remark 2.7. For ω ∈ M+(RN+1), 0 < α < N + 2 if Iα[ω](x0, t0) < ∞ for
some (x0, t0) ∈ R

N+1 then for any 0 < β ≤ α, Iβ [ω] ∈ Ls
loc(R

N+1) for any 0 < s < N+2
N+2−β .

Indeed, by Remark 4.28 we have Iα[ω] ∈ Ls
loc(R

N+1) for any 0 < s < N+2
N+2−β .

Take 0 < β ≤ α and 0 < s < N+2
N+2−β . For R > 0, by Proposition 4.4 we have Iβ [χQ̃2R(0,0)ω] ∈

Ls
loc(R

N+1). Thus,
ˆ

Q̃R(0,0)

(Iβ [ω](x, t))
s
dxdt

≤ c1

ˆ

Q̃R(0,0)

(
Iβ [χQ̃2R(0,0)ω](x, t)

)s
dxdt+ c1

ˆ

Q̃R(0,0)

(
Iβ [χQ̃2R(0,0)cω](x, t)

)s
dxdt

≤ c1

ˆ

Q̃R(0,0)

(
Iβ [χQ̃2R(0,0)ω](x, t)

)s
dxdt+ c1R

−s(α−β)

ˆ

Q̃R(0,0)

(Iα[ω](x, t))
s
dxdt

< ∞.

For 0 < β < α < N + 2, we consider

ω(x, t) =
∞∑

k=4

ak

|Q̃k+1(0, 0)\Q̃k(0, 0)|
χQ̃k+1(0,0)\Q̃k(0,0)

(x, t)

where ak = 2n(N+2−θ) if k = 2n and ak = 0 otherwise with θ ∈ (β, α].
It is easy to see that Iα[ω] ≡ ∞ and Iβ [ω] < ∞ in R

N+1.
Proof of the Remark 2.26. For ω ∈ M+(RN+1), since I2[ω] ≤ c1I1[I1[ω]] thus:
If I1[ω] ∈ Ls,∞(RN+1) with 1 < s < N + 2, then by Proposition 4.4 in next section

||I2[ω]||
L

s(N+1)
N+2−s

,∞
(RN+1)

≤ c1||I1[ω]||Ls,∞(RN+1) < ∞

If I1[ω] ∈ LN+2,∞(RN+1), then by Theorem 4.3,

I2[ω] ∈ Ls0
loc(R

N+1) ∀ s0 > 1
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So, I2[ω] < ∞ a.e in R
N+1 if I1[ω] ∈ Ls,∞(RN+1) with 1 < s ≤ N + 2.

For s > N + 2, there exists ω ∈ M+(RN+1) such that I2[ω] ≡ ∞ in R
N+1 and I1[ω] ∈

Ls(RN+1). Indeed, consider

ω(x, t) =

∞∑

k=1

kN−1

|Q̃k+1(0, 0)\Q̃k(0, 0)|
χQ̃k+1(0,0)\Q̃k(0,0)

(x, t)

We have for (x, t) ∈ R
N+1 and n0 ∈ N with n0 > log2(max{|x|,

√
2|t|})

I2[ω](x, t) ≥ c2

∞∑

n0

ω(Q̃2n(x, t))

2nN
≥ c2

∞∑

n0

ω(Q̃2n−1(0, 0))

2nN

≥ c2

∞∑

n0

∑2n−1−1
k=1 kN−1

2nN
= c2

∞∑

k=1

( ∞∑

n0

χk≤2n−1−1
1

2nN

)
kN−1

≥ c4

∞∑

k=n0

k−1 = ∞.

On the other hand, for s1 > N+2
2

ˆ

RN+1

ωs1dxdt = c5

∞∑

k=1

ks(N−1)

((k + 1)N+2 − kN+2)s1−1
≤ c6

∞∑

k=1

ks1(N−1)

k(s1−1)(N+1)
< ∞,

since (s1 − 1)(N + 1)− s1(N − 1) > 1. Thus,

||I1[ω]||Ls(RN+1) ≤ c7||ω||
L

s(N+2)
N+2+s (RN+1)

< ∞.

Proof of the Proposition 3.16. We will use idea in [9, 10] to prove 3.14. For S′ ∈
W 1,∞(R) with S(0) = 0, S′′ ≥ 0, S′(τ)τ ≥ 0 for all τ ∈ R and ||S′||L∞(R) ≤ 1 we have

−
ˆ

D

ηtS(u)dxdt+

ˆ

D

S′(u)A(x, t,∇u)∇ηdxdt

+

ˆ

D

S′′(u)ηA(x, t,∇u)∇udxdt+

ˆ

D

S′(u)ηL(u)dxdt =

ˆ

D

S′(u)ηdµ.

Thus,

Λ2

ˆ

D

S′′(u)η|∇u|2dxdt

+

ˆ

D

S′(u)ηL(u)dxdt ≤ Λ1

ˆ

D

|∇u||∇η|dxdt+
ˆ

D

ηd|µ|+
ˆ

D

|ηt||u|dxdt.

a. We choose S′ ≡ ε−1Tε for ε > 0 and let ε → 0 we will obtain
ˆ

D

η|L(u)|dxdt ≤ Λ1

ˆ

D

|∇u||∇η|dxdt+
ˆ

D

ηd|µ|+
ˆ

D

|ηt||u|dxdt. (10.1)

b. for S′(u) = (1− (|u|+ 1)−α)sign(u) for α > 0 then

ˆ

D

|∇u|2
(|u|+ 1)

α+1 ηdxdt ≤ c1

(
ˆ

D

|∇u||∇η|dxdt+
ˆ

D

ηd|µ|+
ˆ

D

|ηt||u|dxdt
)
,

Using Holder’s inequality, we have

ˆ

D

|∇u||∇η|dxdt ≤ 1

2c1

ˆ

D

|∇u|2
(|u|+ 1)

α+1 ηdxdt+ c2

ˆ

D

(|u|+ 1)q0ηdxdt+ c2

ˆ

D

|∇η1/q1 |q1dxdt.
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Hence,
ˆ

D

|∇u||∇η|dxdt+
ˆ

D

|∇u|2
(|u|+ 1)

α+1 ηdxdt ≤ c3B. (10.2)

c. for S′(u) = −k+δ+|u|
2δ sign(u)χk−δ<|u|<k+δ + sign(u)χ|u|≥k+δ, 0 < δ ≤ k then

1

2δ

ˆ

k−δ<|u|<k+δ

|∇u|2ηdxdt ≤ c4

(
ˆ

D

|∇u||∇η|dxdt+
ˆ

D

ηd|µ|+
ˆ

D

|ηt||u|dxdt
)

(10.3)

In particular,

1

k

ˆ

D

|∇Tk(u)|2ηdxdt ≤ c5

(
ˆ

D

|∇u||∇η|dxdt+
ˆ

D

ηd|µ|+
ˆ

D

|ηt||u|dxdt
)

∀k > 0 (10.4)

Consequently, we deduce (3.14) from (10.1)-(10.4).

Next, take ϕ ∈ C∞
c (D) and S′(u) = χ|u|≤k−δ +

k+δ−|u|
2δ χk−δ<|u|<k+δ, S(0) = 0 we have

−
ˆ

D

ϕtηS(u)dxdt+

ˆ

D

S′(u)ηA(x, t,∇u)∇ϕdxdt+

ˆ

D

S′(u)ϕA(x, t,∇u)∇ηdxdt

− 1

2δ

ˆ

k−δ<|u|<k+δ

sign(u)ϕηA(x, t,∇u)∇udxdt+

ˆ

D

S′(u)ϕηL(u)dxdt

=

ˆ

D

S′(u)ϕηdµ+

ˆ

D

ϕηtS(u)dxdt.

Combining with (10.1), (10.2) and (10.3), we get

−
ˆ

D

ϕtηS(u)dxdt+

ˆ

D

S′(u)ηA(x, t,∇u)∇ϕdxdt ≤ c5||ϕ||L∞(D)B.

Letting δ → 0, we get

−
ˆ

D

ϕtηTk(u)dxdt+

ˆ

D

ηA(x, t,∇Tk(u))∇ϕdxdt ≤ c5||ϕ||L∞(D)B.

By density, we can take ϕ = Tε(Tk(u)− 〈Tk(w)〉ν),

−
ˆ

D

∂

∂t
(Tε(Tk(u)− 〈Tk(w)〉ν)) ηTk(u)dxdt

+

ˆ

D

ηA(x, t,∇Tk(u))∇Tε(Tk(u)− 〈Tk(w)〉ν)dxdt ≤ c5εB.

Using integration by part, we have

−
ˆ

D

∂

∂t
(Tε(Tk(u)− 〈Tk(w)〉ν)) ηTk(u)dxdt

=
1

2

ˆ

D

(Tε(Tk(u)− 〈Tk(w)〉ν))2ηtdxdt

+

ˆ

D

Tε(Tk(u)− 〈Tk(w)〉ν)〈Tk(w)〉νηtdxdt

+ ν

ˆ

D

η(Tk(w)− 〈Tk(w)〉ν)Tε(Tk(u)− 〈Tk(w)〉ν)dxdt.

Thus,

−
ˆ

D

∂

∂t
(Tε(Tk(u)− 〈Tk(w)〉ν)) ηTk(u)dxdt

≥ −ε(1 + k)||ηt||L1(D) + ν

ˆ

D

η (Tk(w)− 〈Tk(w)〉ν)Tε(Tk(u)− 〈Tk(w)〉ν)dxdt,
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which follows (3.15).
Proof of the proposition 3.17. Let Sk ∈ W 2,∞(R) such that Sk(z) = z if |z| ≤ k and
Sk(z) = sign(z)2k if |z| > 2k. For m ∈ N, let ηm be the cut off function on Dm with respect
to Dm+1. It is easy to see that from the assumption and Remark 3.4, Proposition 3.15 we
get Um,n = ηmSk(vn), vn = un − hn

sup
n≥m+1

(
|| (Um,n)t ||L2(−m2,m2,H−1(Bm(0)))+L1(Dm) + ||Um,n||L2(−m2,m2,H1

0 (Bm(0)))

+||un||L1(Dm) + ||vn||L1(Dm)

)
≤ Mm < ∞.

Thus, {Um,n}n≥m+1 is relatively compact in L1(Dm). On the other hand, for any n1, n2 ≥
m+ 1

|{|vn1 − vn2 | > λ} ∩Dm| = |{|ηmvn1 − ηmvn2 | > λ} ∩Dm|

≤ 1

k

(
||vn1

||L1(Dm) + ||vn2
||L1(Dm)

)
+

1

λ
||ηmSk(vn1

)− ηmSk(vn2
)||L1(Dm)

≤ 2Mm

k
+

1

λ
||Um,n1

− Um,n2
||L1(Dm).

and hn is convergent in L1
loc(R

N+1). So, for any m ∈ N there is a subsequence of {un}, still
denoted by {un} such that {un} is a Cauchy sequence (in measure) in Dm. Therefore, there
is a subsequence of {un}, still denoted by {un} such that {un} converges to u a.e in R

N+1

for some u. Clearly, u ∈ L1
loc(R;W

1,1
loc (R

N )). Now, we prove that ∇un → ∇u a.e in R
N+1.

From (3.15) with D = Dm+2, η = ηm and Tk(w) = Tk(ηm+1u) we have

ν

ˆ

Dm+2

ηm (Tk(ηm+1u)− 〈Tk(ηm+1u)〉ν)Tε(Tk(un)− 〈Tk(ηm+1u)〉ν)dxdt

+

ˆ

Dm+2

ηmA(x, t,∇Tk(un))∇Tε(Tk(un)− 〈Tk(ηm+1u)〉ν)dxdt

≤ c1ε(1 + k)B(n,m) ∀ n ≥ m+ 2 (10.5)

where

B(n,m) = ||(ηm)t(|un|+ 1)||L1(Dm+2)

+

ˆ

Dm+2

(|un|+ 1)q0ηdxdt+

ˆ

Dm+2

|∇η1/q1m |q1dxdt+
ˆ

Dm+2

ηmd|µn|,

with q1 < q0−1
2q0

. By the assumption, we verify that the right hand side of (10.5) is bounded
by c2ε, where c2 does not depend on n.
Since {ηmTk(un)}n≥m+2 is bounded in L2(−(m + 2)2, (m + 2)2;H1

0 (Bm+2(0))), thus there
is a subsequence of {un}, still denoted by {un} such that

lim
n→∞

ˆ

|Tk(un)−〈Tk(ηm+1u)〉ν |≤ε

ηmA(x, t,∇Tk(u))∇ (Tk(un)− Tk(u)) dxdt = 0

Therefore, thanks to un → u a.e in Dm+2 and 〈Tk(ηm+1u)〉ν → Tk(ηm+1u) in L2(−(m +
2)2, (m+ 2)2;H1

0 (Bm+2(0))), we get

lim sup
ν→∞

lim sup
n→∞

ˆ

|Tk(un)−〈Tk(ηm+1u)〉ν |≤ε

η1,mΦn,kdxdt ≤ c2ε ∀ ε ∈ (0, 1)
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where Φn,k = (A(x, t, Tk(un))−A(x, t, Tk(u)))∇ (Tk(un)− Tk(u)) . Using Holder inequality,

ˆ

Dm+2

ηmΦ
1/2
k,ndxdt =

ˆ

Dm+2

ηmΦ
1/2
k,nχ|Tk(un)−〈Tk(ηm+1u)〉ν |≤εdxdt

+

ˆ

Dm+2

ηmΦ
1/2
k,nχ|Tk(un)−〈Tk(ηm+1u)〉ν |>εdxdt

≤ ||η1,m||1/2L1(Dm+2)




ˆ

|Tk(un)−〈Tk(ηm+1u)〉ν |≤ε

ηmΦn,kdxdt




1/2

+ |{|Tk(un)− 〈Tk(ηm+1u)〉ν | > ε} ∩Dm+1|1/2
(
ˆ

Dm+2

η2mΦk,ndxdt

)1/2

= An,ν,ε.

Clearly, lim sup
ε→0

lim sup
ν→∞

lim sup
n→∞

An,ν,ε = 0. It follows

lim sup
n→∞

ˆ

Dm+2

ηmΦ
1/2
k,ndxdt = 0.

Since Φn,k ≥ Λ2|∇Tk(un)−∇Tk(u)|2, thus ∇Tk(un) → ∇Tk(u) in L1(Dm).
Note that

|{|∇un1 −∇un2 | > λ} ∩Dm| ≤ 1

k

(
||un1

||L1(Dm) + ||un2
||L1(Dm)

)

+
1

λ
|||∇Tk(un1

)−∇Tk(un2
)||L1(Dm)

≤ 2Mm

k
+

1

λ
|||∇Tk(un1

)−∇Tk(un2
)|||L1(Dm).

Thus, we can show that there is a subsequence of {∇un} still denoted by {∇un} converging
∇u a.e in R

N+1.
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[38] T. Kilpelainen, J. Malý, The Wiener test and potential estimates for quasilinear elliptic
equations, Acta Math. 172 (1994), 137-161.

[39] T. Kilpelainen, P. Koskela: Global integrability of the gradients of solutions to partial
differential equations. Nonlinear Anal. 23 (1994), no. 7, 899909.

[40] T. Kuusi, G. Mingione: Riesz potentials and nonlinear parabolic equations to appear
Journal archive for rational mechanics analysis (2013)

[41] T. Kuusi, G. Mingione: the wolff gradient bound for degenerate parabolic equations to
appear JEMS

[42] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. UralCeva, Linear and Quasilinear Equa-
tions of Parabolic Type, Transl. Math. Monogr. 23, Amer. Math. Soc., Providence, 1968.

[43] R. Landes, On the existence of weak solutions for quasilinear parabolic initial boundary-
value problems, Proc. Royal Soc. Edinburg Sect A, 89(1981), 217-237.

[44] T. Leonori and F. Petitta, Local estimates for parabolic equations with nonlinear gradi-
ent terms, Calc. Var. Partial Diff. Equ. 42 (2011), 153–187.

[45] J.L. Lewis, Uniformly fat sets, Trans. Math. Soc. 308(1988), 177-196.

[46] G.M. Lieberman: Boundary regularity for solutions of degenerate parabolic equations,
Nonlinear Anal. 14 (1990), no. 6, 501-524.

[47] G.M. Lieberman: Boundary and initial regularity for solutions of degenerate parabolic
equations, Nonlinear Anal. 20 (1993), no. 5, 551-569.

116



NGUYEN QUOC HUNG

[48] G.M. Lieberman: Second Order Parabolic Differential Equations, World Scientific press,
River Edge, 1996.

[49] J. Maly and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential
Equations. Math. Surveys Monogr. 51, Amer. Math. Soc., Providence, RI, 1997.

[50] Mazya, V.G., Verbitsky, E.I. (1995). Capacitary inequalities for fractional integrals,
with applications to partial differential equations and Sobolev multipliers. Ark. Mat.
33:81115.

[51] T. Mengesha and N. C. Phuc, Global estimates for quasilinear elliptic equations on
Reifenberg flat domains. Archive for Rational Mechanics and Analysis 203 (2012), 189-
216. pdf

[52] T. Mengesha and N. C. Phuc, Weighted and regularity estimates for nonlinear equations
on Reifenberg flat domains. Journal of Differential Equations 250 (2011), 1485-2507.

[53] G. Mingione: Nonlinear measure data problems Milan journal of mathematics 79 (2011)
429-496.

[54] P. Mikkonen, On the Wolff potential and quasilinear elliptic equations involving mea-
sures, Ann. Acad. Sci. Fenn., Ser AI, Math. Dissert. 104 1996, 171.

[55] J. Moser : A Harnack inequality for parabolic differential equations. Comm. Pure Appl.
Math. 17 1964 101134. Corrections in: Comm. Pure Appl. Math. 20 (1967), 231236.

[56] B. Muckenhoupt and R. Wheeden: Weight norm inequality for fractional integrals
Trans. A.M.S volume 192, 1974.

[57] J. Naumann and J. Wolf: Interior integral estimates on weak solutions of nonlinear
parabolic systems. Inst. fur Math., Humboldt Universitet, Bonn (1994).

[58] Phuoc-Tai Nguyen, Parabolic equations with exponential nonlinearity and measure data
arXiv:1312.2509.
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