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Abstract

This paper aims at characterizing the long time evolution of the vehicle-
track system. The knowledge of the evolution of such a system is of great
concern for the railway industry, in order to maintain a high level of safety
and comfort in the high speed trains. We propose a computational stochastic
approach to predict the long time evolution of a given track portion. The
approach is based on an adaptation of the global stochastic model of track
irregularities previously identified with a large experimental data basis. The
nonlinear stochastic dynamics of the train excited by track irregularities are
carried out using a computational multibody dynamics model. Some indica-
tors concerning the dynamic responses of the train are introduced in order
to start off the maintenance or not of the given track portion.

Key words: high speed train dynamics, stochastic modeling, track
irregularities, stochastic dynamics, long time evolution, vehicle-track
coupling

1. Introduction

The tracks for high speed trains are submitted to more and more solic-
itations, because of the increase of the train traffic, the load and the speed
of the trains. These solicitations induce degradations of the track geometry,
making evolve track irregularities. Such degradations impact the train dy-
namic response in return. To guarantee a good level of safety and comfort
of the train, maintenance operations of the track have to be regularly un-
dertaken. These maintenance operations are heavy and costly. They would
gain being started off by indicators on the train safety and comfort, and no
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more on track-irregularities measures. However, the vehicle-track system is
highly nonlinear and there is no obvious correlation between track irregular-
ities and the vehicle-track forces (see [1, 2]). The knowledge of the effects of
the track geometry on the train dynamic response needs to be increased in
order to define robust indicators for the simulated train dynamic response
and to characterize their evolution.

The goal of this study is to characterize the influence of the long time
evolution of the track irregularities on the evolution of the train dynamic
response. The distinction has to be done between the long time evolution,
which will be denoted by τ , and the time of the train dynamics (denoted
by t). Actually, the vehicle-track system is a complex system, with high
nonlinearities and coupling between inputs (track geometry, track stiffness,
track mass) and outputs (train responses). The track geometry is the main
source of excitation for the train. The track geometry is known thanks to
track measurements which are made very precisely and frequently. A global
stochastic model of the track geometry has been built by Perrin et al. in
[3] using a very large experimental data basis concerning the French rail-
way network for high-speed trains. The stochastic modeling is very useful to
carry out nonlinear stochastic dynamic analysis of the train excited by the
random track geometry. Nevertheless, we need now to analyze the long time
evolution of a given track portion, in order to construct criteria which allow
maintenance operations to be started off. The most relevant information
we have about the geometry of the given portion is only the projection of
this portion on the global stochastic model. Since this projection requires
a large number of coefficients (several thousands), the use of the long time
evolution of all these coefficients does not allow to study the long time evo-
lution of this portion, because the dimension (the number of coefficients) is
too high. That is why we chose to analyze the long time evolution of the
train dynamics on the given portion. For the long time evolution analysis of
a given track portion, for which measurements are periodically carried out,
the global stochastic model is adapted to this portion in introducing a noise
which allows measurements errors and variability to be taken into account.
Using this adapted stochastic model of the track geometry for such a given
portion, the train dynamic response is numerically simulated using a com-
mercial software (Vampire). To assess the long time evolution of the train
dynamics, we have to define indicators on the train dynamic response and to
observe their evolution over a long time.

Section 2 deals with the proposed approach. Section 3 will focus on the
adapted stochastic modeling of the track irregularities, taking into account
the measurements for the given track portion analyzed. In Section 4, the
train dynamic response will be analyzed, setting up indicators on the train
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dynamics to quantify the long time evolution of the train stability and com-
fort.

2. Proposed approach

2.1. Objectives

The track irregularities change during long time τ , inducing modifications
of the train dynamic response. Criteria of safety and comfort are needed to
assess the long time evolution of the train dynamic response. To guaran-
tee a good level of safety and comfort, maintenance operations on the track
have to be regularly undertaken. The final objective of this work is to be
able to decide to start off maintenance operations of a given track portion
as a function of the simulated train dynamic response, and even to be able
to anticipate maintenance operations. To achieve this goal, the long time
evolution of the vehicle-track system has to be characterized using measure-
ments of the track, which are periodically performed for the track portion
under consideration.

The first main stage consists in studying the sensitivity of the train
stochastic dynamics to the long time evolution of track irregularities.

2.2. Numerical simulation of the train dynamic response

The inputs of the simulation are the track design, the track irregularities
modeled with the adapted stochastic model evoked in Section 1 and detailed
in Section 3, and a model of the train. The model of the train used for the
simulation is the one presented in [4]. It is a multibody dynamical system
whose dynamic responses are computed using a commercial software (Vam-
pire). It is assumed that the speed of the train is constant and fixed. The
simulation outputs are accelerations in the train and contact forces between
the wheels and the rails. The numerical simulation of the train response
is performed on the given track portion for which the length, S, has to be
defined.

The decision to start off the maintenance of the given portion is taken
on the basis of indicators (called dynamic indicators) which are defined as
functions of the train dynamic responses (outputs). These indicators must
be sensitive to the long time evolution of the track irregularities. The dy-
namic indicators are based on statistical quantities related to the simulation
outputs. Especially, random maxima of the stochastic outputs are of great
concern, since we want to analyze safety and comfort levels for the given track
portion. The obtained results could be used later to define thresholds on the
dynamic indicators, in order to be able to start off maintenance operations
from these thresholds.
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It should be noted that, since the train is assumed to have a constant
speed, it is equivalent to analyze the dynamic response as a function of the
time t or as a function of the spatial location of the train defined by the
curvilinear abscissa s. We also use the dual variable of s which is the wave
number, k, and the associated wavelength λ = 2π/k. In such a case, we
can use the terminology: “wavelength in the spectrum of the train dynamic
response”.

2.3. Choice of the length of the studied given track portion

The length S of the given track portion has to be a compromise between
the need of local information to start off the maintenance and the respect
of characteristic lengths related to the train dynamics. Two characteristic
lengths are taken into account to define S: the longest wavelength in the
spectrum of the dynamic response and the length of the track transition
section which is located between the given portion and the previous section
used in the numerical simulation.

Longest wavelength in the spectrum of the train dynamic response.. The train
dynamic response is simulated on a section (including the given portion)
which is much longer than the train length, to be sure to observe all the
wavelengths contained in the spectrum of the train response. The power
spectral density functions (spectrum) of the train responses are estimated
(periodogram method with a Hamming window). Figure 1 displays an ex-
ample for two outputs (vertical and lateral accelerations at a given location
in the train). A length S1, compatible with the shortest wave number, kmin
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Figure 1: Power spectral density functions of two outputs of the simulated train
dynamic response at a given location in the train.

is then defined such that:

S1 �
2π

kmin
. (1)
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Length of the track transition section.. The length of the track transition
section, Strans is defined using 25 simulations of the train dynamics for 25
tracks made up of two successive portions including the same given portion.
The length Strans is such that the 25 train dynamic responses are the same
on the portion S \ Strans. Length S2 is chosen such that:

S2 � Strans . (2)

Length S of the studied given track portion.. Length S is defined as the
maximum of S1 and S2:

S = max{S1, S2} . (3)

3. Stochastic modeling of track irregularities

3.1. Track measurements

The track geometry is measured by a measuring train very precisely and
very frequently. The measuring train is equipped with laser cameras which
measure the distances between the rails. The track is described by two data
sets:

• the initial track design, which corresponds to the theoretical track (as
it was planned before the construction) and which is made of perfect
lines and curves.

• the irregularities of the track which appear during the track life cycle
and which have to be added to the track design.

The track irregularities are modeled by a vector-valued random field X
denoted by

s �→ X(s; τ) = (X1(s; τ), X2(s; τ), X3(s; τ), X4(s; τ)) , (4)

which is defined on S and which depends on long time parameter τ . Its
components are the lateral and vertical alignment irregularities X1 and X2,
the cant deficiencies X3 and the gauge irregularities X4.

The given track portion is defined for s in Ω = [0, S], in which S the
length chosen in Section 2.3. Long time τ is a discrete parameter that rises
between successive measurements of the given track portion,

τ0 < τ1 < τ2 < ... < τντ , (5)

in which τ0 is the time of the first measurement just after a maintenance
operation, τ1, τ2, ..., τντ corresponds to the successive long times for which
there are measurements of the track geometry, and τντ is the time of the last
measurement before the next maintenance operation.
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3.2. Adaptation of the global stochastic model of the track geometry to the
given track portion

The global stochastic model proposed in [3] is very robust with respect to
measurements errors. This model has the capability to generate a track irreg-
ularity for any given portion belonging to the French railway network. Nev-
ertheless, as explained in Sections 1 and 2, we are interested in constructing a
stochastic model adapted to the given track portion which has the capability
to predict the long time evolution of this portion using the local measure-
ments xmeas

τ0 ,xmeas
τ1 ,xmeas

τ2 , . . . of this portion at long times τ0, τ1, τ2, . . .. The
objective of this adapted stochastic model which has to be constructed is (i)
to take into account measurements noise associated with local measurements
xmeas
τ0 ,xmeas

τ1 ,xmeas
τ2 , . . . and (ii) to take into account the local variability of the

given track portion in order to decrease the “statistical distance” between
the global stochastic model and the local measurements.

The method proposed to construct the adapted stochastic model of the
track irregularities consists in introducing a random field noise for which
the spatial properties are driven by the global stochastic model and whose
intensity of its statistical fluctuations is identified at long time τ0 using mea-
surement xmeas

τ0
. This construction is detailed in Section 3.2.2. In order to

simplify the reading, we give a short summary of the global stochastic mod-
eling presented in [3] whose details can be found in [5, 6, 7, 8, 9].

3.2.1. Short review on global stochastic modeling for track irregularities

The track irregularities vector X = (X1, X2, X3, X4) is modeled by a
vector-valued random field, defined on a probability space (Θ, T ,P), indexed
by Ω = [0, S], with values in R

4. It has been proven that random field X is
neither Gaussian nor stationnary (not homogeneous).

The global stochastic model of the track irregularities has been built and
identified solving an inverse statistical problem using a very large experi-
mental data basis related to the French railway network. Random field X is
centered,

E{X(s)} = 0 , ∀s ∈ [0, S] , (6)

where E{.} is the mathematical expectation. The continuous vector-valued
random field X(s), s ∈ Ω, is replaced by its spatial discretization at curvi-
linear abscissa sn = nh with h the spatial step and n = 0, . . . , Ns, where
S = Nsh. Keeping the same notation for the continuous random field and
its spatial discretization, the following random vector is introduced,

X = (X(0),X(h),X(2h), . . . ,X(Nsh)) (7)

with values in R
4(Ns+1).
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The first step of the construction consists in using a truncated principal
component representation of random vector X which is written as

X �
Nη∑
k=1

√
λk uk ηk , (8)

in which Nη � 4(Ns + 1), where {λk, 1 ≤ k ≤ Nη} are the Nη first largest
eigenvalues, and where {uk, 1 ≤ k ≤ Nη} are the associated eigenfunctions of
the covariance matrix [CXX] of X. The random coefficients {ηk, 1 ≤ k ≤ Nη}
are non-correlated centered and normalized random variables such that:

ηk =
1√
λk

XTuk , 1 ≤ k ≤ Nη . (9)

Introducing the (4(Ns + 1)×Nη) real matrix [U ] defined by

[U ] =
[
u1 . . .uNη

]
, [U ]T [U ] = [I] , (10)

in which [I] is the unity matrix, the diagonal matrix [λ] whose diagonal
entries are λ1, . . . , λNη , and the random vector η such that,

η = (η1, . . . , ηNη) , (11)

then random vector X can be rewritten as

X � [Q]η , (12)

in which the matrix [Q] is written as

[Q] = [λ]1/2 [U ] . (13)

The second step consists in constructing a polynomial chaos expansion [10,
11, 12] of the non-Gaussian second-order random vector η whose non-correl-
ated components are statistically dependent. The truncated polynomial
chaos representation is then written as

η � ηchaos(N) =
N∑
j=1

y(j)ψj(ξ) , (14)

in which ξ = (ξ1, ..., ξNg) is a uniform second-order centered random vector
whose covariance matrix is the unity matrix (consequently, the components
are statistically independent and have a unit variance). The non-Gaussian
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dependent random variables ψ1(ξ), . . . , ψN (ξ) are the multivariate normal-
ized Legendre polynomials of random vector ξ. The parameters Ng, N and
Nη are identified in order to minimize the errors of approximation.

Using Equations (12) and (14), random vector X can be represented by,

X � [Q] [y]Ψ(ξ) , (15)

in which the (Nη × N) real matrix [y] is defined by [y] = [y(1) . . .y(N)] and
where the R

N -valued random variable Ψ(ξ) is defined by Ψ(ξ) = (ψ1(ξ), ...,
ψN (ξ)). Any realization X(θ), θ ∈ Θ, of random field X, generated with the
above stochastic model, is representative of the measurements xmeas

τ .

3.2.2. Local stochastic modeling

The local stochastic modeling consists in constructing an adapted stochas-
tic model of the track irregularities related to a given track portion. Since the
track irregularity is composed of four different and dependant types of irreg-
ularities, this model is adapted to each component X1, X2, X3 and X4 of the
random field {X(s) , s ∈ Ω}. The corresponding spatial discretization yields
the following decomposition of the random vector X = (X1,X2,X3,X4). For
k = 1, . . . , 4, Xk is a random vector of dimension Ns + 1 which is rewritten
(using Equation (12)) as

Xk � [Qk]η , (16)

in which the ((Ns + 1)× Nη) real matrix [Qk] is extracted from matrix [Q].
The proposed adapted stochastic model is written as

X̃k(δk) = [Qk]
(
η + δk G

k
)

, k = 1, 2, 3, 4 , (17)

in which δ = (δ1, δ2, δ3, δ4) is the vector-valued parameter allowing the noise
level to be controlled and which has to be identified using experimental
data (see Section 3.2.3). For fixed k, the R

Nη -valued random variable Gk

is a spatial discretization of a random field noise. In the model proposed,
G = (G1,G2,G3,G4) is chosen as a R

4Nη -valued Gaussian second-order
centered random variable whose covariance matrix is the unity matrix and
which is defined on the probability space (Θ′, T ′,P ′). From Equation (17),
the adapted stochastic model can be rewritten as

X̃k(δk) = Xk +Bk(δk) , (18)

in which the random vector Bk(δk) which depends on δk is such that

Bk(δk) = δk [Q
k]Gk . (19)
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3.2.3. Identification of the parameter δopt

The optimal parameter δopt is estimated by using the maximum log-
likelihood method with experimental data. For fixed k, the following random
observation is introduced,

Wk(δk) =
‖X̃k(δk)‖
E{‖Xk‖} . (20)

in which ‖Xk‖ = ‖X̃k(0)‖ is the Euclidean norm of the global stochastic
model Xk. We then introduce the random observation vector defined by

W(δ) = (W1(δ1),W2(δ2),W3(δ3),W4(δ4)) . (21)

For fixed k, the corresponding experimental measurement wmeas
k is defined by

wmeas
k =

‖xk,meas‖
E{‖Xk‖} , 1 ≤ k ≤ 4 . (22)

Finally, the experimental observation vector wmeas is introduced such that

wmeas(δ) = (wmeas
1 (δ1), w

meas
2 (δ2), w

meas
3 (δ3), w

meas
4 (δ4)) . (23)

Let LW(wmeas; δ) = log pW(wmeas; δ) be the log-likelihood in which pW(wmeas;
δ) is the value of the probability density function w �→ pW(w; δ) of random
vector W for w = wmeas. The optimal value δopt is then identified solving
the following optimization problem,

δopt = argmax
δ

{LW(wmeas; δ)} . (24)

The quantity pW(wmeas; δ) is computed using independent realizations of
W generated with the adapted stochastic model and fitted by using the
multivariate Gaussian kernel method (see for instance [13, 14]).

3.2.4. Adapted stochastic modeling for the long time evolution of a given
track portion

For a given track portion, it is assumed that ντ+1 measurements xmeas
τ0 , . . . ,

xmeas
τντ

corresponding to long times τ ∈ {τ1, . . . , τντ} are available. The optimal

value δopt of δ is identified using only time τ0 (the first time).

δopt = argmax
δ

{LW(wmeas
τ0

, δ)} . (25)

It is then assumed that this optimal value is representative to construct the
adapted stochastic modeling allowing the long time evolution of this given
track portion to be estimated.
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The admissible set for δ is defined as the domain [0, 2]4 of R4. For es-
timating the optimal value, the following deterministic search algorithm is
used. The identification of δopt is made in two steps. The admissible set is
partitioned in 204 meshes corresponding to a constant step of 0.1 for each
coordinate. For each value of δ corresponding to a node of the mesh, the log-
likelihood is computed with 10, 000 realizations of W(δ). This stage allows
the node of the mesh corresponding to the maximum of the log-likelihood to
be identified and this node is then denoted as δ1 = (δ11 , δ

1
2, δ

1
3, δ

1
4). Since the

dimension of the admissible set of parameter δ is small, and since each com-
ponent δk belongs to a given finite interval, a deterministic algorithm can be
used for solving the optimization problem defined by Equation (25). Then,
the subdomain Π4

k=1[δ
1
k − 0.25, δ1k +0.25] is explored for δ with a precision of

0.05 for each coordinate (104 meshes for the subdomain). The log-likelihood
is computed with 100, 000 realizations for W(δ). Figure 2 displays the sec-
tions (following each coordinate δk of δ) of the hypersurface defined by the
graph δ �→ LW(wmeas

τ0 , δ) of the multidimensional log-likelihood function.
For this given track portion, the estimated optimal value δopt is
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Figure 2: Sections of the log-likelihood LW(wmeas
τ0 , δ) for each component δk of δ
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δopt = (1.05, 0.05, 1.1, 0) . (26)

The values obtained for each coordinate are coherent with Figure 2. The vari-
ation of the marginal probability density function (PDF) w1 �→ pW1(δ1)(w1; δ1)
of random variable W1(δ1) is plotted in Figure 3 as a function of δ1.
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Figure 3: Graphs the PDF, w1 �→ pW1(δ1)(w1; δ1), in function of δ1 (the bold line is
obtained for δ1 = δ1,opt).

The adapted stochastic modeling of the long time evolution for the given
track portion is constructed as follows. At long time τ , the measurement
xmeas
τ is projected on the global stochastic model defined by Equation (12).

Taking into account Equations (10) and (13) yields the projection ηmeas
τ which

is written as
ηmeas
τ = [Q]T [λ]−1(xmeas

τ ) . (27)

Then, this projection is used in the adapted stochastic model defined by
Equation (17) and gives

X̃k
τ (δ

opt
k ) = [Qk]

(
ηmeas
τ + δoptk Gk

)
, k = 1, 2, 3, 4 . (28)

As an illustration, x1,meas
τ0 and the confidence region at 95% of X̃1

τ0(δ
opt
1 ) are

compared in Figure 4. It can be noticed that the geometrical and physi-
cal properties of the irregularities are preserved with the identified adapted
stochastic modeling.

4. Dynamic response of the train

4.1. Stochastic dynamic response of the train
For fixed long time τ , the stochastic model of the track irregularities is

given by X̃k
τ(δ

opt
k ), k = 1, 2, 3, 4, defined by Equation (28). The stochastic
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response of the train is then computed using the Monte-Carlo method. For
each realization X̃k

τ (δ
opt
k ; θ′) for θ′ ∈ Θ′, the deterministic realization of the

train response is computed. The set of these realizations allows statistical
estimators to be constructed for analyzing the stochastic responses through
dynamic indicators. The calculations are performed with 100 realizations
and the responses are expressed in terms of the curvilinear abscissa s = v t,
in which v is the constant speed of the train and t is the time of the train
dynamics. The train is a TGV Duplex for which the number of wheelsets is
νw = 26, and wheelsets are numbered j = 1, . . . , νw.

4.2. Description of the dynamic indicators

The chosen dynamic indicators are based on criteria described in norm
UIC 518 [15] for the homologation of railway vehicles. These indicators Ck

j are
related to each wheelset, j, and are functions of the dynamic outputs Ak

j (s)
which are themselves functions of index R which stands for “right wheel”
and of index L which stands for “left wheel”, and of curvilinear abscissa s.
The dynamic outputs are:

• the sum of the lateral forces on each wheelset, A1
j = (Yj,R + Yj,L)(s);

• the maximum between right and left wheels of the quotient of transverse
forces Y on vertical load Q at wheel-rail contact, which is defined by
the quantity A2

j = max{(Yj,R/Qj,R)(s), (Yj,L/Qj,L)(s)};

• the lateral accelerations, A3
j = Ÿj(s);
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• the vertical accelerations, A4
j = Z̈j(s);

• the sum of the right and the left vertical forces on each wheelset, A5
j =

(Qj,R +Qj,L)(s);

• the difference between the right and the left vertical forces on each
wheelset, A6

j = (Qj,R −Qj,L)(s).

According to [15], these indicators are smoothed and filtered. The indicator
Ck

j is defined by

Ck
j = max

s∈[0,S]
|Ak

j (s)| , 1 ≤ j ≤ νw , 1 ≤ k ≤ 6 . (29)

The number of indicators is reduced with respect to the number of wheelsets
in analyzing the correlation between them. The indicators which are strongly
correlated are removed. For instance, the correlation matrix for the sum of
lateral forces restricted to 15 wheelsets among the 26 is plotted in Figure 5.
Finally, 7 indicators on 6 wheelsets are kept, which yields 42 indicators to
assess the train dynamic response.
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Figure 5: Correlation between the indicators on the sum of lateral forces for 15 wheelsets.

4.3. Long time evolution of the dynamic indicators

We are now able to assess the train dynamic response on a given track
portion and to observe its long time evolution as a function of τ using the
dynamic indicators Ck

i (τ), 1 ≤ i ≤ 6, 1 ≤ k ≤ 7. For each time τ , the
probability density function (PDF) of Ck

i (τ) is plotted in Figure 6. Its long
time evolution shows an increase and a dispersion of the safety and comfort
indicators of the train dynamics.
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5. Conclusion and perspectives

This work corresponds to a first step of the development of a stochastic
modeling allowing the long time evolution of a given track portion to be
analyzed. The stochastic model which is proposed has been constructed using
a very large experimental data basis related to all the french railway network
for the high speed trains, and consequently, can be considered as very robust.
The next steps which are in progress consist in introducing uncertainties in
the dynamical model of the train and in developing a stochastic model for
the long time evolution.
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