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Abstract

We investigate the problem of the rate of convergence to equilibrium for ergodic stochastic
differential equations driven by fractional Brownian motion with Hurst parameter H > 1/2
and multiplicative noise component σ. When σ is constant and for every H ∈ (0, 1), it was
proved in [9] that, under some mean-reverting assumptions, such a process converges to its
equilibrium at a rate of order t−α where α ∈ (0, 1) (depending on H). The aim of this paper
is to extend such types of results to some multiplicative noise setting. More precisely, we show
that we can recover such convergence rates when H > 1/2 and the inverse of the diffusion
coefficient σ is a Jacobian matrix. The main novelty of this work is a type of extension of
Foster-Lyapunov like techniques to this non-Markovian setting, which allows us to put in place
an asymptotic coupling scheme as that of [9] without resorting to deterministic contracting
properties.

Keywords : Stochastic Differential Equations; Fractional Brownian Motion; Multiplicative noise;
Ergodicity; Rate of convergence to equilibrium; Lyapunov function; Total variation distance.

AMS classification (2010): 60G22, 37A25.

1 Introduction

Stochastic Differential Equations (SDEs) driven by a fractional Brownian motion (fBm) have been
introduced to model random evolution phenomena whose noise has long range dependence prop-
erties. Indeed, beyond the historical motivations in Hydrology and Telecommunication for the use
of fBm (highlighted e.g in [14]), recent applications of dynamical systems driven by this process
include challenging issues in Finance [8], Biotechnology [17] or Biophysics [12, 13].
The study of the long-time behavior (under some stability properties) for fractional SDEs has been

developed by Hairer [9], Hairer and Ohashi [10], and by Hairer and Pillai [11] (see also [1, 5, 7] for
another setting called random dynamical systems and [2, 3] for some results of approximations of
stationary solutions) who built a way to define stationary solutions of these a priori non-Markov
processes and to extend some of the tools of the Markovian theory to this setting. In particular,
criterions for uniqueness of the invariant distribution are proved in the three above papers in some
different settings, respectively: additive noise, multiplicative noise with H > 1/2 and multiplica-
tive noise with H ∈ (1/3, 1/2) in the last one (in an hypoelliptic context).

When uniqueness holds for the invariant distribution, a challenging question is that of the rate

of convergence to this equilibrium. In [9], the author proved that in the additive noise setting,
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the process converges in total variation to the stationary regime with a rate upper-bounded by
Cεt

−(α−ε) for any ε > 0, with

α =

{

1
8 if H ∈ (14 , 1)\

{

1
2

}

H(1− 2H) if H ∈ (0, 14 ].
(1.1)

But, to the best of our knowledge, no result of rate of convergence exists in the multiplicative
setting. The aim of the current paper is to extend the results of [9] in the multiplicative setting
when H > 1/2.

More precisely, we deal with an R
d-valued process (Xt)t≥0 which is a solution to the following SDE

dXt = b(Xt)dt+ σ(Xt)dBt (1.2)

where b : Rd → R
d and σ : Rd → Md,d are (at least) continuous functions, and where Md,d is

the set of d × d real matrices. In (1.2), (Bt)t≥0 is a d-dimensional H-fBm with Hurst parameter
H ∈ (12 , 1). Note that under some Hölder regularity assumptions on the coefficients (see e.g. [16, 4]
for background), (strong) existence and uniqueness hold for the solution to (1.2) starting from
x0 ∈ R

d.
Introducing the Mandelbrot-Van Ness representation of the fractional Brownian motion,

Bt = αH

∫ 0

∞

(−r)H− 1
2 (dWr+t − dWr) , t ≥ 0, (1.3)

where (Wt)t∈R is a two-sided R
d-valued Brownian Motion and αH is a normalization coefficient

depending on H , (Xt, (Bs+t)s≤0)t≥0 can be realized through a Feller transformation (Qt)t≥0 on
the product space Rd ×Wθ,δ (θ ∈ (1/2, H) and θ+ δ ∈ (H, 1)) whose definition is recalled in (2.4)
(we refer to [10] for more rigorous background on this topic). In particular, an initial distribution
of this dynamical system is a distribution µ0 on R

d ×Wθ,δ. With probabilistic words, an initial
distribution is the distribution of a couple (X0, (Bs)s≤0) where (Bs)s≤0 is an R

d-valued fBm on
(−∞, 0].

Then, such an initial distribution is classically called an invariant distribution if it is invariant
by the transformation Qt for every t ≥ 0. However, the concept of uniqueness of invariant dis-
tribution is slightly different of the classical setting. Actually, one says that uniqueness of the
invariant distribution holds if the stationary regime, we mean, the distribution Q̄µ of the whole
process (Xµ

t )t≥0 with initial distribution µ, is unique (in other words, this concept of uniqueness
corresponds to the classical one conditioned by the equivalence relation: µ ∼ ν ⇐⇒ Q̄µ ∼ Q̄ν, see
[10] for background). In harmony with the previous concept, coupling two paths issued of µ0 and
µ where the second one denotes an invariant distribution of (Qt)t≥0 consists (classically) in finding
a stopping time τ∞ such that (Xµ0

t+τ∞)t≥0 = (Xµ
t+τ∞)t≥0. Thus, the rate of convergence in total

variation will be obtained by some bounds on P(τ∞ > t), t ≥ 0.

Now, let us briefly recall the coupling strategy of [9]. First, one classically waits that the paths
get close. Then, at each trial, the coupling attempt is divided in two steps. First, one tries in
Step 1 to cluster the positions on an interval of length 1. Then, in Step 2, one tries to ensure
that the paths stay clustered until +∞. Actually, oppositely to the Markovian case where the
paths stay naturally together after a clustering (by putting the same noise on each coordinate),
the main difficulty here is that, due to the memory, staying together is costly. In other words, this
property can be ensured only with the help of a non trivial coupling of the noises. One thus talks
of asymptotic coupling. If one of the two previous steps fails, we will begin a new attempt but only
after a (long) waiting time which is called Step 3. During this step, one again waits that the paths
get close but one also expects the memory of the coupling cost to vanish sufficiently in order to
begin the new trial with a weak weight of the memory.

In the previous construction, the fact that σ is constant is fundamental for ensuring the two
following properties:
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• If two paths B1 and B2 of the fBm differ from a drift term, then two paths X1 and X2

of (1.2) respectively directed by B1 and B2 also differ from a drift term, which allows in
particular to use Girsanov Theorem to build the coupling in Step 1.

• Under some “convexity” assumptions on the drift apart from a compact set, two paths X1

and X2 directed by the same fBm (or more precisely, by two slightly different paths) get
closer and the distance between the two paths can be controlled deterministically.

In the current paper, σ is not constant and the two above properties are no longer valid. The
challenge then is to extend the applicability of the previous scheme of coupling to such a situation.
To cope with the lack of the first property, we will need to introduce an assumption on the function
x 7→ σ(x) which ensures the existence of an injective function of the path which does have it. The
most natural assumption is that x 7→ σ−1(x) is (well-defined and is) a Jacobian matrix. We note
that without such an assumption, the lack of smoothness of the difference between two paths seems
to yield a cost of coupling which could be problematical for Step 2.

As concerns a suitable substitution of the second lacking property, a natural (but to our knowl-
edge so far not explored) idea would be to try to extend Meyn-Tweedie techniques (see e.g. [6] for
background) to the fractional setting. More precisely, even if the paths do not get closer to each
other deterministically, one could expect that some Lyapunov assumption could eventually make
the two paths return in some compact set simultaneously. The main contribution of the present
paper is to incorporate such a Lyapunov-type approach into the study of long-time convergence in
the fractional diffusion setting. As one could expect, compared to the Markovian case, the prob-
lem is much more involved. Actually, the return time to a compact set after a (failed) coupling
attempt does not only depend on the positions of the processes after it, but also on all the past of
the fBm. Therefore, in order that the coupling attempt succeeds with lower-bounded probability,
one needs to establish some controls on the past behavior of the fBms that drive the two copies
of the process, conditionally to the failure of the previous attempts. This point is one of the main
difficulties of the paper, since, in the corresponding estimates, we carefully have to take into ac-
count all the deformations of the distribution that previously failed attempts induce. Then, we
show that after a sufficiently long waiting time, conditionally on previous fails the probability that
the two paths be in a compact set and that the influence of past noise on the future be controlled,
is lower-bounded. Bringing all the estimates together yields a global control of the coupling time
and a rate of convergence which is similar to the one in [9] in the additive noise case.

In Section 2 we detail our assumptions and state our main result, namely Theorem 2.1. The
scheme of its proof, based on the previous described coupling strategy, is then given. The proof of
Theorem 2.1 is achieved in Sections 3, 4 and 5, which are outlined at the end of Section 2.

2 Assumptions and main result

We begin by listing a series of notations and definitions.

• The scalar product and the Euclidean norm on R
d are respectively denoted by ( | ) and | . |.

• The non explicit constants will be usually denoted by C and may change from line to line.

• The space C([0,+∞),Rd) denotes the space of continuous functions on [0,+∞) endowed with
the topology of uniform convergence on compact spaces.

• For some given a, b ∈ R, with a, b, L2([a, b],Rd) denotes the space of Lebesgue-measurable

functions such that ‖g‖[a,b],2 =
√

∫ b

a
|g(s)|2ds < +∞.

• For some positive θ and δ such that θ ∈ (1/2, H) and θ + δ ∈ (H, 1), Wθ,δ denotes the
Polish space Wθ,δ which is the completion of C∞

0 ((−∞, 0],Rd) (the space of C∞-functions
f : (−∞, 0] → R

d with compact support and f(0) = 0) for the norm

‖f‖Wθ,δ
= sup

−∞<s<t≤0

|f(t)− f(s)|
|t− s|θ(1 + |t|δ + |s|δ) . (2.4)
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• For some real a < b and for θ ∈ (0, H), we denote by Cθ([a, b],Rd) the set of functions
f : R+ → R

d such that

‖f‖a,bθ = sup
0≤s<t≤T

|f(t)− f(s)|
(t− s)θ

< +∞,

• Let σ : Rd → Md,d be a C1-function and 0 < γ < 1. We say that σ is (1 + γ)-Lipschitz if for
every i, j ∈ {1, . . . , d}, the following norm is finite:

‖σi,j‖1+α = sup
x∈Rd

|∇σi,j(x)| + sup
x,y∈Rd

|∇σi,j(x) −∇σi,j(y)|
|x− y|γ , (2.5)

where for a given C1-function f : Rd → R, ∇f = (∂x1
f, . . . , ∂xd

f)′.

• We also denote by EQ(Rd) the set of Essentially Quadratic functions, that is C1-functions
V : Rd → (0,∞) such that ∇V is Lipschitz continuous,

lim inf
V (x)

|x|2 > 0, and |∇V | ≤ C
√
V .

where C is a positive constant. Note that these assumptions ensure that inf V = minV is
positive and that

√
V is Lipschitz continuous (since it has a bounded gradient) which in turns

implies that V is subquadratic.

Now, let us introduce the assumptions:

(H0): b is a locally Lipschitz and sublinear function and σ is a bounded (1+γ)-Lipschitz continuous
function (γ > 0).

This condition ensures existence and uniqueness of solutions for (1.2). Note that the condition on
the derivative of σ only plays a role for uniqueness and in particular, is not fundamental for what
follows. However, for the sake of simplicity, we choose to assume this assumption throughout the
paper.

Now, we turn to some more specific assumptions (H1) and (H2). The first one is a Lyapunov-
stability assumption:

(H1): There exists a function V : Rd → R of EQ(Rd), there exists some positive β0 and κ0 such
that

∀ x ∈ R
d, (∇V (x)|b(x)) ≤ β0 − κ0V (x).

REMARK 2.1. The above assumption will be used to ensure that the paths live in a compact set
with a high probability. Note that in the classical diffusion setting, such a property holds with
some less restrictive Lyapunov assumptions. Here, the assumptions essentially allow us to consider
only (attractive) drift terms whose growth is linear at infinity. On the one hand, due to (H0), one
can not consider drift terms with (strictly) superlinear growth at infinity and on the other hand,
Assumption (H1) combined with the fact that V is subquadratic implies more or less that b can
not have (strictly) sublinear growth at infinity (this would be possible if V had an exponential
growth). These restrictions are mainly due to the lack of martingale property for the integrals
driven by fBms.

Then, when the paths are in this compact set, one tries classically to couple them with positive
probability. But, as mentioned before, the specificity of the non-Markovian setting is that the
coupling attempt generates a cost for the future (in a sense made precise later). In order to control
this cost or more precisely in order to couple the paths with the help of a controlled drift term, we
need to ensure the next assumption:

(H2) ∀x ∈ R
d, σ(x) is invertible and there exists a C1-function h = (h1, . . . , hd) : R

d → R
d such

that the Jacobian matrix ∇h = (∂xj
hi)i,j∈{1,...,d} satisfies ∇h(x) = σ−1(x) and such that ∇h is a

locally Lipschitz function on R
d.
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REMARK 2.2. � Under (H0) and (H2), h is a global C1-diffeomorphism from R
d to R

d. Indeed,
under these assumptions, ∇h is invertible everywhere and x 7→ [(∇h)(x)]−1 = σ(x) is bounded on
R

d. Then, the property (which will be important in the sequel), follows from the Hadamard-Lévy
theorem (see e.g. [18]).

� As mentioned before, the main restriction here is to assume that x 7→ σ−1(x) is a Jacobian
matrix. However, note that there is no assumption on h (excepted smoothness). In particular, σ−1

does not need to bounded. This allows us to consider for instance some cases where σ vanishes at
infinity.

Let us exhibit some simples classes of SDEs for which (H2) is fulfilled. First, it contains the class
of non-degenerated SDEs for which each coordinate is directed by one real-valued fBm. More
precisely, if for every i ∈ {1, . . . , d},

dX i
t = bi(X

1
t , . . . , X

d
t )dt+ σi(X

1
t , . . . , X

d
t )dB

i
t

where σi : R
d → R is a C1 positive function, Assumption (H2) holds. Now, let us also remark that

since, for a given constant matrix, ∇(Ph) = P∇h, we have the following equivalence:

∃ h such that ∇h = σ−1 ⇐⇒ ∃ h̃, ∃ an invertible matrix P such that σ−1 = P∇h̃.

One deduces from this property that (H2) also holds true if:

σ(x) = PDiag (σ1(x1, . . . , xd), . . . , σd(x1, . . . , xd))

where P is a given invertible d× d-matrix and for every i ∈ {1, . . . , d} σi has the same properties
as before.

We are now able to state our main result. One denotes by L((Xµ0

t )t≥0) the distribution of the
process on C([0,+∞),Rd) starting from an initial distribution µ0 and by Q̄µ the distribution of the
stationary solution (starting from an invariant distribution µ). The distribution µ̄0(dx) denotes
the first marginal of µ0(dx, dw).

THEOREM 2.1. Let H ∈ (1/2, 1). Assume (H0), (H1) and (H2). Then, existence and uniqueness
hold for the invariant distribution µ (up to equivalence). Furthermore, for every initial distribution
µ0 for which there exists r > 0 such that

∫

|x|rµ̄0(dx) < ∞, for each ε > 0 there exists Cε > 0
such that

‖L((Xµ0

t+s)s≥0)− Q̄µ‖TV ≤ Cεt
−( 1

8
−ε).

REMARK 2.3. In the previous result, the main contribution is the fact that one is able to recover
the rates of the additive case. Existence and uniqueness results are not really new. However,
compared with the assumptions of [10], one observes that when x 7→ σ−1(x) is a Jacobian matrix
(assumption which does not appear in [10]), our other assumptions are slightly less constraining.
In particular, b is assumed to be locally Lipschitz and sublinear (instead of Lipschitz continuous)
and, as mentioned before, x 7→ σ−1(x) does not need to bounded.

2.1 Scheme of coupling

As explained before, the proof of Theorem 2.1 is based on a coupling strategy similar to that of [9].
Let (B1

t )t∈R and (B2
t )t∈R denote two fractional Brownian motions with Hurst parameter H > 1/2.

Then, denote by (X1
t , X

2
t ), a couple of solutions of (1.2):

{

dX1
t = b(X1

t )dt+ σ(X1
t )dB

1
t

dX2
t = b(X2

t )dt+ σ(X2
t )dB

2
t

(2.6)

with initial conditions (X1
0 , (B

1
t )t≤0) (X

1
0 , (B

2
t )t≤0). We denote by (Ft)t≥0 the usual augmentation

of the filtration (σ(B1
s , B

2
s , (X

1
0 , X

2
0 ))s≤t)t≥0. To begin the coupling procedure without “weight of

the past”, we will certainly assume that

(B1
t )t≤0 = (B2

t )t≤0
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and that the initial distribution µ̃ of the initial distribution of (X1, X2) is of the form

µ̃(dx, dw) = µ1(w, dx1)µ2(w, dx2)PH(dw) (2.7)

where PH denotes the distribution of a fBm (Bt)t≤0 on Wγ,δ and the transitions probabilities
µ1(., dx1) and µ2(., dx2) correspond respectively to the conditional distributions ofX1

0 andX2
0 given

(B1
t )t≤0. The processes (B

1
t )t∈R and (B2

t )t∈R can be realized through the Mandelbrot-Van Ness rep-
resentation (see (1.3)) with the help of some two-sided Brownian motions respectively denoted by
W 1 andW 2. In particular, the filtration (Ft)t≥0 is also generated by (σ(W 1

s ,W
2
s , (X

1
0 , X

2
0 ))s≤t)t≥0.

Furthermore, we will assume in all the proof that on [0,∞), W 1 and W 2 (resp. B1 and B2)
differ by a (random) drift term denoted by gw (resp. gB):

dW 2
t = dW 1

t + gw(t)dt and dB2
t = dB1

t + gB(t)dt. (2.8)

Note that the functions gw and gB are linked by some inversion formulas (see [9], Lemma 4.2 for
details).

The idea is to build gw (resp. gB) in order to stick X1 and X2. We set

τ∞ := inf{t ≥ 0, X1
s = X2

s ∀s ≥ t}.

As usual, this coupling will be achieved after a series of trials. As mentioned in the introduction,
each trial is decomposed in three steps:

• Step 1: Try to couple the positions with a controlled cost (in a sense made precise below).

• Step 2 (specific to non-Markov processes): Try to keep the paths fastened together.

• Step 3: If Step 2 fails, wait a sufficiently long time in order that in the next trial, Step 1 be
achieved with a controlled cost and with (uniformly lower-bounded away from 0) probability.
During this step, we suppose that gw(t) = 0.

Let us make a few precisions:

� We denote by τ0 ≥ 0 the beginning of the first trial and by τk, k ≥ 1, the end of each trial. If
τk = +∞, the coupling tentative has been successful. Otherwise, τk is the end of Step 3 of trial k.
We will assume that

∀t ∈ (−∞, τ0], W 1
t =W 2

t a.s. or equivalently that gw(t) = gB(t) = 0 on [−∞, τ0].

� About Step 1 and the “controlled cost”: Step 1 is carried out on each interval [τk−1, τk−1 + 1].
The “cost” of coupling is represented by the function gw that one needs to build on [τk−1, τk−1+1]
in order to get Xx1 and Xx2 stuck together at time τk−1 + 1. Oppositely to the Markovian case,
this cost does not only depend on the positions of X1

τk−1
and X2

τk−1
but also on the past of the

Brownian motions, which have a (strong) influence on the dynamics of B1 and B2. This is the
reason why one needs in Step 3 to wait enough before beginning a new attempt of coupling.

In [9], the “controlled cost” concept is called “admissibility” (see Definition 5.6). Here, we
slightly modify it and we will say that one is in position to attempt a coupling if the system is
(K,α)-admissible. We define this concept below but need before to introduce notations. For T ≥ 0
and a measurable function g : R → R, we denote by RT g the function defined (when it makes
sense) by

(RT g)(t) =

∫ 0

−∞

t
1
2
−H(T − s)H− 1

2

t+ T − s
g(s)ds, t ∈ (0,+∞).

Let gw be the (random) function defined by (2.8). For a positive time τ , we denote by gτw the
function defined by gτw(t) = gw(t+ τ), t ∈ R.

The following definition is relative to a fixed θ ∈ (1/2, H).
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DEFINITION 2.1. Let K and α be some positive constants and τ denote stopping time with
respect to (Ft)t∈R. We say that the system is (K,α)-admissible at time τ if τ(ω) < +∞ and if
(X1

τ (ω), X
2
τ (ω), (W

1(ω),W 2(ω))t≤τ ) satisfies:

sup
T≥0

∫ +∞

0

(1 + t)2α|(RT g
τ
w)(t)|2dt ≤ 1. (2.9)

and

|X1
τ (ω)| ≤ K, |X2

τ (ω)| ≤ K, ϕτ,εθ (W
1(ω)) ≤ K and ϕτ,εθ (W

2(ω)) ≤ K, (2.10)

where εθ = H−θ
2 and for a given positive ε,

ϕτ,ε(w) = sup
τ≤s≤t≤τ+1

| 1

t− s

∫ τ−1

−∞

(t− r)H− 1
2 − (s− r)H− 1

2 dwr |+ ‖w‖τ−1,τ
1
2
−ε

If these two conditions hold, we will show that the coupling attempt is successful with lower-
bounded probability. Thus, we will need to ensure that at each time τk, the (K,α)-admissibility
also holds with lower-bounded probability. We set ΩK,α,τ = Ω1

α,τ ∪ Ω2
K,τ where

Ω1
α,τ :=

{

ω, τ(ω) < +∞, sup
T≥0

∫ +∞

0

(1 + t)2α|(RT g
τ
w)(t)|2dt ≤ 1

}

, (2.11)

and

Ω2
K,τ :=

{

ω, τ(ω) < +∞, |X1
τ | ≤ K, |X2

τ | ≤ K,ϕτ,εθ (W
1) ≤ K,ϕτ,εθ(W

2) ≤ K
}

, (2.12)

The novelty here is the event defined in (2.12). Since, contrarily to the additive noise case, we
are not able to reduce here the distance between the positions deterministically, we ask Xx1 and
Xx2 to be in the compact set B̄(0,K) = {y, |y| ≤ K} with positive probability. The same type
of assumption is needed on the past of the fractional Brownian motion (which is represented
by the functionals ϕτ,εθ (W

j), j = 1, 2). Note that, oppositely to the event Ω1
α,τ , which comes

from [9], Ω2
K,τ can certainly not have a probability equal to 1. We will attempt the coupling on

[τk−1, τk−1 +1] only if ω ∈ ΩK,α,τk−1
. Otherwise, we set gw(t) = 0 on [τk−1, τk−1 +1] (and, in this

case, we certainly say that Step 1 fails).

� If Step 1 fails (which includes the case where one does not attempt the coupling), one begins
Step 3 (see below). Otherwise, one begins Step 2. Step 2 is in fact a series of trials on some
intervals Iℓ with length

|Iℓ| = c22
ℓ (2.13)

where c2 is a constant greater than one which will be calibrated in the sequel. More precisely, one
successively tries to keep X1 and X2 as being equal on intervals [τk−1 + 1 + c2

∑ℓ−1
u=1 2

k, τk−1 +

c2
∑ℓ

u=1 2
k] (with the convention

∑

∅ = 0). The exponential increase of the length of the intervals
will be of first importance to ensure the success of Step 2.

� If Step 2 fails at trial ℓ with ℓ ≥ 0 (ℓ = 0 corresponds to the case where Step 1 fails), one
begins Step 3. We denote by τ3k , the beginning of Step 3. As mentioned before, the aim on this
interval is to wait a sufficiently long time in order to be in an (K,α)-admissible state with positive
probability (Step 3 ends at time τk, i.e. at the beginning of the next attempt). This has two
natural consequences. On the one hand, one assumes that

gw(t) = 0 on [τ3k , τk], so that W 1
t −W 1

τ3
k
=W 2

t −W 2
τ3
k

on [τ3k , τk]. (2.14)

On the other hand, the waiting time will strongly depend on the length of Step 2. Longer is Step
2, longer is the waiting time. We set

Ak,ℓ = {At trial k, Step 2 fails after ℓ attempts}. (2.15)
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We assume in the sequel that

∀ω ∈ Ak,ℓ, τk − τ3k = ∆3(ℓ, k) with ∆3(ℓ, k) := c3ak2
βℓ (2.16)

where c3 ≥ 2c2, β ∈ [1,+∞) and (ak)k≥1 is an increasing deterministic sequence. We will calibrate
these quantities later (see Proposition 4.6). At this stage, we can however remark a useful property
for the sequel: conditionally to Ak,ℓ, the length of each step is deterministic. We are now ready
to begin the proof. In Section 3, we focus on Steps 1 and 2 and prove that we can achieve the
coupling scheme in such a way that for every positive K and α, the probability of coupling can
be lower-bounded by a constant which does not depend on k. Then, in Section 4, we focus on the
(K,α)-admissibility condition. In particular, we show that for K large enough, (2.12) holds with
high probability (which does not depend on k). Finally, in Section 5, we prove Theorem 2.1.

3 Lower-bound for the successful-coupling probability

In this section, we detail the construction of Steps 1 and 2 with the aim of proving that if the system
is (K,α)-admissible at time τk−1, then the probability that ∆τk be infinite (i.e. that the coupling
be successful) can be lower-bounded. The main result of this section is the next proposition.

PROPOSITION 3.1. Let H > 1/2. Assume that (H0) and (H2) hold. Then, for every K > 0
and α ∈ (0, H), Steps 1 and 2 can be achieved in such a way that there exists δ0 and δ1 in (0, 1)
such that for every k ≥ 1, δ0 ≤ P(∆τk = +∞|ΩK,α,τk−1

) ≤ 1− δ1. Furthermore, δ1 can be chosen
independently of K.

The (uniform) upper-bound is almost obvious. Actually, at the beginning of Step 1, it is always
possible (if necessary) to attempt the coupling with probability 1− δ1 only (and to put W 1 =W 2

otherwise). This upper-bound may appear of weak interest but in fact, it will play an important
role in Section 4.

The lower-bound is a consequence of the combination of Equation (3.30) with Lemmas 3.1 and 3.2
below.

3.1 Step 1

LEMMA 3.1. Assume that (H0) and (H2) hold. Let K and α denote two positive constants and
θ ∈ (1/2, H) be fixed. Then, for each k ≥ 1, (W 1,W 2) can be built on [τk−1, τk−1 + 1] in such a
way that the following properties hold:

(a) There exists δ̃0 > 0 depending only on K, α and θ ∈ (1/2, H) such that for all k ≥ 0,

P(X1
τk−1+1 = X2

τk−1+1|ΩK,α,τk−1
) ≥ δ̃0.

(b) There exists CK > 0 such that
∫ τk−1+1

τk−1
|gw(s)|2ds ≤ CK a.s.

(c) If Step 1 is successful, t 7→ gB(t) is a C1-function on [τk−1, τk−1 + 1] which is such that

sup
t∈[0,1]

|gB(t)| ≤ C and ∀t ∈ [1/2, 1], gB(t+ τk−1) = 0.

where C is a deterministic constant which does not depend on k.

Proof. (a) The proof of this statement is divided in five parts:

(i) Let θ ∈ (1/2, H) and set εθ = H−θ
2 . Let K̃ be a positive constant. Then, there exists a

deterministic constant depending only on θ, K and K̃ denoted C(K, K̃) such that

∀ω ∈ Ω2
K,τk−1

∩ {‖W 1‖τk−1,τk−1+1
1
2
−εθ

≤ K̃}, sup
t∈[0,1]

|X1
τk−1+t(ω)| ≤ C(K, K̃).
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The proof of this property (whose arguments are close to some of the next sections) is given in
Appendix A.

(ii) Building a function gB to couple (X1
t ) and (X2

t ) at time τk−1 + 1. First, note that this step
is strongly based on Assumption (H2) and that the construction is a modified version of Lemma
5.8 of [9]. For a given past on (−∞, τk−1] and a given innovation path (W 1

t+τk−1
,W 2

t+τk−1
) =

(w1(t) +W 1
τk−1

, w2(t) +W 2
τk−1

)t∈[0,1] of C
1
2
−εθ ([0, 1],Rd)2 (w1 and w2 satisfy w1(0) = w2(0) = 0),

set (xw1 (t), xw2(t)) = (X1
t+τk−1

, X2
t+τk−1

), t ∈ [0, 1]. Also, with the same conditions as before, set

(Bw1

t , Bw2

t ) := (B1
t+τk−1

, B2
t+τk−1

).

The aim is now to build, conditionally to ΩK,α,τk−1
and (X1

τk−1
, X2

τk−1
, (W 1,W 2)t≤τk−1

), a

function denoted by gh on [0, 1] such that if for every t ∈ [0, 1], w2(t) = w1(t) +
∫ t

0 gh(s)ds, then
xw1(1) = xw2(1). In fact, it is more convenient to build the associated function fh which is defined
by dBw2

t = dBw1

t + fh(t)dt (see (2.8) for background).

With the previous notations, we deduce from Assumption (H2) and from a change of variable
formula for Hölder functions with exponent greater than 1/2 (see e.g. [20], Theorem 4.3.1) that,
for every t ∈ [0, 1],

h(xw2(t))− h(xw1(t)) = h(xw1 (0))− h(xw1(0)) +

∫ t

0

∇hb(xw2(u))−∇hb(xw1(u))du+

∫ t

0

fh(u)du.

Set

ρh(t) = h(xw2(t))− h(xw1(t)) and fh(t) = −κ1ρh(t)− κ2
ρh(t)
√

|ρh(t)|
,

where κ1 and κ2 are some positive constants, and with x 7→ x/
√

|x| extended by 0 at x = 0.
Notice that if ρh(0) = 0, then ρh(t) = 0 on [0, 1]. We thus assume without loss of generality that
ρh(0) 6= 0. By the global inversion theorem, h : Rd → R

d is a C1-diffeomorphism under (H2).
Denote by h−1 its inverse function. The function (ρh(t))t≥0 then satisfies (for a given realization
of (xw1(t))t∈[0,1])

dρh
dt

= F (t, ρh(t)) with F (t, ρ) = ∇hb(h−1(h(xw1(t))+ρ))−∇hb(xw1 (t))−κ1ρ−κ2
ρ
√

|ρ|
. (3.17)

The function ρ 7→ F (t, ρ) being locally Lipschitz continuous on R
d\{0}, one deduces from Cauchy-

Lipschitz Theorem that (ρh(t)) is well-defined on an interval [0, t0] with t0 > 0. To extend it on
[0, 1], we are going to define κ1 in order to ensure that (ρh(t)) does not explode. For M ≥ 0, set

AM := {w1 ∈ C 1
2
−εθ ([0, 1],Rd), w1(0) = 0 and, ∀ω ∈ Ω2

K,τk−1
, sup
t∈[0,1]

|h(xw1(t))| ≤M}.

Remark that with the notations of (i), {w1, ‖w1‖ ≤ K̃} ⊂ AC(K,K̃) (one will come back on this

property in (v)). Checking that w1 7→ Bw1 is a.s. continuous from C 1
2
−εθ ([0, 1],Rd) to Cθ([0, 1],Rd),

one deduces from classical arguments of Young integration that w1 7→ h(xw1) is also a.s continuous

from C 1
2
−εθ ([0, 1],Rd) to Cθ([0, 1],Rd). As a consequence, for almost every ω ∈ Ω2

K,τk−1
, w1 7→

supt∈[0,1] |h(xw1 (t))| is also continuous (since for every w, w̃ ∈ C 1
2
−εθ ([0, 1],Rd), |‖w‖∞ − ‖w̃‖∞| ≤

‖w − w̃‖0,11
2
−εθ

). At the price of a potential removal of a negligible set in its definition, one can

assume without loss of generality that AM is an intersection of closed subsets of C 1
2
−εθ ([0, 1],Rd)

and thus is closed.

Set K̄ = supx,y∈B̄(0,K) |h(x) − h(y)| where B̄(0,K) := {y ∈ R
d, |y| ≤ K}. For a given M , we

define κ1 as follows:

κ1 = sup
y1,y2∈B̄(0,M+K̄+1)

|∇hb(h−1(y2))−∇hb(h−1(y1))|
|y2 − y1|

(3.18)

The constant κ1 is finite since b, ∇h and h−1 are locally Lipschitz continuous functions. From the
definition, if w1 ∈ AM , for every ω ∈ Ω2

K,τk−1
and t ∈ [0, 1], |h(xw1(t))| ≤ M and |h(xw2(0))| ≤
9



M + K̄ (since |ρh(0)| ≤ K̄). Owing to the continuity of ρh on [0, t0], there exists t1 ∈ (0, t0] such
that for every t ∈ [0, t1], |h(xw2(t))| ≤M + K̄ + 1. Then , it follows from the definition of κ1 that

∀t ∈ [0, t1],
d|ρh(t)|2

dt
≤ −2κ2|ρh(t)|

3
2 .

In particular, the function t 7→ |ρh(t)|2 is non-increasing on [0, t1] and thus, ∀t ∈ [0, t1], |h(xw2(t))| ≤
M+K̄. Then, a classical argument about maximal solutions of ordinary differential equations shows
that existence and uniqueness of solutions of (3.17) holds on whole the interval [0, 1] and that the
previous inequality is true with t0 = 1. A standard computation yields

|ρh(t)| ≤
{

(κ2

2 t−
√

|ρh(0)|)2 if t ≤ 2
√

ρh(0)/κ2

0 if t ≥ 2
√

ρh(0)/κ2.
(3.19)

Then, we set κ2 = 4
√
K̄ in order that ρh(t) = 0 on [1/2, 1] (which implies that fh(t) = 0 on [1/2, 1];

this fact will be used in Step 2). This concludes the construction of the function fh.

(iii) About fh and gh: let ω ∈ ΩK,α,τk−1
and w1 ∈ AM and consider the C1-function (fh(t))t∈[0,1]

built in the previous subsection. Given this function, let us recall how one defines a function
(gh(t))t∈[0,1] which is such that

dw2
t = dw1

t + gh(t)dt on [0, 1] =⇒ dBw2

t = dBw1

t + fh(t)dt on [0, 1].

The function gB of (2.8) being known on (−∞, τk−1], one can define it on (−∞, τk−1+1] by setting
gB(t) = fh(t − τk−1) on [τk−1, τk−1 + 1]. Then, by an inversion formula (see (4.11a) of [9]), one
obtains a unique gw on (−∞, τk−1 + 1] (where gw is defined in (2.8)). Then, gh can be defined by
gh(t) = gw(t+ τk−1) = g

τk−1

w (t), t ∈ [0, 1]. In fact, it can be shown (see proof of Lemma 5.9 of [9]
for details) that the function gh is given by

gh(t) = CR0g
τk−1

w (t) + αH
d

dt

(∫ t

0

(t− s)H− 1
2 fh(s)ds

)

, t ∈ (0, 1]. (3.20)

Note that owing to the (K,α)-admissibility condition and to the differentiability of fh, the function

gh is measurable and integrable on [0, 1]. We can thus define φ1 : AM → C 1
2
−εθ ([0, 1],Rd) by

φ1(w1)t = w1(t) +

∫ t

0

gh(s)ds, t ∈ [0, 1]. (3.21)

Using again that w1 7→ h(xw1(.)) is continuous from C 1
2
−εθ ([0, 1],Rd) to Cθ([0, 1],Rd), one can

check that application φ1 is measurable on AM . The function φ1 is also injective. Actually, let
(w1, w2) ∈ AM ×φ1(AM ) such that φ1(w1) = w2. From the very definition, xw1(t) = xw2(t)−ρh(t)
where ρh is the unique solution of (3.17). But by construction, (ρh(t))t∈[0,1] is also the unique
solution of

dρh
dt

= F̃ (t, ρh(t)) with F̃ (t, ρ) = ∇hb(xw2(t))−∇hb(h−1(h(xw2(t))−ρ)−κ1ρ−κ2
ρ
√

|ρ|
. (3.22)

Thus, fh and gh defined above can be obtained as some measurable functions of w2. Denote them
by f̃h and g̃h and set φ2(w2) = w2(.) −

∫ .

0 g̃h(s)ds. By construction, we have φ2 ◦ φ1(w1) = w1 so
that φ1 is a bijection from AM to φ1(AM ) with measurable inverse φ2.

Now, remark that, owing to the definition of F̃ and to the arguments of (ii), existence and
uniqueness for the solutions of (3.22) also hold on [0, 1] (since the solutions do not explode) so that
one can define f̃h and g̃h on AM . In other words, one can extend φ2 into a measurable function
ψ on AM ∪ φ1(AM ) defined by ψ(w2) = w2(.) +

∫ .

0
g̃h(s)ds. Owing to the same arguments as

above, ψ is injective. The function φ1 can in turn be extended into a bijective measurable function
ϕ : AM ∪ ψ(AM ) → AM ∪ ϕ1(AM ) defined by

ϕ(w1)t = w1(t) +

∫ t

0

gh(t)dt, t ∈ [0, 1]. (3.23)
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Once again, ϕ−1 = ψ is measurable and ∀(w1, w2) such that ϕ(w1) = w2 with w1 ∈ AM ∪ ψ(AM ),
xw1

1 (1) = xw2

1 (1).

REMARK 3.4. Note that with this construction, we have built a function ϕ which is well-defined
on ϕ−1(AM ) and which satisfies

ϕ(AM ) ⊂ AM+K̄ . (3.24)

The inclusion holds since |h(xw2

t )| ≤ |h(xw1

t )|+ |ρh(0)| ≤M +K̄, when w2 = ϕ(w1) with w1 ∈ AM .
Note that these properties are important for the sequel. If (∇hb) ◦ h−1 was Lipschitz continuous,
the function ϕ could be defined on the whole space and it would simplify the construction of the
coupling (see (v)).

(iv) Control of the function gh and Girsanov: For ω ∈ ΩK,α,τk−1
and w1 ∈ AM ∪ ψ(AM ), consider

the explicit expression of gh given by (3.20).
By (2.9), the L2-norm of ((R0g

τk−1

w )(t))t∈(0,1] is bounded by 1. As concerns that of the second
term in (3.20), it follows from Lemma 5.1 of [9] that it is enough to bound fh(0) and |dfh/dt|. But,
by (3.17) and (3.19), one can check that there exists a deterministic constant C̃ depending on K,
M and θ such that |fh(0)| ≤ C̃ and

∀t ∈ [0, 1],

∣

∣

∣

∣

dfh(t)

dt

∣

∣

∣

∣

≤ C(|ρh(t)| + |
√

ρh(t)|) ≤ C̃.

We deduce that for every positive M and K, there exists another finite constant C̄(M,K) such
that

∀ω ∈ ΩK,α,τk , ∀w1 ∈ AM ∪ ψ(AM ),

∫ 1

0

|gh(s)|2ds < C̄(M,K). (3.25)

In particular, w1 7→
∫ 1

0
|gh(s)|2ds being finite on AM ∪ ψ(AM ), this allows us to apply Girsanov

Theorem. More precisely, extend ϕ into a measurable application ϕ̂ on C 1
2
−εθ ([0, 1],Rd) by setting

ϕ̂(w1) = w1 if w1 ∈ (AM ∪ψ(AM ))c. Then, denoting by PW the Wiener measure and by ϕ̂∗
PW the

image measure of PW by the application ϕ̂, one deduces from Girsanov Theorem that ϕ̂∗
PW (dw) =

Dϕ̂(w)PW (dw) where

Dϕ̂(w) = exp

(∫ 1

0

(ḡh(s)|dw(s)) −
1

2

∫ 1

0

|ḡh(s)|2ds
)

(3.26)

with ḡh = gh if w ∈ AM ∪ψ(AM ) and ḡh = 0 otherwise. We can now explicit the coupling strategy.

(v) Construction of (W 1,W 2) on [τk−1, τk−1 + 1]. First, we recall that we set W 1
t = W 2

t on
[τk−1, τk−1 +1] if ω ∈ Ωc

K,α,τk
(in this case, attempting a coupling would generate a too important

cost for the future). Now, if ω ∈ ΩK,α,τk−1
, the construction follows the lines of [9] but with the

constraint that one can attempt the coupling only on a subset of C 1
2
−εθ ([0, 1],Rd).

More precisely, for a Borel subset A of C 1
2
−εθ ([0, 1],Rd), denote by P

A
W the restriction of PW

to A. For positive measures µ1 and µ2 with densities D1 and D2 with respect to another measure
µ, denote by µ1 ∧ µ2 the measure defined by (µ1 ∧ µ2)(dw) = D1(w) ∧ D2(w)µ(dw). With the
help of the function ϕ introduced in (iii) (see (3.23)), we define a non-negative measure PM

1 on

C 1
2
−εθ ([0, 1],Rd)2 by

PM
1 =

1

2
ϕ∗
1P

BM

W ∧ ϕ∗
2P

AM

W

where ϕ1 and ϕ2 are the functions from respectivelyAM∪ψ(AM ) andAM∪ϕ(AM ) to C 1
2
−εθ ([0, 1],Rd)2

defined by
ϕ1(w) = (w,ϕ(w)) and ϕ2(w) = (ϕ−1(w), w),

and BM = ϕ−1(AM ) (note that AM and BM are Borel sets since AM is closed and ϕ−1 is mea-
surable).

Using that the restriction of ϕ̂ to ϕ−1(AM ) is equal to ϕ and that ϕ−1(AM ) = ϕ̂−1(AM ), one
can check that

ϕ∗
1P

BM

W (dw1, dw2) = 1{(ϕ−1(w),w)}(w1, w2)Dϕ̂(w)P
AM

W (dw),
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where Dϕ̂ is defined by (3.26). This implies that PM
1 satisfies

PM
1 (dw1, dw2) =

1

2
1{(ϕ−1(w),w)}(w1, w2)(Dϕ̂(w) ∧ 1)PAM

W (dw). (3.27)

Write S(w1, w2) = (w2, w1) and denote by P̃M
1 the “symmetrized” non-negative measure induced

byPM
1 : P̃M

1 = PM
1 +S∗PM

1 . We then define the coupling (W̃ 1
t , W̃

2
t ) = (W 1

t+τk−1
−W 1

τk−1
,W 2

t+τk−1
−

W 2
τk−1

) as follows:

L((W̃ 1
t , W̃

2
t )t∈[0,1]) = P̃M

1 +∆∗(PW −Π∗
1P̃

M
1 ) = PM

1 +PM
2

with ∆(w) = (w,w), Π1(w1, w2) = w1 and PM
2 = S∗PM

1 + ∆∗(PW − Π∗
1P̃

M
1 ) Thanks to (3.27),

one checks that

Π1P̃
M
1 (f) ≤ 1

2

∫

AM

(

f(ϕ−1(w))Dϕ̂(w) + f(w)
)

PW (dw)

≤ 1

2

∫

f(w)(1ϕ−1(AM )(w) + 1AM
(w))PW (dw)

where we used that ϕ̂−1(AM ) = ϕ−1(AM ) and that ϕ−1 ◦ ϕ̂(w) = w for every w ∈ ϕ−1(AM ).
This implies that Π1P̃

M
1 < PW and that PM

2 is the sum of two positive measures. Owing to the
symmetry property of P̃M

1 and to the fact that Π1 ◦∆ is the identity, one can also check that the
marginals of PM

1 +PM
2 are both equal to PW .

(v) Lower-bound for the probability of coupling: by construction, conditionally on ΩK,α,τk−1
and

(X1
τk−1

, X2
τk−1

, (W 1,W 2)t≤τk−1
) the coupling is successful under the subprobability PM

1 . In other

words, if we assume that (W 1,W 2) is realized with the previous coupling construction, we have

P(X1
τk−1+1 = X2

τk−1+1|ΩK,α,τk−1
) ≥ ‖PM

1 ‖TV .

By (3.27) and Lemma C.1. of [15] (applied to p = 2, µ1 = ϕ̂∗
PW , µ2 = PW and X = AM )

‖PM
1 ‖TV ≥

[

∫

AM
Dϕ̂(w)PW (dw)

]2

4
∫

AM
Dϕ̂(w)3PW (dw)

.

We will now show that M can be chosen in such a way that the above quantity is bounded away
from 0 independently of k ∈ N. On the one hand, by exhibiting an exponential martingale and by
using (3.25),

∫

AM

Dϕ̂(w)
3
PW (dw) ≤

(

sup
w∈AM

exp(3

∫ 1

0

|gh(s)|2ds)
)

×
∫

exp

(

3

∫ 1

0

(ḡh(s)|dws)−
32

2

∫ 1

0

|ḡh(s)|2ds
)

PW (dw) ≤ exp(3C̄(M,K)).

On the other hand,
∫

AM

Dϕ̂(w)PW (dw) = PW (ϕ−1(AM )).

For every M > K̄, we deduce from (3.24) that ϕ(AM−K̄ ) ⊂ AM so that AM−K̄ ⊂ ϕ−1(AM ).
Furthermore, we get from (i) for the choice

M := C(K, K̃) + K̄

that
{w, ‖w‖0,11

2
−εθ

≤ K̃} ⊂ AM−K̄ .
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As a consequence,
∫

AM
Dϕ̂(w)PW (dw) ≥ PW ({w, ‖w‖0,11

2
−εθ

≤ K̃}) and

‖PM
1 ‖TV ≥

[

PW ({w, ‖w‖0,1εθ ≤ K̃})
]2

4 exp(3C̄(C(K, K̃) + K̄,K))
> 0

which concludes the proof.

(b) When Step 1 is successful, this property follows from (3.25). If Step 1 is not attempted (and
thus fails) since ω ∈ Ωc

K,α,τk−1
,W 1 =W 2 on [τk−1, τk−1+1] so that gw is null on [τk−1, τk−1+1]. If

Step 1 is attempted and fails, it follows from the above construction of the coupling that w1 = w2

or w2 = ϕ−1(w1) with w1 ∈ AM . Then, since the control of the functions f̃h (defined in (iii)) and
its derivative are similar to that of fh in (iv), we deduce that the L2-norm of g̃h(t) = gw(t+ τk−1)
can be also bounded in a similar way.

(c) When Step 1 is successful, gB(t + τk−1) = fh(t) on [0, 1] and the boundedness of fh follows
from that of ρh which is proved in (ii).

3.2 Step 2

As explained before, Step 2 is a series of trials on some intervals Iℓ of length c22
ℓ (the first one of

length 2c2, the second one of length 4c2,. . . ). We denote by sk,ℓ the left extreme of each interval
Iℓ. More precisely, for every k ≥ 1, we define (sk,ℓ)ℓ≥0 by

sk,0 = sk,1 = τk−1 + 1 and for every ℓ ≥ 1 sk,ℓ+1 = sk,ℓ + c22
ℓ. (3.28)

Also denote by ℓ∗k, the (first) trial after time τk−1 where Step 2 fails. The case ℓ∗k = 0 and ℓ∗k = +∞
correspond respectively to the failure of Step 1 and to the success of Step 2. For some given positive
α and K, we set

Bk,ℓ := ΩK,α,τk−1
∩ {ℓ∗k > ℓ}, k ≥ 1, ℓ ≥ 0. (3.29)

With this definition,

P(τk = +∞|ΩK,α,τk−1
) = P(X1

τk−1+1 = X2
τk−1+1|ΩK,α,τk−1

)

+∞
∏

ℓ=1

P(Bk,ℓ|Bk,ℓ−1). (3.30)

Consequently, the aim is now to lower-bound P(Bk,ℓ|Bk,ℓ−1). This is the purpose of the next
lemma. Before doing so, let us introduce some notations. Owing to the one-to-one correspondence
between gw and gB, there is a unique choice for function gw in [τk−1 + 1,∞) which ensures that
gB(t) = 0 after τk−1 + 1 (or equivalently that B1

t = B2
t after τk−1 + 1). We denote it by g

S
in the

next lemma (see the proof for an explicit expression of g
S
).

LEMMA 3.2. Let K > 0 and assume that α ∈ (0, H). There exists a constant CK ≥ 1 which does
not depend on k such that,

∫ +∞

0

(1 + t)2α|g
S
(τk−1 + 1 + t)|2dt ≤ CK .

Then, (W1,W2) can be constructed during Step 2 in such a way that for all k and ℓ,

ρ1K ≤ P(Bk,1|Bk,0) ≤ ρ2K and ∀ℓ ≥ 2, (1− ρ3K2−αℓ) ≤ P(Bk,ℓ|Bk,ℓ−1) ≤ (1− ρ3K2−αℓ−1) (3.31)

where ρ1K , ρ
2
K ∈ (0, 1) do not depend on k and ρ3K = c−α

2

√
CK . In particular, if c2 = C

1
2α

K , ρ3K = 1
and in this case, if 2 ≤ ℓ∗k < +∞ one has

∫ sk,ℓ∗
k
+1

sk,ℓ∗
k

|gw(t)|2dt ≤ (2(ℓ∗k + 3))2 and ∀ℓ ∈ {2, . . . , ℓ∗k},
∫ sk,ℓ

sk,ℓ−1

|gw(t)|2dt ≤ 2−2αℓ.

and if ℓ∗k = 1,
∫ sk,2

sk,1
|gw(t)|2dt ≤ C′

K where C′
K is a finite constant.
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REMARK 3.5. The lower-bounds obtained in (3.31) ensure the strict positivity of P(τk = +∞|ΩK,α,τk−1
).

The other properties will be needed for the sequel. Note that c2 can be chosen in such a way that
the involved quantities do not depend on K except if ℓ = 1.

Proof. We first remark that if at a positive stopping time T1 one has X1
T1

= X2
T1
, then (X1

t ) and
(X2

t ) remain equal on [T1, T2] (where T2 > T1 is a second stopping time) if and only if gB(t) = 0
on (T1, T2]. By Lemma 4.3 in [9], and its proof, this condition is satisfied if and only if

∀t ∈ (0, T2 − T1], gw(t+ T1) = g
S
(t+ T1) := R0g

T1

w (t).

The interesting point is that the above function is FT1
-measurable (the context is thus different

from Step 1, where the function denoted by gh was defined in a dynamic way). In particular, by
conditioning on Fsk,ℓ

one can write:

P(Bk,ℓ|Bk,ℓ−1) = E(Q(R0g
τk−1+1
w (sk,ℓ + .), c22

ℓ))

where for positive T and a (deterministic) measurable function g on [0,+∞) we denote

Q(g, T ) = P(∀t ∈ [0, T ], W̃ 2
t = W̃ 1

t + g(t)).

for (W̃ 1, W̃ 2) a given couple of Brownian motions on [0, T ]. By Lemma 3.4, if ‖g‖[0,T ],2 ≤ b ≤ b0,

we can build the couple (W̃1, W̃2) in such a way that Q(g, T ) ≥ (1 − b) ∨ ρ where ρ depends only
on b0.

Following carefully the proof of Lemma 5.12. of [9] (see in particular (5.36) therein), one deduces
from Lemma 3.1(b) and Condition (2.9) that on Bk,0,

∫ +∞

0

(1 + t)2αR0g
τk−1+1
w (t)dt ≤ CK

for some positive constant CK . Without loss of generality, we can assume that CK ≥ 1. This
yields the first property of the lemma and this easily implies that for every ℓ ≥ 1,

∫ sk,ℓ+1

sk,ℓ

|g
S
(u)|2du ≤ b2ℓ

with b1 =
√
CK and bℓ = c−α

2

√
CK2−αℓ if ℓ ≥ 2. It remains to apply Lemma 3.4 ((i) for ℓ = 1 and

(ii) for ℓ ≥ 2) to obtain (3.31). Finally, the bound for
∫ sk,ℓ∗

k
+1

sk,ℓ∗
k

|gw(t)|2dt follows from the value of

Mbℓ given by Lemma 3.4.

LEMMA 3.3. Let K and b be positive numbers.

(i) Then, there exist Mb > 0, ρ1b and ρ2b ∈ (0, 1) such that for every a ∈ [−b, b], we can build a
random variable (U1, U2) with values in R

2 such that

L(U1) = L(U2) = N (0, 1), ρ1b ≤ P(U2 = U1 + a) ≤ ρ2b , P(|U2 − U1| ≤Mb) = 1

and on the event {U2 = U1 + a}, |U1| ≤ M̃b and |U2| ≤ M̃b hold a.s., where M̃b ≤ Mb

2 + b.

(ii) Furthermore, if b ∈ (0, 1), the previous statement holds with Mb ≤ max{4b,−2 log(b/8)},
ρb1 = 1− b and ρ2b = 1− b

2 .

REMARK 3.6. In order to ensure the (K,α)-admissibility condition at the next trials, one needs
to control the increments of W 1 and W 2 during Step 2. In particular, when Step 2 fails, we will
need the probability of success to be not too large. This explains the property of domination of the
probability of success P(U2 = U1+ a) (and P(W 2 =W 1 + g) in the next result) which may appear
of poor interest. For the same reason, we give in the following result an explicit construction of
W 1 and W 2 during Step 2.
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Proof. (ii) is almost the statement of Lemma 5.13 of [9]. The only new points are the deterministic
control of |U1| and |U2| on the event {U2 = U1 + a} and the domination of the probability of
success by ρ2b = 1 − b

2 . With the notations of [9], the first property follows from the construction
of the measure N3 which is such that for every a ∈ [−b, b], the support of N3 is included in
[−Mb/2,Mb/2−a]×[−Mb/2−a,Mb/2]. For the second one, it is enough to note that the probability
of success introduced in Lemma 5.13 of [9] and denoted by N3(L3) is a non-decreasing continuous
function of M and equal to 0 if Mb = 0. Thus, the domination of this probability can be obtained
by reducing sufficiently the value of M .

On the other hand, (i) is in some sense a rough version of (ii). Its proof can also be done by
following the lines of the lemma of [9] and by checking that for every b > 0, we can choose Mb

large enough such that infa∈[−b,b] N3(L3) > 0.

The following lemma is a slightly modified version of Corollary 5.14 of [9].

LEMMA 3.4. Let T and b be positive numbers and g ∈ L2([0, T ],R) with ‖g‖2,[0,T ] ≤ b.

(i) There exists Mb > 0, ρ1b , ρ
2
b ∈ (0, 1) and a couple of Wiener processes (W 1,W 2) defined in

[0, T ] such that

ρ1b ≤ P

(

W 2
t =W 1

t +

∫ t

0

g(s)ds, t ∈ [0, T ]

)

≤ ρ2b and P(‖W 2 −W 1‖2,[0,T ] ≤Mb) = 1. (3.32)

Furthermore, there exists a triple (U1, U2, V ) of standard normally distributed random variables
and a Brownian motion W̃ such that (U1, U2) and (V, W̃ ) are independent,

W i
t =

(

U i + V
)

∫ t

0
g(s)ds

‖g‖2,[0,T ]
+ W̃t, t ∈ [0, T ] for i = 1, 2, (3.33)

and moreover |Ui| ≤ M̃b :=
Mb

2 + b on the event {W 2
t =W 1

t +
∫ t

0
g(s)ds, t ∈ [0, T ]}.

(ii) Furthermore, if b ∈ (0, 1), the previous statement holds with Mb = max{4b,−2 log(b/8)},
ρ1b = 1− b and ρ2b = 1− b

2 .

Proof. (i) Let (fk)k≥1 denote a complete orthonormal basis of L2([0, T ],R) with f1 = g/‖g‖2,[0,T ].
In some probability space (Ω′,F ′,P′) let (U1, U2) be a couple of random variables satisfying the
properties of Lemma 3.3(i) and (ξk)k≥2 be a sequence independent of (U1, U2) of i.i.d. random
variables with L(ξ2) = N (0, 1). Defining for i = 1, 2 the process W i

t := W i(1[0,t]), t ≥ 0, where
W i : L2([0, T ],R) → W i(L2([0, T ],R)) ⊂ L2(Ω′,F ′,P′) is the isometry of Hilbert spaces such that
W i(f1) = U i and W i(fk) = ξk, k ≥ 2, one easily checks (by computing covariances) that

W i
t = Ui

∫ t

0 g(s)ds

‖g‖2,[0,T ]
+
∑

k≥2

ξk

∫ t

0

fk(s)ds

and that (W i
t ) is a standard Brownian Motion. It follows from Lemma 3.3(i) and from the previous

construction that (3.32) holds. Furthermore, introducing artificially a last standard normally
distributed random variable V independent of σ(U1, U2, ξk, k ≥ 2), we can write W i as follows

W i
t = (Ui + V )

∫ t

0 g(s)ds

‖g‖2,[0,T ]
+ W̃t, t ∈ [0, T ]

where W̃t := −V
∫ t

0 g(s)ds/‖g‖2,[0,T ] +
∑

k≥2 ξk
∫ t

0 fk(s)ds is a standard Brownian motion inde-

pendent of (U1, U2). Finally, the boundedness property of Ui on {W 2
t =W 1

t +
∫ t

0 g(s)ds, t ∈ [0, T ]}
again follows from that obtained in Lemma 3.3(i).

(ii) The proof is identical using the properties of Lemma 3.3(ii) instead of those of (i).
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4 About the (K,α)-admissibility condition

In this section, we assume that Steps 1 and 2 are carried out as described previously, and the aim
is to ensure that the system is (K,α)-admissible with positive probability at every times τk. This
is the purpose of the next proposition:

PROPOSITION 4.2. Let (X1
t , X

2
t )t≥0 denote a solution of (2.6) with initial condition µ̃ satisfying

µ̃(|x1|r + |x2|r) < +∞ for some r > 0. Assume (H0), (H1) and (H2). Let α ∈ (0, 1/2). Assume

that for each K > 0, c2 defined in (2.13) satisfies c2 = C
1
2α

K (where CK is a constant greater than 1
defined in Lemma 3.2) and that for every k ≥ 1 and ℓ ≥ 0, ∆3(ℓ, k) introduced in (2.16) is defined
by ∆3(ℓ, k) = c3ak2

βℓ with β > (1 − 2α)−1, ak = ςk for some (arbitrary) fixed ς > 1, and c3 an
appropriate constant depending on the previous parameters (see Proposition 4.6 and Remark 4.8
for details). Then, for every ε > 0, there exists Kε > 0 such that for every k ≥ 0,

P(ΩKε,α,τk |τk < +∞) ≥ 1− ε.

The proof of this proposition is divided into two parts corresponding respectively to Conditions
(2.9) and (2.10). The first concerns the coupling function gw and the proof corresponding to this
condition easily follows from [9] (see Subsection 4.4 for details).

REMARK 4.7. In the sequel of this section, we always assume that α is a fixed number in (0, 1/2)

and that c2 = C
1
2α

K . These properties are not recalled again in each statement.

The lower-bound for the second condition is obtained in the next subsections.

4.1 (K,α)-admissibility and Lyapunov

We denote in what follows

Ek := {τk <∞} (= {τ1 <∞, . . . , τk <∞}).
Let α ∈ (0, 1/2). We want to prove that for every ε > 0, there exists Kε > 0 such that

P(Ω2
Kε,τk

|Ek) ≥ 1− ε.

But since for every events A1, A2, A3 and A4, P(∩4
i=1Ai) ≥

∑4
i=1 P(Ai)− 3, it is enough to prove

that for every ε > 0, there exists Kε > 0 such that for j = 1, 2,

P(ϕτk,εθ (W
j) ≤ Kε|Ek) ≥ 1− ε, j = 1, 2 (4.34)

and
P(|Xj

τk
| ≤ Kε|Ek) ≥ 1− ε j = 1, 2. (4.35)

Since the arguments to prove (4.34) are contained in those needed for the (4.35), we defer the proof
of the former to the appendix (see Appendix B) and we only focus on the second statement. The
proof of this property is based on a Lyapunov-type argument: owing to the Markov inequality,
it is obvious that (4.35) will be true if one exhibits a positive function Ψ : Rd → R such that
lim|x|→+∞ Ψ(x) = +∞ and for which there exists a finite positive constant C such that for every
k ∈ N ∪ {0} and for every K > 0,

E(Ψ(Xj
τk)|Ek) ≤ C j = 1, 2. (4.36)

Note that since the construction of Step 1 depends on K, the independence of C with respect to
K is primordial. To this end, we first introduce the following contraction assumption depending
on θ ∈ (1/2, H).

H′
1
(θ) : There exists a subquadratic continuous function Ψ : Rd 7→ R

∗
+ satisfying

lim
|x|→+∞

Ψ(x) = +∞ and ∃ ρ ∈ (0, 1) and C > 0 such that a.s., ∀x ∈ R
d,

Ψ(X1) ≤ ρΨ(x) + C(1 + ‖B‖0,1θ ).
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In the previous assumption, (Xt)t≥0 denotes a solution of (1.2) and subquadratic means that there
exists C > 0 such that for every x ∈ R

d, Ψ(x) ≤ C(1+ |x|2). In Subsection 4.2, we will prove that,
under the Lyapunov assumption (H1), H

′
1(θ) is true. As detailed in the next proposition, H′

1(θ)
leads to (4.36) if the following condition, which will be proved in subsection 4.3, is also true:

H′
2
(θ) : For every ρ ∈ (0, 1), there exists Cρ > 0 such that for every k ∈ N and K > 0

E[

∆τk
∑

u=1

ρ∆τk−u‖B‖τk−1+u−1,τk−1+u
θ |Ek] ≤ Cρ.

PROPOSITION 4.3. Let θ ∈ (1/2, H) and assume H′
1
(θ). Let (X1

t , X
2
t )t≥0 denote pair of solutions

to (2.6) with initial condition µ̃ satisfying µ̃(Ψ2(x1) + Ψ2(x2)) < +∞. For x1, x2 ∈ R
d, set

τ0(x1, x2) := inf{u ∈ N, ρu(Ψ(x1) + Ψ(x2)) ≤ 1}. (4.37)

Assume that (τk)k≥1 is built in such a way that, H′
2
(θ) holds, that for every k ≥ 1, P(Ek|Ek−1) ≥

δ1 > 0 (where δ1 is a positive number which does not depend on k) and that ∆τk ≥ log(δ1/2)
log ρ . Then,

there exists a positive constant C such that for every k ∈ N ∪ {0} and K > 0,

E(Ψ(Xj
τk
)|Ek) ≤ C, j = 1, 2.

REMARK 4.8. � Under the assumptions of Proposition 4.2, ∆τk ≥ c3 (see (2.16)). To ensure that

∆τk ≥ log(δ1/2)
log ρ , one can thus choose c3 large enough in order that c3 ≥ log(δ1/2)

log ρ .

� By the elementary inequalities |u + v|p ≤ |u|p + |v|p and |u|p ≤ C(1 + |u|) for p ∈ (0, 1), one
remarks that if H′

1
(θ) holds for Ψ, it also holds for Ψp if p < 1. Since Ψ is subquadratic, it follows

that one can assume without loss of generality that Ψ2(x) ≤ C(1 + |x|r) for some given r > 0.
This explains the assumption µ̃(|x1|r + |x2|r) < +∞ in Proposition 4.2.

Proof. By H′
1(θ) and an induction

Ψ(Xj
τk) ≤ ρ∆τkΨ(Xj

τk−1
) + C

∆τk
∑

ℓ=1

ρ∆τk−ℓ(1 + ‖B‖τk−1+ℓ−1,τk−1+ℓ
θ ).

First, since ∆τk ≥ log(δ1/2)
log ρ , we deduce that ρ∆τk ≤ δ1

2 . Thus,

E[Ψ(Xj
τk)|Ek] ≤

δ1
2
E[Ψ(Xj

τk−1
)|Ek] + C

+∞
∑

u=0

ρu + CE[

∆τk
∑

ℓ=1

ρ∆τk−ℓ‖B‖τk−1+ℓ−1,τk−1+ℓ
θ |Ek].

Since Ek ⊂ Ek−1 and P(Ek|Ek−1) ≥ δ1, E[Ψ(Xj
τk−1

)|Ek] ≤ δ−1
1 E[Ψ(Xj

τk−1
)|Ek−1]. It follows that

E[Ψ(Xj
τk
)|Ek] ≤

1

2
E[Ψ(Xj

τk−1
)|Ek−1] +

C

1− ρ
+ CE[

∆τk
∑

ℓ=1

ρ∆τk−ℓ‖B‖τk−1+ℓ−1,τk−1+ℓ
θ |Ek].

Assumption H′
2(θ) combined with an induction then yields

sup
k≥0

E[Ψ(Xj
τk)|Ek] ≤ E[Ψ(Xj

τ0)|E0] + C̃ρ

where C̃ρ neither depends on k and j nor on the starting condition µ̃. Noticing that E0 = Ω, it
remains to bound E[Ψ(Xj

τ0)]. By the definition of τ0 (which is F0-measurable) and the Cauchy-
Schwarz inequality,

Eµ̃[Ψ(Xj
τ0)] ≤

+∞
∑

u=0

Eµ̃[Ψ
2(Xj

u)]
1
2 (µ̃(τ0 = u))

1
2 . (4.38)
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On the one hand, checking that for ε > 0, there exists Cε > 0 such that for all u, v of R
d,

|u + v|2 ≤ (1 + ε)|u|2 + Cε|v|2, one deduces from H′
1
(θ) that there exists 0 < ρ̃ < 1 and Cρ̃ such

that for every starting point x,

Ψ2(X1) ≤ ρ̃Ψ2(x) + Cρ̃(1 + ‖B‖0,1θ )2.

Thus, it again follows from an induction and from the stationarity of the increments of the fBm
that

Eµ̃[Ψ
2(Xj

u)] ≤
∫

Ψ2(xj)µ̄j(dxj) +
Cρ̃

1− ρ̃
E[(1 + ‖B‖0,1θ )2] < +∞,

since
∫

Ψ2(xj)µ̄j(dxj) < +∞. It remains to control the queue of τ0. We have

µ̃(τ0 ≥ u) ≤
2
∑

j=1

µ̄j(ρ
uΨ(xj) >

1

2
) ≤ 2

2
∑

j=1

ρu
∫

Ψ(xj)µ̄j(dxj) ≤ Cρu. (4.39)

Plugging the previous inequality in yields the boundedness of Eµ̃[Ψ(Xj
τ0)].

As a consequence, it remains now to prove H′
1
(θ) and H′

2
(θ). This is the purpose of the next

subsections.

4.2 Proof of H′
1
(θ)

PROPOSITION 4.4. Assume (H1). Then, H′
1(θ) holds for every θ ∈ (12 , H) with Ψ = V

2θ−1

4 .

Proof. The proof is divided in four steps. In all of them, we assume that 0 ≤ s < t ≤ 1.

Step 1. We prove the following statement: there exists C > 0 such that

|Xt| ≤ C

(

|Xs|+ C(t− s) + |
∫ t

s

σ(Xu)dBu|
)

a.s. (4.40)

Actually, using that b is a sublinear function,

|Xt| ≤ |Xs|+ C(t− s) + |
∫ t

s

σ(Xu)dBu|+
∫ t

s

|Xu|du.

The result then follows from Gronwall lemma (note that the time-dependence of the Gronwall
constant does not appear since s, t ∈ [0, 1]).

Step 2. Control of the Hölder norm of X in a small (random) interval : Let θ ∈ (1/2, H). We
show that there exist some positive constants c0 and C such that for every 0 ≤ s < t ≤ 1, satisfying
c0(1 + ‖B‖0,1θ )(t− s)θ ≤ 1

2 ,

‖X‖s,tθ ≤ C
(

‖B‖0,1θ + (1 + |Xs|)(t− s)1−θ
)

. (4.41)

Let us prove this property. Owing to the classical controls of Young integrals (see e.g. [19],
Inequality (10.9)), for every (p, q) ∈ (0, 1]2 with p+ q > 1, there exists Cp,q > 0 such that for every
p-Hölder and q-Hölder functions f and g (respectively), for every 0 ≤ s < t ≤ 1,

|
∫ t

s

f(u)dg(u)− f(s)(g(t)− g(s))| ≤ Cp,q‖f‖0,1p ‖g‖0,1q (t− s)p+q. (4.42)

Applying the previous inequality with p = q = θ and using that σ is Lipschitz continuous and
bounded, we deduce that for every 0 ≤ s ≤ u < v ≤ t ≤ 1,

|
∫ v

u

σ(Xw)dBw| ≤ C‖B‖u,vθ (v − u)θ
(

‖X‖u,vθ (v − u)θ + ‖σ‖∞
)

≤ C‖B‖0,1θ (v − u)θ
(

‖X‖s,tθ (t− s)θ + ‖σ‖∞
)

(4.43)
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By (4.40) and what precedes, we also have

∫ v

u

|b(Xr)|dr ≤ C(v − u)
(

1 + |Xs|+ ‖B‖0,1θ (t− s)θ(1 + ‖X‖s,tθ (t− s)θ)
)

.

Using the previous inequalities, we deduce that

‖X‖s,tθ ≤ C
(

‖B‖0,1θ + (1 + |Xs|)(t− s)1−θ
)

+ C‖X‖s,tθ ‖B‖0,1θ (t− s)θ

and (4.41) follows.

Step 3. Control of sup |Xu| in a small (random) interval : let θ ∈ (1/2, H). There exists C > 0
such that for every 0 ≤ s ≤ t ≤ 1 satisfying c0(1 + ‖B‖θ)(t− s)θ ≤ 1

2

sup
s≤u≤t

|Xu| ≤ C(1 + |Xs|). (4.44)

Actually, using that ‖B‖0,1θ (t− s)θ ≤ (2c0)
−1, we deduce from (4.43) that for every 0 ≤ s ≤ t ≤ 1

satisfying c0(1 + ‖B‖0,1θ )(t− s)θ ≤ 1
2

|
∫ t

s

σ(Xv)dBv| ≤ C
(

‖X‖s,tθ (t− s)θ + 1
)

.

Using again that ‖B‖0,1θ (t− s)θ ≤ (2c0)
−1, it follows from (4.41) that

|
∫ t

s

σ(Xv)Bv| ≤ C (1 + (1 + |Xs|)(t− s)) .

Then, it is enough to plug this control in (4.40) to obtain (4.44).

Step 4. Use of the Lyapunov assumption. Let V be such that Assumption (H1) holds. Let
θ ∈ (1/2, H). Then, there exists ρ̄ ∈ (0, 1) and C > 0 such that for every x ∈ R

d,

V (X1) ≤ ρ̄V (x) + C(1 + ‖B‖θ)
4

2θ−1 . (4.45)

Let us prove this statement. By e.g. [20] (see Theorem 4.3.1) and Assumption (H1),

eκ0(t−s)V (Xt) = V (Xs) +

∫ t

s

eκ0(u−s) ((∇V |b)(Xu)κ0V (Xu)) du+

∫ t

s

eκ0(u−s)(∇V (Xu)|σ(Xu)dBu)

≤ V (Xs) + β0(t− s) +

∫ t

s

eκ0(u−s)(∇V (Xu)|σ(Xu)dBu).

(4.46)

Using that the functions ∇V and σ are Lipschitz continuous, that σ is bounded and that u 7→ eκ0u

is bounded and Lipschitz continuous on [0, 1], we obtain that for every 0 ≤ u < v ≤ 1,

|eκ0(v−s)∇V σ(Xv)− eκ0(u−s)∇V σ(Xu)| ≤ C ((1 + |∇V (Xv)|)(|Xv −Xu|) + |∇V (Xv)|(v − u)) .

By (4.42), it follows that

|
∫ t

s

eκ0(u−s)(∇V (Xu)|σ(Xu)dBu)| ≤ C
(

(1 + sup
v∈[s,t]

|∇V (Xv)|)(‖X‖s,tθ + (t− s)1−θ)(t− s)θ

+ |∇V (Xs)|
)

‖B‖s,tθ (t− s)θ.

From now on, assume that (1+‖B‖0,1θ (t−s)θ) ≤ (2c0)
−1. By (4.44) and the fact that 1+|∇V (x)| ≤

C1(1 + |x|) ≤ C2

√
V (x), we have

1 + sup
v∈[s,t]

|∇V (Xv)| ≤ C
√

V (Xs).
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Owing to (4.41) and to some reductions implied by the previous inequality, we obtain

|
∫ t

s

eκ0(u−s)(∇V (Xu)|σ(Xu)dBu)| ≤ C
(

V (Xs)‖B‖0,1θ (t− s)1+θ +
√
V (Xs)‖B‖0,1θ (t− s)θ

)

.

Set θ̃ := 1
2 (θ − 1

2 ) (so that 2(θ − θ̃) = 1
2 + θ). By the inequality |xy| ≤ 1

2 (|x|2 + |y|2),
√
V (Xs)‖B‖0,1θ (t− s)θ ≤ 1

2

(

(t− s)2(θ−θ̃)V (Xs) + (‖B‖0,1θ )2(t− s)2θ̃
)

and on the other hand,

V (Xs)‖B‖0,1θ (t− s)1+θ ≤ (t− s)2(θ−θ̃)V (Xs)‖B‖0,1θ (t− s)
1
2 .

Now, we set

η = (2c0(1 + ‖B‖0,1θ ))−
1
θ ∧ (1 + ‖B‖0,1θ )−

1

θ̃ (4.47)

in order that for every 0 ≤ s < t ≤ 1 such that t− s ≤ η,

c0(1 + ‖B‖0,1θ )ηθ ≤ 1

2
and (‖B‖0,1θ ))2(t− s)2θ̃ ≤ 1.

For such s, t, we finally obtain (using that 1/2 ≥ θ̃ and that 2(θ − θ̃) = 1
2 + θ),

|
∫ t

s

eκ0(u−s)(∇V (Xu)|σ(Xu)dBu)| ≤ C(t− s)
1
2
+θV (Xs) + β̃ (4.48)

where β̃ is a positive constant. Plugging this control into (4.46), we deduce: for every 0 ≤ s < t ≤ 1
such that t− s ≤ η,

V (Xt) ≤ e−κ0(t−s)V (Xs)(1 + C(t− s)
1
2
+θ) + β̂

where β̂ = β0η + β̃. Using that e−κ0u ≤ 1 − κ0u + (κ0u)
2

2 in a right neighborhood of 0 and that
1
2 + θ > 1, we can find u0 ∈ [0, 1] (depending on κ0, θ and C) such that

∀u ∈ [0, u0], e−κ0u(1 + Cu
1
2
+θ) ≤ 1− κ0

2
u.

Thus, for every 0 ≤ s < t ≤ 1 such that t− s ≤ η̃ := η ∧ u0,

V (Xt) ≤ (1− κ0
2
(t− s))V (Xs) + β̂.

In particular, applying this control on [kη̃, ((k + 1)η̃) ∧ 1] for k ∈ {0, . . . , ⌊ 1
η̃ ⌋} yields

V (X1) ≤ (1− κ0
2
η̃)⌊

1
η̃
⌋V (x) +

⌊ 1
η̃
⌋

∑

k=1

(1− κ0
2
η̃)⌊

1
η̃
⌋−kβ̂.

It follows from standard computations that

V (X1) ≤ exp(−κ0
2

+ η̃)V (x) +
2β̃

κ0η̃
.

We can assume without loss of generality that u0 ≤ κ0/4 so that

exp(−κ0
2

+ η̃) ≤ e−
κ0
4 =: ρ̄.

Finally, since 2/θ̃ ≥ 1/θ, one can check that there exists C > 0 such that

η̃−1 ≤ C(1 + ‖B‖0,1θ )
1

θ̃ .

Since 2/θ̃ = 4
2θ−1 , this concludes the proof of Step 4.

To prove the proposition, it remains now to set Ψ = V θ̃ and to apply the inequality |u + v|p̄ ≤
|u|p̄ + |v|p̄ (which holds for every real numbers u, v and p̄ ∈ (0, 1]) with p̄ = θ̃.
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4.3 Proof of H′
2
(θ)

The main result of this section is Proposition 4.5. Before, we need to establish several lemmas
related to the control of the past of the fBm.

Let j ∈ {1, 2}. We recall that for every 0 ≤ s < t,

Bt −Bs = αH

(∫ s

−∞

(t− r)H− 1
2 − (s− r)H− 1

2 dW j
r +

∫ t

s

(t− r)H− 1
2 dW j

r

)

.

This can be rewritten

Bt−Bs = αH

(

∫ ⌊s⌋−1

−∞

(t− r)H− 1
2 − (s− r)H− 1

2 dW j
r + Γ1(s, t,W

j)− Γ2(s, t,W
j) + Γ3(s, t,W

j)

)

where, setting h = t− s,

Γ1(s, t,W
j) =

∫ s−h

⌊s⌋−1

(t− r)H− 1
2 − (s− r)H− 1

2 dW j
r ,

Γ2(s, t,W
j) =

∫ s

s−h

(s− r)H− 1
2 dW j

r Γ3(s, t,W
j) =

∫ t

s−h

(t− r)H− 1
2 dW j

r .

Let k ≥ 1. Assume that τk−1 < +∞ and that τk−1 ≤ s < t ≤ ⌊s⌋ + 1. Setting τ−1 = −∞, we
choose to decompose the first right-hand member with respect to the sequence (τk)k≥−1:

∫ ⌊s⌋−1

−∞

(t− r)H− 1
2 − (s− r)H− 1

2 dW j
r =

k
∑

m=0

Λm,k(s, t,W
j)

with

Λm,k(s, t,W
j) =











∫ τm∧τk−1−1

τm−1
(t− r)H− 1

2 − (s− r)H− 1
2 dW j

r if m ∈ {0, . . . , k − 1}

∫ ⌊s⌋−1

τk−1−1(t− r)H− 1
2 − (s− r)H− 1

2 dW j
r if m = k.

Note that for i = 1, 2, 3, Γi is related to the local behavior of the fBm whereas form = 0, . . . , k, Λm,k

is a memory term. The idea of the sequel of the proof is to bound ‖B‖u,u+1
θ (u ∈ {τk−1, . . . , τk})

through the study of the Γi and the Λm,k. With a slight abuse of notation, we will sometimes
write

‖Γj
i‖a,bθ = sup

a≤s<t≤b

|Γi(s, t,W
j)|

|t− s|θ and ‖Λm,k‖a,bθ = sup
a≤s<t≤b

|Λm,k(s, t,W
j)|

|t− s|θ . (4.49)

The starting point of the study of the Λm,k is the following lemma:

LEMMA 4.5. Let a < b < s < t. Let W be a two-sided Brownian motion. Then,

1

t− s

∣

∣

∣

∣

∣

∫ b

a

(t− r)H− 1
2 − (s− r)H− 1

2 dWr

∣

∣

∣

∣

∣

≤ (t− a)H− 3
2 |Wb −Wa|+

1

2

∫ b

a

(s− r)H− 5
2 |Wr −Wb|dr.

Proof. By an integration by parts,

∫ b

a

(t− r)H− 1
2 − (s− r)H− 1

2 dWr =
(

(t− a)H− 1
2 − (s− a)H− 1

2

)

(Wa −Wb)

+ (H − 1

2
)

∫ b

a

(

(t− r)H− 3
2 − (s− r)H− 3

2

)

(Wr −Wb)dr.

(4.50)
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On the one hand, by the elementary inequality (1+x)ρ ≥ 1+x for every x ∈ (−1, 0] and ρ ∈ (0, 1],
we remark that

0 ≤ (t− a)H− 1
2 − (s− a)H− 1

2 = (t− a)H− 1
2

(

1−
(

1 +
s− t

t− a

)H− 1
2

)

≤ (t− s)(t− a)H− 3
2

On the other hand, by the inequality (1 + x)ρ ≥ 1 + ρx for x ≥ 0 and ρ < 0, we obtain similarly

(s− r)H− 3
2−(t− r)H− 3

2 ≤
(

3

2
−H

)

(t− s)(s− r)H− 5
2 .

The result follows (using that (3/2−H)(H − 1/2) ≤ 1/2).

In the next lemma, we propose to bound some quantities which are related to those which
appear in the previous lemma on some sub-intervals of [τm−1, τm] wherem ∈ N. With the notations
introduced in (2.16) and in (3.28), we set

τ0m = τm−1, τ1m = τm−1 + 1 + 2c2, τ2m = sm,ℓ∗m ∨ τ1m, τ3m = sm,ℓ∗m+1 and τ4m = τm.

Since c3 defined in (2.16) satisfies c3 ≥ 2c2, Step 3 is longer than 2c2 and i 7→ τ im is non-decreasing.
Furthermore, τ0m is the beginning of Step 1, τ1m denotes the end of the first trial of Step 2 (or some
time during Step 3) if Step 1 is successful (resp. if Step 1 fails). If Step 1 and the first trial of Step
2 are successful, τ2m and τ3m correspond to the beginning and to the end of the failed trial of Step
2. If ℓ∗m ∈ {0, 1}, τ1m = τ2m = τ3m.

Note that τ1m is defined as the end of the first trial of Step 2, instead of the end of Step 1 as
it could be expected. Without going into the technical details, let us remark that this particular
cutting of the interval is due to the dependence in K (which appears in the (K,α)-admissibility
condition) of the probability of success of the first trial of Step 2 (and that this dependence does
not appear for the next trials, see Remark 3.5 for background) and that, in view of Assumption
H′

2
(θ), it is of first importance that the next results be obtained independently of K.

LEMMA 4.6. Assume that there exists δ1 > 0 such that for all m ∈ N and K > 0 P(Em+1|Em) ≥
δ1 > 0. Then, for every p ≥ 1 and ε ∈ (0, 1), there exists Cp,ε,δ1 ∈ R

∗
+ such that for every m ∈ N,

i ∈ {0, . . . , 3}, j ∈ {1, 2} and K > 0,

(i)

E

[(

∫ τ i+1
m

τ i
m

∣

∣

∣(1 + τ i+1
m − r)−(

3
2
+ε)(W j

τ i+1
m

−W j
r )
∣

∣

∣ dr

)p

|Em
]

≤ Cp,ε,δ1 . (4.51)

(ii) If τ im 6= τ i+1
m ,

E

[∣

∣

∣(τ i+1
m − τ im)−(

1
2
+ε)

(

W j

τ i+1
m

−W j
τ i
m

)∣

∣

∣

p

|Em
]

≤ Cp,ε,δ1 , (4.52)

REMARK 4.9. The proof of this lemma could be shortened by using some rougher arguments
similar to those of the proof of Proposition 4.5 below (see (4.69)). However, such arguments do
provide an understanding of what implies the conditioning by {τm < +∞}, or in other words, to
how the distribution of the Wiener process is deformed by the coupling attempt. To this end and
when it is possible (especially in the case i = 1), we thus choose an approach by which we try to
make explicit these distortions.

Proof. (i) By a change of variable, for every i ∈ {0, 1, 2, 3},
∫ τ i+1

m

τ i
m

(1 + τ i+1
m − r)−(

3
2
+ε)|W j

τ i+1
m

−W j
r |dr = Hi(τ

i+1
m − τ im)
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where for a given c > 0,

Hi(c) =

∫ c

0

(1 + u)−
1
2 |W j

τ i+1
m

−W j

τ i+1
m −u

|ν(du) with ν(dr) = (1 + u)−1−εdu.

Noticing that ν([0, c]) ≤ ε−1, we deduce from Jensen inequality that for every p ≥ 1,

(Hi(c))
p ≤

(

1

ε

)p−1 ∫ c

0

(1 + u)−
p
2
−1−ε|W j

τ i+1
m

−W j

τ i+1
m −u

|pdu. (4.53)

Now, we focus successively on cases i = 0, 1, 2, 3:

i = 0: In this case, τ1m − τ0m is deterministic and is equal to c̄ := 1 + 2c2. Using that Em ⊂ Em−1

and the Cauchy-Schwarz inequality, we have for every u ∈ [0, c̄] and m ≥ 1,

E[|Wτ1
m
−Wτ1

m−u|p|Em] ≤
E[|W j

τ1
m
−W j

τ1
m−u|2p|Em−1]

1
2

P(Em|Em−1)
1
2

.

But, conditionally on {τm−1 < +∞}, (W j
τm−1+u−W j

τm−1
, u ≥ 0) is a Brownian motion independent

of τm−1 so that
E[|W j

τ i+1
m

−W j

τ i+1
m −u

|2p|Em−1] = up.

Then, since P(Em|Em−1) ≥ δ1, one deduces that

sup
u∈[0,c̄]

u−
p
2 E[|W j

τ1
m
−W j

τ1
m−u|p|Em] ≤ δ

− 1
2

1 . (4.54)

Plugging this control into (4.53) yields the result when i = 0 with Cp,ε,δ1 = δ
− 1

2

1 ε−p.

i = 1: If ℓ∗k ∈ {0, 1, 2}, τ1m = τ2m. Otherwise, we first write Em =
⋃Am,ℓ where Am,ℓ = Bc

m,ℓ ∩
Bm,ℓ−1. We recall that Am,0 corresponds to the failure of Step 1 and for every ℓ ≥ 1, Am,ℓ is the
event that Step 2 failed after exactly ℓ trials.

With the notations introduced in (3.28), we recall that on Am,ℓ, τ
1
m = sm,2 and τ2m = sm,ℓ. By

(4.53), it is enough to show that for every ℓ ≥ 3,

∫ sm,ℓ−sm,2

0

(1 + u)−
p
2
−1−ε

E[|(W j
sm,ℓ

−W j
sm,ℓ−u)|p|Am,ℓ]du ≤ Cp,ε,δ1 . (4.55)

where Cp,ε,δ1 does not depend on k, m, ℓ and K. With the notations of Lemma 3.2, we know that
on the event Am,ℓ with ℓ ≥ 2, we have for all v ∈ {1, . . . , ℓ− 1},

∀t ∈ [sm,v, sm,v+1], W 2
t =W 1

t +

∫ t

sm,v

g
S
(s)ds

where g
S
is a Fτm−1+1-measurable function (defined in Lemma 3.2). Moreover, by Lemma 3.4(ii),

which can be applied with b = 2−αv (owing to Lemma 3.2 and Remark 4.7), W j , j = 1, 2 can be
realized as follows on [sm,v, sm,v+1];

∀t ∈ [sm,v, sm,v+1], W j
t = (Um,v

j + Vm,v)

∫ t

sm,v
g
S
(s)ds

‖g
S
‖[sm,v ,sm,v+1],2

+ W̃m
t−sm,2

,

where (W̃m
t )t≥0 is a standard Brownian motion, (Vm,v)v≥1 is a sequence of i.i.d. normally dis-

tributed random variables, and

∀v ∈ {2, . . . , ℓ− 1}, ∀ω ∈ Am,ℓ, |Um,v
j (ω)| ≤ 1

2
max{22−αv,−2 log(

2−αv

8
)}+ 2−αv ≤ C log(2αv)
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where C does not only depend on α. Furthermore, (W̃m
t )t≥0 and (Vm,v)v≥1 are independent

of (Um,v
1 , Um,v

2 )v and g
S
. In particular, (W̃m

t )t≥0 and (Vm,v)v≥1 are independent of Am,ℓ. Set
sum,v = sm,v ∨ (sm,ℓ − u). The above properties imply that for every u ∈ [0, sm,ℓ − sm,2],

E[|W j
sm,ℓ

−W j
sm,ℓ−u|p|Am,ℓ] ≤ CpE









ℓ−1
∑

v=2

log(2αv)

∫ sum,v+1

sum,v
|g

S
(s)|ds

‖g
S
‖[sm,v ,sm,v+1],2





p

|Am,ℓ





+ CpE





∣

∣

∣

∣

∣

∣

ℓ
∑

v=2

Vm,v

∫ sum,v+1

sum,v
g
S
(s)ds

‖g
S
‖[sm,v,sm,v+1],2

∣

∣

∣

∣

∣

∣

p

|Am,ℓ





+ CpE[|W̃m
sm,ℓ−sm,2

− W̃m
sm,ℓ−sm,2−u|p].

(4.56)

We focus successively on each term of the right-hand side of the above inequality. First,

E[|W̃m
sm,ℓ−sm,2

− W̃m
sm,ℓ−sm,2−u|p] = u

p
2 E[|U |p] (4.57)

where U stands for a normally distributed random variable.

For the first right-hand member term of (4.56), we deduce from the Cauchy-Schwarz inequality
that

ℓ−1
∑

v=2

log(2αv)

∫ sum,v+1

sum,v
|g

S
(s)|ds

‖g
S
‖[sm,v ,sm,v+1],2

≤
(

ℓ−1
∑

v=2

log(2αv)2

)

1
2







ℓ−1
∑

v=2





∫ sum,v+1

sum,v
|g

S
(s)|ds

‖g
S
‖[sm,v,sm,v+1],2





2






1
2

Using that v 7→ log(2αv) is non-decreasing and that
(

∫ sum,v+1

sum,v

|g
S
(s)|ds

)2

≤ (sum,v+1 − sum,v)
(

‖g
S
‖[sm,v ,sm,v+1],2

)2
, (4.58)

we deduce that
ℓ−1
∑

v=2

(log(2αv))

∫ sum,v+1

sum,v
|g

S
(s)|ds

‖g
S
‖[sm,v ,sm,v+1],2

≤
√
ℓ log(2αℓ)u

1
2 .

Using that for all ℓ ≥ 3, sm,ℓ − sm,2 = c22
ℓ−1 with c2 ≥ 1, one deduces that for every positive p

and ε, there exists Cp,ε such that for every ℓ ≥ 3,
√
ℓ log(2αℓ) ≤ Cp,ε(sm,ℓ − sm,2)

ε
p (we recall that

α is a fixed number of (0, 1/2)). As a consequence, the first right-hand member term of (4.56)
satisfies for every u ∈ [0, sm,ℓ − sm,2]

E









ℓ−1
∑

v=2

log(2αv)

∫ sum,v+1

sum,v
|g

S
(s)|ds

‖g
S
‖[sm,v ,sm,v+1],2





p

|Am,ℓ



 ≤ Cp,ε(sm,ℓ − sm,2)
εu

p
2 (4.59)

where Cp,ε is the constant defined above. Finally, for the second right-hand member term of (4.56),
let us define (Xu

m,v)
ℓ−1
v=2 by

∀v ∈ {2, . . . , ℓ− 1}, Xu
m,v = Vm,v

∫ sum,v+1

sum,v
g(s)ds

‖g‖[sm,v,sm,v+1],2
.

Since (Vm,v)v≥1 is centered and independent of g
S
and Am,l, it follows that (X

u
m,v)

ℓ−1
v=2 is a sequence

of martingale increments under P(.|Am,ℓ). By the Doob inequality and (4.58), we deduce that,

E





∣

∣

∣

∣

∣

∣

ℓ−1
∑

v=2

Vm,v

∫ sum,v+1

sum,v
g
S
(s)ds

‖g
S
‖[sm,v,sm,v+1],2

∣

∣

∣

∣

∣

∣

p

|Am,ℓ



 ≤ CpE















ℓ−1
∑

v=2





∫ sum,v+1

sum,v
g
S
(s)ds

‖g
S
‖[sm,v ,sm,v+1],2





2






p
2

|Am,ℓ









≤ Cp

(

ℓ−1
∑

v=2

(sum,v+1 − sum,v)

)

p
2

≤ Cpu
p
2 . (4.60)
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By (4.57), (4.59) and (4.60), we obtain that there exists Cp,ε ∈ R
∗
+ such that for all m ∈ N, ℓ ≥ 2,

j ∈ {1, 2} and u ∈ [0, sm,ℓ − sm,2],

E[|W j
sm,ℓ

−W j
sm,ℓ−u|p|Am,ℓ] ≤ Cp,ε(sm,ℓ − sm,2)

εu
p
2 . (4.61)

The results follows by plugging this inequality into (4.55).

i = 2: Here, we consider the interval where Step 2 fails. With the previous notations, τ2m = sm,ℓ

and τ3m = sm,ℓ+1 on Am,ℓ when ℓ ≥ 2. By a similar strategy as in the case i = 1 (see in particular
(4.55) and (4.61)), it is enough to show that there exists Cp,ε such that for all m ∈ N, ℓ ≥ 0,
j ∈ {1, 2} and u ∈ [0, sm,ℓ+1 − sm,ℓ],

E[|W j
sm,ℓ+1

−W j
sm,ℓ+1−u|p|Am,ℓ] ≤ Cp,ε(sm,ℓ+1 − sm,ℓ)

εu
p
2 . (4.62)

When ℓ = 0, 1, τ3m− τ2m = 0 so that the property is obvious. Let us consider the set Bm,ℓ−1 defined
by (3.29). From the very definition, Am,ℓ ⊂ Bm,ℓ−1.

By Hölder inequality applied with some p̃ > 1 and q̃ > 1 such that 1/p̃+ 1/q̃ = 1, we have

E[|W j
sm,ℓ+1

−W j
sm,ℓ+1−u|p|Am,ℓ] ≤ E[|W j

sm,ℓ+1
−W j

sm,ℓ+1−u|pp̃|Bm,ℓ−1]
1
p̃P(Am,ℓ|Bm,ℓ−1)

1
q̃
−1.

On the one hand, we deduce from the independence of the increments of the Brownian motion that

E[|W j
sm,ℓ+1

−W j
sm,ℓ+1−u|pp̃|Bm,ℓ−1]

1
p̃ = u

p
2 E[|U |pp̃] 1p̃

where U stands for a normally distributed random variable. On the other hand, by (3.31),

P(Am,ℓ|Bm,ℓ−1) = P(Bc
m,ℓ|Bm,ℓ−1) ≥ 2−αℓ−1.

Then, for each ε ∈ (0, 1), Inequality (4.62) follows by setting q̃ = (1 − ε)−1 (so that 1− 1
q̃ = ε ).

i = 3: This corresponds to Step 3. The key point here is that the increments of the Brownian
motion after τ3m are independent of the previous coupling attempt so that, denoting by ∆3(m, ℓ),
the length of Step 3 under Am,ℓ, we have

E[|W j
τm −W j

τm−u|p|Am,ℓ] = E[|W j
τ3
m+∆3(m,ℓ) −W j

τ3
m+∆3(m,ℓ)−u|p] = Cpu

p
2 . (4.63)

The result then follows similarly to the case i = 1 (see (4.55)).

(ii) This result can be easily derived from the controls established previously. More precisely, cases
i = 0, 1, 2, 3 can be viewed as particular cases of (4.54), (4.61), (4.62) and (4.63).

In the next lemma, we adopt the convention
∑

∅ = 1. Also, let us recall that by (2.16),
∆τk ≥ c3ak ≥ ak since c3 ≥ 2c2 ≥ 1 (and that c2 ≥ 1 by Remark 4.7).

LEMMA 4.7. Let Ψ satisfy
∫

Ψ(x1)µ̄1(dx1)+
∫

Ψ(x2)µ̄2(dx2) < +∞ and assume that τ0 is defined
in terms of this function as in (4.37). Assume that there exists δ1 > 0 such that for every m ≥ 1
and K > 0, P(Em|Em−1) ≥ δ1 ∈ (0, 1). Then, for j = 1, 2 and for every ρ ∈ (0, 1) and ε ∈ (0, 1−H),
there exists C such that for every k ≥ 1, m ∈ {0, . . . , k − 1} and K > 0,

E[ sup
(s,t),τk−1≤s<t≤s+1

1

t− s
|Λm,k|(s, t,W j)|Ek] ≤ C

(

∑k−1
ℓ=m+1 aℓ

)H−1+ε

δ
ρ(k−m)
1

. (4.64)

As a consequence, if ak = ςk where ς ∈ (1,+∞), there exists ∆ ∈ (0, 1) and C > 0 such that for
every integers m and k with m ≤ k

E[ sup
(s,t),τk−1≤s<t≤s+1

1

t− s
|Λm,k|(s, t,W j)|Ek] ≤ C∆k−m. (4.65)
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REMARK 4.10. � The assumption on the moments of µ̃ is only necessary for the case m = 0
which corresponds to the interval [−∞, τ0]. Due to the memory, τ0 is not independent of the past
of the Brownian Motion before τ0. But the assumption on µ̃ leads to a control of the queue of τ0
which is sufficient to overcome the non-independence property.

� The fact that the quality of the estimate strongly decreases with m− k may appear surprising.
The main problem is that we do not have a sharp idea of the distribution of L(Wt−Wτm−1

, τm−1 ≤
t ≤ τm) conditionally to the event {∆τl < +∞,m ≤ l < k} and thus, we compensate this failure
by some Hölder-type inequalities.

� The second statement says that if one waits sufficiently between each trial, the influence of
the past decreases geometrically with m. Note that this waiting time increases geometrically. This
may be a problem for the sequel and the fact that ς can be chosen arbitrarily close to 1 will be of
first importance.

Proof. First, note that if (4.64) is true, (4.65) easily follows: let ς > 1 and let γ1 ∈ (0,+∞) be
such that ς = δ−γ1

1 . It is now sufficient to remark that for every m ∈ {1, . . . , k − 2},

(

k−1
∑

ℓ=m+1

aℓ)
H−1+εδ

−ρ(k−m)
1 ≤ δ

(γ1(1−H−ε)−ρ)(k−m)
1

and to choose for instance ε = (1−H)/2 and ρ = γ1(1−H)
4 ∧ 1

2 so that

γ1(1 −H − ε)− ρ ≥ γ1(1−H)

4
∧ 1

2
> 0.

Let us now prove (4.64). We consider three cases:

Case 1: k ≥ 3 and m ∈ {1, . . . , k − 2}. m ∈ N. In harmony with Lemma 4.6, we decompose
[τm−1, τm] in four intervals [τ im, τ

i+1
m ], i ∈ {0, 1, 2, 3}, and also cut Λm,k (which does not depend on

k in this case) in four parts denoted by φm,i:

∀i ∈ {0, 1, 2, 3}, φm,i(s, t,W
j) =

∫ τ i+1
m

τ i
m

(t− r)H− 1
2 − (s− r)H− 1

2 dW j
r .

By Lemma 4.5,

1

t− s
|φm,i(s, t,W

j)| ≤ (t− τ im)H− 3
2 |Wτ i

m
−Wτ i+1

m
|+ 1

2

∫ τ i+1
m

τ i
m

(s− r)H− 5
2 |Wr −Wτ i+1

m
|dr.

If τk−1 ≤ s < t, since ∆τl ≥ al for all l, we get

t− τ im ≥ max(

k−1
∑

ℓ=m+1

aℓ, τ
i+1
m − τ im) and ∀r ∈ [τ im, τ

i+1
m ], s− r ≥ max(

k−1
∑

ℓ=m+1

aℓ, 1 + τ i+1
m − r).

Thus, for every ε ∈ (0, 1−H),

sup
(s,t),τk−1≤s<t≤s+1

1

t− s
|φm,i(s, t,W

j)| ≤ C(

k−1
∑

ℓ=m+1

aℓ)
H−1+εΞm,ε,i

where

Ξm,ε,i = (τ i+1
m − τ im)−

1
2
−ε|W j

τ i
m
−W j

τ i+1
m

|+ 1

2

∫ τ i+1
m

τ i
m

(1 + τ i+1
m − r)−(

3
2
+ε)|W j

r −W j

τ i+1
m

|dr.

The interesting point is that Ξm,ε,i does not depend on k. Furthermore, by Lemma 4.6, for every
p > 1, ε ∈ (0, 1−H) and i ∈ {0, 1, 2, 3},

E[|Ξm,ε,i|p |Em]
1
p ≤ C
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where C does only depend on p, ε and H . Set Ξm,ε =
∑3

i=0 Ξm,ε,i. Summing up the previous
controls (on i), we deduce from Hölder inequality that for every p > 1 and q > 1 such that
1
p + 1

q = 1,

0 ≤ E[ sup
(s,t),τk−1≤s<t≤s+1

1

t− s
|Λm,k(s, t,W

j)||Ek] ≤ E[|Ξm,ε|p|Em]
1
p (

k−1
∑

ℓ=m+1

aℓ)
H−1+ε

P(Ek|Em)
1
q
−1

≤ C

(

1

δ1

)(1− 1
q )(k−m)

(

k−1
∑

ℓ=m+1

aℓ)
H−1+ε.

(4.66)

The result follows in this case by noticing that for every ρ ∈ (0, 1), there exists q ∈ (1,+∞) such
that ρ = 1− 1/q.

Case 2: k ≥ 2 and m = k − 1. It corresponds to the integral on the interval [τk−2, τk−1 − 1]. The
proof is almost identical using the controls

t−τ im ≥ 1+τ i+1
m ∧(τk−1−1)−τ im and ∀r ∈ [τ im, τ

i+1
m ∧(τk−1−1)], s−r ≥ 1+τ i+1

m ∧(τk−1−1)−r.

We do not detail it.

Case 3: k ≥ 1 and m = 0. It corresponds to the integral on the interval (−∞, τ0] if k ≥ 2
and (−∞, τ0 − 1] if k = 1. For the sake of simplicity, we only consider the case k ≥ 2. Note
that on this interval W 1 = W 2. We then write W only. By Lemma 4.5 and the fact that
limM→+∞M−1/2−εW−M = 0, we have

1

t− s
|Λ0,k(s, t,W )| ≤ 1

2

∫ τ0

−∞

(s− r)H− 5
2 |Wr −Wτ0 |dr

so that

sup
τk−1≤s<t≤⌊s⌋+1

1

t− s
|Λ0,k(s, t,W )| ≤ 1

2

(

k−1
∑

m=1

ak

)H−1+ε
∫ τ0

−∞

(1 + τ0 − r)−
3
2
−ε|Wr −Wτ0 |dr

where ε ∈ (0, 1 − H). Let p ≥ 1. As remarked previously, one has no information about the
joint law of τ0 and W j . We compensate this failure by a rough argument. Using Cauchy-Schwarz
inequality,

Eµ̃

[(

∫ τ0

−∞

(1 + τ0 − r)−
1
2
−ε|Wr −Wτ0 |dr

)p]

≤
+∞
∑

u=1

E

[

(∫ u

−∞

(1 + u− r)−
3
2
−ε|Wr −Wu|dr

)2p
]

1
2

Pµ̃(τ0 = u)
1
2 .

Thanks to the stationarity of the increments of the Brownian motion, we deduce from a change of
variable that

E

[

(∫ u

−∞

(1 + u− r)−
3
2
−ε|Wr −Wu|dr

)2p
]

≤ E

[

(∫ +∞

0

(1 + r)−
3
2
−ε|Wr|dr

)2p
]

=: Cp.

Using that for every p ≥ 1 and ε > 0,

E[sup
r≥1

( |Wr|
r

1+ε
2

)2p

] < +∞,

we deduce that Cp is finite. It remains to show that
∑+∞

u=1 Pµ̃(τ0 = u)
1
2 < +∞. This property has

already been proved in (4.37).
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PROPOSITION 4.5. Assume that Step 1 and 2 are carried out as described in Section 3. Let Ψ
satisfy

∫

Ψ(x1)µ̄1(dx1) +
∫

Ψ(x2)µ̄2(dx2) < +∞ and assume that τ0 is defined in terms of this
function as in (4.37). Assume there exists δ1 > 0 such that for every m ≥ 1, P(Em|Em−1) ≥ δ1 ∈
(0, 1) and that for every k ≥ 1, ak defined in (2.16) satisfies ak = ςk with ς > 1. Then, H′

2(θ)
holds for every θ ∈ (1/2, H).

Proof. First, thanks to a change of variable and to the decomposition introduced at the beginning
of the current subsection 4.3, we have

∆τk
∑

u=1

ρ∆τk−u‖B‖τk−1+u−1,τk−1+u
θ ≤

k
∑

m=1

τk
∑

u=τk−1+1

ρτk−u‖Λj
m,k‖

u−1,u
θ

+

3
∑

m=1

τk
∑

u=τk−1+1

ρτk−u‖Γj
m‖u−1,u

θ

(4.67)

where we used the notations introduced in (4.49). Thus, the idea is to bound each term of the
right-hand side. First, for every m ∈ {0, . . . , k − 1}, for every u ∈ {τk−1, . . . , τk},

‖Λj
m,k‖

u,u+1
θ ≤ sup

τk−1≤s<t≤⌊s⌋+1

1

t− s
|Λm,k(s, t,W

j)|

Since the right-hand member does not depend on u, we deduce that for every m ∈ {0, . . . , k − 1}
τk
∑

u=τk−1+1

ρτk−u‖Λj
m,k‖

u−1,u
θ ≤ sup

τk−1≤s<t≤⌊s⌋+1

1

t− s
|Λm,k(s, t,W

j)|
+∞
∑

w=0

ρw. (4.68)

Thus, by Lemma 4.7, it follows that for every m ∈ {0, . . . , k − 1}

E[

τk
∑

u=τk−1+1

ρτk−u‖Λj
m,k‖

u−1,u
θ |Ek] ≤

C

1− ρ
∆k−m

where ∆ ∈ (0, 1). As a consequence,

E[

k−1
∑

m=1

τk
∑

u=τk−1+1

ρτk−u‖Λj
m,k‖

u−1,u
θ |Ek] ≤

C

(1 − ρ)(1−∆)
.

Keeping in mind inequality (4.67), it remains to bound, independently of k and K, the terms
involving Λk,k and Γm, m = 1, 2, 3. The strategy is different since these terms depend on the path
between τk−1 − 1 and τk. Let us begin by Λk,k. By a change of variable,

τk
∑

u=τk−1+1

ρτk−u‖Λj
k,k‖

u−1,u
θ =

∆τk−1
∑

v=0

ρ∆τk−1−vZk,v where Zk,v = ‖Λj
k,k‖

τk−1+v,τk−1+v+1
θ .

Note that Zk,0 = 0. On the event Ak,ℓ, one knows that ∆τk is deterministic. Denote it by ∆(k, ℓ).
Decomposing the event Ek, it follows that

E[

τk
∑

u=τk−1+1

ρτk−u‖Λj
k,k‖u−1,u

θ |Ek] =
∑

ℓ≥0

∆(k,ℓ)
∑

v=1

ρ∆(k,ℓ)−1−v
E[Zk,v|Ak,ℓ]P(Ak,ℓ|Ek).

Using that Ak,ℓ ⊂ Ek ⊂ Ek−1 and Cauchy-Schwarz inequality, we remark that

E[Zk,v|Ak,ℓ]P(Ak,ℓ|Ek) ≤ E[Z2
k,v|Ek]

1
2P(Ak,ℓ|Ek)

1
2 ≤

E[Z4
k,v|Ek−1]

1
4

P(Ek|Ek−1)
1
4

P(Ak,ℓ|Ek)
1
2 . (4.69)
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But P(Ek|Ek−1) ≥ δ1 > 0 and using Lemma 3.2, we have for every ℓ ≥ 2,

P(Ak,ℓ|Ek) =
P(Ak,ℓ|Ek−1)

P(Ek|Ek−1)
≤ δ−1

1 P(Bk,ℓ−1|Ek−1)P(Bc
k,ℓ|Bk,ℓ−1) ≤ δ−1

1 2−αℓ (4.70)

so that

E[

τk
∑

u=τk−1+1

ρτk−u‖Λj
k,k‖

u−1,u
θ |Ek] ≤ Cδ1,ρ sup

v∈N

E[Z4
k,v|Ek−1]

1
4 (4.71)

where Cδ1,ρ is a finite constant depending only on δ1 and ρ. Set εθ = (H − θ)/2. Using that
(Wu+τk−1−1 −Wτk−1−1)u≥0 is independent of Fτk−1−1, we obtain for every v ∈ N, for every k ∈ N,

E[Z4
k,v|Ek−1] ≤ E[(Fv(W̄u, 0 ≤ u ≤ v))4]

where W̄ is a standard Brownian Motion and Fv : C 1
2
−εθ ([0, v],Rd) → R defined by

Fv(wu, 0 ≤ u ≤ v) = sup
v+1≤s<t≤v+2]

1

t− s

∣

∣

∣

∣

∫ v

0

(t+ 1− r)H− 1
2 − (s+ 1− r)H− 1

2 dwr

∣

∣

∣

∣

.

By Lemma 4.5, for every v ≥ 1,

Fv(W̄u, 0 ≤ u ≤ v) ≤ vH− 3
2 |W̄v|+

1

2

∫ v

0

(v + 1− r)H− 5
2 |W̄r − W̄v|dr.

Denote by (W̃u)u∈[0,1] the rescaled Brownian motion defined by W̃u =
√
vW̄uv. By a change of

variable, for every v ≥ 1,

Fv(W̄u, 0 ≤ u ≤ v) ≤ |W̃1|+
1

2

∫ 1

0

√
v(v + 1− uv)H− 5

2 |W̃u − W̃1|du.

Checking that

∀v ≥ 1,

∫ 1

0

√
v(v + 1− uv)H− 5

2 du ≤ (
3

2
−H)−1,

one deduces that

sup
v≥1

E[Z4
k,v|Ek−1] ≤ E

[(

|W̃1|+
2

3
2 −H

sup
u∈[0,1]

|W̃u − W̃1|)4
)]

.

By plugging this inequality into (4.71), this concludes the study of Λk,k.

As concerns Γi, i = 1, 2, 3, one deduces with a similar strategy as before that it is enough to show
that for i = 1, 2, 3,

E[|Gi(W̄u, 0 ≤ u ≤ 2)|4] ≤ C, (4.72)

where, setting h = t− s,

G1(w) = sup
1≤s<t≤2

1

(t− s)θ

∣

∣

∣

∣

∣

∫ s−h

0

(t− r)H− 1
2 − (s− r)H− 1

2 dwr

∣

∣

∣

∣

∣

,

G2(w) = sup
1≤s<t≤2

1

(t− s)θ

∣

∣

∣

∣

∫ s

s−h

(s− r)H− 1
2 dwr

∣

∣

∣

∣

and

G3(w) = sup
1≤s<t≤2

1

(t− s)θ

∣

∣

∣

∣

∫ t

s−h

(t− r)H− 1
2 dwr

∣

∣

∣

∣

.

By Lemma 4.5, we have

∫ s−h

0

(t− r)H− 1
2 − (s− r)H− 1

2 dwr ≤ |ws−h − w0|(t− s)

+ (t− s)θ
∫ s−h

0

(s− h− r)H−θ− 3
2 |wr − ws−h|dr
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where in the second line, we used that for every r ∈ [0, s− h], s− r ≥ s− h− r and s− r ≥ h. We
deduce that

G1(w) ≤ C(1 + ‖w‖0,21
2
−εθ

) with εθ =
H − θ

2
. (4.73)

and (4.72) follows for i = 1. By an integration by parts, one also checks that

∣

∣

∣

∣

∫ s

s−h

(s− r)H− 1
2 dwr

∣

∣

∣

∣

≤ ‖w‖0,21
2
−εθ

(

hH−εθ + (H − 1

2
)

∫ s

s−h

(s− r)H− 3
2
+ 1

2
−εθdr

)

≤ ChH−εθ‖w‖0,21
2
−εθ

.

The previous control also holds for G3(w) and since H − εθ ≥ θ, it follows that (4.72) is also true
for i = 2, 3.

4.4 Condition (2.9)

PROPOSITION 4.6. Let α ∈ (0, 1/2) and assume that for every k ≥ 1 and ℓ ≥ 0, ∆3(ℓ, k) = c3ak2
βℓ

with β > (1 − 2α)−1, ak = ςk with an arbitrary ς > 1. Then, for each K > 0, there is a choice of
c3 such that, for every k ≥ 0, Condition (2.9) is a.s. satisfied at time τk on the event {τk < +∞}.
In other words, for every k ≥ 0, P(Ω1

α,τk
|τk < +∞) = 1.

Proof. For every k ≥ 0, set

uk := sup
T≥0

(
∫ +∞

0

(1 + t)2α|(RT g
τk
w )(t)|2dt

)

1
2

.

Since gw is null on (−∞, τ0], u0 = 0. Following carefully the proof of Lemma 5.15 in [9] (see (5.8)
therein for notation), we check that there exists C > 0 such that for every k ≥ 1,

uk − uk−1 ≤C

(

τk − τ3k
τ3k − τk−1

)α− 1
2
(∫ sk,ℓ∗

k
+1−τk−1

0

(1 + t)2α|gω(τk−1 + t)|2dt
)

1
2

≤C

(

c2
c3
ς−k2−(β−1)ℓ∗k

)
1
2
−α(∫ sk,ℓ∗

k
+1−τk−1

0

(1 + t)2α|gω(τk−1 + t)|2dt
)

1
2

where we used (2.16) and (3.28) in the second inequality (By Remark 4.7, c2 = (CK)
1
2α ). But by

Lemmas 3.1(b) and 3.2, for all K > 0 and α ∈ (0, H), there exists C > 0 such that

(∫ sk,ℓ∗
k
+1−τk−1

0

(1 + t)2α|gω(τk−1 + t)|2dt
)

1
2

≤ C(1 + 2α(ℓ
∗

k+1)(ℓ∗k + 1)).

By the condition β > (1− 2α)−1 which ensures that (β − 1)(12 − α) > α, it follows that for every
K > 0 and α ∈ (0, 1/2), there exists another constant C > 0 (depending on H , K, α and β) such
that

∀k ≥ 0, uk+1 − uk ≤ C(
c2
c3
ς−k)

1
2
−α.

Choosing c3 large enough in order that C
∑

k≥1(
c2
c3
ς−k)

1
2
−α ≤ 1 yields supk≥0 uk ≤ 1.

5 Proof of Theorem 2.1

Let α ∈ (0, 1/2). We enforce the assumptions of Proposition 3.1 and 4.2. Assume that X1 and
X2 have initial distributions µ0 and µ respectively, where µ denotes an invariant distribution.
First, denoting by µ̄ its first marginal, we recall that

∫

|x|rµ̄(dx) < +∞ for any positive r (see
Proposition 4.6 of [10] if b is Lipschitz continuous or Proposition 3 of [3] otherwise). It is therefore
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enough to show that for any initial condition µ̃ of (X1, X2) satisfying µ̃(|x1|r + |x2|r) < +∞ for

some r > 0, for each ε > 0 there is Cε > 0 such that P(τ∞ > t) ≤ Cεt
−( 1

8
−ε).

Set k∗ := inf{k ≥ 1,∆τk = +∞}. We have

P(τ∞ > t) = P(τ0 +
+∞
∑

k=1

∆τk1k∗>k > t) ≤ P(τ0 >
t

2
) + P(

+∞
∑

k=1

∆τk1k∗>k >
t

2
). (5.74)

Taking Ψ such that Ψ(x) ≤ C(1+ |x|r) (which is possible by Remark 4.8), by an argument similar
to that of (4.39) we deduce the existence of C > 0 and γ0 > 0 such that

P(τ0 >
t

2
) ≤ C exp(−γ0t).

Now, let us focus on the second term on the right-hand side of (5.74) and let p ∈ (0, α/β) ⊂ (0, 1).
By the Markov inequality and the elementary inequality |u+ v|p ≤ |u|p + |v|p,

P(
+∞
∑

k=1

∆τk1k∗>k >
t

2
) ≤ C

tp

+∞
∑

k=1

E[|∆τk|p|1{k∗>k}]

≤ C

tp

+∞
∑

k=1

E[E[|∆τk |p|1{∆τk<+∞}|Fτk−1
]1τk−1<+∞].

Let us bound deterministically the above conditional expectations. On the one hand, if Step 1 fails
(including the case where ω ∈ Ωc

K,α,τk−1
), ∆τk = 1 + c3ς

k where ς > 1 can be chosen arbitrarily.
On the other hand, by Lemma 3.2, we have for every ℓ ≥ 2,

P(Ak,ℓ|Fτk−1
∩ {τk−1 < +∞}) ≤ 2−αℓ.

Since by construction, ∆τk ≤ Cςk2βℓ (with β > (1− 2α)−1) on Ak,ℓ, this yields

E[|∆τk|p|1{∆τk<+∞}|Fτk−1
∩ {τk−1 < +∞}] ≤ Cςkp(

+∞
∑

ℓ=1

2(βp−α)ℓ ≤ Cςkp.

Thus, for every p ∈ (0, α(1− 2α)),

P(

+∞
∑

k=1

∆τk1k∗>k >
t

2
) ≤ C

tp

+∞
∑

k=1

ςkpP(k∗ > k − 1).

But

P(k∗ > k − 1) =

k−1
∏

m=1

P(Em|Em−1) =

k−1
∏

m=1

(1− P(Ec
m|Em−1))

and by Propositions 3.1 and 4.2 the latter applied with (for instance) ε = 1/2, we have for every
m ≥ 1,

P(Ec
m|Em−1) ≥ P(∆τm = +∞|ΩK,α,τm−1

)P(ΩK,α,τm−1
|Em−1) ≥

δ0
2

where δ0 is a positive number depending on K 1
2
. It follows that

P(k∗ > k − 1) ≤ (1− δ0
2
)k−1.

As a consequence,
+∞
∑

k=1

ςkpP(k∗ > k − 1) ≤
+∞
∑

k=1

ςpk(1− δ0
2
)k−1 < +∞
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if ς is chosen in such a way that ςp < (1 − δ0
2 )

−1 (This is possible since ς is an arbitrary number
greater than 1). Finally, for every α ∈ (0, 1/2), for every p ∈ α(1 − 2α), there exists C > 0 such
that P(τ∞ > t) ≤ Ct−p. To conclude the proof, it remains to optimize in α.

Acknowledgements: J.Fontbona acknowledges support of Fondecyt Grant 1110923, Basal-
CONICYT Center for Mathematical Modeling (CMM), and Millenium Nucleus NC120062. F.Panloup
acknowledges partial support of CNRS, INSA Toulouse and CMM to a six months visit at Santiago
in 2013-2014 during which part of this work was carried out.

A Control of (X1
t )t∈[τk,τk+1] under (K,α)-admissibility

We show the first point of the proof of Lemma 3.1. Let K and K̃ denote some positive constants.
Let ω ∈ ΩK,α,τk and assume that ‖W 1‖τk,τk+1

1
2
−εθ

≤ K̃ with εθ = H−θ
2 . First, we bound ‖B1‖τk,τk+1

θ .

With the notations introduced at the beginning of Section 4.3,

‖B1‖τk,τk+1
θ ≤ sup

τk≤s<t≤τk+1

1

t− s

∣

∣

∣

∣

∫ τk−1

−∞

(t− r)H− 1
2 − (s− r)H− 1

2 dW 1
r

∣

∣

∣

∣

+
3
∑

m=1

‖Γm‖τk,τk+1
θ .

The first right-hand term is bounded by K since ω ∈ ΩK,α,τk . As concerns that of the second line,
we deduce from the end of the proof of Proposition 4.5 (see e.g. (4.73)) that

∀m ∈ {1, 2, 3}, ‖Γm‖τk,τk+1
θ ≤ C(1 + ‖W 1‖τk−1,τk+1

1
2
−εθ

).

Under the assumptions, ‖W 1‖τk−1,τk
1
2
−εθ

≤ K ((K,α)-admissibility) and ‖W 1‖τk,τk+1
1
2
−εθ

≤ K̃. It follows

that
∀m ∈ {1, 2, 3}, ‖B1‖τk,τk+1

θ ≤ CK,K̃ (A.75)

where CK,K̃ is a finite deterministic constant which does not depend on k.
In order to conclude the proof, it is now enough to bound supt∈[0,1] |Xτk+t| with respect to

|X1
τk
| and ‖B1‖τk,τk+1

θ . This point is a classical property of fractional driven SDE but we prove it
for the sake of completeness. First, note that Steps 1, 2 and 3 of the proof of Proposition 4.4 still
hold under the assumptions of Lemma . Set F (x) = 1 + |x|2. Let τk ≤ s < t ≤ τk + 1 such that
c0(1 + ‖B1‖τk,τk+1

θ ) ≤ 1/2. By the change of variable formula,

F (Xt) = F (Xs) +

∫ t

s

(∇F |b)(Xu)du +

∫ t

s

(∇F (Xu)|σ(Xu)dB
1
u)

≤ F (Xs)(1 + C(t− s)) + |
∫ t

s

(∇F (Xu)|σ(Xu)dB
1
u|,

where in the second line, we used that (∇F |b)(x) ≤ CF (x) (since b is a sublinear function) and
Step 3 of the proof of Proposition 4.4. The functions ∇F and σ being Lipschitz continuous and σ
being also bounded, we obtain similarly to Step 4 of the proof of Proposition 4.4 (see (4.48)) that
if t− s ≤ η defined by (4.47) (replacing 0 and 1 by τk and τk + 1 respectively),

|
∫ t

s

(∇F (Xu)|σ(Xu)dB
1
u)| ≤ C(t− s)

1
2
+θF (Xs) + β̃.

Then, it follows that for every τk ≤ s < t ≤ τk + 1 such that t− s ≤ η

F (Xt) ≤ F (Xs)(1 + C(t− s)) + β̃.
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An iteration of this inequality on the sequence (τk + ℓη)ℓ≥1 yields

∀ℓ ∈, . . . , ⌊1
η
⌋}, F (Xτk+ℓη) ≤ F (Xτk)(1 + Cη)ℓ + β̃

ℓ−1
∑

u=0

(1 + Cη)u

≤ exp(C)(F (Xτk) +
β̃

Cη
) ≤ exp(C)(F (Xτk) + C̃β̃(1 + ‖B1‖τk,τk+1

θ )
4

2θ−1 )

where in the last inequality, we used that η ≥ (1 + ‖B1‖θ)τk,τk+1)−
1

θ̃ . Applying again Step 3 of
the proof of Proposition 4.4 yields the existence of another constant C (which does not depend on
k) such that

sup
t∈[τk,τk+1]

F (Xt) ≤ C(F (Xτk) + β̃(1 + ‖B1‖τk,τk+1
θ )

4
2θ−1 ). (A.76)

The result follows since, by (A.75), the right-hand side is bounded by a deterministic constant
depending only on K, K̃ and θ on the set ΩK,α,τk ∩ {‖W 1‖τk,τk+1

1
2
−εθ

≤ K̃}.

B Proof of (4.34)

It is enough to prove that there exists C > 0 such that for every k andK, E[ϕτk,εθ (W
j(ω))|Ek] ≤ C.

The fact that

E[ sup
(s,t)τk≤s<t≤τk+1

1

t− s

∣

∣

∣

∣

∫ τk−1

−∞

(t− r)H− 1
2 − (s− r)H− 1

2 dW j
r

∣

∣

∣

∣

|Ek]

is bounded by a constant which does not depend on k follows from Lemma 4.7. More precisely, if
k ≥ 1 this property is a consequence of (4.65) combined with the fact that {(s, t), τk ≤ s < t ≤
τk + 1} ⊂ {(s, t), τk−1 ≤ s < t ≤ s+ 1}. If k = 0, it corresponds to Case 3 of the proof of Lemma
4.7. For the second part, if k ≥ 1, we deduce from Cauchy-Schwarz Inequality that

E[‖W j‖τk−1,τk
1
2
−εθ

|Ek] ≤ E[(‖W j‖τk−1,τk
1
2
−εθ

)2|Ek−1]
1
2P(Ek|Ek−1)

− 1
2 .

But using that (Wj)t∈[τk−1,τk] is independent of Ek−1 and that P(Ek|Ek−1) ≥ δ1, it follows that

E[‖W j‖τk−1,τk
1
2
−εθ

|Ek] ≤ Cθδ
− 1

2

1

where Cθ := E[
(

‖W j‖0,11
2
−εθ

)2

] < +∞. This concludes the proof.
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[7] Maŕıa J. Garrido-Atienza, Peter E. Kloeden, and Andreas Neuenkirch. Discretization of
stationary solutions of stochastic systems driven by fractional Brownian motion. Appl. Math.
Optim., 60(2):151–172, 2009.

[8] Paolo Guasoni. No arbitrage under transaction costs, with fractional Brownian motion and
beyond. Math. Finance, 16(3):569–582, 2006.

[9] Martin Hairer. Ergodicity of stochastic differential equations driven by fractional Brownian
motion. Ann. Probab., 33(2):703–758, 2005.

[10] Martin Hairer and Alberto Ohashi. Ergodic theory for SDEs with extrinsic memory. Ann.
Probab., 35(5):1950–1977, 2007.

[11] Martin Hairer and Natesh S. Pillai. Regularity of laws and ergodicity of hypoelliptic SDEs
driven by rough paths. Ann. Probab., 41(4):2544–2598, 2013.

[12] Jae-Hyung Jeon, Vincent Tejedor, Stas Burov, Eli Barkai, Christine Selhuber-Unkel, Kirstine
Berg-Sørensen, Lene Oddershede, and Ralf Metzler. In Vivo anomalous diffusion and weak
ergodicity breaking of lipid granules. Phys. Rev. Lett., 106:048103, Jan 2011.

[13] S. C. Kou. Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann.
Appl. Stat., 2(2):501–535, 2008.

[14] Benoit B. Mandelbrot and John W. Van Ness. Fractional Brownian motions, fractional noises
and applications. SIAM Rev., 10:422–437, 1968.

[15] Jonathan C. Mattingly. Exponential convergence for the stochastically forced Navier-Stokes
equations and other partially dissipative dynamics. Comm. Math. Phys., 230(3):421–462,
2002.

[16] David Nualart and Aurel Răşcanu. Differential equations driven by fractional Brownian mo-
tion. Collect. Math., 53(1):55–81, 2002.

[17] David J. Odde, Elly M. Tanaka, Stacy S. Hawkins, and Helen M. Buettner. Stochastic dynam-
ics of the nerve growth cone and its microtubules during neurite outgrowth. Biotechnology
and Bioengineering, 50(4):452–461, 1996.

[18] Sorin Rădulescu and Marius Rădulescu. An application of Hadamard-Lévy’s theorem to a
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