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Significance statement

Large structures generally fail under stresses significantly lower than small ones. This is the size effect on strength, one of the oldest problems of engineering, already discussed by Leonardo da Vinci and Edmé Mariotte centuries ago. One classical explanation is the weakest link hypothesis: the largest the "chain", the larger the probability to find a weak link whose breaking will set the failure of the whole chain. We show, however, that it is irrelevant in case of compressive loading, a situation particularly crucial for e.g. geotechnical problems.

Interpreting compressive failure as a critical transition between an "intact" and a "failed" state, we quantitatively explain the size effects on compressive strength of materials such as concrete, rocks, coal, ice, or granular materials. \body

Introduction

Owing to its importance for structural design [START_REF] Bazant | Fracture and size effect in concrete and other quasibrittle materials[END_REF], the elaboration of safety regulations [START_REF]Eurocode 2: Design of Concrete Structures -Part 1-1: General rules and rules for buildings[END_REF], or the extrapolation of laboratory results to geophysical field scales [START_REF] Heuze | Scale effects in the determination of rock mass strength and deformability[END_REF], the size effects on strength of materials is one of the oldest problems in engineering, already discussed by Leonardo da Vinci and Edmé Mariotte(4) several centuries ago, but still an active field of research [START_REF] Bazant | Scaling theory for quasibrittle structural failure[END_REF][START_REF] Zapperi | Current challenges for statistical physics in fracture and plasticity[END_REF]. As early as 1686, Mariotte(4) qualitatively introduced the weakest-link concept to account for size effects on mechanical strength, a phenomenon evidenced by Leonardo da Vinci almost two centuries earlier. This idea, which states that the larger the system considered, the larger the probability to find a particularly faulty place that will be at the origin of global failure, was formalized much later by Weibull [START_REF] Weibull | A statistical theory of the strength of materials[END_REF]. Considering a chain of elementary independent links, the failure of the chain is obtained as soon as one link happens to break. By virtue of the independence between the potential breaking events, the survival probability of a chain of N links is obtained by the simple multiplication of the N elementary probabilities. Depending on the properties of the latter, the global survival probability converges toward one of the three limit distributions identified by Weibull, Gumbel [START_REF] Gumbel | Statistics of extremes[END_REF] and Fréchet respectively. Together with Fisher and Tippett [START_REF] Fisher | Limiting forms of the frequency distribution of the larges or smallest members of a sample[END_REF], these authors pioneered the field of extreme value statistics. This purely statistical argument, undoubtedly valid in 1D, was extended by Weibull [START_REF] Weibull | A statistical theory of the strength of materials[END_REF][START_REF] Weibull | A statistical distribution function of wide applicability[END_REF] to account for the risk of failure of 3D samples or structures. Beside the hypothesis of independence, it thus requires an additional hypothesis of brittleness: the nucleation of any elementary crack at the microscopic scale from a pre-existing flaw is assumed to immediately induce the failure at the macro-scale. More specifically, following linear elastic fracture mechanics (LEFM) stating that crack initiation from a flaw of size s occurs at a stress ~ / , one gets a probability of failure of a system of size L under an applied stress σ, ) , ( L P F  , that depends on the distribution of pre-existing defect sizes. Assuming a power law tail for this distribution, Weibull statistics are expected [START_REF] Weibull | A statistical theory of the strength of materials[END_REF],
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, whereas Gumbel statistics are expected for any distribution of defect sizes whose the tail falls faster than a power law [START_REF] Gumbel | Statistics of extremes[END_REF][START_REF] Alava | Size effects in statistical fracture[END_REF][START_REF] Sornette | Critical phenomena in natural sciences[END_REF],
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, ( 0, where m is the so-called Weibull's modulus, d is the topological dimension and L 0 and  u are normalizing constants. For Weibull statistics, the mean strength and the associated standard deviation (σ f ) then scale with sample size L as ~ ~ / . This approach has been successfully applied to the statistics of brittle failure strength under tension [START_REF] Weibull | A statistical theory of the strength of materials[END_REF][START_REF] Beremin | A local criterion for cleavage fracture of a nuclear pressure vessel steel[END_REF], with m in the range 6 to 30 [START_REF] Miannay | Fracture Mechanics[END_REF]. It implies a vanishing strength for L→+∞, although this decrease can be rather shallow, owing to the large values of m often reported.

Although relying on strong hypotheses, this weakest-link statistical approach was almost systematically invoked until the 70's to account for size effects on strength whatever the material and/or the loading conditions. However, as shown by Bažant [START_REF] Bazant | Fracture and size effect in concrete and other quasibrittle materials[END_REF][START_REF] Bazant | Scaling theory for quasibrittle structural failure[END_REF], in many situations the hypothesis of brittleness is not obeyed. This is in particular the case when the size of the fracture process zone (FPZ) becomes non-negligible with respect to the system size. In this so-called quasi-brittle case, an energetic, non-statistical size effect applies [START_REF] Bazant | SIZE EFFECT IN BLUNT FRACTURE -CONCRETE, ROCK, METAL[END_REF], which has been shown to account for a large variety of situations [START_REF] Bazant | Scaling theory for quasibrittle structural failure[END_REF]. In what follows, we do not consider (deterministic) energetic size effects and explore a situation, compressive failure, where both the hypotheses of brittleness (in the sense given above) and independence are not fulfilled, up to very large scales. Relaxing these initial hypotheses of the weakest-link theory, our statistical physics approach remains statistical by nature and relies on the interplay between internal disorder and stress redistributions. It is based on a mapping of brittle compressive failure onto the critical depinning transition of an elastic manifold, a class of models widely used in non-equilibrium statistical physics characterized by a dynamic phase transition [START_REF] Fisher | Collective transport in random media: from superconductors to earthquakes[END_REF]. This approach does not consider sample's shape effects [START_REF] Hustrulid | A review of coal pillar strength formulas[END_REF], only statistical size effects. The critical scaling laws associated to this phase transition naturally predict a saturation of the compressive strength at large scale and are in remarkable agreement with measurements reported for various materials such as rocks, ice, coal, or concrete.

Compressive failure cannot be captured by a weakest-link approach

Compressive loadings are particularly relevant in rocks mechanics and geophysical situations [START_REF] Jaeger | Fundamentals of Rock Mechanics[END_REF] as the result e.g. of lithostatic pressure, and consequently for geotechnical problems (e.g. ( 18)). Brittle compressive failure is a complex process, as the local tensile stresses at crack tips are counteracted by the far-field compressive stresses. Consequently, Griffith-like energy balance arguments, or related tools such as fracture toughness, cannot be developed to describe the instability leading to terminal failure, thus making the weakest-link approach inoperative. Instead, brittle compressive failure involves an initiation phase, elastic interactions and stress redistributions, as well as frictional sliding along rough surfaces. In what follows, we mean by brittle failure a situation where microscopic ductile deformation processes such as creep or dislocation motion play a negligible role [START_REF] Schulson | Brittle failure of ice[END_REF]. During the initiation phase, secondary cracks nucleate from the local tensile stresses generated by the frictional sliding along pre-existing defects such as grain boundaries, small joints, or microcracks [START_REF] Nemat-Nasser | Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst[END_REF][START_REF] Schulson | On the initiation of shear faults during brittle compressive failure: a new mechanism[END_REF]. The propagation of these mode I secondary cracks is however rapidly stopped by the farfield compression. Instead, such nucleation events locally soften the material [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Cox | MICROCRACK FORMATION AND MATERIAL SOFTENING IN ROCK MEASURED BY MONITORING ACOUSTIC EMISSIONS[END_REF] and thus cause a redistribution of elastic stresses, which in turn can trigger other microcrackings. Then, in the course towards failure, the interaction and linking of secondary cracks is considered to be at the onset of shear fault formation, from which the macroscopic instability is thought to result [START_REF] Schulson | On the initiation of shear faults during brittle compressive failure: a new mechanism[END_REF][START_REF] Katz | Microfracturing, damage, and failure of brittle granites[END_REF]. This process is characterized by a progressive localization of damage and deformation along a fault [START_REF] Lockner | Quasi-static fault growth and shear fracture energy in granite[END_REF].

The above description shows that all the assumptions of the weakest-link theory are inappropriate in case of compressive failure. Summarizing experimental field and laboratory data obtained for 50 years, it is thus not surprising that their weakest-link predictions are poorly obeyed. When the compressive strength of brittle materials has been measured from laboratory tests over a limited scale range (generally between ~ 10 -2 m and ~ 10 -1 m), either non-significant [START_REF] Kuehn | The compressive strength of ice cubes of different sizes[END_REF][START_REF] Van Mier | Multiaxial strain-softening of concrete, Part I: Fracture[END_REF] or limited [START_REF] Mogi | The influence of the dimensions of specimens on the fracture strength of rocks[END_REF][START_REF] Del Viso | Shape and size effects on the compressive strength of high-strength concrete[END_REF] size effects on were observed, whereas, when reported, the associated variance seemed to increase towards small scales [START_REF] Kuehn | The compressive strength of ice cubes of different sizes[END_REF]. Consequently, these results do not fully constrain empirical or theoretical size effect formulations. Some studies were performed instead several decades ago over a much larger scale range (~ 10 -2 m to few m), combining laboratory and in-situ tests [START_REF] Hustrulid | A review of coal pillar strength formulas[END_REF][START_REF] Pratt | The effect of specimen size on the mechanical properties of unjointed diorite[END_REF][START_REF] Bieniawski | The effect of specimen size on compressive strength of coal[END_REF][START_REF] Brace | The effect of size on mechanical properties of rock[END_REF]. All of them reported a significant scale-dependence of at small scales, tentatively and empirically fitted as a power law decrease(18) ~ , but also a non-zero asymptotic strength at large (> 1m) scales, not explained by the weakest link approach. So far, there is no clear explanation for this non-vanishing compressive strength. Instead, empirical formulations of size effects on compressive strength of brittle materials [START_REF] Heuze | Scale effects in the determination of rock mass strength and deformability[END_REF][START_REF] Hustrulid | A review of coal pillar strength formulas[END_REF][START_REF] Hoek | Practical estimates of rock mass strength[END_REF] generally ignore such asymptotic behaviour. Following observations at small scales, they all share a common power law scaling ~ , with β varying from very small values(29) (i.e. almost no size effect), to the LEFM scaling β =1/2. The weakest-link concept has been sometimes put forth to explain this scaling for small β values( 29), although it is clear from above that this approach is irrelevant in case of compressive failure. On the other hand, a (deterministic) energy analysis of compression failure based on physical (micromechanical) considerations has been proposed [START_REF] Bazant | Fracture and size effect in concrete and other quasibrittle materials[END_REF][START_REF] Bazant | Compression failure of quasibrittle materials and size effect[END_REF]. In agreement with the scenario described above, it considers that the nucleation of microcracks roughly parallel to the principal compression axis form a band whose mechanical instability, triggered by the buckling of the microslabs separating the microcracks, leads to failure. However, the microcracks, and therefore the associated band, are assumed to nucleate suddenly, just preceding macro-failure. I.e., this approach does not consider the progressive route towards the failure, characterized by elastic interactions between cracks and progressive damage localization. In other words, the transition to failure is considered as a "first-order" transition. This, in addition to an assumed constant scaling between the band length and the size of the system, gives a vanishing strength towards large scales with an asymptotic scaling ~ / , i.e. slightly shallower than the LEFM scaling. Consequently, the observed nonvanishing strength is not explained. In addition, this deterministic approach cannot, by nature, account for a size dependence of the variability of strength. We propose instead to consider compressive failure as a critical transition and develop a mapping onto the depinning transition that allows accounting for the interplay between local disorder and long-ranged elastic interactions leading to a statistical finite size effect.

Compressive failure as a critical depinning transition

The modeling of the mechanical behavior of heterogeneous materials induced in recent years an intense research activity. From the early nineties emerged the idea that non-linear processes such as fracture, plasticity and damage could be discussed as critical phenomena [START_REF] Herrmann | Statistical models for the fracture of disordered media[END_REF]. In the context of damage, a paradigmatic example of this approach is given by the fiber bundle model [START_REF] Pradhan | Failure processes in elastic fiber bundles[END_REF]. However, the scope of this model as well as its variants [START_REF] Delaplace | Damage cascade' in a softening interface[END_REF] are restricted to the catastrophic failure occurring under tensile conditions, i.e. the transition from an initiation stage to a propagating stage triggered by the development of a critical nucleus. In contrast our interest here is the study of progressive damage under compressive conditions.

To our knowledge the first attempt of a description of compressive damage as a critical phenomenon is due to Toussaint and Pride [START_REF] Toussaint | Fracture of disordered solids in compression as a critical phenomenon. I. Statistical mechanics formalism[END_REF]. They developed a statistical mechanics formalism based on ensemble averages obtained over the rock seen as collection of disordered mesovolumes. A specific Hamiltonian [START_REF] Toussaint | Fracture of disordered solids in compression as a critical phenomenon. II. Model Hamiltonian for a population of interacting cracks[END_REF] accounted for the interaction between cracks and the traditional tools of equilibrium statistical mechanics (partition function, maximum of entropy) were used to characterize the localization transition associated with the failure of the material.

We here follow a different route. We proposed recently a numerical progressive damage model whose results are consistent with an interpretation of brittle compressive failure as critical phase transition [START_REF] Girard | Fracture as a critical phenomenon in a progressive damage model[END_REF][START_REF] Girard | Damage-cluster distributions and size effect on strength in compressive failure[END_REF]. This finite-element model( 41) considered a continuous elastic material with progressive local damage: the elastic modulus of an element decreases each time the stress state on that element exceeds a given threshold defined by a Coulomb criterion. This elastic softening simulates an increase in microcrack density at the element scale [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Cox | MICROCRACK FORMATION AND MATERIAL SOFTENING IN ROCK MEASURED BY MONITORING ACOUSTIC EMISSIONS[END_REF]. Disorder was introduced on the local stress threshold. As the result of elastic interactions, the stress redistribution following a damage event can trigger an avalanche of damage. We showed(41, 42) (i) that the size of the largest damage cluster as well as of the largest damage avalanche diverge at peak load, which just precedes failure, and (ii) the divergence of a correlation length  at failure, ~Δ / , where Δ (respectively Δ

) is the control parameter for strain-(respectively stress-) driven simulations, the applied macroscopic strain, the corresponding value at peak stress  f (failure), and =1.00.1 the correlation length exponent.

Here, in the spirit of a recent model of amorphous plasticity [START_REF] Talamali | Strain localization and anisotropic correlations in a mesoscopic model of amorphous plasticity[END_REF], we formalize this interpretation of compressive failure as a critical transition through a mapping onto a depinning model, a class of models that exhibit out-of-equilibrium phase transition. The damaging process is described as the motion of a d-dimensional elastic manifold with longrange interactions through a random field of obstacles within a space of dimension d+1. In our case, the macroscopic stress plays the role of the driving force and a local damage event corresponds to the depinning from an obstacle, with elastic redistributions in both cases.

Damage is represented by a scalar field at a mesoscopic scale λ, that typically corresponds to the correlation length of the structural disorder of the material, and it occurs whenever the stress state σ reaches the boundary of an elastic domain defined by the Coulomb criterion, | | . This criterion is of wide applicability for brittle materials under compressive stress states to define the onset of damage [START_REF] Jaeger | Fundamentals of Rock Mechanics[END_REF][START_REF] Weiss | Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice[END_REF]. and are respectively the shear and normal stress (sign convention positive in tension) over a plane maximizing the Coulomb stress | | , and μ tan is an internal friction coefficient ( is the socalled angle of internal friction). The heterogeneous nature of the material, i.e. the disorder, is accounted for by a statistical variability of the cohesion , .

A crucial feature is the non-independence of the local damaging events occurring in the material. Any local event is characterized by a local decrease of the elastic modulus that occurs in a small region surrounded by the remainder of the material. The latter can be seen as an elastic matrix and its reaction induces an elastic stress field all over the material. We started from the classical inhomogeneity problem of Eshelby [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF][START_REF] Eshelby | Elastic field of an ellipsoidal inclusion[END_REF] to calculate the stress field induced by a damaged inclusion. Since the damaged material is elastically disordered, the internal stress cannot be obtained by a simple superposition of the contributions of isolated inclusions. In order to partly account for interactions between inclusions, we develop a two-step strategy to compute the internal stress (see SI). The damage field is first used to obtain a self-consistent estimate of the average, macroscopic elastic behavior, . This effective value, which partly accounts for interactions between inclusions, is then used to obtain a fluctuating damage field, defined from the contrast between the actual elastic moduli at micro-scale and . The internal stress is finally obtained from the sum of the elastic contributions of the associated effective inclusions. The interplay between local disorder and elasticity is the basis for depinning models, which have proved successful in recent years to describe physical and mechanical phenomena as various as the advance or receding of triple contact line on a disordered substrate [START_REF] Joanny | A MODEL FOR CONTACT-ANGLE HYSTERESIS[END_REF][START_REF] Moulinet | Width distribution of contact lines on a disordered substrate[END_REF][START_REF] Bonn | Wetting and spreading[END_REF], the motion of a magnetic wall in a thin film [START_REF] Lemerle | Domain wall creep in an Ising ultrathin magnetic film[END_REF], the propagation of a crack front in a heterogeneous material [START_REF] Gao | A First-Order Perturbation Analysis of Crack Trapping by Arrays of Obstacles[END_REF][START_REF] Santucci | Statistics of fracture surfaces[END_REF][START_REF] Dalmas | Crack Propagation through Phase-Separated Glasses: Effect of the Characteristic Size of Disorder[END_REF][START_REF] Bonamy | Failure of heterogeneous materials: A dynamic phase transition?[END_REF], etc. The full derivation of our problem is given in the SI. It allows a complete mapping onto a depinning model, with the following equation of evolution of the damage field:

, , / ,

where denotes the positive part, µ is a mobility coefficient and λ is the characteristic length scale of the microstructural disorder. In the language of depinning models, we identify as the external forcing term, as the elastic contribution induced by the damage field D, via the knowledge of the damage dependent effective modulus , and the disorder.

This formal mapping enables us to apply to progressive damage the various analytical and numerical results obtained in the framework of the depinning transition. In the "thermodynamic" limit, i.e. for a system of infinite size, a well-defined critical threshold  th separates the static phase (limited damage) from the dynamic one (failure). For our problem, this is the expression of a non-vanishing asymptotic strength,  ∞ >0. In case of samples of finite size, fluctuations of the measured threshold  f are expected in the vicinity of  th . We thus expect, as for the threshold force of the depinning transition [START_REF] Zapperi | Current challenges for statistical physics in fracture and plasticity[END_REF][START_REF] Narayan | Threshold critical dynamics of driven interfaces in random media[END_REF], a finite-size scaling for the compressive strength of the form: ). This implies that in case of weak disorder and will be of the order of (e.g. grain size, aggregate size,..), but might be significantly larger in case of strong disorder when e.g. cracks or joints widely distributed in size are initially present in the material. The classical assumption( 55) is = FS , while the mean-field prediction( 56) is =1. Equation ( 2)

expresses the variability on strength intrinsically related to the failure process, on which experimental sources of variability should be added. Towards very small scales, ≪ , the proposed scaling (equations ( 2) and ( 3)) necessarily breaks down when  f approaches the material strength limit [START_REF] Bazant | Fracture and size effect in concrete and other quasibrittle materials[END_REF].

Application to experimental data in cohesive materials

In full qualitative agreement with experimental data (see above), this finite-size scaling implies an apparent power law decay of the mean strength at small sizes, a non-vanishing strength for L→+∞, and an increasing variability towards small sizes. Relation (2) is hardly testable from experimental data, as (σ f ) values, when reported, are based on a limited number of independent tests and include experimental-related scatter. For studies including field tests at the meter scale [START_REF] Hustrulid | A review of coal pillar strength formulas[END_REF][START_REF] Pratt | The effect of specimen size on the mechanical properties of unjointed diorite[END_REF][START_REF] Bieniawski | The effect of specimen size on compressive strength of coal[END_REF][START_REF] Brace | The effect of size on mechanical properties of rock[END_REF] and assuming that the asymptotic strength  was reached at the largest scale, we fitted the data with relation (3). The agreement is remarkable, with the bestfit  FS value ranging from 0.8 to 1.05 (Fig. 1), i.e. close to the mean-field prediction,  =1.

The corresponding length scales L B range from ~ 20 to 40 cm, a possible sign of relatively strong disorder (joints, microcracks) in these natural rock samples. For studies based only on lab tests, either:

(i) no significant size effect on strength is reported, as for fresh-water granular ice [START_REF] Kuehn | The compressive strength of ice cubes of different sizes[END_REF], limestone [START_REF] Thuro | Scale effects in rock strength properties. Part I: unconfined compressive test and Brazilian test[END_REF], granite [START_REF] Thuro | Scale effects in rock strength properties. Part I: unconfined compressive test and Brazilian test[END_REF], or concrete [START_REF] Van Mier | Multiaxial strain-softening of concrete, Part I: Fracture[END_REF]. This can be explained by a small L B in equation ( 3) and/or an insufficient dataset to properly sample size effects;

(ii) or the data can be well fitted by (3) assuming  FS =1, as shown on figure S1 for highperformance (HP) concrete [START_REF] Del Viso | Shape and size effects on the compressive strength of high-strength concrete[END_REF] and marble [START_REF] Mogi | The influence of the dimensions of specimens on the fracture strength of rocks[END_REF]. In case of HP concrete, the scale L B is close to the maximum size of the andesite aggregate (12 mm) [START_REF] Del Viso | Shape and size effects on the compressive strength of high-strength concrete[END_REF]. In agreement with our former expectation, in such initially unfractured materials, the microstructural scale (aggregate size, grain size, ..) likely sets this L B scale.

The confining pressure  3 increases the axial compressive strength  1f of rocks, ice, coal or concrete [START_REF] Jaeger | Fundamentals of Rock Mechanics[END_REF][START_REF] Van Mier | Multiaxial strain-softening of concrete, Part I: Fracture[END_REF][START_REF] Hoek | Practical estimates of rock mass strength[END_REF][START_REF] Renshaw | Universal behavior in compressive failure of brittle materials[END_REF]. Up to a confining ratio  3 / 1f of about 30%, failure is brittle and occurs through microcrack initiation and interactions, followed by shear fault formation at the onset of macroscopic instability, as described above [START_REF] Renshaw | Universal behavior in compressive failure of brittle materials[END_REF]. This failure mode is sometimes called Coulombic faulting, reminiscent of the importance of solid friction in this case [START_REF] Weiss | Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice[END_REF].

Consequently, one expects our mapping to the depinning transition to hold in this case. The combination of the effects of size and of confining pressure on strength has been rarely

studied, but the available data on coal [START_REF] Hoek | Practical estimates of rock mass strength[END_REF] are well explained by equation ( 2) with  FS =1 and an increasing asymptotic strength  ∞ with increasing confinement, as expected (Figure 2). For these natural samples, the scale L B is once again relatively large (several cm). It slightly decreases with increasing confinement, suggesting a secondary effect of confinement on the sensibility of L B to the variability of the local strength, . For such multiaxial compression tests, the deviatoric stress appears as the most relevant variable. Thus, the strength has been defined as . This choice for ,instead of the axial strength σ 1f , obviously doesn't change the value of the exponent  FS or of the scale L B . For confinements larger than ~ 30%, compressive failure is no more brittle, and another failure mode occurs, as mode I secondary crack nucleation is inhibited. This failure mode, called plastic faulting, involves thermal softening and an adiabatic shear instability [START_REF] Renshaw | Plastic faulting: Brittle-like failure under high confinement[END_REF]. In this case, we no longer expect elastic interactions between microcracks to occur, i.e. our size effect formalism to hold. Indeed, it has been found that for large confining pressure, size effects on compressive strength disappear [START_REF] Habib | Sur la disparition de l'effet d'échelle aux hautes pressions[END_REF]. This sets the range of applicability of our formalism.

Application to granular media

This mapping onto the depinning problem is likely not restricted to brittle cohesive materials.

As described in [START_REF] Talamali | Strain localization and anisotropic correlations in a mesoscopic model of amorphous plasticity[END_REF] and recalled in the SI, it can be extended to the macroscopic plastic instability in amorphous media. The case of a cohesionless frictional granular medium compressed under confinement can be interpreted as an intermediate case between amorphous plasticity and compressive damage. Indeed, shear-induced local rearrangements of the granular structure lead to irreversible local strains but not to a systematic degradation of local stiffness. Compared to amorphous plasticity, other complications are present, however, such as dilatancy. When compressed under confinement, these media exhibit a macroscopic flowing instability associated to strain localization [START_REF] Desrues | Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry[END_REF], which sets the yield stress, i.e. the "strength". This instability can also be considered as a critical transition [START_REF] Gimbert | Crossover from quasi-static to dense flow regime in compressed frictional granular media[END_REF]. In this case, the disorder is topological, coming from the arrangement of particles.

From this analogy, we expect finite-size scaling (relations (2) and ( 3)) to ensue. However, to our knowledge, there is so far no experimental data over a significant range of scales to check this anticipation. We therefore simulated the mechanical behaviour of frictional granular materials using the Molecular Dynamics discrete element method [START_REF] Radjai | Discrete-element modelling of granular materials[END_REF]. Two-dimensional granular assemblies made of a set of frictional circular grains were considered. The dynamic equations were solved for each grain, which interact via linear elastic laws and Coulomb friction when they are in contact [START_REF] Agnolin | Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks[END_REF]. Neither cohesion between grains, nor rolling resistance were considered. In order to build granular assemblies with strongly different initial (before loading) characteristics, in terms of coordination number and/or packing density, specific sample preparation procedures were used. Details on the discrete element model as well as on these procedures are given in the SI. These granular assemblies were loaded under a multi-axial configuration, with the external axial stress 1 prescribed in order to impose a constant axial strain-rate, whereas the radial stress 3 , i.e. the confining pressure, was kept constant.

The 2D sample sizes varied from 100 to ~ 45000 grains.

Whatever the initial characteristics of the assemblies, finite size scaling of compressive strength was observed, in full agreement with equations ( 2) and (3) (Fig. 3),

showing the generic nature of the concept proposed here. In agreement with our expectation, the scales L A and L B were slightly larger than the average particle size, and increased for less dense, less coordinated samples.

Failure strength statistics

As noted in the introduction, the weakest-link hypothesis leads to extreme value statistics for the probability of failure under an applied stress σ. As the weakest-link theory appears irrelevant for compressive failure, we do not expect such extreme statistics for the distribution of strength in this case. Published experimental data with a sufficient number of failure tests to analyze strength distributions are rare. Results obtained on ice indeed exclude extreme statistics, either Weibull or Gumbel, and argue instead for Gaussian statistics (Fig. 4). The same is true for the discrete-element modeling of frictional granular media (Fig. S2). We 

Concluding comments

This new, statistical physics interpretation of compressive failure of continuous and granular media has important practical consequences. First, when lab-scales (cm to dm) studies show no significant size effect, one expects that lab strength values give a good estimate of the asymptotic (field) strength. Extrapolation of lab-scales data to scales smaller than L A or L B will be more difficult, owing to the intrinsic variability at such scales. However, the meanfield estimate of the finite-size exponent,  FS =1, obtained from theoretical considerations, well describes the fluctuations and the associated finite-size corrections, whereas for initially unfractured materials, L A and L B are related to the characteristic microstructural scale (grain size, aggregate size, ..). Therefore, owing to its predictive potential, we believe that the proposed scaling is a useful, simple to use guidance for future structural design rules or regulations (e.g. ( 2)).

Materials and Methods

The characteristics and the simulation settings of the discrete-element model of frictional granular media are given in the Supporting Information, along with the formal derivation of the mapping of brittle compressive failure onto the depinning transition of an elastic manifold. 

  FS is the finite-size exponent and  ∞ a non-vanishing asymptotic value of the strength for L→+∞. A, B (in Pa.m / ), L A = and L B (in m) are constants. These length scales define the scales below which respectively the fluctuations and the finite-size corrections become important compared to the asymptotic strength  ∞ . We expect these to scale as , ~ , where represents the associated variability on the local cohesive strength (see S.I.

  anticipate, from the criticality of the transition, the scaling form of the distribution , of the fluctuations for a system of size L as , Ψ . Such a scaling form naturally leads to the scaling relations for the mean value (relation (3)) and the standard deviation (relation (2)) of the compressive strength discussed above. However, the precise form of the statistical distribution Ψ is not prescribed by this simple scaling analysis. In particular, Ψ is not expected to obey the predictions of extreme value statistics whose hypotheses (absence of interactions) are not satisfied in the present problem. In recent results obtained in a similar framework (depinning model of amorphous plasticity (65)), Gaussian-like distributions were observed as well.Combining Gaussian statistics with equations (2) and (3) leads to the following expression for the probability of failure at scale L under a stress :
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for the mean strength and equation ( 2) for the standard deviation, with  FS =1.07, L A =1.68, L B =4.21 and

The best-fit exponent  FS and scale L A were obtained from the standard deviation scaling (bottom), the asymptotic strength  ∞ and scale L B were then obtained from the scaling of (inset of (top)). Inset of (top): Same data and fits, in a vs The collapse onto a single straight line, which corresponds to equation (4), argues for Gaussian statistics.