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Abstract 

 

The larger the structures, the lower their mechanical strength. Already discussed by da Vinci 

and  Mariotte  several centuries ago, size effects on strength remain of crucial importance in 

modern engineering for the elaboration of safety regulations in structural design, or the 

extrapolation of laboratory results to geophysical field scales. Under tensile loading, statistical 

size effects are traditionally modeled with a weakest link approach. One of its prominent 

results is a prediction of vanishing strength at large scales that can be quantified in the 

framework of extreme value statistics. Despite a frequent use outside its range of validity, this 

approach remains the dominant tool in the field of statistical size effects. Here we focus on 

compressive failure, which concerns a wide range of geophysical and geotechnical situations. 

We show on historical and recent experimental data that weakest link predictions are not 

obeyed. In particular, the mechanical strength saturates at a non-zero value towards large 

scales. Accounting explicitly for the elastic interactions between defects during the damage 

process, we build a formal analogy of compressive failure with the depinning transition of an 

elastic manifold.  This critical transition interpretation naturally entails finite-size scaling laws 

for the mean strength and its associated variability. Theoretical predictions are in remarkable 

agreement with measurements reported for various materials such as rocks, ice, coal, or 

concrete. This formalism, which can also be extended to the flowing instability of granular 

media under multiaxial compression, has important practical consequences for future design 

rules.  
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Significance statement 

 

Large structures generally fail under stresses significantly lower than small ones. This is the 

size effect on strength, one of the oldest problems of engineering, already discussed by 

Leonardo da Vinci and Edmé Mariotte centuries ago. One classical explanation is the weakest 

link hypothesis: the largest the “chain”, the larger the probability to find a weak link whose 

breaking will set the failure of the whole chain. We show, however, that it is irrelevant in case 

of compressive loading, a situation particularly crucial for e.g. geotechnical problems. 

Interpreting compressive failure as a critical transition between an “intact” and a “failed” 

state, we quantitatively explain the size effects on compressive strength of materials such as 

concrete, rocks, coal, ice, or granular materials. 
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\body 

 

Introduction 

 

Owing to its importance for structural design(1), the elaboration of safety regulations(2), or 

the extrapolation of laboratory results to geophysical field scales(3), the size effects on 

strength of materials is one of the oldest problems in engineering, already discussed by 

Leonardo da Vinci and Edmé Mariotte(4) several centuries ago, but still an active field of 

research(5, 6). As early as 1686, Mariotte(4) qualitatively introduced the weakest-link concept 

to account for size effects on mechanical strength, a phenomenon evidenced by Leonardo da 

Vinci almost two centuries earlier. This idea, which states that the larger the system 

considered, the larger the probability to find a particularly faulty place that will be at the 

origin of global failure, was formalized much later by Weibull(7). Considering a chain of 

elementary independent links, the failure of the chain is obtained as soon as one link happens 

to break. By virtue of the independence between the potential breaking events, the survival 

probability of a chain of N links is obtained by the simple multiplication of the N elementary 

probabilities. Depending on the properties of the latter, the global survival probability 

converges toward one of the three limit distributions identified by Weibull, Gumbel(8) and 

Fréchet respectively. Together with Fisher and Tippett(9), these authors pioneered the field of 

extreme value statistics. 

 

This purely statistical argument, undoubtedly valid in 1D, was extended by Weibull(7, 10) to 

account for the risk of failure of 3D samples or structures. Beside the hypothesis of 

independence, it thus requires an additional hypothesis of brittleness: the nucleation of any 

elementary crack at the microscopic scale from a pre-existing flaw is assumed to immediately 

induce the failure at the macro-scale. More specifically, following linear elastic fracture 

mechanics (LEFM) stating that crack initiation from a flaw of size s occurs at a stress ߪ௖~ିݏଵ/ଶ , one gets a probability of failure of a system of size L under an applied stress σ, 

),( LPF  , that depends on the distribution of pre-existing defect sizes. Assuming a power law 

tail for this distribution, Weibull statistics are expected(7), 
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, where m is the so-called Weibull’s modulus, d is the 

topological dimension and L0 and u are normalizing constants. For Weibull statistics, the 

mean strength ߪۃ௙ۄ and the associated standard deviation (σf) then scale with sample size L as ߪۃ௙ۄሺܮሻ	~	ߜ൫ߪ௙൯ሺܮሻ	~	ିܮௗ/௠. This approach has been successfully applied to the statistics of 

brittle failure strength under tension(7, 13), with m in the range 6 to 30(14). It implies a 

vanishing strength for L→+∞, although this decrease can be rather shallow, owing to the large 

values of m often reported. 

  

Although relying on strong hypotheses, this weakest-link statistical approach was almost 

systematically invoked until the 70’s to account for size effects on strength whatever the 

material and/or the loading conditions. However, as shown by Bažant(1, 5), in many 

situations the hypothesis of brittleness is not obeyed. This is in particular the case when the 

size of the fracture process zone (FPZ) becomes non-negligible with respect to the system 

size. In this so-called quasi-brittle case, an energetic, non-statistical size effect applies(15), 

which has been shown to account for a large variety of situations (5). Towards large scales, 

i.e. L→+∞, the FPZ becomes negligible compared to L, the hypothesis of brittleness should 

therefore be recovered and statistical size effects should dominate. Statistical numerical 

models of fracture of heterogeneous media also revealed deviations from the extreme value 

statistics predictions(16)  but, as stated by Alava et al. (11), “the role of damage accumulation 

for fracture size effects in unnotched samples still remains unclear”. As shown below, 

compressive failure results from such progressive damage accumulation. 

 

In what follows, we do not consider (deterministic) energetic size effects and explore a 

situation, compressive failure, where both the hypotheses of brittleness (in the sense given 

above) and independence are not fulfilled, up to very large scales. Relaxing these initial 

hypotheses of the weakest-link theory, our statistical physics approach remains statistical by 

nature and relies on the interplay between internal disorder and stress redistributions. It is 

based on a mapping of brittle compressive failure onto the critical depinning transition of an 

elastic manifold, a class of models widely used in non-equilibrium statistical physics 

characterized by a dynamic phase transition(17).  This approach does not consider sample’s 

shape effects(18), only statistical size effects. The critical scaling laws associated to this phase 

transition naturally predict a saturation of the compressive strength at large scale and are in 
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remarkable agreement with measurements reported for various materials such as rocks, ice, 

coal, or concrete. 
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Compressive failure cannot be captured by a weakest-link approach  

 

Compressive loadings are particularly relevant in rocks mechanics and geophysical situations 

(19) as the result e.g. of lithostatic pressure, and consequently for geotechnical problems (e.g. 

(18)). Brittle compressive failure is a complex process, as the local tensile stresses at crack 

tips are counteracted by the far-field compressive stresses. Consequently, Griffith-like energy 

balance arguments, or related tools such as fracture toughness, cannot be developed to 

describe the instability leading to terminal failure, thus making the weakest-link approach 

inoperative. Instead, brittle compressive failure involves an initiation phase, elastic 

interactions and stress redistributions, as well as frictional sliding along rough surfaces. In 

what follows, we mean by brittle failure a situation where microscopic ductile deformation 

processes such as creep or dislocation motion play a negligible role(20). During the initiation 

phase, secondary cracks nucleate from the local tensile stresses generated by the frictional 

sliding along pre-existing defects such as grain boundaries, small joints, or microcracks(21, 

22). The propagation of these mode I secondary cracks is however rapidly stopped by the far-

field compression. Instead, such nucleation events locally soften the material(23, 24) and thus 

cause a redistribution of elastic stresses, which in turn can trigger other microcrackings. Then, 

in the course towards failure, the interaction and linking of secondary cracks is considered to 

be at the onset of shear fault formation, from which the macroscopic instability is thought to 

result(22, 25). This process is characterized by a progressive localization of damage and 

deformation along a fault(26).  

 

The above description shows that all the assumptions of the weakest-link theory are 

inappropriate in case of compressive failure. Summarizing experimental field and laboratory 

data obtained for 50 years, it is thus not surprising that their weakest-link predictions are 

poorly obeyed. When the compressive strength of brittle materials has been measured from 

laboratory tests over a limited scale range (generally between ~ 10
-2

 m and ~ 10
-1

 m), either 

non-significant(27, 28) or limited(29, 30) size effects on ߪۃ௙ۄ were observed, whereas, when 

reported, the associated variance seemed to increase towards small scales(27). Consequently, 

these results do not fully constrain empirical or theoretical size effect formulations. Some 

studies were performed instead several decades ago over a much larger scale range (~ 10
-2

 m 

to few m), combining laboratory and in-situ tests(18, 31-33). All of them reported a 

significant scale-dependence of ߪۃ௙ۄ at small scales, tentatively and empirically fitted as a 
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power law decrease(18) ߪۃ௙ۄሺܮሻ~	ିܮఉ , but also a non-zero asymptotic strength at large (> 

1m) scales, not explained by the weakest link approach. So far, there is no clear explanation 

for this non-vanishing compressive strength. Instead, empirical formulations of size effects on 

compressive strength of brittle materials(3, 18, 34) generally ignore such asymptotic 

behaviour. Following observations at small scales, they all share a common power law scaling ߪۃ௙~ۄ	ିܮఉ, with β varying from very small values(29) (i.e. almost no size effect), to the 

LEFM scaling β =1/2. The weakest-link concept has been sometimes put forth to explain this 

scaling for small β values(29), although it is clear from above that this approach is irrelevant 

in case of compressive failure. On the other hand, a (deterministic) energy analysis of 

compression failure based on physical (micromechanical) considerations has been proposed(1, 

35). In agreement with the scenario described above, it considers that the nucleation of 

microcracks roughly parallel to the principal compression axis form a band whose mechanical 

instability, triggered by the buckling of the microslabs separating the microcracks, leads to 

failure. However, the microcracks, and therefore the associated band, are assumed to nucleate 

suddenly, just preceding macro-failure. I.e., this approach does not consider the progressive 

route towards the failure, characterized by elastic interactions between cracks and progressive 

damage localization. In other words, the transition to failure is considered as a “first-order” 

transition. This, in addition to an assumed constant scaling between the band length and the 

size of the system, gives a vanishing strength towards large scales with an asymptotic scaling ߪ௙~	ିܮଶ/ହ, i.e. slightly shallower than the LEFM scaling. Consequently, the observed non-

vanishing strength ߪஶ is not explained. In addition, this deterministic approach cannot, by 

nature, account for a size dependence of the variability of strength. We propose instead to 

consider compressive failure as a critical transition and develop a mapping onto the depinning 

transition that allows accounting for the interplay between local disorder and long-ranged 

elastic interactions leading to a statistical finite size effect. 

 

 

Compressive failure as a critical depinning transition 

 

The modeling of the mechanical behavior of heterogeneous materials induced in recent years 

an intense research activity. From the early nineties emerged the idea that non-linear 

processes such as fracture, plasticity and damage could be discussed as critical phenomena 

(36). In the context of damage, a paradigmatic example of this approach is given by the fiber 
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bundle model (37). However, the scope of this model as well as its variants (38) are restricted 

to the catastrophic failure occurring under tensile conditions, i.e. the transition from an 

initiation stage to a propagating stage triggered by the development of a critical nucleus. In 

contrast our interest here is the study of progressive damage under compressive conditions. 

To our knowledge the first attempt of a description of compressive damage as a critical 

phenomenon is due to Toussaint and Pride(39). They developed a statistical mechanics 

formalism based on ensemble averages obtained over the rock seen as collection of disordered 

mesovolumes. A specific Hamiltonian (40) accounted for the interaction between cracks and 

the traditional tools of equilibrium statistical mechanics (partition function, maximum of 

entropy) were used to characterize the localization transition associated with the failure of the 

material.  

 

We here follow a different route.  We proposed recently a numerical progressive damage 

model whose results are consistent with an interpretation of brittle compressive failure as 

critical phase transition(41, 42). This finite-element model(41) considered a continuous elastic 

material with progressive local damage: the elastic modulus of an element decreases each 

time the stress state on that element exceeds a given threshold defined by a Coulomb 

criterion. This elastic softening simulates an increase in microcrack density at the element 

scale(23, 24). Disorder was introduced on the local stress threshold. As the result of elastic 

interactions, the stress redistribution following a damage event can trigger an avalanche of 

damage. We showed(41, 42) (i) that the size of the largest damage cluster as well as of the 

largest damage avalanche diverge at peak load, which just precedes failure, and (ii) the 

divergence of a correlation length  at failure, ߦ~Δିଵ/ఔ, where Δ ൌ ఢ೘೑ିఢ೘ఢ೘೑  (respectively	Δ ൌఙ೑ିఙఙ೑  ) is the control parameter for strain- (respectively stress-) driven simulations, ߳௠ the 

applied macroscopic strain, ߳௠௙	the corresponding value at peak stress f (failure), and 

=1.00.1 the correlation length exponent.  

 

Here, in the spirit of a recent model of amorphous plasticity(43), we formalize this 

interpretation of compressive failure as a critical transition through a mapping onto a 

depinning model, a class of models that exhibit out-of-equilibrium phase transition. The 

damaging process is described as the motion of a d-dimensional elastic manifold with long-

range interactions through a random field of obstacles within a space of dimension d+1. In our 

case, the macroscopic stress plays the role of the driving force and a local damage event 
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corresponds to the depinning from an obstacle, with elastic redistributions in both cases. 

Damage is represented by a scalar field ܦሺܚሻ  at a mesoscopic scale λ, that typically 

corresponds to the correlation length of the structural disorder of the material, and it occurs 

whenever the stress state σ reaches the boundary of an elastic domain defined by the Coulomb 

criterion, |߬| ൅ ேߪߤ ൌ ߬஼. This criterion is of wide applicability for brittle materials under 

compressive stress states to define the onset of damage (19, 44). Ĳ and ߪே	are respectively the 

shear and normal stress (sign convention positive in tension) over a plane maximizing the 

Coulomb stress |߬| ൅ ே, and μߪߤ ൌ tan	ሺ߮ሻ is an internal friction coefficient (߮ is the so-

called angle of internal friction). The heterogeneous nature of the material, i.e. the disorder, is 

accounted for by a statistical variability of the cohesion	߬஼, ߬ߜ஼.  

 

A crucial feature is the non-independence of the local damaging events occurring in the 

material. Any local event is characterized by a local decrease of the elastic modulus that 

occurs in a small region surrounded by the remainder of the material. The latter can be seen as 

an elastic matrix and its reaction induces an elastic stress field all over the material. We 

started from the classical inhomogeneity problem of Eshelby(45, 46) to calculate the stress 

field induced by a damaged inclusion. Since the damaged material is elastically disordered, 

the internal stress cannot be obtained by a simple superposition of the contributions of 

isolated inclusions. In order to partly account for interactions between inclusions, we develop 

a two-step strategy to compute the internal stress (see SI). The damage field is first used to 

obtain a self-consistent estimate of the average, macroscopic elastic behavior,	ܧത. This 

effective value, which partly accounts for interactions between inclusions, is then used to 

obtain a fluctuating damage field, defined from the contrast between the actual elastic moduli 

at micro-scale and ܧത. The internal stress is finally obtained from the sum of the elastic 

contributions of the associated effective inclusions. The interplay between local disorder and 

elasticity is the basis for depinning models, which have proved successful in recent years to 

describe physical and mechanical phenomena as various as the advance or receding of triple 

contact line on a disordered substrate (47-49), the motion of a magnetic wall in a thin film 

(50), the propagation of a crack front in a heterogeneous material (51-54), etc. The full 

derivation of our problem is given in the SI. It allows a complete mapping onto a depinning 

model, with the following equation of evolution of the damage field: ߤ ݐܦ߲߲ ሺܚሻ ൌ ࣬ሾߪ௦௘௫௧ ൅ ,ሽܦ௦௘௟ሺሼߪ ,ሽሻܦതሺሼܧ ሻߣ/ܚ െ ,ܚሺ߮ሻ߬஼ሺݏ݋ܿʹ  ሺͳሻ																													ሻሿܦ
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where ࣬ denotes the positive part, µ is a mobility coefficient and λ is the characteristic length 

scale of the microstructural disorder. In the language of depinning models, we identify ߪ௦௘௫௧ as 

the external forcing term, ߪ௦௘௟ as the elastic contribution induced by the damage field D, via 

the knowledge of the damage dependent effective modulus ܧത, and ߬஼ the disorder.  

 

This formal mapping enables us to apply to progressive damage the various analytical and 

numerical results obtained in the framework of the depinning transition. In the 

“thermodynamic” limit, i.e. for a system of infinite size, a well-defined critical threshold th 

separates the static phase (limited damage) from the dynamic one (failure). For our problem, 

this is the expression of a non-vanishing asymptotic strength, ∞>0. In case of samples of 

finite size, fluctuations of the measured threshold f  are expected in the vicinity of th. We 

thus expect, as for the threshold force of the depinning transition(6, 55), a finite-size scaling 

for the compressive strength ߪ௙ of the form: 

ሻܮ൯ሺ݂ߪ൫ߜ ൌ െଵ/ఔಷೄܮ	ܣ 						, or						 ∞ߪ	ሻܮ൯ሺ݂ߪ൫ߜ 	 ൌ ൬ ൰െଵ/ఔಷೄܣܮܮ 																																			ሺʹሻ 

ሻܮሺۄ݂ߪۃ ൌ െଵ/ఔಷೄܮ	ܤ ൅ ,												∞ߪ or						 ∞ߪ	ሻܮሺۄ݂ߪۃ 	 ൌ ൬ ൰െଵ/ఔಷೄܤܮܮ ൅ ͳ																								ሺ͵ሻ 
where FS is the finite-size exponent and ∞ a non-vanishing asymptotic value of the strength 

for L→+∞. A, B (in	Pa.mଵ/ఔಷೄ), LA=ቀ ஺ఙಮቁఔಷೄ and LBൌ ቀ ஻ఙಮቁఔಷೄ  (in m) are constants. These 

length scales define the scales below which respectively the fluctuations and the finite-size 

corrections become important compared to the asymptotic strength ∞. We expect these to 

scale as ܮ஺,஻~ߣ ቀఋఛ೎ఛ೎ ቁఔಷೄ, where 
ఋఛ೎ఛ೎  represents the associated variability on the local cohesive 

strength (see S.I.). This implies that in case of weak disorder ܮ஺and ܮ஻will be of the order of ߣ 

(e.g. grain size, aggregate size,..), but might be significantly larger in case of strong disorder 

when e.g. cracks or joints widely distributed in size are initially present in the material. The 

classical assumption(55) is =FS, while the mean-field prediction(56) is =1. Equation (2) 

expresses the variability on strength intrinsically related to the failure process, on which 

experimental sources of variability should be added. Towards very small scales, ܮ ≪  the ,ߣ

proposed scaling (equations (2) and (3)) necessarily breaks down when f approaches the 

material strength limit (1).  

 

Application to experimental data in cohesive materials 
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In full qualitative agreement with experimental data (see above), this finite-size scaling 

implies an apparent power law decay of the mean strength at small sizes, a non-vanishing 

strength for L→+∞, and an increasing variability towards small sizes. Relation (2) is hardly 

testable from experimental data, as (σf) values, when reported, are based on a limited number 

of independent tests and include experimental-related scatter. For studies including field tests 

at the meter scale(18, 31-33) and assuming that the asymptotic strength ∞ was reached at the 

largest scale, we fitted the data with relation (3). The agreement is remarkable, with the best-

fit FS value ranging from 0.8 to 1.05 (Fig. 1), i.e. close to the mean-field prediction,  =1. 

The corresponding length scales LB range from ~ 20 to 40 cm, a possible sign of relatively 

strong disorder (joints, microcracks) in these natural rock samples. For studies based only on 

lab tests, either: 

(i) no significant size effect on strength is reported, as for fresh-water granular ice (27), 

limestone (57), granite (57), or concrete (28). This can be explained by a small LB in equation 

(3) and/or an insufficient dataset to properly sample size effects;  

(ii) or the data can be well fitted by (3) assuming FS=1, as shown on figure S1 for high-

performance (HP) concrete (30) and marble (29). In case of HP concrete, the scale LB is close 

to the maximum size of the andesite aggregate (12 mm) (30). In agreement with our former 

expectation, in such initially unfractured materials, the microstructural scale (aggregate size, 

grain size, ..) likely sets this LB scale. 

 

The confining pressure 3 increases the axial compressive strength 1f of rocks, ice, coal or 

concrete (19, 28, 34, 58). Up to a confining ratio 3/1f of about 30%, failure is brittle and 

occurs through microcrack initiation and interactions, followed by shear fault formation at the 

onset of macroscopic instability, as described above(58). This failure mode is sometimes 

called Coulombic faulting, reminiscent of the importance of solid friction in this case(44). 

Consequently, one expects our mapping to the depinning transition to hold in this case. The 

combination of the effects of size and of confining pressure on strength has been rarely 

studied, but the available data on coal (34) are well explained by equation (2) with FS=1 and 

an increasing asymptotic strength ∞ with increasing confinement, as expected (Figure 2). For 

these natural samples, the scale LB is once again relatively large (several cm). It slightly 

decreases with increasing confinement, suggesting a secondary effect of confinement on the 

sensibility of LB to the variability of the local strength, 
ఋఛ೎ఛ೎ . For such multiaxial compression 

tests, the deviatoric stress ߪଵ െ  appears as the most relevant variable. Thus, the strength	ଷߪ
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has been defined as ߪ௙ ൌ ଵ௙ߪ െ  , ௙ ,instead of the axial strength σ1fߪ  ଷ. This choice forߪ

obviously doesn’t change the value of the exponent FS or of the scale LB. For confinements 

larger than ~ 30%, compressive failure is no more brittle, and another failure mode occurs, as 

mode I secondary crack nucleation is inhibited. This failure mode, called plastic faulting, 

involves thermal softening and an adiabatic shear instability (59). In this case, we no longer 

expect elastic interactions between microcracks to occur, i.e. our size effect formalism to 

hold. Indeed, it has been found that for large confining pressure, size effects on compressive 

strength disappear (60). This sets the range of applicability of our formalism. 

 

Application to granular media 

 

This mapping onto the depinning problem is likely not restricted to brittle cohesive materials. 

As described in (43) and recalled in the SI, it can be extended to the macroscopic plastic 

instability in amorphous media. The case of a cohesionless frictional granular medium 

compressed under confinement can be interpreted as an intermediate case between amorphous 

plasticity and compressive damage. Indeed, shear-induced local rearrangements of the 

granular structure lead to irreversible local strains but not to a systematic degradation of local 

stiffness. Compared to amorphous plasticity, other complications are present, however, such 

as dilatancy. When compressed under confinement, these media exhibit a macroscopic 

flowing instability associated to strain localization(61), which sets the yield stress, i.e. the 

“strength”. This instability can also be considered as a critical transition(62). In this case, the 

disorder is topological, coming from the arrangement of particles. 

  

From this analogy, we expect finite-size scaling (relations (2) and (3)) to ensue. However, to 

our knowledge, there is so far no experimental data over a significant range of scales to check 

this anticipation. We therefore simulated the mechanical behaviour of frictional granular 

materials using the Molecular Dynamics discrete element method (63). Two-dimensional 

granular assemblies made of a set of frictional circular grains were considered. The dynamic 

equations were solved for each grain, which interact via linear elastic laws and Coulomb 

friction when they are in contact (64). Neither cohesion between grains, nor rolling resistance 

were considered. In order to build granular assemblies with strongly different initial (before 

loading) characteristics, in terms of coordination number and/or packing density, specific 

sample preparation procedures were used. Details on the discrete element model as well as on 

these procedures are given in the SI. These granular assemblies were loaded under a multi-
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axial configuration, with the external axial stress ı1 prescribed in order to impose a constant 

axial strain-rate, whereas the radial stress ı3, i.e. the confining pressure, was kept constant. 

The 2D sample sizes varied from 100 to ~ 45000 grains. 

 

Whatever the initial characteristics of the assemblies, finite size scaling of 

compressive strength was observed, in full agreement with equations (2) and (3) (Fig. 3), 

showing the generic nature of the concept proposed here. In agreement with our expectation, 

the scales LA and LB were slightly larger than the average particle size, and increased for less 

dense, less coordinated samples. 

 

Failure strength statistics 

 

As noted in the introduction, the weakest-link hypothesis leads to extreme value statistics for 

the probability of failure under an applied stress σ.  As the weakest-link theory appears 

irrelevant for compressive failure, we do not expect such extreme statistics for the distribution 

of strength in this case. Published experimental data with a sufficient number of failure tests 

to analyze strength distributions are rare. Results obtained on ice indeed exclude extreme 

statistics, either Weibull or Gumbel, and argue instead for Gaussian statistics (Fig. 4). The 

same is true for the discrete-element modeling of frictional granular media (Fig. S2). We 

anticipate, from the criticality of the transition, the scaling form of the distribution ܲ൫ߪ௙ ,  of	൯ܮ

the fluctuations for a system of size L as ܲ൫ߪ௙ , ൯ܮ ൌ ఔಷೄܮ 	Ψൣ൫ߪ௧௛ െ  ఔಷೄ൧. Such a scalingܮ௙൯ߪ

form naturally leads to the scaling relations for the mean value ߪۃ௙ۄ	(relation (3)) and the 

standard deviation ߜ൫ߪ௙൯	(relation (2)) of the compressive strength discussed above. However, 

the precise form of the statistical distribution Ψ is not prescribed by this simple scaling 

analysis. In particular, Ψ is not expected to obey the predictions of extreme value statistics 

whose hypotheses (absence of interactions) are not satisfied in the present problem. In recent 

results obtained in a similar framework (depinning model of amorphous plasticity (65)), 

Gaussian-like distributions were observed as well. 

 

Combining Gaussian statistics with equations (2) and (3) leads to the following expression for 

the probability of failure at scale L under a stress : 
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Concluding comments 

 

This new, statistical physics interpretation of compressive failure of continuous and granular 

media has important practical consequences. First, when lab-scales (cm to dm) studies show 

no significant size effect, one expects that lab strength values give a good estimate of the 

asymptotic (field) strength. Extrapolation of lab-scales data to scales smaller than LA or LB 

will be more difficult, owing to the intrinsic variability at such scales. However, the mean-

field estimate of the finite-size exponent, FS=1, obtained from theoretical considerations, 

well describes the fluctuations and the associated finite-size corrections, whereas for initially 

unfractured materials, LA and LB are related to the characteristic microstructural scale (grain 

size, aggregate size, ..). Therefore, owing to its predictive potential, we believe that the 

proposed scaling is a useful, simple to use guidance for future structural design rules or 

regulations (e.g. (2)). 

 

Materials and Methods 

The characteristics and the simulation settings of the discrete-element model of frictional 

granular media are given in the Supporting Information, along with the formal derivation of 

the mapping of brittle compressive failure onto the depinning transition of an elastic manifold. 
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Figure 1. Finite-size effect on uniaxial compressive strength (experimental data). (a) Granodiorite(31), 

(b) Quartz diorite(31), (c) Coal(32). Main graphs: Mean compressive strength ߪۃ௙ۄ vs size. Black 

circles: published experimental data, with associated standard deviation (when reported). Red curve: 

fit by equation (3), using ∞=20 MPa for granodiorite, 6.8 MPa for quartz diorite, and 4 MPa for coal. 

The best-fit FS exponents are respectively 0.85, 1.05 and 0.8. The associated constants length scales 

LB are respectively 0.41, 0.235 and 0.30 m. Insets: Same data and fits, in a ߪۃ௙ۄ vs ିܮଵ/ఔಷೄ  graph 

where equation (3) is as straight line and that reveals the asymptotic strength ∞. 

 

Figure 2. Finite-size effect on multiaxial compressive strength for coal (experimental data). These 

strength values have been recalculated using the generalized Hoek and Brown empirical formulation 

(equation (1) of Ref(34)) and using the set of parameters found in table 3 of the same Ref., for 

confining pressure 3=0, 2, 5 and 9 MPa. (a): Mean compressive strength ߪۃ௙ۄ ൌ ۄଵ௙ߪۃ െ  .ଷ vs sizeߪ

For this multiaxial loading, the deviatoric stress has been considered here as the relevant variable. The 

corresponding fits from equation (3) of the main text, using FS=1, are shown as lines. The best-fit 

asymptotic strengths ∞ are respectively 6.1, 16.6, 26.9 and 37.4 MPa for 3=0, 2, 5 and 9 MPa. The 

associated LB values are respectively 27, 12, 9 and 7.5 cm. (b) Same data and fits, in a ߪۃ௙ۄ vs ିܮଵ/ఔಷೄ  

graph where equation (3) is as straight line and that reveals the asymptotic strength ∞. 
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Figure 3. Finite size effects for the discrete-element model of frictional granular media under 

multiaxial compression (LC1 samples; see SI for details about the model)., and then normalized by the 

confining pressure ı3. (top) Mean compressive strength 
ఙయۄఙ೑ۃ ൌ ఙయఙయିۄఙభ೑ۃ  and (bottom) associated 

standard deviation vs system size. System size has been defined as ඥ ௚ܰ, where ௚ܰ is the number of 

grains of the model. Black circles: model results. Red curves: finite size scaling given by equation (3) 

for the mean strength and equation (2) for the standard deviation, with FS=1.07, LA=1.68, LB=4.21 and 

∞=1.65×3. The best-fit exponent FS and scale LA were obtained from the standard deviation scaling 

(bottom), the asymptotic strength ∞ and scale LB were then obtained from the scaling of 
ఙయۄఙ೑ۃ  (inset of 

(top)). Inset of (top): Same data and fits, in a 
ఙయۄఙ೑ۃ  vs ିܮଵ/ఔಷೄ graph where equation (3) is as straight 

line and that reveals the asymptotic strength ∞. 
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Figure 4. Distribution of uniaxial compressive failure strength for fresh-water granular ice (grain size: 

~1 mm), from Ref.(27). (a) Weibull statistics, where ܹ൫ܮ, ௙൯ߪ ൌ ݈݊ ቀି௟௡൫ଵି௉ಷሺఙሻ൯௅య ቁ and PF() is the 

(cumulative) probability of failure under an applied stress σ. Since data obtained for different sample 

sizes do not collapse onto a single straight line, compressive strengths do not follow Weibull statistics. 

The same is true for Gumbel statistics (b). (c) Normal probability plot for the standard distributions. 

The collapse onto a single straight line, which corresponds to equation (4), argues for Gaussian 

statistics. 

 

 


