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n total number of degrees of freedom

n
(s)
i number of internal degrees of freedom of sub-struture (s)

nj number of juntion degrees of freedom
n

(s)
I number of retained eigenmodes for substruture

(s)

nB number of retained branh modes
I set of internal degrees of freedom
J set of juntion degrees of freedom
E set of exitation degrees of freedom

η(s) substruture (s) eigenmode generalized oordi-nate (n(s)
I × 1)

ζ branh mode generalised oordinate (nB × 1)
Fj juntion fore (nj × 1)
qj juntion displaement (nj × 1)
Ψs matrix of onstraint modes of the global stru-ture (n× nj)

XBj matrix of branh modes (nj × nB)
Ψ(s) substruture (s) onstraint mode ((n(s)

i +nj)×

nj)
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Ψ

(s)
i restrition of onstraint modes Ψ(s) on I set(n(s)

i × nj)
Ψj restrition of onstraint modes Ψ(s) on J set(nj × nj)1 IntrodutionIn many design proesses, the e�et of loal modi�a-tions has to be assessed. This an be at an early stagewhen the e�et of a part on the whole struture is to bedetermined rapidly. On the ontrary, when the design isalready set, or when dealing with an existing struture,the addition of a sti�ner or a damper may be evaluatedfor a resonane shifting or a damping purpose.This is often the ase with spae launhers: the stagesdesign is already set and may need to be adapted toprotet the payload from exessive vibration levels. Thein�uene of loal dampers thus needs to be evaluated,so as to optimize their loation and properties.Beause industrial strutures are generally omplexand therefore have an important number of degrees offreedom, a redution tehnique is required to desribethe dynami behaviour e�iently with a small model(ie. a small number of generalized degrees of freedom.)Component Mode Synthesis (CMS) tehniques al-low to ompute struture responses through the use ofsubstrutures modes, thus reduing the size of the prob-lem to solve. Basially, eah substruture is desribedwith a ertain number of eigenmodes and boundarymodes are added to ompensate the modal trunation.Two main methods may be distinguished. On one hand,the �xed interfae based CMS, developped by Craig andBampton [1℄, uses �xed interfae substruture eigen-modes and onstraint modes as boundary modes (theseare the substruture response to suessive unitary bound-ary displaement). On the other hand, free interfaeCMS (see MaNeal [2℄, Rubin [3℄ or Craig and Chang[4℄) uses free interfae substruture eigenmodes and at-tahment modes (substruture response to suessiveunitary boundary fore).Beause the number of boundary modes equals thenumber of juntion degrees of freedom, the idea of on-densing interfae oordinates quikly emerged (see Craigand Chang [5℄). Sometimes under di�erent names, re-dution with �boundary modes� was studied by someauthors, among whih are Balmès [6℄ and Tran [7℄.Moreover, in addition to boundary redution, a few au-thors employed ω2 boundary developpements to betterompensate modal trunation (see Jézéquel and Setio[8℄ and Besset and Jézéquel [9℄) in a method alled Dou-ble Modal Synthesis; see also Géradin and Rixen [10℄for ω2 development aspets.

In a previous paper [11℄, the addition of a spring be-tween two substruture degrees of freedom � to modelan elasti link � was studied with the use of the DoubleModal Synthesis. It was shown that only small modi-�ations �ie. small spring sti�nesses� ould be wellhandled. Indeed, the redution bases were not able todesribe big hanges in the behaviour of the struturesine they do not take into aount of the modi�a-tion; their performanes are therefore limited. Havinga modal basis apable of desribing the behaviour ofthe struture whatever the modi�ation is quite a hal-lenge and somehow impossible. In addition, sine theredution bases are omposed of real modes, they arenot able to deal with highly dissipative links ontainingvisous damping or hystereti damping. That is why amodi�ation tehnique is employed in ombination withthe Double Modal Synthesis.Baldwin and Hutton [12℄ wrote an interesting reviewand lassi�ed the modi�ation tehniques into threeategories: the tehniques based on small modi�ations(sensitivity approah, perturbation methods); the teh-niques based on modal approximation; and the teh-niques based on loalized modi�ations, whih is stud-ied in this paper.Weissenburger [13℄ is one of the �rst to treat theloal modi�ation of an undamped system. Pomazal[14℄ extended Weissenburger's proedure to deal withthe loal modi�ation of one of the system elements onlinear damped system. At last, Jézéquel [15℄ proposeda method to diminish the e�ets of modal trunation.Hallquist [16℄ disussed the vibration of strutures witharbitrary support onditions, using Lagrange multipli-ers, to get frequenies of the onstrained system. In [17℄,mass and damping modi�ations in damped systems areevoked, a Newton-Raphson numerial sheme is usedto loate the omplex roots of the harateristi equa-tion. Jaquot [18℄ proposed an original approah basedon transfer funtions to get the response of a modi�edsystem, the eigenvalues of the modi�ed system are notomputed. Dowel [19℄ used a Lagrangian formulation toanalyse the e�et of spring-mass addition to a dynam-ial system.All these methods either require the expliit knowl-edge of all the eigenmodes or the expliit knowledge ofthe transfer funtions. It is therefore di�ult to disribethe behaviour of the struture with a blak-box model� providing the response of the struture for a givenfrequeny � suh as the Double Modal Synthesis thatis used here.Even though the aim is di�erent, it is interesting tohave a look at the inverse problem approah. Tseui [20℄treats the modi�ation of sti�ness and mass parame-ters for desired eigenfrequeny of undamped mehan-



Determinantal method for loally modi�ed strutures 3ial systems. Yee [21℄ extended this work to dampedsystems: a method for modifying a mehanial systemand shifting its damped natural frequeny to a desiredvalue is developped, the alulation involves iterationand only one modi�ation at a time an be handled.Ram [22℄ adressed the problem of strutural modi�-ations in trunated systems. He also investigated theinverse problem [23℄, given an inomplete modal model(natural frequenies and modes), to reah a desired dy-nami behaviour. Kyprianou [24℄ explored in detail theassignment of natural frequenies by an added mass andone or more springs.The aim of this artile is to introdue a general for-mulation, based on transfer funtions � whih an beblak-boxes � and impedanes, to determine the eigen-values of a loally modi�ed struture. The addition of amehanial impedane models the strutural modi�a-tion (f. �gure 1). It an orrespond to the introdutionof a visous damper, a spring, or any ombination, inorder to modify the harateristis of the system. Themethod introdued in this artile is able to deal withone or more impedane, and the attahment point ofthe impedane may be modi�ed easily. The advantageof this new formulation is that it an be applied to bothundamped and damped strutures.This method is based on the response funtion ofthe points where the loal modi�ation is performedand on the fore-displaement transfers between thosepoints. The impedane equation of the loal modi�a-tion is then used to write a harateristi (determinan-tal) equation whose roots are the eigenvalues of themodi�ed struture. Sine the formulation is exat what-ever the value of the added impedane, it is not limitedto small perturbations; the only di�ulty is to solvethis equation. An good redued model of the strutureis of ourse also required to preserve the auraty of themethod when dealing with a large number of degrees offreedom.In the following setion, the Double Modal Synthe-sis method is introdued. The determinantal methodand the assoiated solving algorithm are then exposed,along with a fast single mode approah. The appliationof the method is then illustrated on a few examples andsome points of interest are disussed. The single modeapproah is developped on the same example with aview to pre-design some damping solutions.2 An improved substruturing method: theDouble Modal SynthesisThe struture is supposed to be omposed of two sub-strutures, whih does not restrit the method. If needed,
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Z ()Fig. 1: Loal modi�ations : (a) addition of a mehan-ial impedane; (b) ase of two loal impedanes; and,() addition of a ground link on the struturea supersript (.(s)) is added to make the distintion be-tween substrutures. Subsipts i, e and j refer to inter-nal I, exitation E and juntion J degrees of freedomsets, respetively; they are used in matrix partitions. Inase of a barred variable (̄.), subsripts i and j refer toeigenmodes and branh mode, respetively.2.1 Branh modesBoundary ondensation is made through the use of branhmodes : instead of keeping a number of modes equal tothe number of boundary degrees of freedom nj, onlya ertain number of boundary modes are kept. Thesebranh modes are representative of the struture be-haviour in the frequeny range of interest. The branhmodes de�ned in this paper are the modes of the stru-ture ondensed on its interfaes thanks to onstraintmodes.Constraint modes of the global struture
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4 Denis Brizard et al.are omputed with the sti�ness matries of eah sub-struture. Branh modes xBj are de�ned on juntion Jbetween the two substrutures. They are the solutionof the global struture eigenvalue problem projeted ononstraint modes
[

tΨsKtotΨs − ω2 tΨsMtotΨs

]

xBj = 0 (2)The set of all branh modes XBj spans the same sub-spae as the omplete set of onstraint modes Ψs. Dou-ble Modal Synthesis (DMS) onsists in retaining onlythe �rst �boundary modes�, alled branh modes here-after. The projetion of branh modes on eah substru-ture is ahieved through the use of boundary modes ω2developpements.The internal displaement of a substruture due toimposed boundary displaement Ψj may be written
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+ (ω2K−1M)n−1K−1

+ (ω2K−1M)n(K − ω2M)−1 (4)is valid for all integer n ≥ 0. It is used to alulate theinverse required for boundary modes in Eq. (3).An imposed boundary displaement Ψj = Ijj (iden-tity matrix of size nj) is onsidered, whih orrespondsto suessive unit displaement of boundary degrees offreedom, while the others remain lamped. Going up tothe seond order, on gets from Eqs. (3) and (4)
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] (5)Order 2 boundary modes may be written in a moreondensed way
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] (6)It should be notied that only the internal mode dis-plaement is a�eted by the ω2 developpement.

Branh modes, one projeted on substruture (s),may thus be written
X

(s)
Bi (ω) = Ψ

(s)
i (ω) XBj = X

(s)
B0 + ω2X

(s)
B1 + ω4X

(s)
B2

X
(s)
Bj = Ijj XBj = XBj (7)2.2 Substruture redued basisIn this subsetion, all the variables are related to oneof the substrutures: the supersript (.(s)) is thereforeomitted.Substruture displaements are desribed by a set of�xed interfae eigenmodes Φ and a set of branh modes

XB with ω2 developpements, to ompensate modal trun-ation. To take the loal �exibility at exitation pointinto aount, exitation setE is integrated in the bound-ary, whih already ontains J , the juntion set betweensubstrutures. Branh modes are thus omputed on thefrontier F = J ∪ E and �xed interfae substrutureeigenmodes orrespond to the modes of the substru-ture being lamped at the frontier F . The redued basisis therefore
T = [ΦXB] =





Φi XBi(ω)

0 XBe

0 XBj



 (8)Let η and ζ be the generalized oordinates vetorsassoiated with substruture eigenmodes and branhmodes, respetively. Let M̄ = tTMT and K̄ = tTKTbe the redued matries of a given substruture. Theredued matrix M̄ is given by
M̄ =

[

tΦMΦ tΦMXB
tXBMΦ tXBMXB

] (9)In order to show boundary modes ω2 developpe-ments, redution matrix T is written as
T = T0 + ω2 T1 + ω4 T2 (10)Only T0 is a full matrix, the next matries have non-zero terms on lines and olumns orresponding to in-ternal DOFs and branh modes, respetively
Tk =

[

0 XBk

0 0

]

∀k > 0 (11)The redued mass matrix is expanded, taking the se-ond order of ω2 developpement of redution matrix T ,
tTMT = tT0MT0 + ω2

[

tT1MT0 + tT0MT1

]

+ ω4
[

tT1MT1 + tT2MT0 + tT0MT2

]

+ ω6
[

tT1MT2 + tT1MT2

]

+ ω8
[

tT2MT2

] (12)



Determinantal method for loally modi�ed strutures 5By de�nition of onstraint modes, it an be shownthat any mode having null boundary displaement is or-thogonal, with respet to the sti�ness matrix, to the setof onstraint modes Ψ0. Substruture eigenmodes are�xed interfae modes and branh modes are expandedwith onstraint modes on substrutures. This involves
tΦKXB0 = 0 (13)Substruture's mass and sti�ness matries are re-dued using T and the previous orthogonality
M̄ =
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] (15)In these redued matries, blok matries M̄ii and K̄iiare diagonal and equal to the modal mass and sti�nessof the retained �xed interfae eigenmodes. Keeping onlyorder 0 amounts to use Craig and Bampton's ompo-nent mode synthesis.External fores on substruture only apply on exita-tion set E and on juntion set J . Hene the fore vetorin the redued basis is
F̄ = tTF = tT







0
Fe

Fj







=

{

0
tXBeFe + tXBjFj

} (16)2.3 Substruture equilibrium equationsThe substruture equilibrium equation (
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[

−ω2
(

M̄
(s)
ji + M̄

(s)
ji (ω)

)

+ K̄
(s)
ji (ω)

]

η(s)

+
[

−ω2
(

M̄
(s)
jj + M̄

(s)
jj (ω)

)

+ K̄
(s)
jj + K̄

(s)
jj (ω)

]

ζ(s)

= tXBeFe + tXBjFj (19)

2.4 Substruture ouplingLet the two substrutures (1) and (2) be oupled througha ommon boundary J . Branh modes de�nition Eq. (7)implies
X
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Bj = X
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Bj = XBj (20)Therefore, boundary nodal equilibrium F
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ζ = tXBeFe (25)where a dynami sti�ness matriial notation is adopted
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kl (ω) for kl = ij, ji(26)Solving Eq. (22) and then replaing ζ in Eq. (24)allows to ome bak to substrutures physial displae-ments at any point. If the observation point is inte-grated in the boundary (in the E set), only Eq. (25)need to be solved and the displaement is known throughEq. (22). This will be used in the following determinan-tal method sine only the displaements of the link at-tahment points are required; these points will thereforebe integrated in the boundary.
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φ q2 1φ q1 1

k* k r

Fig. 2: Rheologial model (q1 is the generalised oordi-nate assoiated with mode φ)3 Analysis of loally modi�ed struturesIn this setion, bold type will be used to distinguishmatries and vetors from salar quantities.3.1 A single mode approahIn the ontext of pre-design of strutures, it is interest-ing to develop a spei� method to get fastly the ap-proximate harateristis of a loally modi�ed struture(addition of damping elastomer). It is based on a sin-gle mode vision, in the ase of hystereti damping. Themass of the modi�ation is supposed to be negligibleand the modal displaement of the attahment points
φ1 and φ2 remain unhanged by the modi�ation ofomplex sti�ness k∗ = e(1+iβ) (f. �gure 2). Aordingto the method proposed by Jézéquel [15℄, the residualsti�ness kr is introdued in series with the modi�a-tion, it orresponds to the stati �exibility of the initialstruture, for the onsidered mode, at the loation ofthe attahment points. The equivalent impedane of themodel given in �gure 2 may be written Zm = a+ ib.The initial eigenvalue of the unmodi�ed struture iswritten as
λ̃ = −ω̃2 (1 + iη) (27)Aording to the �rst order sensitivity analysis [15℄, themodi�ed eigenvalue is
λ̃m = λ̃− Zm (φ2 − φ1)

2 (28)
λ̃m = −ω̃2 (1 + iη) − (a+ ib) (φ2 − φ1)

2 (29)whih gives the pulsation and the damping fator of themodi�ed eigenvalue
ω̃2

m = −ℜ(λ̃m) = ω̃2 + a (φ2 − φ1)
2 (30)

ηm =
ℑ(λ̃m)

ℜ(λ̃m)
=
ω̃2η + b (φ2 − φ1)

2

ω̃2 + a (φ2 − φ1)
2 (31)By bloking the displaement between the attah-ment points of k∗, one an have the pulsation ω̃∞ of

the bloked system. It is therefore possible to get theresidual sti�ness by using Eq. (30)
kr ≃

ω̃2
∞

− ω̃2

(φ2 − φ1)
2 (32)As it is a simple rule with restritive hypothesis, itsvalidity may be limited. A more preise method needsto be developped, whih an also handle greater loalhanges. This is detailed in the following setion.3.2 Determinantal method with one added impedaneAssuming a general linear dynami system, the equa-tion of motion in the frequeny domain may be written

(

λ2M + λC + K
)

U = F (33)where M , C and K are the mass, damping and sti�nessmatries, respetively; U is the displaement vetor and
F is the vetor of external fores. Eq. (33) an be re-written as
U = H (λ) F , with λ = α+ iω (34)where H (λ) is the dynami �exibility or frequeny re-sponse funtion ; the term transfer funtion will be usedthereafter. In order to simplify the notations, the depen-deny in λ will be omitted in the rest of the artile.Let the �exibility, or transfer funtion, between points
Pk and Pl be de�ned by
Hkl =

uk

Fl

(35)where ui is the salar displaement along the dire-tion de�ned by PkPl and Fl is the external fore alongthe same diretion. It is therefore possible to write thetransfers betweeen P1 and P2 (f. �gure 1a) in a matri-ial way
{

u1

u2

}

=

[

H11 H12

H21 H22

]{

F1

F2

} (36)The initial struture is modi�ed by the addition of asalar mehanial impedane Z between two points P1and P2 (f. �gure 1a), whih gives the following fore-displaement relationship
F1 = Z (u1 − u2) (37)Using Eq. (36), u1 and u2 are eliminated from theprevious equation
Z−1F1 = (H11 −H21)F1 − (H22 −H12)F2 (38)



Determinantal method for loally modi�ed strutures 7The fore equilibrium in the added impedane may bewritten
F1 + F2 = 0 (39)and therefore Eq. (38) beomes
(

(H11 +H22 −H21 −H12) − Z−1
)

F1 = 0 (40)Sine we are not onerned with the ase where thefore in the impedane is zero, non-trivial solutions aresought. The eigenvalues of the modi�ed struture maythus be found by solving the one line determinantalequation
∆ =

∣

∣H11 +H22 −H21 −H12 − Z−1
∣

∣ = 0 (41)So instead of solving an eigenvalue problem of size n,the roots of a determinant give the eigenvalues of themodi�ed struture. This is done through the use of somepartiular transfer funtions of the initial system: thetransfer funtions between attahment points P1 and
P2. It is therefore possible to follow the frequenies ofthe modes while the impedane varies; this is detailedin setion 3.6.3.3 Adding more than one impedaneThis method is not limited to only one strutural mod-i�ation. It is developped here for two loal modi�a-tions � the addition of two distint dampers on thestruture for instane � but it an easily be generalisedto a number N of loal modi�ations.In the ase of two loal impedanes between points
P1 and P2 and between points P3 and P4 (f. �gure 1b),the transfers between all these attahment points maybe written














u1

u2

u3

u4















=









H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44























F1

F2

F3

F4















(42)The impedane Za between P1 and P2 gives
F1 = Za (u1 − u2) (43)
F1 + F2 = 0 (44)and the impedane Zb between P3 and P4 leads to
F3 = Zb (u3 − u4) (45)
F3 + F4 = 0 (46)By using Eq. (42), Eq. (43) an be re-written as
Z−1

a F1 = (H11 −H21)F1 + (H12 −H22)F2

+ (H13 −H23)F3 + (H14 −H24)F4 (47)

and then simpli�ed with Eq. (44)
Z−1

a F1 = (H11 +H22 −H21 −H12)F1

+ (H13 +H24 −H23 −H14)F3 (48)In a similar way, we get for impedane Zb

Z−1
b F3 = (H31 −H41)F1 + (H32 −H42)F2

+ (H33 −H43)F3 + (H34 −H44)F4 (49)
Z−1

b F1 = (H31 +H42 −H41 −H32)F1

+ (H33 +H44 −H43 −H34)F3 (50)Let the following mehanial transfers
Taa = H11 +H22 −H21 −H12 (51)
Tab = H13 +H24 −H23 −H14 (52)
Tbb = H33 +H44 −H43 −H34 (53)
Tba = H31 +H42 −H41 −H32 (54)Gathering Eqs. (48) and (50) gives
[

Taa − Z−1
a Tab

Tba Tbb − Z−1
b

] {

F1

F3

}

=

{

0

0

} (55)The non-trivial solutions of the previous system of twoequations are found by anelling the two by two de-ternimant
∆ =

∣

∣

∣

∣

Taa − Z−1
a Tab

Tba Tbb − Z−1
b

∣

∣

∣

∣

= 0 (56)The eigenvalues of the modi�ed struture are thereforethe solutions of the equation
(

Taa − Z−1
a

) (

Tbb − Z−1
b

)

− TabTba = 0 (57)Eq. (56) an be easily generalised for the ase of Nloal impedanes.3.4 Case of a ground linkTreating a ground link, represented by the �gure 1,just simpli�es the formulation. The response of the stru-ture at point P1 in the diretion of the link is
u1 = H11F1 (58)The impedane equation of the ground link gives
u1 = Z−1F1 (59)whih leads to
(

H11 − Z−1
)

F1 = 0 (60)The eigenvalues of the modi�ed struture are thus givenby the non-trivial solutions
∆ =

∣

∣H11 − Z−1
∣

∣ = 0 (61)
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y

z

x

θ

ψ

X

Fig. 3: Coordinate system hange: θ and ψ angles togo from the global frame (x, y, z) to the link frame
(X,Y, Z)3.5 From global frame to link frameIn the previous setions, the equations were writtenwith F being the fore along the link. However, thediretion of the link may not orrespond to the globalframe and thus may not be aligned with the degrees offreedom. The fore therefore needs to be written in thelink oordinate system.In the present setion, the upper ase letters referto the variables in the link oordinate system and thelower ase letters refer to these variables in the globaloordinate system.Let u, v and w be the displaements respetivelyalong the −→x , −→y and −→z axes (see �gure 3). The linkframe is suh than the displaement U is along the −→

Xaxis of this new frame. The oordinate system hangeis written






U

V

W







= R







u

v

w







(62)where R = R (ψ)R (θ) and
R (ψ) =





cosψ 0 − sinψ

0 1 0

sinψ 0 cosψ



 (63)
R (θ) =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 (64)
R =





cosψ cos θ cosψ sin θ sinψ

− sin θ cos θ 0
− sinψ cos θ − sinψ sin θ cosψ



 (65)

The transfers between points P1 and P2 in the globaloordinate system are






u1

v1
w1







= h11







f1
g1
e1







+ h12







f2
g2
e2







(66)
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v2
w2







= h21







f1
g1
e1







+ h22







f2
g2
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(67)where hkl is a 3�by�3 transfer matrix between fores atpoint Pl (fl, gl and el along respetively the x, y and zaxes of the global frame) and displaements at point Pk(uk, vk and wk along respetively the x, y and z axes)
hkl =





rkl okl pkl

o′kl skl qkl

p′kl q
′

kl tkl



 (68)In the oordinate system of the link we get
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V1

W1







= H11







F1

G1

E1







+ H12







F2
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(69)
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V2

W2







= H21







F1

G1

E1







+ H22







F2

G2

E2







(70)where Hkl = R hkl
tR; Uk, Vk andWk are the displae-ments at point Pk along the X , Y and Z axes of thelink frame; and Fk, Gk and Ek are the fores at point

Pk along the X , Y and Z axes. Indeed, sine R is arotation matrix, R−1 = tR.We now have the relationship between fores anddisplaements along the link diretion de�ned by P1P2,whatever the orientation of this link
{

U1

U2

}

=

[

(H11)11 (H12)11
(H21)11 (H22)11

] {

F1

F2

} (71)where only the upper left term of matrix Hkl needs tobe omputed
(Hkl)11 =

(

R hkl
tR

)

11
= rkl (cosψ cos θ)

2
+

okl sin θ cos θ(cosψ)2 + pkl cos θ sinψ cosψ

+ o′kl sin θ cos θ(cosψ)2 + skl(sin θ cos θ)2

+ qkl sin θ sinψ cosψ + p′kl cos θ sinψ cosψ

+ q′kl sin θ sinψ cosψ + tkl(sinψ)2 (72)Now onsider the ase where we have two links onthe struture, the �rst between points P1 and P2 anda seond one between points P3 and P4. The followingtransfer matrix is required














U1

U2

U3

U4















=









S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44























F1

F2

F3

F4















(73)



Determinantal method for loally modi�ed strutures 9with U1, U2, F1 and F2 the displaements and foresalong the P1P2 diretion and U3, U4, F3 and F4 thedisplaements and fores along the P3P4 diretion. Aseond oordinate sytem hange, from the global frameto the frame aligned on P3P4, is de�ned with the or-responding θ′ and ψ′ angles
R′ = R (ψ′)R (θ′) (74)Two di�erent oordinate system hanges are nowinvolved; the �rst line of matriial Eq. (73) omes fromthe �rst line of






U1

V1

W1







= R h11
tR







F1

G1

E1







+ R h12
tR







F2

G2

E2







+ R h13
tR′







F3

G3

E3







+ R h14
tR′







F4

G4

E4







(75)whih is the extension of Eq. (69) with the added ex-itation points P3 and P4.Again, only the �rst line of this equation needs tobe omputed
Skl =

(

R hkl
tR′

)

11
= rkl cosψ′ cos θ′ cosψ cos θ

+ okl cosψ′ sin θ′ cosψ cos θ + pkl sinψ
′ cosψ cos θ

+ o′kl cosψ′ cos θ′ cosψ sin θ + skl cosψ′ sin θ′ cosψ sin θ

+ qkl sinψ
′ cosψ′ cosψ sin θ + p′kl cosψ′ cos θ′ sinψ

+ q′kl cosψ′ sin θ′ sinψ + tkl sinψ
′ sinψ (76)for kl = 13, 14, 23, 24. For kl = 11, 12, 21, 22, only oneoordinate hange is involved: Eq. (72) is still relevant.For kl = 33, 34, 43, 44 again there is only one oordinatehange involved, but this time with angles θ′ and ψ′.Sine Eqs. (72) and (76) involve many di�erenttransfers, it may lengthen omputation times needlessly;indeed, for some partiular angles θ and ψ these equa-tions an be simpli�ed. So only the transfers that arenot anelled by a zero sine or osine are atually om-puted.3.6 Numerial onsiderationsThe distintion between two kinds of problem an bemade, whih in�uenes the way Eq. (41) ∆ = 0 issolved. On one side, there is the purely real value prob-lem: a spring is added to a linear undamped struture.The modi�ed eigenvalues λ remain purely imaginaryand there is only one unknown whih is the pulsation

ω, or irular frequeny
ω ∈ R | ∆ (ω) = 0 (77)

On the other side, the problem an be omplex: ei-ther the struture is already damped, or a damper maybe added to a linear undamped struture. In both ases,the new eigenvalues λ must be sought in the omplexplane, whih means there are two unknown : the damp-ing oe�ient α (real part of λ) and the pulsation ω(imaginary part of λ)
λ ∈ C, λ = α+ iω | ∆ (λ) = 0 (78)
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Predition
ω = ωp

-simple : ωp = ωn−1-tangent :
ωp = f(ωn−1, ωn−2)-polynomial :

ωp = f(ωn−1, ωn−2, ωn−3) Solving
ω | ∆(ω) = 0

Searh algorithmworking with a blakbox ω → ∆(ω) Reahed limit ?
|ω − ωp| > α|ωp|Storage of ω

Niter<Niterminet ∆k < ∆kmax
∆k ր

Niter>Nitermaxet ∆k > ∆kmin
∆k ց

∆k −→

∆k > ∆kminBREAK New try
∆k ց

kn = kn−1 + ∆k

Next step kn+1 = kn + ∆k

no yes

no yes
yesno

yesno

Fig. 4: Variable step algorithm for following the evolu-tion of an eigenvalue



Determinantal method for loally modi�ed strutures 11A partiular ontinuation algorithm is developpedto follow the solutions of the determinant while theimpedane of the link(s) varies. The diagram of �gure 4details its steps. A �rst predition of the solution ismade; depending on how many points were previouslyomputed, the predition an be simple (same solutionas previous point), tangent (with the use of the last twopoints) or polynomial of degree n (with the use of the
n+ 1 previous points.) Note that a tangent preditionis the same as a polynomial predition of degree 1. Itis not usefull to inrease the order of the predition be-yond 2 sine this an lead to osillations and thus maynot improve the predition; moreover, the trajetoriesof the solutions remain most of the time relatively sim-ple (see the following examples of setion 4).One the solution is predited, the exat solution issought around this point with a searh algorithm. Thesearh algorithm is fminbnd1 for the real value problemand fsolve2 for the omplex problem; both funtionsbelong to the Matlab Optimization Toolbox. A researhbound �parameter α� is de�ned to make sure that thefound solution is not too far from the predition.Before going to the next step, the impedane in-rease is adjusted: if the solution was easily found, thenthe impedane step ∆k is augmented; if the algorithmhad di�ulties in �nding the solution, the impedanestep ∆k is dereased. Between these two ases, theimpedane step remains onstant. On the other side,when the solution is not found, the impedane step isdereased before making a new attempt. Indeed, it isexpeted that the loser from the previous point, theeasier to �nd the next point.A maximum and a minimum impedane step are de-�ned. The minimum impedane step mainly serves asa stopping riterion if the algorithm ever fails to �nd asolution. This may happen if we are trying to observe anon-ontrollable mode, i.e. a mode whih is not at all in-�uened by the strutural modi�ation. In fat, for thenon-ontrollable mode, the fore in the link is zero: thisis the trivial solution of Eq. (40) and the determinantof Eq. (41) does not have a zero for the orrespondingmode. The maximum impedane step may be used torestrit the distane between the points.The advantage of this variable step algorithm is thatit is able to deal with large impedane hanges with-out having to searh too many solutions. It is thereforepossible to handle variations of impedane of severalorders of magnitude: when the solution greatly varieswhile the impedane inreases, the impedane step au-tomatially dereases; on the ontrary, when the solu-1 Find minimum of a single-variable funtion on �xed in-terval2 Solve system of nonlinear equations

k(a) c

c

(b)Fig. 5: Loal modi�ation of the frame struture: (a)sti�ness mod�ation; and, (b) damping modi�ationCharateristi Valuestorey height 2.236 mstorey width 4.472 mvertial beam setion 0.04 m × 0.04 mhorizontal beam setion 0.08 m × 0.08 mYoung modulus E 210 GPaPoisson modulus ν 0.285density ρ 7800 kg m−3Table 1: Charateristis of the three-storey buildingtion evolves slowly, then the impedane step automati-ally inreases sine there is no di�ulty in �nding thesolution, thanks to the predition step whih beomesvery e�ient. This will be illustrated by the followingexamples.4 Numerial examples4.1 A �rst simple frame exampleA beam struture modeling the frame of a building isstudied. The geometry of the frame is given in �gure 5and its harateristis are given in table 1. Eah �ooris omposed of 8 elements, the vertial beams betweentwo �oors are omposed of 4 elements, leading to a 135degrees of freedom struture. The �rst three modes areglobal �exion modes of the building; the respetive pus-lations are 7.88 rad s−1, 22.9 rad s−1 and 34.6 rad s−1.The determinantal method developped in the pre-vious setion is �rst applied on the sti�ness modi�edframe of �gure 5a. Sine the struture is very simple,the Double Modal Synthesis was not employed in this�rst example; the response of the struture is alulatedwith the �rst 20 modes of the initial frame
Hij (ω) =

nm=20
∑

k=1

XT
ikXkj

−ω2 + ω2
k

(79)
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Fig. 7: Evolution in the omplex plane of the �rst threeeigenvalues of the frame with varying damping c ( ×poles, ◦ zeros)It is important to notie that the same basis is keptwhatever the importane of the modi�ation beausethe determinantal method is based on the response ofthe unmodi�ed struture.The evolution of the �rst three eigenfrequenies withrespet to k is illustrated in �gure 6; the eigenfrequen-ies are normalised by their initial � unmodi�ed � valuesfor ease of omparison. The �rst �exion mode is morein�uened by the modi�ation than the seond mode;the third mode frequeny suddenly inreases when thesti�ness of the modi�ation beomes omparable to thesti�ness of the frame. Indeed the modi�ation tends to
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DOF numberFig. 8: Computation times for the frequeny evolution,on 20 steps, of ten modes (� determinantal method, +eigenvalue analysis, � regression)blok the relative horizontal displaement between the�rst and the seond �oor; yet the third mode annotexist without this relative displament, onseutively,the frequeny of the thrid mode tends toward in�nity.The e�ieny of the proposed method is also testedon a omplex example having two visous damping links(see �gure 5b). This is illustrated in the root lous plot�gure 7. The poles × orrespond to the unmodi�edeigenvalues and the zeros ◦ are the eigenvalues of thebloked system3.4.2 Computation timesIn order to see the e�ieny of the proposed method,we ompare the omputation times of the determinan-tal method and the lassial eigenvalue analysis for avarying number of degrees of freedom, in the ase ofone added link. The frame struture is kept sine itsdegree of freedom number an be easily parameterized.The Double Modal Synthesis is not employed here be-ause the aim is to ompare only the loal modi�ationmethod.The eigenvalue analysis onsists in omputing the�rst ten modes of the frame using its sparse mass andsti�ness matries thanks to the Matlab funtion eigs4.On the other side, the time taken by the determinantalmethod to follow the evolution of a mode is notied tobe independant of the mode number. Thus, to be om-pared with the eigenvalue analysis omputation time,the determinantal method omputation time for one3 The reader is invited to refer to root lous plot methodsif more details about the onstrution and interpretation ofthis kind of graph are needed.4 Funtion to �nd a few eigenvalues and eigenvetors of amatrix using ARPACK library.



Determinantal method for loally modi�ed strutures 13mode is multiplied by ten. As the number of degrees offreedom of the struture inreases, the advantage of theproposed method for determining the modi�ed eigen-values beomes lear (see �gure 8).The omputation time for the determinantal methodmainly depends on:� the time needed to evaluate the determinant ∆ (λ)for a ertain value of λ; when omputing the re-sponse on the �rst nm modes, this omputation ostis linked to the degree of freedom number n and thenumber of retained modes nm;� the number of time the determinant is omputedto �nd its root for a partiular impedane value,whih depends on the algorithm and its solving pa-rameters.A power regression is performed on the eigenvalue om-putation time and it is found to be proportional to n2.09.On the other side, a linear regression on the determi-nantal method omputation time shows that this timeis proportional to n. In both ases, the regression �tsvery well to the data (f. �gure 8).The determinantal method is an exat formulation:if we are able to solve the determinantal equation, theexat eigenvalues of the modi�ed struture are obtained.However, the preision of the method depends on twothings: the preision of model of the struture, i.e. theexpression of the transfer funtions, whih an be trun-ated or approximated in some way; the way the deter-minant is solved numerially, whih an also lead to ap-proximations. As a onsequene it is possible to have aspreise eigenvalues as possible provided that the modelis exat and that the solving method is su�iently a-urate. The point in this artile is not to give a fullyoptimized algorithm to solve Eq. (57), it is to introduea new formalism, both simple and general, with an beapplied on onrete ases.4.3 Single mode approah appliationThe single mode method developped in setion 3.1 isapplied on the frame struture. The aim is to �nd theoptimal sti�ness e of the hystereti link k∗ = e (1 + iβ)between points 2 and 3, for a given hystereti dampingin the link β = 0.3, whih gives the maximum damp-ing on the �rst mode of the frame. The whole struturehas a hystereti damping of 0.02. This analysis is anal-ogous to the lassi optimization rule for a tuned massdamper.Equations 30 and 31 are rewritten, using Eq. (32)and the impedane Zm (k∗ and kr in series), it gives
ω̃2

m =

(

χ+ 1 + β2
)

ω̃2
∞

+ (χ+ 1)χω̃2

(χ+ 1)
2

+ β2
(80)
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Fig. 9: First mode damping η versus modi�ation sti�-ness e : � referene solution, � � single mode approah(the vertial lines indiate the optimal modi�ationsti�ness)
ηm =

βχ
(

ω̃2
∞

− ω̃2
)

+
(

(χ+ 1)
2
+ β2

)

ω̃2η

(χ+ 1 + β2) ω̃2
∞

+ (χ+ 1)χω̃2
(81)where χ = kr

e
. The study of the funtion de�ned byEq. (81) shows that the maximum damping is reahedfor

χopt =
1 + β2 +

√

µ (1 + β2) (βη + µΩ −Ω + 1)

µ− 1
(82)where µ = β

η
and Ω =

ω̃2
∞

ω̃2 .The pulsation of the �rst mode of the frame is ω̃ =

7.88 rad s−1; the pulsation of the bloked system is ω̃∞ =
11.03 rad s−1, leading to a residual sti�ness of kr =

1.988× 105 Nm−1 with Eq. (32).Finally, the optimal sti�ness, with the single modeapproah, is eopt = 1.22 × 105 Nm−1. The omparisonwith the referene optimal sti�ness erefopt = 1.31 × 105 Nm−1gives a 6.20% relative error. Figure 9 illustrates theevolution of the �rst mode damping with varying mod-i�ation sti�ness. The urve for the single mode ap-proah tends to move away from the referene solutionas the sti�ness of the loal modi�ation inreases; how-ever, the single mode approah gives a relatively goodapproximation of the optimal sti�ness with very lowomputational e�ort. Indeed the referene solution re-quires the omputation of the �rst eigenvalue on a widerange of sti�nesss, whereas Eq. (82) gives immediatelya good approximation for the optimal sti�ness.This single mode approah is however limited tolightly damped strutures on whih a hystereti damperis added. Nevertheless it may be onsidered as a om-plementary method to get a preliminary design beforeexploring more deeply some modi�ation.



14 Denis Brizard et al.Charateristi Valuestage height 1.2 mtotal height 2.1 mstage diameter 1.220 minner tube diameter 0.600 mtotal mass 1500 kgengine mass 880 kgYoung modulus E 210 GPaPoisson modulus ν 0.285density ρ 7800 kg m−3Table 2: Main harateristis of the launher stage4.4 Loal modi�ation of a launher's last stageA struture representative of a launher's last stagewith its payload is onsidered. Figure 10 illustrates thegeometry of the struture and the orresponding mesh-ing; its main harateristis are given in table 2. Thestage is omposed of an outter strutural ylinder; theinner ylinder and the attahed mass represents the en-gine. Above this stage, a beam models the payload; itis onneted to the stage through three olumns (theattahment and spaing system of the payload).This struture is well adapted to modal synthesissine it is learly omposed of two substrutures: thestage; and the payload and its support. The stage sub-struture has 11 100 degrees of freedom and the pay-load substruture has 1550 degrees of freedom. Again,the Double Modal Synthesis only needs to be omputedone sine the determinantal method requires the ini-tial behaviour. The base of the stage is onsidered to belamped, sine the onnetion interfae of the launheris very sti�.The idea is to use the relative displaement be-tween the engine and the outer shell to damp vibra-tions. Three dissipative links, with visous damping c,are therefore added between the engine mass and the lo-ally reinfored outer shell (•�• on �gure 10b). Figure11a shows the root lous plot of the system for the �rstfour modes. The �rst mode is a �exion mode of thepayload on its support; the seond mode is a �exionmode of the inner tube; the third mode is a longitu-dinal mode, the payload and the engine mass vibratevertially in phase; the fourth mode is again a longi-tudinal mode, but it is antisymmetrial. The mainlya�eted mode is mode two, however the other modesare also lightly damped (see �gure 11b for a more de-tailed graph) beause the added links are not exatlyhorizontal � whih in�uenes longitudinal modes � andthe displaement of the engine mass is not zero for thepayload modes.

(a)

(b)Fig. 10: Model of the launher stage: (a) ross-setionview; and, (b) meshing of the stageFigure 12 gives the evolution of the real part of thesethree lightly damped modes with respet to link damp-ing c. The inrease of the impedane step is notieable(the points are nearly linearly spaed on the vertial logaxis). This �gure also shows that the optimal dampingfor eah mode may not be for the same value of c.At last, the proposed method is applied on the launherequiped with three equally spaed horizontal links be-tween the engine (• on �gure 10b) and the outer shell.
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(b)Fig. 11: Evolution in the omplex plane of the �rsteigenvalues of the damped stage: (a) the four �rstmodes, urves of equal modal damping, × poles and
◦ zeros ; and, (b) detail of the three least damped modesThese links are omposed of a spring in series with avisous damper. The in�uene of both the sti�ness kand the damping c of the links is illustrated by �g-ure 13; the blue urves orrespond to the evolution, inthe omplex plane, of the seond pole with a dampingparameter c varying from 0 (initial pole × ) to ∞ (zero
◦ , orresponding to the bloked puslation) and a �xedsti�ness parameter; the red urves orrespond to theevolution of the pole with a �xed damping parameterand a sti�ness parameter dereasing from ∞ to 0 (fromleft to right on �gure 13). When the sti�ness of the linktends toward zero, it amounts to remove the link: thatis why the pole tends to return to its initial � unmodi-�ed � value. This kind of graphi allows to evaluate the
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Fig. 12: Evolution of the real part of the eigenvalueswith respet to visous damping c in the three links
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Fig. 13: Evolution in the omplex plane of the dampedstage seond eigenvalue for varying k and c parameterssensitivity of the pole to the parameters of the links,whih may be ruial at a pre-design stage.5 ConlusionThe proposed determinantal method appears to be promis-ing to follow the evolution of the eigenvalues of a loallymodi�ed struture. The formalism and the underlyingequations are relatively simple and it gives very au-rate results. In addition to this, a single mode approahmay be used to have a �rst approximation when dealingwith the hystereti damping optimization of a partiu-lar mode.With the determinantal method, the same initialmodal basis is kept through the exploration of the de-
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