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Abstract In order to improve the dynamic behaviour
of an existing or already designed structure, local mod-
ifications can be performed by taking advantage of the
relative displacement between two points of the struc-
ture. A stiffner, damper or viscoelastic rod may be
added and its effect on the initial structure must be as-
sessed. A new formulation is developed, based on the re-
sponse of the initial structure at the attachment points
of the local modification. A determinantal equation re-
sults, whose roots are the eigenvalues of the modified
structure. The equation is solved numerically with a
dedicated algorithm and it is shown that this is faster
than performing an eigenvalue problem reanalysis. The
method is able to deal with both undamped and damped
systems, and can handle several modifications simul-
taneously. It is applied on the last stage of a space
launcher, along with a double modal synthesis method.
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Nomenclature

total number of degrees of freedom

number of internal degrees of freedom of sub-
structure (s)

n; number of junction degrees of freedom

n;’ number of retained eigenmodes for substructure
(s)
np number of retained branch modes
I set of internal degrees of freedom
J set of junction degrees of freedom
FE set of excitation degrees of freedom
n(®) substructure (s) eigenmode generalized coordi-
nate (ngs) x 1)
¢ branch mode generalised coordinate (np x 1)
F; junction force (n; x 1)
q; junction displacement (n; x 1)
W, matrix of constraint modes of the global struc-
ture (n X n;)
X p; matrix of branch modes (n; x npg)
W) substructure (s) constraint mode ((nl(.s) +n;) x

n;)
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\IIZ(.S) restriction of constraint modes ¥*) on I set

(nf” x ny)

W, restriction of constraint modes ¥*) on J set
(n; x 1)

1 Introduction

In many design processes, the effect of local modifica-
tions has to be assessed. This can be at an early stage
when the effect of a part on the whole structure is to be
determined rapidly. On the contrary, when the design is
already set, or when dealing with an existing structure,
the addition of a stiffner or a damper may be evaluated
for a resonance shifting or a damping purpose.

This is often the case with space launchers: the stages
design is already set and may need to be adapted to
protect the payload from excessive vibration levels. The
influence of local dampers thus needs to be evaluated,
S0 as to optimize their location and properties.

Because industrial structures are generally complex
and therefore have an important number of degrees of
freedom, a reduction technique is required to describe
the dynamic behaviour efficiently with a small model
(ie. a small number of generalized degrees of freedom.)

Component Mode Synthesis (CMS) techniques al-
low to compute structure responses through the use of
substructures modes, thus reducing the size of the prob-
lem to solve. Basically, each substructure is described
with a certain number of eigenmodes and boundary
modes are added to compensate the modal truncation.
Two main methods may be distinguished. On one hand,
the fixed interface based CMS, developped by Craig and
Bampton [1], uses fixed interface substructure eigen-
modes and constraint modes as boundary modes (these

are the substructure response to successive unitary bound-

ary displacement). On the other hand, free interface
CMS (see MacNeal [2], Rubin [3] or Craig and Chang
[4]) uses free interface substructure eigenmodes and at-
tachment modes (substructure response to successive
unitary boundary force).

Because the number of boundary modes equals the
number of junction degrees of freedom, the idea of con-
densing interface coordinates quickly emerged (see Craig
and Chang [5]). Sometimes under different names, re-
duction with “boundary modes” was studied by some
authors, among which are Balmeés [6] and Tran [7].
Moreover, in addition to boundary reduction, a few au-
thors employed w? boundary developpements to better
compensate modal truncation (see Jézéquel and Setio
[8] and Besset and Jézéquel [9]) in a method called Dou-
ble Modal Synthesis; see also Géradin and Rixen [10]
for w? development aspects.

In a previous paper [11], the addition of a spring be-
tween two substructure degrees of freedom — to model
an elastic link — was studied with the use of the Double
Modal Synthesis. It was shown that only small modi-
fications —ie. small spring stiffnesses— could be well
handled. Indeed, the reduction bases were not able to
describe big changes in the behaviour of the structure
since they do not take into account of the modifica-
tion; their performances are therefore limited. Having
a modal basis capable of describing the behaviour of
the structure whatever the modification is quite a chal-
lenge and somehow impossible. In addition, since the
reduction bases are composed of real modes, they are
not able to deal with highly dissipative links containing
visous damping or hysteretic damping. That is why a
modification technique is employed in combination with
the Double Modal Synthesis.

Baldwin and Hutton [12] wrote an interesting review
and classified the modification techniques into three
categories: the techniques based on small modifications
(sensitivity approach, perturbation methods); the tech-
niques based on modal approximation; and the tech-
niques based on localized modifications, which is stud-
ied in this paper.

Weissenburger [13] is one of the first to treat the
local modification of an undamped system. Pomazal
[14] extended Weissenburger’s procedure to deal with
the local modification of one of the system elements on
linear damped system. At last, Jézéquel [15] proposed
a method to diminish the effects of modal truncation.
Hallquist [16] discussed the vibration of structures with
arbitrary support conditions, using Lagrange multipli-
ers, to get frequencies of the constrained system. In [17],
mass and damping modifications in damped systems are
evoked, a Newton-Raphson numerical scheme is used
to locate the complex roots of the characteristic equa-
tion. Jacquot [18] proposed an original approach based
on transfer functions to get the response of a modified
system, the eigenvalues of the modified system are not
computed. Dowel [19] used a Lagrangian formulation to
analyse the effect of spring-mass addition to a dynam-
ical system.

All these methods either require the explicit knowl-
edge of all the eigenmodes or the explicit knowledge of
the transfer functions. It is therefore difficult to discribe
the behaviour of the struture with a black-box model
— providing the response of the structure for a given
frequency — such as the Double Modal Synthesis that
is used here.

Even though the aim is different, it is interesting to
have a look at the inverse problem approach. Tseui [20]
treats the modification of stiffness and mass parame-
ters for desired eigenfrequency of undamped mechan-
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ical systems. Yee [21] extended this work to damped
systems: a method for modifying a mechanical system
and shifting its damped natural frequency to a desired
value is developped, the calculation involves iteration
and only one modification at a time can be handled.
Ram [22] adressed the problem of structural modifi-
cations in truncated systems. He also investigated the
inverse problem [23], given an incomplete modal model
(natural frequencies and modes), to reach a desired dy-
namic behaviour. Kyprianou [24] explored in detail the
assignment of natural frequencies by an added mass and
one or more springs.

The aim of this article is to introduce a general for-
mulation, based on transfer functions — which can be
black-boxes — and impedances, to determine the eigen-
values of a locally modified structure. The addition of a
mechanical impedance models the structural modifica-
tion (cf. figure 1). It can correspond to the introduction
of a viscous damper, a spring, or any combination, in
order to modify the characteristics of the system. The
method introduced in this article is able to deal with
one or more impedance, and the attachment point of
the impedance may be modified easily. The advantage
of this new formulation is that it can be applied to both
undamped and damped structures.

This method is based on the response function of
the points where the local modification is performed
and on the force-displacement transfers between those
points. The impedance equation of the local modifica-
tion is then used to write a characteristic (determinan-
tal) equation whose roots are the eigenvalues of the
modified structure. Since the formulation is exact what-
ever the value of the added impedance, it is not limited
to small perturbations; the only difficulty is to solve
this equation. An good reduced model of the structure
is of course also required to preserve the accuraty of the
method when dealing with a large number of degrees of
freedom.

In the following section, the Double Modal Synthe-
sis method is introduced. The determinantal method
and the associated solving algorithm are then exposed,
along with a fast single mode approach. The application
of the method is then illustrated on a few examples and
some points of interest are discussed. The single mode
approach is developped on the same example with a
view to pre-design some damping solutions.

2 An improved substructuring method: the
Double Modal Synthesis

The structure is supposed to be composed of two sub-
structures, which does not restrict the method. If needed,

Py

(c)

Fig. 1: Local modifications : (a) addition of a mechan-
ical impedance; (b) case of two local impedances; and,
(c) addition of a ground link on the structure

a superscript (.(*)) is added to make the distinction be-
tween substructures. Subscipts i, e and j refer to inter-
nal I, excitation £ and junction J degrees of freedom
sets, respectively; they are used in matrix partitions. In
case of a barred variable (7), subscripts 7 and j refer to
eigenmodes and branch mode, respectively.

2.1 Branch modes

Boundary condensation is made through the use of branch
modes : instead of keeping a number of modes equal to
the number of boundary degrees of freedom n;, only
a certain number of boundary modes are kept. These
branch modes are representative of the structure be-
haviour in the frequency range of interest. The branch
modes defined in this paper are the modes of the struc-
ture condensed on its interfaces thanks to constraint
modes.
Constraint modes of the global structure

KK
Vo= |0, | = Ljj
KK
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are computed with the stiffness matrices of each sub-
structure. Branch modes xp; are defined on junction J
between the two substructures. They are the solution
of the global structure eigenvalue problem projected on
constraint modes

[tlI’sKtot‘I’s - w2 tlI’thot‘I’s] XBj = 0 (2)

The set of all branch modes Xp; spans the same sub-
space as the complete set of constraint modes ¥,. Dou-
ble Modal Synthesis (DMS) consists in retaining only
the first “boundary modes”, called branch modes here-
after. The projection of branch modes on each substruc-
ture is achieved through the use of boundary modes w?
developpements.

The internal displacement of a substructure due to
imposed boundary displacement ¥; may be written

v~ - (o) v,
= (oM K) T (M 1K)
(3)
The following equation

(K—o®M) ' =K'+ (K'"M)K ' +...
+ (w2K_1M)"_1K_1
+ (WK M) (K —w’M)™ (4)

is valid for all integer n > 0. It is used to calculate the
inverse required for boundary modes in Eq. (3).

An imposed boundary displacement ¥, = I;; (iden-
tity matrix of size n;) is considered, which corresponds
to successive unit displacement of boundary degrees of
freedom, while the others remain clamped. Going up to
the second order, on gets from Egs. (3) and (4)

+HEP MK M| (5)

Order 2 boundary modes may be written in a more
condensed way

g0 [#00)] [ e o]
v L

It should be noticed that only the internal mode dis-

placement is affected by the w? developpement.

Branch modes, once projected on substructure (s),
may thus be written

X)) = ) X, = X} + 07X + X
X5§3 =1;; Xpj = Xpj
(7)

2.2 Substructure reduced basis

In this subsection, all the variables are related to one
of the substructures: the superscript (.(*)) is therefore
omitted.

Substructure displacements are described by a set of
fixed interface eigenmodes @ and a set of branch modes
X p with w? developpements, to compensate modal trun-
cation. To take the local flexibility at excitation point
into account, excitation set F is integrated in the bound-
ary, which already contains .J, the junction set between
substructures. Branch modes are thus computed on the
frontier FF = J U E and fixed interface substructure
eigenmodes correspond to the modes of the substruc-
ture being clamped at the frontier F'. The reduced basis
is therefore

@i XBZ'(W)
T=[®Xp]=|0 Xge (8)
0 Xz

Let n and ¢ be the generalized coordinates vectors
associated with substructure eigenmodes and branch
modes, respectively. Let M = 'TMT and K = ‘TKT
be the reduced matrices of a given substructure. The
reduced matrix M is given by

_ [ '®M® '®MXjp
M= {tXBMdi X pMXp ©)

In order to show boundary modes w? developpe-
ments, reduction matrix 7' is written as

T =T+ w’T +w'Ty (10)

Only Ty is a full matrix, the next matrices have non-
zero terms on lines and columns corresponding to in-
ternal DOFs and branch modes, respectively

0 Xk

Tk:[o 0] Yk >0 (11)

The reduced mass matrix is expanded, taking the sec-
ond order of w? developpement of reduction matrix T,

'TMT ="'"TgMTo+w” ['T1MTy + 'ToMT, |
+ w4 [tTlMTl + tTQMTO + tToMTQ]
+ @ ['TiMTy + 'TiMT,] +w® ['ToMTy]  (12)
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By definition of constraint modes, it can be shown
that any mode having null boundary displacement is or-
thogonal, with respect to the stiffness matrix, to the set
of constraint modes ¥y. Substructure eigenmodes are
fixed interface modes and branch modes are expanded
with constraint modes on substructures. This involves

KX 5o = 0 (13)

Substructure’s mass and stiffness matrices are re-
duced using T' and the previous orthogonality

e o R E vt ] I
Sl A EO o) R

In these reduced matrices, block matrices M;; and Kj;
are diagonal and equal to the modal mass and stiffness
of the retained fixed interface eigenmodes. Keeping only
order 0 amounts to use Craig and Bampton’s compo-
nent mode synthesis.

External forces on substruture only apply on excita-
tion set F and on junction set J. Hence the force vector
in the reduced basis is

0
. 0
F='TF='T{F, = 16
. {tXBeFe + !X p,F, } (16)

J

2.3 Substructure equilibrium equations

The substructure equilibrium equation (7w2M + K ) q
F is reduced with the reduction basis T and the asso-
ciated generalized displacement vector ‘qp = {'n ¢}

'T(-w’M + K)Tqp ='TF (17)

The matricial equilibrium is divided according to gen-
eralized displacements. The first equation of size n;, the
number of retained fixed interface eigenmodes, is

oM + K |
+ [w? (M) + M (@) + K@) ¢ =0 (18)

The second one, of size ng the number of retained
branch modes, is

[ﬂﬂ (Mg? + M) (m) + K (w)} n®
VONEVO =(5) | =09 s
+ [w? (M) + M (@) + K+ K (@)] ¢
= tXBeFe + tXBij (19)

2.4 Substructure coupling

Let the two substructures (1) and (2) be coupled through
a common boundary J. Branch modes definition Eq. (7)
implies

1 2
Xy =XE) = Xp; (20)
Therefore, boundary nodal equilibrium Fgl) + Ff) =0
becomes
X P+ X g FE =0 (21)

Because internal modes are fixed interface modes (c.f.
Eq. (8)), substructure (s) junction displacements are
given by

a” = X§¢ (22)
Compatibility of interface displacements q§1)
and Egs. (22) and (20) thus give

¢V =¢®=¢ (23)

Matrices M'" and K';’ are diagonal because of sub-
structures eigenmodes orthogonality, Eq. (18) is thus
easily converted into

7= (0f) D¢ (24)

The equilibrium Eq. (21) couples Eq. (19) writ-
ten for each substructure — (1) and (2) — and n®) is
replaced by the previous expression. A matricial equa-
tion of size np, governing branch modes contributions
¢, is obtained

_ _ _ -1 _
{Dm b (D) ' DY

@

Jj Ji 2
_ _ _ -1 _
+ D) -0 (D) Dz(?)} ¢='XpF. (25)

where a dynamic stiffness matricial notation is adopted

Dy = —w?M;; + K

S () 2 (s | (s w(5) | 3o (s)

Dj) = —w? (M} + M () + K} + K} (@)

DY = —u? (1\7155) + MY (w)) + K (w) for kl = ij, ji
(26)

Solving Eq. (22) and then replacing ¢ in Eq. (24)
allows to come back to substructures physical displace-
ments at any point. If the observation point is inte-
grated in the boundary (in the F set), only Eq. (25)
need to be solved and the displacement is known through
Eq. (22). This will be used in the following determinan-
tal method since only the displacements of the link at-
tachment points are required; these points will therefore
be integrated in the boundary.
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Fig. 2: Rheological model (q; is the generalised coordi-
nate associated with mode ¢)

3 Analysis of locally modified structures

In this section, bold type will be used to distinguish
matrices and vectors from scalar quantities.

3.1 A single mode approach

In the context of pre-design of structures, it is interest-
ing to develop a specific method to get fastly the ap-
proximate characteristics of a locally modified structure
(addition of damping elastomer). It is based on a sin-
gle mode vision, in the case of hysteretic damping. The
mass of the modification is supposed to be negligible
and the modal displacement of the attachment points
¢1 and ¢ remain unchanged by the modification of
complex stiffness k* = e(1+i0) (cf. figure 2). According
to the method proposed by Jézéquel [15], the residual
stiffness k, is introduced in series with the modifica-
tion, it corresponds to the static flexibility of the initial
structure, for the considered mode, at the location of
the attachment points. The equivalent impedance of the
model given in figure 2 may be written Z,,, = a + ib.

The initial eigenvalue of the unmodified structure is
written as

A= —&%(1+1n) (27)

According to the first order sensitivity analysis [15], the
modified eigenvalue is

Am = —@* (1 +1in) — (a+ib) (¢2 — ¢1)° (29)

which gives the pulsation and the damping factor of the
modified eigenvalue
= —R(Am) =% +a(p2 — d1)° (30)

~2
W

R(Am) @2 +a(de— 1)
By blocking the displacement between the attach-
ment points of £*, one can have the pulsation @, of

the blocked system. It is therefore possible to get the
residual stiffness by using Eq. (30)

~2 ~2
k, ~ Yoo —W 39
(62 — ¢1)? (32)

As it is a simple rule with restrictive hypothesis, its
validity may be limited. A more precise method needs
to be developped, which can also handle greater local
changes. This is detailed in the following section.

3.2 Determinantal method with one added impedance

Assuming a general linear dynamic system, the equa-
tion of motion in the frequency domain may be written

(M+XC+K)U=F (33)

where M, C and K are the mass, damping and stiffness
matrices, respectively; U is the displacement vector and
F is the vector of external forces. Eq. (33) can be re-
written as

U=H(\) F,with\=a+iw (34)

where H (1)) is the dynamic flexibility or frequency re-
sponse function ; the term transfer function will be used
thereafter. In order to simplify the notations, the depen-
dency in A will be omitted in the rest of the article.
Let the flexibility, or transfer function, between points
P and P, be defined by
Hy = UF}; (35)
where u; is the scalar displacement along the direc-
tion defined by P, P, and Fj is the external force along
the same direction. It is therefore possible to write the
transfers betweeen P; and P, (cf. figure 1a) in a matri-
cial way

Uy Hy Hiz | | Py
= 36
{U2} [Hm H22]{F2} (36)
The initial structure is modified by the addition of a
scalar mechanical impedance Z between two points Py

and P, (cf. figure 1a), which gives the following force-
displacement relationship

F1 :Z(U1 —Ug) (37)

Using Eq. (36), u; and wus are eliminated from the
previous equation

Z7'Fy = (Hyy — Hay) Fy — (Hag — Hy2) Fy (38)
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The force equilibrium in the added impedance may be
written

Fi+F=0 (39)
and therefore Eq. (38) becomes
((Hi1 + Hay — Hyy — Hi2) — Z7') F1 =0 (40)

Since we are not concerned with the case where the
force in the impedance is zero, non-trivial solutions are
sought. The eigenvalues of the modified structure may
thus be found by solving the one line determinantal
equation

A=|Hy +Hy—Hy—His— 27| =0 (41)

So instead of solving an eigenvalue problem of size n,
the roots of a determinant give the eigenvalues of the
modified structure. This is done through the use of some
particular transfer functions of the initial system: the
transfer functions between attachment points P; and
P;. Tt is therefore possible to follow the frequencies of
the modes while the impedance varies; this is detailed
in section 3.6.

3.3 Adding more than one impedance

This method is not limited to only one structural mod-
ification. It is developped here for two local modifica-
tions — the addition of two distinct dampers on the
structure for instance — but it can easily be generalised
to a number N of local modifications.

In the case of two local impedances between points
Py and P, and between points Ps and Py (cf. figure 1b),
the transfers between all these attachment points may
be written

Uy Hy1 Hyo Hiz Hig I
ug | _ | Ho1 Hap Hys Hog Iy (42)
u3 H3y H3p H3z H3y I
Uy Hy Hyo Hyz Hyy Fy
The impedance Z, between P, and P> gives
F1 = Za (u1 - ’U,g) (43)
Fi+F,=0 (44)

and the impedance Z; between P3 and Py leads to

Fg = Zb (Ug - U4) (45)
Fy+Fy=0 (46)

By using Eq. (42), Eq. (43) can be re-written as

Z7'F = (Hyy — Hoy) Fy + (Hig — Ha) Fy
+ (Hy3 — Ha3) F3 + (Hya — Hog) Fy  (47)

and then simplified with Eq. (44)
Z7YF) = (Hyy + Hoy — Hyy — Hio) Fy

+ (Hi3 + Hoa — Hoz3 — Hia) F3 (48)
In a similar way, we get for impedance Z;

Zy Fy = (Hs1 — Ha1) 1 + (Hzo — Hao) I
+ (Hzz — Hyg) F5 + (H3s — Hay) Fy (49)

Z,'Fy = (H31 + Hap — Hyy — H3o) Fy
+ (Hss + Hqa — Hys — H3q) F3 (50)

Let the following mechanical transfers

Too = Hi1 + Hoa — Ho1 — Hyo

Toy = Hi3 + Hay — Hog — Hiy

Ty, = H3z + Haa — Hag — H3y

Tyo = H31 + Hyo — Hyy — Hsa

51
92
53

(
(
(
(54

)
)
)
)

Gathering Egs. (48) and (50) gives

Twa— 270 Tupy A [0
{ Tha Tbb—szlHFs}_{O} (55)

The non-trivial solutions of the previous system of two
equations are found by cancelling the two by two de-
ternimant

’ Taa - Zt;l Tab

A= _
Too Too— 2"

’ =0 (56)
The eigenvalues of the modified structure are therefore
the solutions of the equation

(Taa -

Eq. (56) can be easily generalised for the case of N
local impedances.

ZN (T — Z;") = TapTpa = 0 (57)

3.4 Case of a ground link

Treating a ground link, represented by the figure 1c,
just simplifies the formulation. The response of the struc-
ture at point P; in the direction of the link is

uy = Hi1 Fy (58)
The impedance equation of the ground link gives

w =Z7'F (59)
which leads to

(Hi—Z")Fi=0 (60)

The eigenvalues of the modified structure are thus given
by the non-trivial solutions

A=|Hy—-Z7'=0 (61)
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Fig. 3: Coordinate system change: # and 1 angles to
go from the global frame (z,y,z) to the link frame
(X,Y,2)

3.5 From global frame to link frame

In the previous sections, the equations were written
with F' being the force along the link. However, the
direction of the link may not correspond to the global
frame and thus may not be aligned with the degrees of
freedom. The force therefore needs to be written in the
link coordinate system.

In the present section, the upper case letters refer
to the variables in the link coordinate system and the
lower case letters refer to these variables in the global
coordinate system.

Let uw, v and w be the displacements respectively
along the @, &/ and 7 axes (see figure 3). The link
frame is such than the displacement U is along the X
axis of this new frame. The coordinate system change
is written

U U
V =R v (62)
w

where R = R (¢) R (0) and

costp 0 —siny
R() = 0 1 0 (63)
siny 0 cosvy

cosf —sinf 0

R(0) = | sinf cosf O (64)
0 0 1
cosycos cosysing sin
R = —sinf cos @ 0 (65)

—siny cosf — sinesin @ cosy

The transfers between points P; and P; in the global
coordinate system are

U1 fi fe
vy p=hi1 ¢ g1 p+hiag g2 (66)
w1 €1 €9
U fi fe
vy p=ho1 ¢ g1 p +had g2 (67)
w2 €1 €2

where hy; is a 3-by—3 transfer matrix between forces at
point P, (f1, g1 and e; along respectively the x, y and 2
axes of the global frame) and displacements at point P
(uk, vx and wy, along respectively the z, y and z axes)

Tkl Okl Dkl
0% Ski Qi (68)
Pt Gt thl

In the coordinate system of the link we get

hy, =

U, Iy )
Vi p=Hu{ G p+Hiaq G (69)
W1 El E2
Us I !
Vo p =Ho1q Gi p +Hx ( Go (70)
W2 El E2

where Hy; = R hy;'R; Uy, Vi, and W}, are the displace-
ments at point P, along the X, Y and Z axes of the
link frame; and Fy, Gy and Ej are the forces at point
Py along the X, Y and Z axes. Indeed, since R is a
rotation matrix, R™! =*R.

We now have the relationship between forces and
displacements along the link direction defined by P, Ps,
whatever the orientation of this link

{Ul } _ {(Hu)u (H12)11] {Fl} (71)
Us (Ha1)yy (Haz)yy | | F2

where only the upper left term of matrix Hy; needs to
be computed

(Hu)y, = (R hy'R) | = i (cost cos0)” +
ok sin 0 cos 0(cos )? + ppy cos O sin 1 cos ¥
+ 0}, sin 6 cos O(cos 1)? + sy (sin 0 cos 6)*
+ gy sin 0 sin 1) cos ¥ + pj,; cos O sin 1 cos
+ qfy sin @ sin ) cos + t(sinep)?  (72)
Now consider the case where we have two links on
the structure, the first between points P; and P, and

a second one between points P3 and P;. The following
transfer matrix is required

U, S11 S12 S13 S1a Fy
Us | _ | S21 S22 23 S ) (73)
Us S31 532 S33 S34 F3
Uy S41 Sa2 Sa3 Saa Fy
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with Uy, Us, F} and F5 the displacements and forces
along the P, P, direction and Us, Uy, F3 and Fj the
displacements and forces along the P3P, direction. A
second coordinate sytem change, from the global frame
to the frame aligned on P3Pj, is defined with the cor-
responding 6" and ¢’ angles

R'=R () R(0) (74)

Two different coordinate system changes are now
involved; the first line of matricial Eq. (73) comes from
the first line of

U, Iy I
Vi 3 =Rh;'R{ Gy ; +Rh;'R{ Gy
W1 El EQ
F3 F4

+R hi3'R' ¢ G p +Rhiy'R'S Gy ¢ (75)
Eg E4

which is the extension of Eq. (69) with the added ex-
citation points P3 and Pj.

Again, only the first line of this equation needs to
be computed

Sw = (R hy'R) 11 = Tricos ' cos @' cos e cos f
+ op cos 1’ sin 0’ cos 1) cos 0 + py; sin 1)’ cos 1 cos
+ 0}, cos 1)’ cos @' cos1psin O + sy cos vy sin @’ cos ) sin O
+ qri sin ¢y’ cos ' cos 1 sin 6 + pj,; cos )’ cos @ sin @
+ @) cos Y sin @' sin) + tg sine)’ siny  (76)

for kIl = 13,14,23,24. For kIl = 11,12,21,22, only one
coordinate change is involved: Eq. (72) is still relevant.
For kI = 33, 34,43, 44 again there is only one coordinate
change involved, but this time with angles ¢’ and .

Since Egs. (72) and (76) involve many different
transfers, it may lengthen computation times needlessly;
indeed, for some particular angles # and 1) these equa-
tions can be simplified. So only the transfers that are
not cancelled by a zero sine or cosine are actually com-
puted.

3.6 Numerical considerations

The distinction between two kinds of problem can be
made, which influences the way Eq. (41) A = 0 is
solved. On one side, there is the purely real value prob-
lem: a spring is added to a linear undamped structure.
The modified eigenvalues A remain purely imaginary
and there is only one unknown which is the pulsation
w, or circular frequency

weR|AWw)=0 (77)

On the other side, the problem can be complex: ei-
ther the structure is already damped, or a damper may
be added to a linear undamped structure. In both cases,
the new eigenvalues A\ must be sought in the complex
plane, which means there are two unknown : the damp-
ing coefficient « (real part of A\) and the pulsation w
(imaginary part of \)

AeECA=a+iw| AN =0 (78)
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-simple : Wp = Wn—1
-tangent : Prediction
wp = fwn—1,wn—2) .
-polynomial : W= @
wp = f(Wwn—1,wn—2,wn_3)
Search algorithm Solving
working with a black A 0
box w — A(w) w | (w) -

Reached limit ?
lw = wp| > alwp]

QA

o ( 4k > Akmin |
Storage of w no yes
New try
BREAK VRN
Niter<Niter,in yes
et Ak < Akmax A3 7

no kn = kn_1+ Ak

Niter>Niter,, g0 yes
et Ak > Akmin

Ak N\

no

Ak — |—— | Next step

Fig. 4: Variable step algorithm for following the evolu-
tion of an eigenvalue
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A particular continuation algorithm is developped
to follow the solutions of the determinant while the
impedance of the link(s) varies. The diagram of figure 4
details its steps. A first prediction of the solution is
made; depending on how many points were previously
computed, the prediction can be simple (same solution
as previous point), tangent (with the use of the last two
points) or polynomial of degree n (with the use of the
n + 1 previous points.) Note that a tangent prediction
is the same as a polynomial prediction of degree 1. It
is not usefull to increase the order of the prediction be-
yond 2 since this can lead to oscillations and thus may
not improve the prediction; moreover, the trajectories
of the solutions remain most of the time relatively sim-
ple (see the following examples of section 4).

Once the solution is predicted, the exact solution is
sought around this point with a search algorithm. The
search algorithm is fminbnd' for the real value problem
and fsolve? for the complex problem; both functions
belong to the Matlab Optimization Toolbox. A research
bound —parameter a— is defined to make sure that the
found solution is not too far from the prediction.

Before going to the next step, the impedance in-
crease is adjusted: if the solution was easily found, then
the impedance step Ak is augmented; if the algorithm
had difficulties in finding the solution, the impedance
step Ak is decreased. Between these two cases, the
impedance step remains constant. On the other side,
when the solution is not found, the impedance step is
decreased before making a new attempt. Indeed, it is
expected that the closer from the previous point, the
easier to find the next point.

A maximum and a minimum impedance step are de-
fined. The minimum impedance step mainly serves as
a stopping criterion if the algorithm ever fails to find a
solution. This may happen if we are trying to observe a
non-controllable mode, i.e. a mode which is not at all in-
fluenced by the structural modification. In fact, for the
non-controllable mode, the force in the link is zero: this
is the trivial solution of Eq. (40) and the determinant
of Eq. (41) does not have a zero for the corresponding
mode. The maximum impedance step may be used to
restrict the distance between the points.

The advantage of this variable step algorithm is that
it is able to deal with large impedance changes with-
out having to search too many solutions. It is therefore
possible to handle variations of impedance of several
orders of magnitude: when the solution greatly varies
while the impedance increases, the impedance step au-
tomatically decreases; on the contrary, when the solu-

! Find minimum of a single-variable function on fixed in-
terval
2 Solve system of nonlinear equations

% :

(a) (b)

Fig. 5: Local modification of the frame structure: (a)
stiffness modfication; and, (b) damping modification

Characteristic Value
storey height 2.236 m
storey width 4.472m

0.04m x 0.04m
0.08m x 0.08m

vertical beam section
horizontal beam section

Young modulus E 210 GPa
Poisson modulus v 0.285
density p 7800 kg m—3

Table 1: Characteristics of the three-storey building

tion evolves slowly, then the impedance step automati-
cally increases since there is no difficulty in finding the
solution, thanks to the prediction step which becomes
very efficient. This will be illustrated by the following
examples.

4 Numerical examples
4.1 A first simple frame example

A beam structure modeling the frame of a building is
studied. The geometry of the frame is given in figure 5
and its characteristics are given in table 1. Each floor
is composed of 8 elements, the vertical beams between
two floors are composed of 4 elements, leading to a 135
degrees of freedom structure. The first three modes are
global flexion modes of the building; the respective pus-
lations are 7.88rads™!, 22.9rads~! and 34.6rads!.

The determinantal method developped in the pre-
vious section is first applied on the stiffness modified
frame of figure 5a. Since the structure is very simple,
the Double Modal Synthesis was not employed in this
first example; the response of the structure is calculated
with the first 20 modes of the initial frame

Ny, =20

Hi‘(w) = Z

k=1

X5 X

79
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Fig. 6: Evolution, with respect to k, of the first three
eigenfrequencies of the stiffness modified frame
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Fig. 7: Evolution in the complex plane of the first three
eigenvalues of the frame with varying damping ¢ ( X
poles, o zeros)

It is important to notice that the same basis is kept
whatever the importance of the modification because
the determinantal method is based on the response of
the unmodified structure.

The evolution of the first three eigenfrequencies with
respect to k is illustrated in figure 6; the eigenfrequen-
cies are normalised by their initial — unmodified — values
for ease of comparison. The first flexion mode is more
influenced by the modification than the second mode;
the third mode frequency suddenly increases when the
stiffness of the modification becomes comparable to the
stiffness of the frame. Indeed the modification tends to

Computation time [s]

3
3.10% 10 3.10°
DOF number

Fig. 8: Computation times for the frequency evolution,
on 20 steps, of ten modes ((J determinantal method, +
eigenvalue analysis, — regression)

block the relative horizontal displacement between the
first and the second floor; yet the third mode cannot
exist without this relative displacment, consecutively,
the frequency of the thrid mode tends toward infinity.

The efficiency of the proposed method is also tested
on a complex example having two viscous damping links
(see figure 5b). This is illustrated in the root locus plot
figure 7. The poles X correspond to the unmodified
eigenvalues and the zeros o are the eigenvalues of the
blocked system?.

4.2 Computation times

In order to see the efficiency of the proposed method,
we compare the computation times of the determinan-
tal method and the classical eigenvalue analysis for a
varying number of degrees of freedom, in the case of
one added link. The frame structure is kept since its
degree of freedom number can be easily parameterized.
The Double Modal Synthesis is not employed here be-
cause the aim is to compare only the local modification
method.

The eigenvalue analysis consists in computing the
first ten modes of the frame using its sparse mass and
stiffness matrices thanks to the Matlab function eigs®.
On the other side, the time taken by the determinantal
method to follow the evolution of a mode is noticed to
be independant of the mode number. Thus, to be com-
pared with the eigenvalue analysis computation time,
the determinantal method computation time for one

3 The reader is invited to refer to root locus plot methods
if more details about the construction and interpretation of
this kind of graph are needed.

4 Function to find a few eigenvalues and eigenvectors of a
matrix using ARPACK library.
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mode is multiplied by ten. As the number of degrees of
freedom of the structure increases, the advantage of the
proposed method for determining the modified eigen-
values becomes clear (see figure 8).

The computation time for the determinantal method
mainly depends on:

— the time needed to evaluate the determinant A ()\)
for a certain value of \; when computing the re-
sponse on the first n,, modes, this computation cost
is linked to the degree of freedom number n and the
number of retained modes 1, ;

— the number of time the determinant is computed
to find its root for a particular impedance value,
which depends on the algorithm and its solving pa-
rameters.

A power regression is performed on the eigenvalue com-
putation time and it is found to be proportional to n299.
On the other side, a linear regression on the determi-
nantal method computation time shows that this time
is proportional to n. In both cases, the regression fits
very well to the data (cf. figure 8).

The determinantal method is an exact formulation:
if we are able to solve the determinantal equation, the
exact eigenvalues of the modified structure are obtained.
However, the precision of the method depends on two
things: the precision of model of the structure, i.e. the
expression of the transfer functions, which can be trun-
cated or approximated in some way; the way the deter-
minant is solved numerically, which can also lead to ap-
proximations. As a consequence it is possible to have as
precise eigenvalues as possible provided that the model
is exact and that the solving method is sufficiently ac-
curate. The point in this article is not to give a fully
optimized algorithm to solve Eq. (57), it is to introduce
a new formalism, both simple and general, with can be
applied on concrete cases.

4.3 Single mode approach application

The single mode method developped in section 3.1 is
applied on the frame structure. The aim is to find the
optimal stiffness e of the hysteretic link k* = e (1 + if3)
between points 2 and 3, for a given hysteretic damping
in the link g = 0.3, which gives the maximum damp-
ing on the first mode of the frame. The whole structure
has a hysteretic damping of 0.02. This analysis is anal-
ogous to the classic optimization rule for a tuned mass
damper.

Equations 30 and 31 are rewritten, using Eq. (32)
and the impedance Z,, (k* and k, in series), it gives
(X +1+48%) &% + (x+1) x&®

B (x +1)* + 32 (80)

~2
W,

0.07

0.06 -
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&

modal damping
o
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I
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Fig. 9: First mode damping 7 versus modification stiff-
ness e : — reference solution, — — single mode approach
(the vertical lines indicate the optimal modification
stiffness)

Bx (@2, — &%) + ((X +1)2 + ﬂQ) %
(X +1+p%)@% + (x + 1) xo?

Nm = (81)
where y = % The study of the function defined by
Eq. (81) shows that the maximum damping is reached
for

1+ 8%+ /u(1+8%) (Bn+p2 — 2+1)
w—1

Xopt = (82)

where p = % and 2 = ‘Z}—i;

The pulsation of the first mode of the frame is @ =
7.88rad s~ !; the pulsation of the blocked system is @oo =
11.03rads™!, leading to a residual stiffness of k, =
1.988 x 10° Nm~! with Eq. (32).

Finally, the optimal stiffness, with the single mode
approach, is eopy = 1.22 x 10° Nm™!. The comparison

with the reference optimal stiffness et = 1.31 x 10° Nm~!

opt —

gives a 6.20% relative error. Figurg 9 illustrates the
evolution of the first mode damping with varying mod-
ification stiffness. The curve for the single mode ap-
proach tends to move away from the reference solution
as the stiffness of the local modification increases; how-
ever, the single mode approach gives a relatively good
approximation of the optimal stiffness with very low
computational effort. Indeed the reference solution re-
quires the computation of the first eigenvalue on a wide
range of stiffnesss, whereas Eq. (82) gives immediately
a good approximation for the optimal stiffness.

This single mode approach is however limited to
lightly damped structures on which a hysteretic damper
is added. Nevertheless it may be considered as a com-
plementary method to get a preliminary design before
exploring more deeply some modification.
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Characteristic Value
stage height 1.2m
total height 2.1m
stage diameter 1.220m
inner tube diameter 0.600 m
total mass 1500 kg
engine mass 880 kg
Young modulus E 210 GPa
Poisson modulus v 0.285
density p 7800 kgm—3

Table 2: Main characteristics of the launcher stage

4.4 Local modification of a launcher’s last stage

A structure representative of a launcher’s last stage
with its payload is considered. Figure 10 illustrates the
geometry of the structure and the corresponding mesh-
ing; its main characteristics are given in table 2. The
stage is composed of an outter structural cylinder; the
inner cylinder and the attached mass represents the en-
gine. Above this stage, a beam models the payload; it
is connected to the stage through three columns (the
attachment and spacing system of the payload).

This structure is well adapted to modal synthesis
since it is clearly composed of two substructures: the
stage; and the payload and its support. The stage sub-
structure has 11100 degrees of freedom and the pay-
load substructure has 1550 degrees of freedom. Again,
the Double Modal Synthesis only needs to be computed
once since the determinantal method requires the ini-
tial behaviour. The base of the stage is considered to be
clamped, since the connection interface of the launcher
is very stiff.

The idea is to use the relative displacement be-
tween the engine and the outer shell to damp vibra-
tions. Three dissipative links, with viscous damping c,
are therefore added between the engine mass and the lo-
cally reinforced outer shell (e—e on figure 10b). Figure
11a shows the root locus plot of the system for the first
four modes. The first mode is a flexion mode of the
payload on its support; the second mode is a flexion
mode of the inner tube; the third mode is a longitu-
dinal mode, the payload and the engine mass vibrate
vertically in phase; the fourth mode is again a longi-
tudinal mode, but it is antisymmetrical. The mainly
affected mode is mode two, however the other modes
are also lightly damped (see figure 11b for a more de-
tailed graph) because the added links are not exactly
horizontal — which influences longitudinal modes — and
the displacement of the engine mass is not zero for the
payload modes.

Fig. 10: Model of the launcher stage: (a) cross-section
view; and, (b) meshing of the stage

Figure 12 gives the evolution of the real part of these
three lightly damped modes with respect to link damp-
ing c. The increase of the impedance step is noticeable
(the points are nearly linearly spaced on the vertical log
axis). This figure also shows that the optimal damping
for each mode may not be for the same value of c.

At last, the proposed method is applied on the launcher

equiped with three equally spaced horizontal links be-
tween the engine (e on figure 10b) and the outer shell.
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Fig. 11: Evolution in the complex plane of the first
eigenvalues of the damped stage: (a) the four first
modes, , X poles and
o zeros ; and, (b) detail of the three least damped modes

These links are composed of a spring in series with a
viscous damper. The influence of both the stiffness &
and the damping ¢ of the links is illustrated by fig-
ure 13; the blue curves correspond to the evolution, in
the complex plane, of the second pole with a damping
parameter ¢ varying from 0 (initial pole X ) to oo (zero
o, corresponding to the blocked puslation) and a fixed
stiffness parameter; the red curves correspond to the
evolution of the pole with a fixed damping parameter
and a stiffness parameter decreasing from oo to 0 (from
left to right on figure 13). When the stiffness of the link
tends toward zero, it amounts to remove the link: that
is why the pole tends to return to its initial — unmodi-
fied — value. This kind of graphic allows to evaluate the
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Fig. 12: Evolution of the real part of the eigenvalues
with respect to viscous damping c in the three links
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Fig. 13: Evolution in the complex plane of the damped
stage second eigenvalue for varying k and ¢ parameters

sensitivity of the pole to the parameters of the links,
which may be crucial at a pre-design stage.

5 Conclusion

The proposed determinantal method appears to be promis-

ing to follow the evolution of the eigenvalues of a locally
modified structure. The formalism and the underlying
equations are relatively simple and it gives very accu-
rate results. In addition to this, a single mode approach
may be used to have a first approximation when dealing
with the hysteretic damping optimization of a particu-
lar mode.

With the determinantal method, the same initial
modal basis is kept through the exploration of the de-
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sign parameters whatever the local modification is. This
can be usefull to determine the best place, according to
a certain criterion, for a given impedance. In addition,
this method also works with a black-box model of the
initial structure.

A few numerical examples were developped to prove
the efficiency of the proposed method. To deal effi-
ciently with structures having a large number of de-
grees of freedom, a Double Modal Synthesis method is
introduced. The new eigenvalues are then sought thanks
to a continuation algorithm. This algorithm for solving
the determinantal equation already shows good perfor-
mances, it may however be further improved to reduce
the computational cost.

Eventually, it would be interesting to apply the de-
terminantal method to real structures through the use
of experimental measurements of transfer functions at
the location of the attachment points of the modifi-
cation. However, this is far beyond the scope of this
paper; measurement uncertainties and noise problems
could arise and more work has to be done to be able
to extract, if possible, H (\) from experimental tests.
Indeed, the knowlegde of H (w) for a lightly damped
structure only allows to calculate the effect of stiffness
modifications.
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