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t In order to improve the dynami
 behaviourof an existing or already designed stru
ture, lo
al mod-i�
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an be performed by taking advantage of therelative displa
ement between two points of the stru
-ture. A sti�ner, damper or vis
oelasti
 rod may beadded and its e�e
t on the initial stru
ture must be as-sessed. A new formulation is developed, based on the re-sponse of the initial stru
ture at the atta
hment pointsof the lo
al modi�
ation. A determinantal equation re-sults, whose roots are the eigenvalues of the modi�edstru
ture. The equation is solved numeri
ally with adedi
ated algorithm and it is shown that this is fasterthan performing an eigenvalue problem reanalysis. Themethod is able to deal with both undamped and dampedsystems, and 
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lature
n total number of degrees of freedom

n
(s)
i number of internal degrees of freedom of sub-stru
ture (s)

nj number of jun
tion degrees of freedom
n

(s)
I number of retained eigenmodes for substru
ture

(s)

nB number of retained bran
h modes
I set of internal degrees of freedom
J set of jun
tion degrees of freedom
E set of ex
itation degrees of freedom

η(s) substru
ture (s) eigenmode generalized 
oordi-nate (n(s)
I × 1)

ζ bran
h mode generalised 
oordinate (nB × 1)
Fj jun
tion for
e (nj × 1)
qj jun
tion displa
ement (nj × 1)
Ψs matrix of 
onstraint modes of the global stru
-ture (n× nj)

XBj matrix of bran
h modes (nj × nB)
Ψ(s) substru
ture (s) 
onstraint mode ((n(s)

i +nj)×

nj)
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Ψ

(s)
i restri
tion of 
onstraint modes Ψ(s) on I set(n(s)

i × nj)
Ψj restri
tion of 
onstraint modes Ψ(s) on J set(nj × nj)1 Introdu
tionIn many design pro
esses, the e�e
t of lo
al modi�
a-tions has to be assessed. This 
an be at an early stagewhen the e�e
t of a part on the whole stru
ture is to bedetermined rapidly. On the 
ontrary, when the design isalready set, or when dealing with an existing stru
ture,the addition of a sti�ner or a damper may be evaluatedfor a resonan
e shifting or a damping purpose.This is often the 
ase with spa
e laun
hers: the stagesdesign is already set and may need to be adapted toprote
t the payload from ex
essive vibration levels. Thein�uen
e of lo
al dampers thus needs to be evaluated,so as to optimize their lo
ation and properties.Be
ause industrial stru
tures are generally 
omplexand therefore have an important number of degrees offreedom, a redu
tion te
hnique is required to des
ribethe dynami
 behaviour e�
iently with a small model(ie. a small number of generalized degrees of freedom.)Component Mode Synthesis (CMS) te
hniques al-low to 
ompute stru
ture responses through the use ofsubstru
tures modes, thus redu
ing the size of the prob-lem to solve. Basi
ally, ea
h substru
ture is des
ribedwith a 
ertain number of eigenmodes and boundarymodes are added to 
ompensate the modal trun
ation.Two main methods may be distinguished. On one hand,the �xed interfa
e based CMS, developped by Craig andBampton [1℄, uses �xed interfa
e substru
ture eigen-modes and 
onstraint modes as boundary modes (theseare the substru
ture response to su

essive unitary bound-ary displa
ement). On the other hand, free interfa
eCMS (see Ma
Neal [2℄, Rubin [3℄ or Craig and Chang[4℄) uses free interfa
e substru
ture eigenmodes and at-ta
hment modes (substru
ture response to su

essiveunitary boundary for
e).Be
ause the number of boundary modes equals thenumber of jun
tion degrees of freedom, the idea of 
on-densing interfa
e 
oordinates qui
kly emerged (see Craigand Chang [5℄). Sometimes under di�erent names, re-du
tion with �boundary modes� was studied by someauthors, among whi
h are Balmès [6℄ and Tran [7℄.Moreover, in addition to boundary redu
tion, a few au-thors employed ω2 boundary developpements to better
ompensate modal trun
ation (see Jézéquel and Setio[8℄ and Besset and Jézéquel [9℄) in a method 
alled Dou-ble Modal Synthesis; see also Géradin and Rixen [10℄for ω2 development aspe
ts.

In a previous paper [11℄, the addition of a spring be-tween two substru
ture degrees of freedom � to modelan elasti
 link � was studied with the use of the DoubleModal Synthesis. It was shown that only small modi-�
ations �ie. small spring sti�nesses� 
ould be wellhandled. Indeed, the redu
tion bases were not able todes
ribe big 
hanges in the behaviour of the stru
turesin
e they do not take into a

ount of the modi�
a-tion; their performan
es are therefore limited. Havinga modal basis 
apable of des
ribing the behaviour ofthe stru
ture whatever the modi�
ation is quite a 
hal-lenge and somehow impossible. In addition, sin
e theredu
tion bases are 
omposed of real modes, they arenot able to deal with highly dissipative links 
ontainingvisous damping or hystereti
 damping. That is why amodi�
ation te
hnique is employed in 
ombination withthe Double Modal Synthesis.Baldwin and Hutton [12℄ wrote an interesting reviewand 
lassi�ed the modi�
ation te
hniques into three
ategories: the te
hniques based on small modi�
ations(sensitivity approa
h, perturbation methods); the te
h-niques based on modal approximation; and the te
h-niques based on lo
alized modi�
ations, whi
h is stud-ied in this paper.Weissenburger [13℄ is one of the �rst to treat thelo
al modi�
ation of an undamped system. Pomazal[14℄ extended Weissenburger's pro
edure to deal withthe lo
al modi�
ation of one of the system elements onlinear damped system. At last, Jézéquel [15℄ proposeda method to diminish the e�e
ts of modal trun
ation.Hallquist [16℄ dis
ussed the vibration of stru
tures witharbitrary support 
onditions, using Lagrange multipli-ers, to get frequen
ies of the 
onstrained system. In [17℄,mass and damping modi�
ations in damped systems areevoked, a Newton-Raphson numeri
al s
heme is usedto lo
ate the 
omplex roots of the 
hara
teristi
 equa-tion. Ja
quot [18℄ proposed an original approa
h basedon transfer fun
tions to get the response of a modi�edsystem, the eigenvalues of the modi�ed system are not
omputed. Dowel [19℄ used a Lagrangian formulation toanalyse the e�e
t of spring-mass addition to a dynam-i
al system.All these methods either require the expli
it knowl-edge of all the eigenmodes or the expli
it knowledge ofthe transfer fun
tions. It is therefore di�
ult to dis
ribethe behaviour of the struture with a bla
k-box model� providing the response of the stru
ture for a givenfrequen
y � su
h as the Double Modal Synthesis thatis used here.Even though the aim is di�erent, it is interesting tohave a look at the inverse problem approa
h. Tseui [20℄treats the modi�
ation of sti�ness and mass parame-ters for desired eigenfrequen
y of undamped me
han-
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al systems. Yee [21℄ extended this work to dampedsystems: a method for modifying a me
hani
al systemand shifting its damped natural frequen
y to a desiredvalue is developped, the 
al
ulation involves iterationand only one modi�
ation at a time 
an be handled.Ram [22℄ adressed the problem of stru
tural modi�-
ations in trun
ated systems. He also investigated theinverse problem [23℄, given an in
omplete modal model(natural frequen
ies and modes), to rea
h a desired dy-nami
 behaviour. Kyprianou [24℄ explored in detail theassignment of natural frequen
ies by an added mass andone or more springs.The aim of this arti
le is to introdu
e a general for-mulation, based on transfer fun
tions � whi
h 
an bebla
k-boxes � and impedan
es, to determine the eigen-values of a lo
ally modi�ed stru
ture. The addition of ame
hani
al impedan
e models the stru
tural modi�
a-tion (
f. �gure 1). It 
an 
orrespond to the introdu
tionof a vis
ous damper, a spring, or any 
ombination, inorder to modify the 
hara
teristi
s of the system. Themethod introdu
ed in this arti
le is able to deal withone or more impedan
e, and the atta
hment point ofthe impedan
e may be modi�ed easily. The advantageof this new formulation is that it 
an be applied to bothundamped and damped stru
tures.This method is based on the response fun
tion ofthe points where the lo
al modi�
ation is performedand on the for
e-displa
ement transfers between thosepoints. The impedan
e equation of the lo
al modi�
a-tion is then used to write a 
hara
teristi
 (determinan-tal) equation whose roots are the eigenvalues of themodi�ed stru
ture. Sin
e the formulation is exa
t what-ever the value of the added impedan
e, it is not limitedto small perturbations; the only di�
ulty is to solvethis equation. An good redu
ed model of the stru
tureis of 
ourse also required to preserve the a

uraty of themethod when dealing with a large number of degrees offreedom.In the following se
tion, the Double Modal Synthe-sis method is introdu
ed. The determinantal methodand the asso
iated solving algorithm are then exposed,along with a fast single mode approa
h. The appli
ationof the method is then illustrated on a few examples andsome points of interest are dis
ussed. The single modeapproa
h is developped on the same example with aview to pre-design some damping solutions.2 An improved substru
turing method: theDouble Modal SynthesisThe stru
ture is supposed to be 
omposed of two sub-stru
tures, whi
h does not restri
t the method. If needed,
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Z (
)Fig. 1: Lo
al modi�
ations : (a) addition of a me
han-i
al impedan
e; (b) 
ase of two lo
al impedan
es; and,(
) addition of a ground link on the stru
turea supers
ript (.(s)) is added to make the distin
tion be-tween substru
tures. Subs
ipts i, e and j refer to inter-nal I, ex
itation E and jun
tion J degrees of freedomsets, respe
tively; they are used in matrix partitions. In
ase of a barred variable (̄.), subs
ripts i and j refer toeigenmodes and bran
h mode, respe
tively.2.1 Bran
h modesBoundary 
ondensation is made through the use of bran
hmodes : instead of keeping a number of modes equal tothe number of boundary degrees of freedom nj, onlya 
ertain number of boundary modes are kept. Thesebran
h modes are representative of the stru
ture be-haviour in the frequen
y range of interest. The bran
hmodes de�ned in this paper are the modes of the stru
-ture 
ondensed on its interfa
es thanks to 
onstraintmodes.Constraint modes of the global stru
ture
Ψs =







Ψ
(1)
i

Ψj

Ψ
(2)
i






=







−K
(1)
ii

−1K
(1)
ij

Ijj

−K
(2)
ii

−1K
(2)
ij






(1)
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omputed with the sti�ness matri
es of ea
h sub-stru
ture. Bran
h modes xBj are de�ned on jun
tion Jbetween the two substru
tures. They are the solutionof the global stru
ture eigenvalue problem proje
ted on
onstraint modes
[

tΨsKtotΨs − ω2 tΨsMtotΨs

]

xBj = 0 (2)The set of all bran
h modes XBj spans the same sub-spa
e as the 
omplete set of 
onstraint modes Ψs. Dou-ble Modal Synthesis (DMS) 
onsists in retaining onlythe �rst �boundary modes�, 
alled bran
h modes here-after. The proje
tion of bran
h modes on ea
h substru
-ture is a
hieved through the use of boundary modes ω2developpements.The internal displa
ement of a substru
ture due toimposed boundary displa
ement Ψj may be written
Ψ

(s)
i = −

(

D
(s)
ii

)

−1

D
(s)
ij Ψj

=
(

−ω2M
(s)
ii + K

(s)
ii

)

−1 (

−ω2M
(s)
ij + K

(s)
ij

)

Ψj(3)The following equation
(

K − ω2M
)−1

= K−1 + ω2
(

K−1M
)

K−1 + . . .

+ (ω2K−1M)n−1K−1

+ (ω2K−1M)n(K − ω2M)−1 (4)is valid for all integer n ≥ 0. It is used to 
al
ulate theinverse required for boundary modes in Eq. (3).An imposed boundary displa
ement Ψj = Ijj (iden-tity matrix of size nj) is 
onsidered, whi
h 
orrespondsto su

essive unit displa
ement of boundary degrees offreedom, while the others remain 
lamped. Going up tothe se
ond order, on gets from Eqs. (3) and (4)
Ψ

(s)
i (ω) ≃ −K

(s)
ii

−1K
(s)
ij

+ ω2
[

−(K
(s)
ii

−1M
(s)
ii )K

(s)
ii

−1K
(s)
ij + K

(s)
ii

−1K
(s)
ij

]

+ ω4
[

−(K
(s)
ii

−1M
(s)
ii )2K

(s)
ii

−1K
(s)
ij

+(K
(s)
ii

−1M
(s)
ii )K

(s)
ii

−1M
(s)
ij

] (5)Order 2 boundary modes may be written in a more
ondensed way
Ψ

(s) =

[

Ψ
(s)
i (ω)

Ψj

]

=

[

Ψ
(s)
i0 + ω2Ψ

(s)
i1 + ω4Ψ

(s)
i2

Ijj

] (6)It should be noti
ed that only the internal mode dis-pla
ement is a�e
ted by the ω2 developpement.

Bran
h modes, on
e proje
ted on substru
ture (s),may thus be written
X

(s)
Bi (ω) = Ψ

(s)
i (ω) XBj = X

(s)
B0 + ω2X

(s)
B1 + ω4X

(s)
B2

X
(s)
Bj = Ijj XBj = XBj (7)2.2 Substru
ture redu
ed basisIn this subse
tion, all the variables are related to oneof the substru
tures: the supers
ript (.(s)) is thereforeomitted.Substru
ture displa
ements are des
ribed by a set of�xed interfa
e eigenmodes Φ and a set of bran
h modes

XB with ω2 developpements, to 
ompensate modal trun-
ation. To take the lo
al �exibility at ex
itation pointinto a

ount, ex
itation setE is integrated in the bound-ary, whi
h already 
ontains J , the jun
tion set betweensubstru
tures. Bran
h modes are thus 
omputed on thefrontier F = J ∪ E and �xed interfa
e substru
tureeigenmodes 
orrespond to the modes of the substru
-ture being 
lamped at the frontier F . The redu
ed basisis therefore
T = [ΦXB] =





Φi XBi(ω)

0 XBe

0 XBj



 (8)Let η and ζ be the generalized 
oordinates ve
torsasso
iated with substru
ture eigenmodes and bran
hmodes, respe
tively. Let M̄ = tTMT and K̄ = tTKTbe the redu
ed matri
es of a given substru
ture. Theredu
ed matrix M̄ is given by
M̄ =

[

tΦMΦ tΦMXB
tXBMΦ tXBMXB

] (9)In order to show boundary modes ω2 developpe-ments, redu
tion matrix T is written as
T = T0 + ω2 T1 + ω4 T2 (10)Only T0 is a full matrix, the next matri
es have non-zero terms on lines and 
olumns 
orresponding to in-ternal DOFs and bran
h modes, respe
tively
Tk =

[

0 XBk

0 0

]

∀k > 0 (11)The redu
ed mass matrix is expanded, taking the se
-ond order of ω2 developpement of redu
tion matrix T ,
tTMT = tT0MT0 + ω2

[

tT1MT0 + tT0MT1

]

+ ω4
[

tT1MT1 + tT2MT0 + tT0MT2

]

+ ω6
[

tT1MT2 + tT1MT2

]

+ ω8
[

tT2MT2

] (12)
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ally modi�ed stru
tures 5By de�nition of 
onstraint modes, it 
an be shownthat any mode having null boundary displa
ement is or-thogonal, with respe
t to the sti�ness matrix, to the setof 
onstraint modes Ψ0. Substru
ture eigenmodes are�xed interfa
e modes and bran
h modes are expandedwith 
onstraint modes on substru
tures. This involves
tΦKXB0 = 0 (13)Substru
ture's mass and sti�ness matri
es are re-du
ed using T and the previous orthogonality
M̄ =

[

M̄ii M̄ij

M̄ji M̄jj

]

+

[

0 M̄ij(ω)
M̄ji(ω) M̄jj(ω)

] (14)
K̄ =

[

K̄ii 0

0 K̄jj

]

+

[

0 K̄ij(ω)

K̄ji(ω) K̄jj(ω)

] (15)In these redu
ed matri
es, blo
k matri
es M̄ii and K̄iiare diagonal and equal to the modal mass and sti�nessof the retained �xed interfa
e eigenmodes. Keeping onlyorder 0 amounts to use Craig and Bampton's 
ompo-nent mode synthesis.External for
es on substruture only apply on ex
ita-tion set E and on jun
tion set J . Hen
e the for
e ve
torin the redu
ed basis is
F̄ = tTF = tT







0
Fe

Fj







=

{

0
tXBeFe + tXBjFj

} (16)2.3 Substru
ture equilibrium equationsThe substru
ture equilibrium equation (

−ω2M + K
)

q =

F is redu
ed with the redu
tion basis T and the asso-
iated generalized displa
ement ve
tor tqR = {tη tζ}

tT
(

−ω2M + K
)

TqR = tTF (17)The matri
ial equilibrium is divided a

ording to gen-eralized displa
ements. The �rst equation of size ni, thenumber of retained �xed interfa
e eigenmodes, is
[

−ω2M̄
(s)
ii + K̄

(s)
ii

]

η(s)

+
[

−ω2
(

M̄
(s)
ij + M̄

(s)
ij (ω)

)

+ K̄
(s)
ij (ω)

]

ζ(s) = 0 (18)The se
ond one, of size nB the number of retainedbran
h modes, is
[

−ω2
(

M̄
(s)
ji + M̄

(s)
ji (ω)

)

+ K̄
(s)
ji (ω)

]

η(s)

+
[

−ω2
(

M̄
(s)
jj + M̄

(s)
jj (ω)

)

+ K̄
(s)
jj + K̄

(s)
jj (ω)

]

ζ(s)

= tXBeFe + tXBjFj (19)

2.4 Substru
ture 
ouplingLet the two substru
tures (1) and (2) be 
oupled througha 
ommon boundary J . Bran
h modes de�nition Eq. (7)implies
X

(1)
Bj = X

(2)
Bj = XBj (20)Therefore, boundary nodal equilibrium F

(1)
j + F

(2)
j = 0be
omes

tXBjF
(1)
j + tXBjF

(2)
j = 0 (21)Be
ause internal modes are �xed interfa
e modes (
.f.Eq. (8)), substru
ture (s) jun
tion displa
ements aregiven by

q
(s)
j = X

(s)
Bjζ

(s) (22)Compatibility of interfa
e displa
ements q
(1)
j = q

(2)
jand Eqs. (22) and (20) thus give

ζ(1) = ζ(2) = ζ (23)Matri
es M̄
(s)
ii and K̄

(s)
ii are diagonal be
ause of sub-stru
tures eigenmodes orthogonality, Eq. (18) is thuseasily 
onverted into

η(s) = −
(

D̄
(s)
ii

)

−1

D̄
(s)
ij ζ (24)The equilibrium Eq. (21) 
ouples Eq. (19) writ-ten for ea
h substru
ture � (1) and (2) � and η(s) isrepla
ed by the previous expression. A matri
ial equa-tion of size nB, governing bran
h modes 
ontributions

ζ, is obtained
[

D̄
(1)
jj − D̄

(1)
ji

(

D̄
(1)
ii

)

−1

D̄
(1)
ij

+ D̄
(2)
jj − D̄

(2)
ji

(

D̄
(2)
jj

)

−1

D̄
(2)
ij

]

ζ = tXBeFe (25)where a dynami
 sti�ness matri
ial notation is adopted
D̄

(s)
ii = −ω2M̄

(s)
ii + K̄

(s)
ii

D̄
(s)
jj = −ω2

(

M̄
(s)
jj + M̄

(s)
jj (ω)

)

+ K̄
(s)
jj + K̄

(s)
jj (ω)

D̄
(s)
kl = −ω2

(

M̄
(s)
kl + M̄

(s)
kl (ω)

)

+ K̄
(s)
kl (ω) for kl = ij, ji(26)Solving Eq. (22) and then repla
ing ζ in Eq. (24)allows to 
ome ba
k to substru
tures physi
al displa
e-ments at any point. If the observation point is inte-grated in the boundary (in the E set), only Eq. (25)need to be solved and the displa
ement is known throughEq. (22). This will be used in the following determinan-tal method sin
e only the displa
ements of the link at-ta
hment points are required; these points will thereforebe integrated in the boundary.
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φ q2 1φ q1 1

k* k r

Fig. 2: Rheologi
al model (q1 is the generalised 
oordi-nate asso
iated with mode φ)3 Analysis of lo
ally modi�ed stru
turesIn this se
tion, bold type will be used to distinguishmatri
es and ve
tors from s
alar quantities.3.1 A single mode approa
hIn the 
ontext of pre-design of stru
tures, it is interest-ing to develop a spe
i�
 method to get fastly the ap-proximate 
hara
teristi
s of a lo
ally modi�ed stru
ture(addition of damping elastomer). It is based on a sin-gle mode vision, in the 
ase of hystereti
 damping. Themass of the modi�
ation is supposed to be negligibleand the modal displa
ement of the atta
hment points
φ1 and φ2 remain un
hanged by the modi�
ation of
omplex sti�ness k∗ = e(1+iβ) (
f. �gure 2). A

ordingto the method proposed by Jézéquel [15℄, the residualsti�ness kr is introdu
ed in series with the modi�
a-tion, it 
orresponds to the stati
 �exibility of the initialstru
ture, for the 
onsidered mode, at the lo
ation ofthe atta
hment points. The equivalent impedan
e of themodel given in �gure 2 may be written Zm = a+ ib.The initial eigenvalue of the unmodi�ed stru
ture iswritten as
λ̃ = −ω̃2 (1 + iη) (27)A

ording to the �rst order sensitivity analysis [15℄, themodi�ed eigenvalue is
λ̃m = λ̃− Zm (φ2 − φ1)

2 (28)
λ̃m = −ω̃2 (1 + iη) − (a+ ib) (φ2 − φ1)

2 (29)whi
h gives the pulsation and the damping fa
tor of themodi�ed eigenvalue
ω̃2

m = −ℜ(λ̃m) = ω̃2 + a (φ2 − φ1)
2 (30)

ηm =
ℑ(λ̃m)

ℜ(λ̃m)
=
ω̃2η + b (φ2 − φ1)

2

ω̃2 + a (φ2 − φ1)
2 (31)By blo
king the displa
ement between the atta
h-ment points of k∗, one 
an have the pulsation ω̃∞ of

the blo
ked system. It is therefore possible to get theresidual sti�ness by using Eq. (30)
kr ≃

ω̃2
∞

− ω̃2

(φ2 − φ1)
2 (32)As it is a simple rule with restri
tive hypothesis, itsvalidity may be limited. A more pre
ise method needsto be developped, whi
h 
an also handle greater lo
al
hanges. This is detailed in the following se
tion.3.2 Determinantal method with one added impedan
eAssuming a general linear dynami
 system, the equa-tion of motion in the frequen
y domain may be written

(

λ2M + λC + K
)

U = F (33)where M , C and K are the mass, damping and sti�nessmatri
es, respe
tively; U is the displa
ement ve
tor and
F is the ve
tor of external for
es. Eq. (33) 
an be re-written as
U = H (λ) F , with λ = α+ iω (34)where H (λ) is the dynami
 �exibility or frequen
y re-sponse fun
tion ; the term transfer fun
tion will be usedthereafter. In order to simplify the notations, the depen-den
y in λ will be omitted in the rest of the arti
le.Let the �exibility, or transfer fun
tion, between points
Pk and Pl be de�ned by
Hkl =

uk

Fl

(35)where ui is the s
alar displa
ement along the dire
-tion de�ned by PkPl and Fl is the external for
e alongthe same dire
tion. It is therefore possible to write thetransfers betweeen P1 and P2 (
f. �gure 1a) in a matri-
ial way
{

u1

u2

}

=

[

H11 H12

H21 H22

]{

F1

F2

} (36)The initial stru
ture is modi�ed by the addition of as
alar me
hani
al impedan
e Z between two points P1and P2 (
f. �gure 1a), whi
h gives the following for
e-displa
ement relationship
F1 = Z (u1 − u2) (37)Using Eq. (36), u1 and u2 are eliminated from theprevious equation
Z−1F1 = (H11 −H21)F1 − (H22 −H12)F2 (38)
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ally modi�ed stru
tures 7The for
e equilibrium in the added impedan
e may bewritten
F1 + F2 = 0 (39)and therefore Eq. (38) be
omes
(

(H11 +H22 −H21 −H12) − Z−1
)

F1 = 0 (40)Sin
e we are not 
on
erned with the 
ase where thefor
e in the impedan
e is zero, non-trivial solutions aresought. The eigenvalues of the modi�ed stru
ture maythus be found by solving the one line determinantalequation
∆ =

∣

∣H11 +H22 −H21 −H12 − Z−1
∣

∣ = 0 (41)So instead of solving an eigenvalue problem of size n,the roots of a determinant give the eigenvalues of themodi�ed stru
ture. This is done through the use of someparti
ular transfer fun
tions of the initial system: thetransfer fun
tions between atta
hment points P1 and
P2. It is therefore possible to follow the frequen
ies ofthe modes while the impedan
e varies; this is detailedin se
tion 3.6.3.3 Adding more than one impedan
eThis method is not limited to only one stru
tural mod-i�
ation. It is developped here for two lo
al modi�
a-tions � the addition of two distin
t dampers on thestru
ture for instan
e � but it 
an easily be generalisedto a number N of lo
al modi�
ations.In the 
ase of two lo
al impedan
es between points
P1 and P2 and between points P3 and P4 (
f. �gure 1b),the transfers between all these atta
hment points maybe written














u1

u2

u3

u4















=









H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44























F1

F2

F3

F4















(42)The impedan
e Za between P1 and P2 gives
F1 = Za (u1 − u2) (43)
F1 + F2 = 0 (44)and the impedan
e Zb between P3 and P4 leads to
F3 = Zb (u3 − u4) (45)
F3 + F4 = 0 (46)By using Eq. (42), Eq. (43) 
an be re-written as
Z−1

a F1 = (H11 −H21)F1 + (H12 −H22)F2

+ (H13 −H23)F3 + (H14 −H24)F4 (47)

and then simpli�ed with Eq. (44)
Z−1

a F1 = (H11 +H22 −H21 −H12)F1

+ (H13 +H24 −H23 −H14)F3 (48)In a similar way, we get for impedan
e Zb

Z−1
b F3 = (H31 −H41)F1 + (H32 −H42)F2

+ (H33 −H43)F3 + (H34 −H44)F4 (49)
Z−1

b F1 = (H31 +H42 −H41 −H32)F1

+ (H33 +H44 −H43 −H34)F3 (50)Let the following me
hani
al transfers
Taa = H11 +H22 −H21 −H12 (51)
Tab = H13 +H24 −H23 −H14 (52)
Tbb = H33 +H44 −H43 −H34 (53)
Tba = H31 +H42 −H41 −H32 (54)Gathering Eqs. (48) and (50) gives
[

Taa − Z−1
a Tab

Tba Tbb − Z−1
b

] {

F1

F3

}

=

{

0

0

} (55)The non-trivial solutions of the previous system of twoequations are found by 
an
elling the two by two de-ternimant
∆ =

∣

∣

∣

∣

Taa − Z−1
a Tab

Tba Tbb − Z−1
b

∣

∣

∣

∣

= 0 (56)The eigenvalues of the modi�ed stru
ture are thereforethe solutions of the equation
(

Taa − Z−1
a

) (

Tbb − Z−1
b

)

− TabTba = 0 (57)Eq. (56) 
an be easily generalised for the 
ase of Nlo
al impedan
es.3.4 Case of a ground linkTreating a ground link, represented by the �gure 1
,just simpli�es the formulation. The response of the stru
-ture at point P1 in the dire
tion of the link is
u1 = H11F1 (58)The impedan
e equation of the ground link gives
u1 = Z−1F1 (59)whi
h leads to
(

H11 − Z−1
)

F1 = 0 (60)The eigenvalues of the modi�ed stru
ture are thus givenby the non-trivial solutions
∆ =

∣

∣H11 − Z−1
∣

∣ = 0 (61)
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y

z

x

θ

ψ

X

Fig. 3: Coordinate system 
hange: θ and ψ angles togo from the global frame (x, y, z) to the link frame
(X,Y, Z)3.5 From global frame to link frameIn the previous se
tions, the equations were writtenwith F being the for
e along the link. However, thedire
tion of the link may not 
orrespond to the globalframe and thus may not be aligned with the degrees offreedom. The for
e therefore needs to be written in thelink 
oordinate system.In the present se
tion, the upper 
ase letters referto the variables in the link 
oordinate system and thelower 
ase letters refer to these variables in the global
oordinate system.Let u, v and w be the displa
ements respe
tivelyalong the −→x , −→y and −→z axes (see �gure 3). The linkframe is su
h than the displa
ement U is along the −→

Xaxis of this new frame. The 
oordinate system 
hangeis written






U

V

W







= R







u

v

w







(62)where R = R (ψ)R (θ) and
R (ψ) =





cosψ 0 − sinψ

0 1 0

sinψ 0 cosψ



 (63)
R (θ) =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 (64)
R =





cosψ cos θ cosψ sin θ sinψ

− sin θ cos θ 0
− sinψ cos θ − sinψ sin θ cosψ



 (65)

The transfers between points P1 and P2 in the global
oordinate system are






u1

v1
w1







= h11







f1
g1
e1







+ h12







f2
g2
e2







(66)






u2

v2
w2







= h21







f1
g1
e1







+ h22







f2
g2
e2







(67)where hkl is a 3�by�3 transfer matrix between for
es atpoint Pl (fl, gl and el along respe
tively the x, y and zaxes of the global frame) and displa
ements at point Pk(uk, vk and wk along respe
tively the x, y and z axes)
hkl =





rkl okl pkl

o′kl skl qkl

p′kl q
′

kl tkl



 (68)In the 
oordinate system of the link we get






U1

V1

W1







= H11







F1

G1

E1







+ H12







F2

G2

E2







(69)






U2

V2

W2







= H21







F1

G1

E1







+ H22







F2

G2

E2







(70)where Hkl = R hkl
tR; Uk, Vk andWk are the displa
e-ments at point Pk along the X , Y and Z axes of thelink frame; and Fk, Gk and Ek are the for
es at point

Pk along the X , Y and Z axes. Indeed, sin
e R is arotation matrix, R−1 = tR.We now have the relationship between for
es anddispla
ements along the link dire
tion de�ned by P1P2,whatever the orientation of this link
{

U1

U2

}

=

[

(H11)11 (H12)11
(H21)11 (H22)11

] {

F1

F2

} (71)where only the upper left term of matrix Hkl needs tobe 
omputed
(Hkl)11 =

(

R hkl
tR

)

11
= rkl (cosψ cos θ)

2
+

okl sin θ cos θ(cosψ)2 + pkl cos θ sinψ cosψ

+ o′kl sin θ cos θ(cosψ)2 + skl(sin θ cos θ)2

+ qkl sin θ sinψ cosψ + p′kl cos θ sinψ cosψ

+ q′kl sin θ sinψ cosψ + tkl(sinψ)2 (72)Now 
onsider the 
ase where we have two links onthe stru
ture, the �rst between points P1 and P2 anda se
ond one between points P3 and P4. The followingtransfer matrix is required














U1

U2

U3

U4















=









S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44























F1

F2

F3

F4















(73)
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ally modi�ed stru
tures 9with U1, U2, F1 and F2 the displa
ements and for
esalong the P1P2 dire
tion and U3, U4, F3 and F4 thedispla
ements and for
es along the P3P4 dire
tion. Ase
ond 
oordinate sytem 
hange, from the global frameto the frame aligned on P3P4, is de�ned with the 
or-responding θ′ and ψ′ angles
R′ = R (ψ′)R (θ′) (74)Two di�erent 
oordinate system 
hanges are nowinvolved; the �rst line of matri
ial Eq. (73) 
omes fromthe �rst line of






U1

V1

W1







= R h11
tR







F1

G1

E1







+ R h12
tR







F2

G2

E2







+ R h13
tR′







F3

G3

E3







+ R h14
tR′







F4

G4

E4







(75)whi
h is the extension of Eq. (69) with the added ex-
itation points P3 and P4.Again, only the �rst line of this equation needs tobe 
omputed
Skl =

(

R hkl
tR′

)

11
= rkl cosψ′ cos θ′ cosψ cos θ

+ okl cosψ′ sin θ′ cosψ cos θ + pkl sinψ
′ cosψ cos θ

+ o′kl cosψ′ cos θ′ cosψ sin θ + skl cosψ′ sin θ′ cosψ sin θ

+ qkl sinψ
′ cosψ′ cosψ sin θ + p′kl cosψ′ cos θ′ sinψ

+ q′kl cosψ′ sin θ′ sinψ + tkl sinψ
′ sinψ (76)for kl = 13, 14, 23, 24. For kl = 11, 12, 21, 22, only one
oordinate 
hange is involved: Eq. (72) is still relevant.For kl = 33, 34, 43, 44 again there is only one 
oordinate
hange involved, but this time with angles θ′ and ψ′.Sin
e Eqs. (72) and (76) involve many di�erenttransfers, it may lengthen 
omputation times needlessly;indeed, for some parti
ular angles θ and ψ these equa-tions 
an be simpli�ed. So only the transfers that arenot 
an
elled by a zero sine or 
osine are a
tually 
om-puted.3.6 Numeri
al 
onsiderationsThe distin
tion between two kinds of problem 
an bemade, whi
h in�uen
es the way Eq. (41) ∆ = 0 issolved. On one side, there is the purely real value prob-lem: a spring is added to a linear undamped stru
ture.The modi�ed eigenvalues λ remain purely imaginaryand there is only one unknown whi
h is the pulsation

ω, or 
ir
ular frequen
y
ω ∈ R | ∆ (ω) = 0 (77)

On the other side, the problem 
an be 
omplex: ei-ther the stru
ture is already damped, or a damper maybe added to a linear undamped stru
ture. In both 
ases,the new eigenvalues λ must be sought in the 
omplexplane, whi
h means there are two unknown : the damp-ing 
oe�
ient α (real part of λ) and the pulsation ω(imaginary part of λ)
λ ∈ C, λ = α+ iω | ∆ (λ) = 0 (78)
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Predi
tion
ω = ωp

-simple : ωp = ωn−1-tangent :
ωp = f(ωn−1, ωn−2)-polynomial :

ωp = f(ωn−1, ωn−2, ωn−3) Solving
ω | ∆(ω) = 0

Sear
h algorithmworking with a bla
kbox ω → ∆(ω) Rea
hed limit ?
|ω − ωp| > α|ωp|Storage of ω

Niter<Niterminet ∆k < ∆kmax
∆k ր

Niter>Nitermaxet ∆k > ∆kmin
∆k ց

∆k −→

∆k > ∆kminBREAK New try
∆k ց

kn = kn−1 + ∆k

Next step kn+1 = kn + ∆k

no yes

no yes
yesno

yesno

Fig. 4: Variable step algorithm for following the evolu-tion of an eigenvalue



Determinantal method for lo
ally modi�ed stru
tures 11A parti
ular 
ontinuation algorithm is developpedto follow the solutions of the determinant while theimpedan
e of the link(s) varies. The diagram of �gure 4details its steps. A �rst predi
tion of the solution ismade; depending on how many points were previously
omputed, the predi
tion 
an be simple (same solutionas previous point), tangent (with the use of the last twopoints) or polynomial of degree n (with the use of the
n+ 1 previous points.) Note that a tangent predi
tionis the same as a polynomial predi
tion of degree 1. Itis not usefull to in
rease the order of the predi
tion be-yond 2 sin
e this 
an lead to os
illations and thus maynot improve the predi
tion; moreover, the traje
toriesof the solutions remain most of the time relatively sim-ple (see the following examples of se
tion 4).On
e the solution is predi
ted, the exa
t solution issought around this point with a sear
h algorithm. Thesear
h algorithm is fminbnd1 for the real value problemand fsolve2 for the 
omplex problem; both fun
tionsbelong to the Matlab Optimization Toolbox. A resear
hbound �parameter α� is de�ned to make sure that thefound solution is not too far from the predi
tion.Before going to the next step, the impedan
e in-
rease is adjusted: if the solution was easily found, thenthe impedan
e step ∆k is augmented; if the algorithmhad di�
ulties in �nding the solution, the impedan
estep ∆k is de
reased. Between these two 
ases, theimpedan
e step remains 
onstant. On the other side,when the solution is not found, the impedan
e step isde
reased before making a new attempt. Indeed, it isexpe
ted that the 
loser from the previous point, theeasier to �nd the next point.A maximum and a minimum impedan
e step are de-�ned. The minimum impedan
e step mainly serves asa stopping 
riterion if the algorithm ever fails to �nd asolution. This may happen if we are trying to observe anon-
ontrollable mode, i.e. a mode whi
h is not at all in-�uen
ed by the stru
tural modi�
ation. In fa
t, for thenon-
ontrollable mode, the for
e in the link is zero: thisis the trivial solution of Eq. (40) and the determinantof Eq. (41) does not have a zero for the 
orrespondingmode. The maximum impedan
e step may be used torestri
t the distan
e between the points.The advantage of this variable step algorithm is thatit is able to deal with large impedan
e 
hanges with-out having to sear
h too many solutions. It is thereforepossible to handle variations of impedan
e of severalorders of magnitude: when the solution greatly varieswhile the impedan
e in
reases, the impedan
e step au-tomati
ally de
reases; on the 
ontrary, when the solu-1 Find minimum of a single-variable fun
tion on �xed in-terval2 Solve system of nonlinear equations

k(a) c

c

(b)Fig. 5: Lo
al modi�
ation of the frame stru
ture: (a)sti�ness mod�
ation; and, (b) damping modi�
ationChara
teristi
 Valuestorey height 2.236 mstorey width 4.472 mverti
al beam se
tion 0.04 m × 0.04 mhorizontal beam se
tion 0.08 m × 0.08 mYoung modulus E 210 GPaPoisson modulus ν 0.285density ρ 7800 kg m−3Table 1: Chara
teristi
s of the three-storey buildingtion evolves slowly, then the impedan
e step automati-
ally in
reases sin
e there is no di�
ulty in �nding thesolution, thanks to the predi
tion step whi
h be
omesvery e�
ient. This will be illustrated by the followingexamples.4 Numeri
al examples4.1 A �rst simple frame exampleA beam stru
ture modeling the frame of a building isstudied. The geometry of the frame is given in �gure 5and its 
hara
teristi
s are given in table 1. Ea
h �ooris 
omposed of 8 elements, the verti
al beams betweentwo �oors are 
omposed of 4 elements, leading to a 135degrees of freedom stru
ture. The �rst three modes areglobal �exion modes of the building; the respe
tive pus-lations are 7.88 rad s−1, 22.9 rad s−1 and 34.6 rad s−1.The determinantal method developped in the pre-vious se
tion is �rst applied on the sti�ness modi�edframe of �gure 5a. Sin
e the stru
ture is very simple,the Double Modal Synthesis was not employed in this�rst example; the response of the stru
ture is 
al
ulatedwith the �rst 20 modes of the initial frame
Hij (ω) =

nm=20
∑

k=1

XT
ikXkj

−ω2 + ω2
k

(79)
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Fig. 6: Evolution, with respe
t to k, of the �rst threeeigenfrequen
ies of the sti�ness modi�ed frame

−45 −40 −35 −30 −25 −20 −15 −10 −5 0 5
−5

0

5

10

15

20

25

30

35

Real part

P
ul

sa
tio

n 
[r

ad
/s

]

Fig. 7: Evolution in the 
omplex plane of the �rst threeeigenvalues of the frame with varying damping c ( ×poles, ◦ zeros)It is important to noti
e that the same basis is keptwhatever the importan
e of the modi�
ation be
ausethe determinantal method is based on the response ofthe unmodi�ed stru
ture.The evolution of the �rst three eigenfrequen
ies withrespe
t to k is illustrated in �gure 6; the eigenfrequen-
ies are normalised by their initial � unmodi�ed � valuesfor ease of 
omparison. The �rst �exion mode is morein�uen
ed by the modi�
ation than the se
ond mode;the third mode frequen
y suddenly in
reases when thesti�ness of the modi�
ation be
omes 
omparable to thesti�ness of the frame. Indeed the modi�
ation tends to

10
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10
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10
1

10
2

C
om

pu
ta

tio
n 

tim
e 

[s
]

3.102 3.103

DOF numberFig. 8: Computation times for the frequen
y evolution,on 20 steps, of ten modes (� determinantal method, +eigenvalue analysis, � regression)blo
k the relative horizontal displa
ement between the�rst and the se
ond �oor; yet the third mode 
annotexist without this relative displa
ment, 
onse
utively,the frequen
y of the thrid mode tends toward in�nity.The e�
ien
y of the proposed method is also testedon a 
omplex example having two vis
ous damping links(see �gure 5b). This is illustrated in the root lo
us plot�gure 7. The poles × 
orrespond to the unmodi�edeigenvalues and the zeros ◦ are the eigenvalues of theblo
ked system3.4.2 Computation timesIn order to see the e�
ien
y of the proposed method,we 
ompare the 
omputation times of the determinan-tal method and the 
lassi
al eigenvalue analysis for avarying number of degrees of freedom, in the 
ase ofone added link. The frame stru
ture is kept sin
e itsdegree of freedom number 
an be easily parameterized.The Double Modal Synthesis is not employed here be-
ause the aim is to 
ompare only the lo
al modi�
ationmethod.The eigenvalue analysis 
onsists in 
omputing the�rst ten modes of the frame using its sparse mass andsti�ness matri
es thanks to the Matlab fun
tion eigs4.On the other side, the time taken by the determinantalmethod to follow the evolution of a mode is noti
ed tobe independant of the mode number. Thus, to be 
om-pared with the eigenvalue analysis 
omputation time,the determinantal method 
omputation time for one3 The reader is invited to refer to root lo
us plot methodsif more details about the 
onstru
tion and interpretation ofthis kind of graph are needed.4 Fun
tion to �nd a few eigenvalues and eigenve
tors of amatrix using ARPACK library.
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tures 13mode is multiplied by ten. As the number of degrees offreedom of the stru
ture in
reases, the advantage of theproposed method for determining the modi�ed eigen-values be
omes 
lear (see �gure 8).The 
omputation time for the determinantal methodmainly depends on:� the time needed to evaluate the determinant ∆ (λ)for a 
ertain value of λ; when 
omputing the re-sponse on the �rst nm modes, this 
omputation 
ostis linked to the degree of freedom number n and thenumber of retained modes nm;� the number of time the determinant is 
omputedto �nd its root for a parti
ular impedan
e value,whi
h depends on the algorithm and its solving pa-rameters.A power regression is performed on the eigenvalue 
om-putation time and it is found to be proportional to n2.09.On the other side, a linear regression on the determi-nantal method 
omputation time shows that this timeis proportional to n. In both 
ases, the regression �tsvery well to the data (
f. �gure 8).The determinantal method is an exa
t formulation:if we are able to solve the determinantal equation, theexa
t eigenvalues of the modi�ed stru
ture are obtained.However, the pre
ision of the method depends on twothings: the pre
ision of model of the stru
ture, i.e. theexpression of the transfer fun
tions, whi
h 
an be trun-
ated or approximated in some way; the way the deter-minant is solved numeri
ally, whi
h 
an also lead to ap-proximations. As a 
onsequen
e it is possible to have aspre
ise eigenvalues as possible provided that the modelis exa
t and that the solving method is su�
iently a
-
urate. The point in this arti
le is not to give a fullyoptimized algorithm to solve Eq. (57), it is to introdu
ea new formalism, both simple and general, with 
an beapplied on 
on
rete 
ases.4.3 Single mode approa
h appli
ationThe single mode method developped in se
tion 3.1 isapplied on the frame stru
ture. The aim is to �nd theoptimal sti�ness e of the hystereti
 link k∗ = e (1 + iβ)between points 2 and 3, for a given hystereti
 dampingin the link β = 0.3, whi
h gives the maximum damp-ing on the �rst mode of the frame. The whole stru
turehas a hystereti
 damping of 0.02. This analysis is anal-ogous to the 
lassi
 optimization rule for a tuned massdamper.Equations 30 and 31 are rewritten, using Eq. (32)and the impedan
e Zm (k∗ and kr in series), it gives
ω̃2

m =

(

χ+ 1 + β2
)

ω̃2
∞

+ (χ+ 1)χω̃2

(χ+ 1)
2

+ β2
(80)
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Fig. 9: First mode damping η versus modi�
ation sti�-ness e : � referen
e solution, � � single mode approa
h(the verti
al lines indi
ate the optimal modi�
ationsti�ness)
ηm =

βχ
(

ω̃2
∞

− ω̃2
)

+
(

(χ+ 1)
2
+ β2

)

ω̃2η

(χ+ 1 + β2) ω̃2
∞

+ (χ+ 1)χω̃2
(81)where χ = kr

e
. The study of the fun
tion de�ned byEq. (81) shows that the maximum damping is rea
hedfor

χopt =
1 + β2 +

√

µ (1 + β2) (βη + µΩ −Ω + 1)

µ− 1
(82)where µ = β

η
and Ω =

ω̃2
∞

ω̃2 .The pulsation of the �rst mode of the frame is ω̃ =

7.88 rad s−1; the pulsation of the blo
ked system is ω̃∞ =
11.03 rad s−1, leading to a residual sti�ness of kr =

1.988× 105 Nm−1 with Eq. (32).Finally, the optimal sti�ness, with the single modeapproa
h, is eopt = 1.22 × 105 Nm−1. The 
omparisonwith the referen
e optimal sti�ness erefopt = 1.31 × 105 Nm−1gives a 6.20% relative error. Figure 9 illustrates theevolution of the �rst mode damping with varying mod-i�
ation sti�ness. The 
urve for the single mode ap-proa
h tends to move away from the referen
e solutionas the sti�ness of the lo
al modi�
ation in
reases; how-ever, the single mode approa
h gives a relatively goodapproximation of the optimal sti�ness with very low
omputational e�ort. Indeed the referen
e solution re-quires the 
omputation of the �rst eigenvalue on a widerange of sti�nesss, whereas Eq. (82) gives immediatelya good approximation for the optimal sti�ness.This single mode approa
h is however limited tolightly damped stru
tures on whi
h a hystereti
 damperis added. Nevertheless it may be 
onsidered as a 
om-plementary method to get a preliminary design beforeexploring more deeply some modi�
ation.
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teristi
 Valuestage height 1.2 mtotal height 2.1 mstage diameter 1.220 minner tube diameter 0.600 mtotal mass 1500 kgengine mass 880 kgYoung modulus E 210 GPaPoisson modulus ν 0.285density ρ 7800 kg m−3Table 2: Main 
hara
teristi
s of the laun
her stage4.4 Lo
al modi�
ation of a laun
her's last stageA stru
ture representative of a laun
her's last stagewith its payload is 
onsidered. Figure 10 illustrates thegeometry of the stru
ture and the 
orresponding mesh-ing; its main 
hara
teristi
s are given in table 2. Thestage is 
omposed of an outter stru
tural 
ylinder; theinner 
ylinder and the atta
hed mass represents the en-gine. Above this stage, a beam models the payload; itis 
onne
ted to the stage through three 
olumns (theatta
hment and spa
ing system of the payload).This stru
ture is well adapted to modal synthesissin
e it is 
learly 
omposed of two substru
tures: thestage; and the payload and its support. The stage sub-stru
ture has 11 100 degrees of freedom and the pay-load substru
ture has 1550 degrees of freedom. Again,the Double Modal Synthesis only needs to be 
omputedon
e sin
e the determinantal method requires the ini-tial behaviour. The base of the stage is 
onsidered to be
lamped, sin
e the 
onne
tion interfa
e of the laun
heris very sti�.The idea is to use the relative displa
ement be-tween the engine and the outer shell to damp vibra-tions. Three dissipative links, with vis
ous damping c,are therefore added between the engine mass and the lo-
ally reinfor
ed outer shell (•�• on �gure 10b). Figure11a shows the root lo
us plot of the system for the �rstfour modes. The �rst mode is a �exion mode of thepayload on its support; the se
ond mode is a �exionmode of the inner tube; the third mode is a longitu-dinal mode, the payload and the engine mass vibrateverti
ally in phase; the fourth mode is again a longi-tudinal mode, but it is antisymmetri
al. The mainlya�e
ted mode is mode two, however the other modesare also lightly damped (see �gure 11b for a more de-tailed graph) be
ause the added links are not exa
tlyhorizontal � whi
h in�uen
es longitudinal modes � andthe displa
ement of the engine mass is not zero for thepayload modes.

(a)

(b)Fig. 10: Model of the laun
her stage: (a) 
ross-se
tionview; and, (b) meshing of the stageFigure 12 gives the evolution of the real part of thesethree lightly damped modes with respe
t to link damp-ing c. The in
rease of the impedan
e step is noti
eable(the points are nearly linearly spa
ed on the verti
al logaxis). This �gure also shows that the optimal dampingfor ea
h mode may not be for the same value of c.At last, the proposed method is applied on the laun
herequiped with three equally spa
ed horizontal links be-tween the engine (• on �gure 10b) and the outer shell.
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(b)Fig. 11: Evolution in the 
omplex plane of the �rsteigenvalues of the damped stage: (a) the four �rstmodes, 
urves of equal modal damping, × poles and
◦ zeros ; and, (b) detail of the three least damped modesThese links are 
omposed of a spring in series with avis
ous damper. The in�uen
e of both the sti�ness kand the damping c of the links is illustrated by �g-ure 13; the blue 
urves 
orrespond to the evolution, inthe 
omplex plane, of the se
ond pole with a dampingparameter c varying from 0 (initial pole × ) to ∞ (zero
◦ , 
orresponding to the blo
ked puslation) and a �xedsti�ness parameter; the red 
urves 
orrespond to theevolution of the pole with a �xed damping parameterand a sti�ness parameter de
reasing from ∞ to 0 (fromleft to right on �gure 13). When the sti�ness of the linktends toward zero, it amounts to remove the link: thatis why the pole tends to return to its initial � unmodi-�ed � value. This kind of graphi
 allows to evaluate the
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Fig. 12: Evolution of the real part of the eigenvalueswith respe
t to vis
ous damping c in the three links
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Fig. 13: Evolution in the 
omplex plane of the dampedstage se
ond eigenvalue for varying k and c parameterssensitivity of the pole to the parameters of the links,whi
h may be 
ru
ial at a pre-design stage.5 Con
lusionThe proposed determinantal method appears to be promis-ing to follow the evolution of the eigenvalues of a lo
allymodi�ed stru
ture. The formalism and the underlyingequations are relatively simple and it gives very a

u-rate results. In addition to this, a single mode approa
hmay be used to have a �rst approximation when dealingwith the hystereti
 damping optimization of a parti
u-lar mode.With the determinantal method, the same initialmodal basis is kept through the exploration of the de-



16 Denis Brizard et al.sign parameters whatever the lo
al modi�
ation is. This
an be usefull to determine the best pla
e, a

ording toa 
ertain 
riterion, for a given impedan
e. In addition,this method also works with a bla
k-box model of theinitial stru
ture.A few numeri
al examples were developped to provethe e�
ien
y of the proposed method. To deal e�-
iently with stru
tures having a large number of de-grees of freedom, a Double Modal Synthesis method isintrodu
ed. The new eigenvalues are then sought thanksto a 
ontinuation algorithm. This algorithm for solvingthe determinantal equation already shows good perfor-man
es, it may however be further improved to redu
ethe 
omputational 
ost.Eventually, it would be interesting to apply the de-terminantal method to real stru
tures through the useof experimental measurements of transfer fun
tions atthe lo
ation of the atta
hment points of the modi�-
ation. However, this is far beyond the s
ope of thispaper; measurement un
ertainties and noise problems
ould arise and more work has to be done to be ableto extra
t, if possible, H (λ) from experimental tests.Indeed, the knowlegde of H (ω) for a lightly dampedstru
ture only allows to 
al
ulate the e�e
t of sti�nessmodi�
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