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Noise predictions in acoustic cavities lead to different formulations in low or high frequency ranges.

In the case of fast calculations, we propose a mixed formulation based on a finite element mesh

including a “high frequency energy degree of freedom” to predict high frequency phenomena. The

mesh size is planned for studying low-(medium) frequency range phenomena through a classical

finite element method. The same mesh is used to build energy elements to take into account the

(medium)-high frequency range phenomena. The method aims at performing low-cost calculations

in medium-high frequency ranges using low-frequency based existing meshes, i.e. without re-meshing

the system.
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1. Introduction

The problem of predicting the noise in the acoustic cavities has been discussed by many

authors. The methods are generally quite different for low and high frequency issues. Low

frequency phenomena are most often treated through classical finite element methods or

boundary element methods.

In medium-high frequency ranges, energy methods are often proposed, since finite ele-

ment methods would require finer mesh that would lead to high calculation costs. Moreover,

the modal overlap in the medium-high frequency domain legitimizes the use of averaged

energy variables. Among the most commonly used methods, let’s mention the Statistical

Energy Analysis (SEA) 6. The SEA was extended by Nefske and Sung 7 who proposed a

local energy formulation, whereas the SEA is based on global energies of subsystems. The

method proposed in this paper is based on the Simplified Energy Method (called MES in

the french terminology) we already described in former papers 14,15.

The Simplified Energy Method (MES) comes from the local energy formalism introduced

by Nefske and Sung 7 and improved by many authors 8,3,4,9. In the context of acoustic

noise prediction, it was applied in several papers 10,11,12. The lack of precision in medium

frequency range was already addressed by Besset, Ichchou and Jézéquel 14 who proposed

a mixed BEM/MES formulation. The aim of the method was to describe the direct field

through a classical BEM method, whereas the reverberated field was described by the MES

method. Nevertheless, this method needs a fine modelization of the structure around the

injected sources, which is often costly.
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In this paper, we address the problem of the fast prediction of acoustic fields in a large

frequency band. We propose a computational method to estimate the noise level in a cavity

in low, medium and high frequency ranges using a classical finite element mesh. In the

low frequency domain, a classical finite element method is used, which is valid until a

certain frequency fc. In order to reduce the size of the finite element problem, we apply

component mode synthesis methods developed in former papers 2,5 and called triple modal

synthesis method. For frequencies higher than fc, we seek to adapt a MES formulation

to the existing finite element mesh. Hence, the resulting degrees of freedom will be a mix

between generalized degrees of freedom coming from the modal synthesis and energy degrees

of freedom.

2. Finite element formulation

2.1. Low frequency modelisation

The considered system (see Figure 1) is made of a simple structure made of plates coupled

to an acoustic cavity.

x = 1 m

z = 1.3 m

y = 1.2 m

~F
Surface elements

Fig. 1. Structure to be studied
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In the low frequency domain, we consider displacement degrees of freedom X =

{u v w}T for the plates and pressure degrees of freedom p for the fluid, hence the fol-

lowing motion equation:













Kxx Kxp

0 Kpp






− ω2







Mxx 0

Mpx Mpp



















X

p







=







F

0







(1)

Equation 1 can be found in 1. The structure mesh is a 2D mesh, it can then be quite fine.

In this paper we consider quadrilateral – 4 node 20 DOF – plate elements. The 3D mesh

concerning the acoustic cavity cannot be so fine to avoid high calculation costs. Hence, the

dynamic behaviour of the structure can be predicted for higher frequency bands, whereas

the behaviour of the acoustical part of the system cannot. It is the reason why we add

energy variables in the acoustic domain. In this paper we consider 8-node 8-DOF hexahedron

elements. In the low frequency domain, the displacement and pressure fields can be expressed

as functions of the modes of the structure. First, the degrees of freedom of the plates are

split into surface degrees of freedom Xs = {us vs ws}
T and boundary degrees of freedom

Xb = {ub vb wb}
T , which leads to the following mass and stiffness matrices:

Kxx =







Kxsxs Kxsxb

Kxbxs Kxbxb






, Mxx =







Mxsxs Mxsxb

Mxbxs Mxbxb






, F =







Fs

Fb







(2)

The acoustic degrees of freedom p are then described using cavity modes Φp, the degrees

of freedom concerning the plates are described using fixed modes Φs and constraint modes

Ψs, and the degrees of freedom of the boundaries are described using “branch modes” Φb:
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p = Φpqp

{us vs ws}
T = Φsqs +Ψs {ub vb wb}

T

{ub vb wb}
T = Φbqb

(3)

Ψs, Φp, Φs and Φb are obtained by solving the following equations:







(
Kpp − ω2Mpp

)
Φp = 0

(
Kxsxs − ω2Mxsxs

)
Φs = 0

Ψs = −K−1
xsxs

Kxsxp

[(

{Ψs Ψs}Kxx {Ψs Ψs}
T
Kxx

)

− ω2
(

{Ψs Ψs}Mxx {Ψs Ψs}
T
)]

Φb = 0

(4)

Equation 1 becomes then:























k̃xbxb
K̃xbxs

K̃xbxs k̃xsxs

K̃xp

0 k̃pp












− ω2












m̃xbxb
0

0 m̃xsxs

0

M̃px m̃pp





























qb

qs

qp







=







F̃ b

F̃ s

0







(5)

where lower case matrices k̃ij and m̃ij are diagonal matrices.

2.2. Energy formulation – low frequency domain

As we are interested in the noise inside the cavity, we will consider the energy variable

W = |p|2

|pref|
2 . In the low frequency domain, W is obtained from equation 3:

W n
LF =

1

|pref|
2

∣
∣Φn

pqp

∣
∣2 (6)
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where Np is the number of cavity modes and Φn
p is the nth line of matrix Φp. Moreover,

equation 5 leads to the following expression of qp:

qp = G(ω)
{

F̃ b F̃ s 0
}T

(7)

where G(ω) is a matrix obtained by inverting the left side of equation 5. Hence the

following derivation:

W n
LF =

1

|pref|
2

∣
∣
∣
∣
Φn
pG(ω)

{

F̃ b F̃ s 0
}T

∣
∣
∣
∣

2

=
1

|pref|
2

(

Φn
pG(ω)

{

F̃ b F̃ s 0
}T

)(

Φn
pG(ω)

{

F̃ b F̃ s 0
}T

)T∗

=
1

|pref|
2

(

Φn
pG(ω)

{

F̃ b F̃ s 0
}T {

F̃
∗
b F̃

∗
s 0

}

︸ ︷︷ ︸

F

GT∗(ω)Φn
p
T∗

)

=
1

|pref|
2

(

Φn
pG(ω)

︸ ︷︷ ︸

I(ω)

FGT∗(ω)Φn
p
T∗

︸ ︷︷ ︸

J (ω)

)

=
1

|pref|
2

(
I(ω)FJ (ω)

)
(8)

where (a+ ib)∗ = a− ib and XT is the transpose of matrix X.

2.3. Energy formulation – Medium-high frequency domain

In this section, we explain how to compute the energy variable W for the medium-high

frequency domain using the finite element mesh already used for the classical finite element

formulation.

The energy density inside the cavity can be expressed as a function of the kinematic
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degrees of freedom on the boundaries:

W = H
(

{Xb Xs p}T
)

(9)

The aim of this section is to explain how to obtain H. Let note N2 the number of

elements of the structure (i.e. the surface elements shown in Figure 1) and N3 the number

of nodes of the 3D mesh (i.e. the acoustic mesh). The dimension of vector W will be (N3, 1)

and it can be expressed as follows:

Wn =

N2∑

m=1

ℜ
(

iωpmX⊥
m

∗
)

2c0

∫∫

Sm

cos θ

πr2nm
dP

︸ ︷︷ ︸

Direct field

+

N2∑

m=1

σm

c0

∫∫

Sm

cos θ

πr2nm
dP

︸ ︷︷ ︸

Reverberated field

for n = [1, . . . , N3]

(10)

where:

• Sm is the surface of element m;

• rnm is the distance between point n and the center of element m;

• c0 is the sound velocity in the cavity;

• X⊥
m

∗
in the component of the displacement orthogonal to element m (i.e. colinear to

vector ~n given in Figure 2);

• θ is an angle defined in figure 2. cos θ
π

corresponds to the directivity on the boundary. It

is assumed to be lambertian but another value may be proposed;

• σm is the reverberated energy density on the boundaries.

In order to obtain W as a function of the injected power Pm = 1
2ℜ

(

iωpmX⊥
m

∗
)

on the
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θ

P

~n

Fig. 2. Use of the FEM mesh to compute energy variables

boundaries, we need to express σm as a function of Pm. Let’s consider the power balance

on one element of the structure. Considerint two elements ξ and ζ, the power balance can

be written as follows:

σξ =
1− αξ

Sξ

∑

ζ=1

ζ 6=ξ

[

(Pζ + σζ)

∫∫

Sξ

∫∫

Sζ

cos θξ cos θζ
πr4ξζ

dPξdPζ

]

(11)

where rξζ = PξPζ (distance between Pξ and Pζ). αξ is the absorption coefficient of



March 2, 2012 9:39 WSPC/130-JCA ws-jca

A low-high frequency formulation for fast acoustic calculations 9

element ξ. Sξ is the area of element ξ. Equation 11 can also be written with a matrix

notation as follows, introducing a square matrix Q:

{σ1 . . . σN2
}T = Q {P1 . . . PN2

}T (12)

Matrix Q is obtained by writing equation 11 for ξ = 1, 2, ..., N2 with σi in the left terms

and Pi in the right terms, which leads to a matrix equation including matrix Q. Hence

the following matrix equation allowing to obtain WHF the energy density for medium-high

frequency domains:

WHF = {W1 . . . WN2
}T = R {P1 . . . PN2

}T (13)

Matrix R is obtained by including equation 12 in equation 10. Hence, the nth line of

vector WHF can be written as follows:

W n
HF = Rn {P1 . . . PN2

}T

= Rn 1

2
ℜ
({

p1v
∗
1 . . . pN2

v∗N2

}T
)

= Rnω

2
ℜ
({

p1X
∗
1 . . . pN2

X∗
N2

}T
)

(14)

where Rn is the nth line of matrix R. Let’s now express pi and Xi as functions of

{

F̃ b F̃ s 0
}T

:
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pi = Φi
pqp

= Φi
pG(ω)

︸ ︷︷ ︸

Ki(ω)

{

F̃ b F̃ s 0
}T

(15)

Xi = {Xs Xb}
T

=







Φs ΨsΦb

0 Φb













qs

qb







=







Φs ΨsΦb

0 Φb













α(ω)

β(ω)







︸ ︷︷ ︸

Li(ω)

{

F̃ b F̃ s 0
}T

(16)

where α(ω) and β(ω) are matrices obtained from equation 5. Hence the following ex-

pression for piX
∗
i :

piX
∗
i = Ki(ω)

{

F̃ b F̃ s 0
}T {

F̃ b F̃ s 0
}∗

︸ ︷︷ ︸

F

L∗
i (ω) (17)

Equation 14 leads then to the following expression:

W n
HF =

1

2
ωRnDiag























K1(ω)

...

KN2
(ω)












F

[

L∗
1(ω) . . . L

∗
N2

]












=
1

2
ωRnDiag

(
K(ω)FLT (ω)

)
(18)
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2.4. Energy formulation – Large frequency domain

The aim of this section is to express W in a large frequency domain using the formulations

given in the last sections. According to the expressions found for WLF and WHF we define

the quantity {W n
LF W n

HF}
T as follows:







W n
LF

W n
HF







=







1
2ωR

nDiag
(
K(ω)FLT (ω)

)

I(ω)FJ (ω)







(19)

Let’s introduce two filter functions FLF(fc) and FHF(fc) depending on a given frequency

fc. If ω < 2πfc, WLF should mainly be considered, whereas if w > 2πfc, WHF should mainly

be considered. Hence the global formulation:

W = FLF(fc)WLF + FHF(fc)WHF (20)

3. Results

The system considered for the numerical example is given in figure 1. It is an acoustic cavity

bounded by 6 plates. The figure 3 shows the results found for W , WLF, WHF and Wref:

• W , WLF and WHF are computed using a fine 2D mesh and a large 3D mesh;

• Wref is computed using a very fine mesh and is considered as the reference. It is the result

of a direct finite element calculation. The mesh size has been chosen in order to obtain

accurate results.
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Table 1 shows that the matrices needed for computing the reference solution is 100

times larger than the matrices needed for compution the solution with the other methods.

As a consequence the numerical operations count is 100 times larger if a standard FEM

approach is used. Of course, given a fixed tolerance we can only argue aboutthe relative

computational cost of the different methods.

Size of matrices LF HF

Reference (FEM) 569 × 569 • •

FEM (LF) 61 × 61 • –

Energy formulation (HF) 61 × 61 – •

Proposed method 61 × 61 • •

Table 1. Size of matrices

In this example, functions FLF(fc) and FHF(fc) are defined as follows:

FLF(fc) =
1

π

(

tan−1 [nc (ω − 2πfc)] +
π

2

)

(21)

FHF(fc) =
1

π

(

tan−1 [nc (−ω − 2πfc)] +
π

2

)

(22)

where nc is an integer (we choose here nc = 6). If the frequency f = ω
2π is greater

than fc, we consider that the low frequency formulation is no more valuable. We choose

fc = 290 Hz for this example. It must be noticed that the choice of the filter functions is

arbitrary. In fact, it is difficult to choose such functions: the frequency fc must be carefully

set and FLF(fc) and FHF(fc) must satisfy the following equations:
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lim
ω→0

[FLF(fc)] = 1

lim
ω→+∞

[FLF(fc)] = 0

lim
ω→0

[FHF(fc)] = 0

lim
ω→+∞

[FHF(fc)] = 1

(23)

0 50 100 150 200 250 300 350 400 450
−160

−140

−120

−100

−80

−60

−40

−20

0

20

 

 

WLF

WHF

Wref – reference
W – proposed method

Frequency (Hz)

W
(d
B
)

Fig. 3. Power density in the cavity

The results show that the proposed method allows to obtain good results in a large

frequency band: For the low frequency range, the proposed method is close to the reference,
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all the peaks are at the right place. For the medium-high frequency range, the averaged

response of the system is correct and very close to the energy method (WHF ). It is interesting

to note that the average power density for the higher frequencies shows some peaks. This

is due to the fact that the injected power is provided by the finite element formulation of

the boundaries and contains modal information.

4. Conclusion

In this paper we propose to use a classical finite element mesh to estimate the medium-

high frequency behaviour of an acoustic cavity. The aim is to get a good estimation without

increasing too much the calculation cost, i.e. using the already meshed structure. The results

presented in the paper show that the method allow to predict the large frequency range

behaviour of the structure considering only few degrees of freedom. Nevertheless, several

points remain to study. First, the choice of fc and functions FLF and FHF is not easy.

Moreover, the medium-high frequency estimation needs the pressure on the boundaries of

the system. However, this pressure field is obtained by a classic finite element method, which

is not valuable in this frequency domain. We are currently working on the improvement of

the method considering this last point.

5. List of variables

5.1. Finite element formulation

• X = {Xs, Xb}
T : structural degrees of freedom;
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• Xs: surface degrees of freedom;

• Xb: boundary degrees of freedom;

• p: pressure degrees of freedom;

• K, M : stiffness and mass matrices;

• Φp: acoustic modes;

• Φs: fixed interface modes;

• Ψs: constraint modes;

• Φb: “branch modes”;

• K̃, M̃ : reduced stiffness and mass matrices;

•
{
qb qs qp

}T
: generalized degrees of freedom;

5.2. Energy formulation

• Sm: surface of element m;

• rnm: distance between point n and the center of element m;

• c0: sound velocity in the cavity;

• X⊥
m

∗
: component of the displacement orthogonal to element m (i.e. colinear to vector ~n

given in Figure 2);

• θ: angle defined in figure 2. cos θ
π

corresponds to the directivity on the boundary. It is

assumed to be lambertian but another value may be proposed;

• σm: reverberated energy density on the boundaries;

• ℜ (x): real part of x;

• Pm: injected power.
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