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, and delivers convincing convergence dynamics towards the optimal rule. These findings constitute a significant improvement regarding previous results in the literature, both in terms of speed of convergence and parsimony of the learning model. The learning model exhibits several appealing features: it is frugal, easy to apply to a range of learning objectives, requires few procedures and little information. Particular care is given to behavioural interpretation of the modelling assumptions in light of evidence from the fields of psychology and social science. Our results highlight the need to depart from the genetic metaphor, and account for intentional decision-making, based on agents' relative performances. By contrast, we show that convergence is strongly hindered by exact imitation processes, or random exploration mechanisms, which are usually assumed when modelling social learning behaviour. Our results suggest a method for modelling bounded rationality, which could be tested most interestingly within the framework of a wide range of economic models with adaptive dynamics.

Introduction

The standard way to model how individuals deal with intertemporal decisions is to assume that they use a dynamic stochastic optimization procedure, based on a complete set of elements of information for the problem. Yet, empirical and experimental evidence questions the plausibility of the framework of substantive -or unbounded -rationality, and the corresponding optimization under constraints and rational expectation assumptions, especially concerning complex dynamic decisions under uncertainty (see, notably, the extensive literature initiated by Kahneman and Tversky and their colleagues, and Simon 1996, Chap. 3 and 4). A leading example is the theory of lifetime utility maximization under labour income uncertainty and liquidity constraints. [START_REF] Carroll | Buffer stock saving and the life cycle permanent income hypothesis[END_REF][START_REF] Carroll | A theory of the consumption function, with and without liquidity constraints[END_REF] demonstrates that the solution to the optimal consumption problem implies that agents follow a "buffer stock" rule: they target a level of cash-on-hand, and use it to smooth their consumption path in face of unanticipated variations in their labour income. Even if the computation of this optimal rule requires an astonishing amount of information and mathematical ability, empirical findings suggest that consumers do exhibit similar buffer-stock saving behaviour (see, for example, [START_REF] Deaton | Saving and liquidity constraints[END_REF][START_REF] Carroll | Buffer stock saving and the life cycle permanent income hypothesis[END_REF]. The question that immediately arises is the following: how can individuals, in real life, come to this optimal rule if we, quite realistically, hypothesise that they are not endowed with extremely sophisticated mathematical skills and powerful computers?

1
This question is often addressed by means of the [START_REF] Friedman | Essays in Positive Economics[END_REF] "as if" postulate, according to which agents are, of course, not involved in very demanding optimization programs but, instead, could roughly learn the resulting optimal behaviour by a process of trial and error. At first glance, this argument sounds plausible, all the more so that [START_REF] Allen | Individual learning about consumption[END_REF] prove that the exact optimal non-linear buffer-stock rule can be very efficiently approximated by a simple linear rule involving two parameters, whose interpretation is straight-forward : the intercept stands for the target level of cash-onhand, and the slope for the speed at which consumers try to return to that target when once they have moved away from it. This simplified form of the rule is thus a natural candidate to serve as a benchmark situation to test learning models of intertemporal choice under uncertainty.

However, attempts to test M. Friedman's assumption within this particular framework rule yield rather disappointing results, and the literature fails to construct convincing learning processes to explain how agents come to make use of this rule. This suggests that the theoretical question, whether boundedly rational agents can actually learn to behave in a way predicted by models of unbounded rationality, is far from being completely resolved. [START_REF] Allen | Individual learning about consumption[END_REF] find that individual agents would need an absurd amount of iterations (roughly four million) to approximate this rule by a simple trial/error process.

The difficulty arises because today's consumption choices have consequences on consumption during later periods, so that the performance of a given rule is not immediately observable. [START_REF] Palmer | Learning to Consume: Individual versus Social Learning[END_REF] demonstrates that the number of iterations can be drastically reduced if the problem is parallelized among agents. This mechanism still requires the exhaustive exploration of a discrete space of strategies, and the issue of coordination is not raised, as it is assumed that all agents adopt the optimal rule as soon as it has been discovered by one of them. Two other contributions consider reinforcement learning, i.e. a process which selects an action rule within a set of rules, with a probability that increases with the relative past performance of this rule. [START_REF] Lettau | Rules of thumb versus dynamic programming[END_REF] use a classifier system to discriminate between different consumption rules, including the optimal one, and find a selection bias towards rules that yield the highest performances in periods with high incomes. This bias arises because the selection mechanism is only based on past performances of the strategies. Moreover, they consider a very simplified intertemporal choice, by allowing agents to make only discrete and binary consumption choices. [START_REF] Howitt | Adaptive Consumption Behavior[END_REF] provide more encouraging results, and show that consumers can quickly discover the optimal rule, but only by adding a very sophisticated updating derivative-based mechanism, which involves, among other elements, the computation of marginal utility. They further show that imitation strongly enhances the speed of convergence towards the optimal rule, but again by using a very sophisticated local imitation process.

The most encouraging results can be found in [START_REF] Yıldızoğlu | Learning the optimal buffer -stock consumption rule of Carroll[END_REF], in which agents develop a mental model of their environment thanks to an artificial neural network, and use it to form adaptive expectations. With this behaviour, agents are able to approximate and even, under certain circumstances, converge towards the optimal consumption rule.

By contrast, they show that individual learning modelled through a genetic algorithm, even augmented with an imitation process between consumers, yields unconvincing results. The main progress initiated by their framework is to offer explicit modelling of adaptive expectations and forward-looking behaviour in a bounded rationality context. However, their network involves many parameters (almost ten), and convergence is quite long (around 1200 iterations). This paper overcomes these two weak points by means of a parsimonious social learning model, and delivers convincing convergence dynamics towards the optimal consumption rule of [START_REF] Allen | Individual learning about consumption[END_REF] within a limited amount of time. Modelling learning under bounded rationality proves to be a very challenging task. While models of substantive rationality appear to form a self-contained and unified framework, there is no consensus about the way bounded rationality should be represented, and several attempts have been developed. This paper is related to two strands of this literature.

The first strand applies evolutionary algorithms, initially developed to optimize nonlinear and sophisticated functions, to model adaptive behaviour, be it collective or individual (see, for example, [START_REF] Sargent | Bounded Rationality in Macroeconomics[END_REF][START_REF] Arifovic | Genetic algorithms and inflationary economies[END_REF][START_REF] Dawid | The dynamics of genetic algorithms in interactive environments[END_REF][START_REF] Arifovic | Evolutionary Algorithms in Macroeconomic Models[END_REF][START_REF] Vallée | Convergence in the finite Cournot oligopoly with social and individual learning[END_REF]. Usually, this form of behaviour is inspired by genetic algorithms (see, notably, [START_REF] Holland | Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[END_REF][START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF][START_REF] Holland | Classifier Systems and Genetic Algorithms[END_REF][START_REF] Holland | Artificial Adaptive Agents in Economic Theory[END_REF] 2 . One criticism that can be made of these algorithms is that they treat agents as automata, while individuals make deliberate choices (Rubinstein 1998, p. 2).

As noticed by [START_REF] Waltman | Economic modeling using evolutionary algorithms: the effect of a binary encoding of strategies[END_REF], little attention is usually paid to the economic interpretation of these algorithms.

Closer to the frontier with psychology, the second line of research also explores the [START_REF] Simon | A behavioural model of rational choice[END_REF] concept of bounded rationality. In this strand of literature, agents tend to simplify complex decision problems, and much human decision-making can be described by simple algorithmic process models, called heuristics. These heuristics specify the cognitive process that leads agents to a satisficing solution. They are depicted as fast, because they require a low amount of information, and hence allow for quick decision making, and frugal, because they involve but few parameters in the design of the process and, hence, avoid overfitting issues in the case of small learning samples [START_REF] Hoffrage | Models of Bounded Rationality: The Approach of Fast and Frugal Heuristics[END_REF]. Furthermore, their predictive power has been proved to be at least as good as that of more sophisticated algorithms, such as standard statistical procedures (see [START_REF] Hutchinson | Simple heuristics and rules of thumb: Where psychologists and behavioural biologists might meet[END_REF] for a variety of examples). Accordingly, [START_REF] Gigerenzer | Bounded Rationality: The Adaptive Toolbox[END_REF] develop the concept of the "adaptive toolbox", which is a repertoire of specific-purpose heuristics designed to make decisions under uncertainty, by dispensing with optimization and calculations of probabilities and utilities. Heuristics and bounded rationality are not envisioned in the sense of [START_REF] Kahneman | On the reality of cognitive illusions[END_REF], that is as a rationale to the observed systematic deviations from standard probability laws, nor as optimization under constraints of time, knowledge or resources. Rather they are conceived as simple procedures that "make us smart", and allow us to make decisions with realistic mental resources.

In line with the evolutionary learning literature, this paper starts by implementing a basic tournament evolutionary algorithm (see e.g. [START_REF] Vriend | An illustration of the essential difference between individual and social learning, and its consequences for computational analyses[END_REF], and then proceeds through a series of improvements. Simple heuristics are progressively introduced into the learning model in order to depart from the genetic metaphor, and this paper culminates in a simple social learning model, which exhibits several appealing features. First, its functioning appears to be intuitive, and its behavioural interpretation is made easy.

While our model is derived from an evolutionary algorithm, it models deliberate decisionmaking in intelligent agents, and economic and behavioural interpretation is discussed regarding evidence from experiments and observations in psychology and social science 3 . Second, it is particularly frugal, and only involves two free parameters. Third, procedures and information requirements are extremly limited. This model can thus be applied to a various range of problems, either static or dynamic, either in a discrete or in a continuous search space, either in a one-dimensional or in a multi-dimensional set of strategies. Furthermore, it is well in tune with [START_REF] Simon | A behavioural model of rational choice[END_REF] concept of bounded rationality.

Our main results can be summarized as follows. First, we obtain sound and particularly stable consumption behaviour, without any unrealistic erratic fluctuations, and we even obtain good convergence to the optimal consumption rule. Importantly, we overcome one of the weaknesses of previous results within this framework, by drastically reducing the time taken to converge to the optimal solution. This evidence suggests that the proposed learning model does a very good job in describing the collective learning of agents with realistic cognitive capacities, acting under bounded rationality, without being able to see the whole picture of their environment. Second, we highlight the key features of convergence towards optimal behaviour under learning. The tension between exploration of the search space and exploitation of collected information is a major feature of choices under uncertainty. In that respect, we emphasize the social dimension of learning, by allowing for a collective approach of that tension 4 . We highlight the need to depart from the genetic metaphor when designing learning models, and to account for intentional and oriented decision-making, based on agents' relative performances. By contrast, learning performances are strongly hindered by exact imitation processes ("copycat operator"), or global exploration mechanisms, which are usually assumed when using EAs to model agents' behaviour under bounded rationality. Furthermore, we find that increasing the selectivity of agents' relationships sharply improves their ability to learn what the optimal solution is. In this light, we offer an answer to the question asked by Allen & Carroll (2001, p. 13), and provide a proof of what they sense as being the "most plausible answer": "the most interesting question to be addressed in a future literature on social learning about intertemporal choice is under what circumstances the population does and does not settle on a reasonably good set of rules".

The rest of the paper is organized as follows: Section 2 exposes the setting of [START_REF] Allen | Individual learning about consumption[END_REF] and the learning objective. In Section 3, we derive the social learning model that we intend to test within this setting. Section 4 describes the simulation protocol, Section 5 reports the results, and Section 6 presents our conclusions.

The general set-up : the learning objective

We use the original intertemporal consumption problem of [START_REF] Allen | Individual learning about consumption[END_REF] as a framework.

The representative consumer solves the following maximization problem under liquidity constraint:

max {Cs} ∞ t E t ∞ s=t β s-t u(C s ) s.t. X s+1 = X s -C s + Y s+1 C s ≤ X s ∀s ([1])
where the utility function is derived only from consumption C, and is CRRA, u(C) = C 1-ρ 1-ρ with ρ = 3. X s is the total sum of resources available for consumption for period s.

The labour income Y follows a stochastic process, and takes the values 0.7, 1 and 1.3, respectively with probability 0.2, 0.6 and 0.2, so that E(Y ) = 1. Consumers cannot borrow but can save at a zero interest rate, and discount future utility at a rate β = 0.95.

In this framework, under mild conditions, [START_REF] Carroll | Buffer stock saving and the life cycle permanent income hypothesis[END_REF] shows that the optimal consumption rule can be rewritten as :

C * (X t ) = 1 + f X t -X * ([2])
with f (.) a function with specific properties but no analytical expression and, more importantly, X * ≥ 1 the target level of cash-on-hand. A first-order Taylor expansion of ([2]) around the point X = X * yields :

C * (X t ) ≈ 1 + γ * (X t -X * ) ([3])
where γ * ≡ f ′ (0). The approximation ([3]) delivers a complete plan of consumption that is only characterized by two parameter values, X * and γ * .

If we define a strategy θ = (γ, X) over a two-dimensional set Ω, taking into account the liquidity constraint, a consumption rule θ is given by:

C θ (X) =      1 + γ(X -X) if 1 + γ(X -X) ≤ X, X otherwise. ([4])
As underlined in the introduction, the two parameters in θ find a natural interpretation:

X is a cash-on-hand target, and γ indicates the speed at which consumers return to that target when away from it. Consequently, the rule ([4]) provides a good heuristic:

consumers have a target level for a buffer-stock of liquid assets X, that they use to smooth consumption in face of an uncertain income stream. They consume less than the expected income (E(Y ) = 1) if the buffer-stock falls below the target, and vice-versa, the degree of adjustment depending on the coefficient γ.

In this setting, [START_REF] Allen | Individual learning about consumption[END_REF] consider the complete set of strategies Ω = [0.05, 1] × [1, 2.9], and demonstrate that the best approximation of the exact optimal non-linear rule over Ω is 5 :

θ * = (γ * , X * ) = (0.233, 1.243) ([5])
Figure 1 provides a 3-dimensional representation of the fitness landscape of this optimization problem. Starting with a given cash-on hand X 0 ∈ {0, 1, 2}, [START_REF] Allen | Individual learning about consumption[END_REF] investigate whether consumers can discover this optimal strategy θ * through systematic and individual exploration of the strategy space Ω, but arrive at very disappointing conclusions: they identify the fact that a "reasonably good" consumption rule requires a search time of roughly one million iterations. This therefore leads them to a discussion of the potential role of social learning and of collective exploration of the space Ω:

If there were a mechanism by which all of that information could be efficiently combined, the number of model periods required for finding the optimal rule could surely be radically reduced. [...] A potential mechanism to accom-plish this purpose is "social learning". [...] Even if the social learning process is less than perfectly efficient it still seems plausible that it might lead a population of consumers to converge on the optimum relatively quickly. (Allen & Carroll 2001, p. 13).

The aim of the next sections is to propose a simple social learning process, and to demonstrate that their conjecture is right.
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3 Modelling social learning

The trade-off between the exploitation of high-payoff strategies (that already have been already discovered) and the exploration of the search space (looking for new actions that may potentially improve utility) has been identified as a major feature of iterated choice problems [START_REF] Arthur | Designing Economic Agents that Act Like Human Agents: A Behavioral Approach to Bounded Rationality[END_REF]. Beginning with a standard Evolutionary Algorithm (hereafter, EA), we proceed by successive improvements in how that trade-off is dealtwith, and end up with a social learning model, that provides a formalization of [START_REF] Simon | A behavioural model of rational choice[END_REF] concept of procedural rationality.

For each period, each consumer i, i ∈ {1, ...n}, is endowed with a single strategy θ i , so that the population of strategies always contains n elements. The fitness of any strategy θ for any period t is given by the current utility u(C θ t ) of the consumers, who are using the strategy θ in t. Moreover, strategies are not binary encoded; rather we use real-valued numbers for γ and X values. This method allows for a direct behavioural interpretation of the learning model, while avoiding pitfalls associated with the use of elements for which the economic interpretation is unclear (see [START_REF] Waltman | Economic modeling using evolutionary algorithms: the effect of a binary encoding of strategies[END_REF] for a critical discussion of this point).

EA1: a basic tournament EA with global exploration

EAs have been used as a collective approach to model the learning of interacting agents under bounded rationality. In this case, the population of strategies evolves through two operators: social learning between individuals (crossover operator) and random experimenting by some agents (mutation operator) [START_REF] Vallée | Convergence in the finite Cournot oligopoly with social and individual learning[END_REF]. EA1 corresponds to a basic Tournament Evolutionary Algorithm (hereafter, TEA) with those two operators.

Cross-over is implemented using a deterministic tournament selection of size m < n, which is summarized in Box 3.1 6 . Each consumer i randomly draws a pool (the so-called tournament) of m other consumers among the whole population of n consumers, observes their current strategies and consumption levels, selects the two fittest consumers (say consumers k and l, k, l = i) to be the two mates, and uses cross-over to combine their strategies θ k and θ l to update their own strategy θ i . We assume an average cross-over, i.e. consumers simply adopt the barycenter of the two selected strategies (see, for instance, [START_REF] Yıldızoğlu | Learning the optimal buffer -stock consumption rule of Carroll[END_REF]:

θ k,t = (γ k,t , Xk,t ) and θ l,t = (γ l,t , Xl,t ) -→ θ i,t+1 = (γ i,t+1 , Xi,t+1 ) ≡ γ k,t + γ l,t 2 , Xk,t + Xl,t 2 ([6])
We further assume that cross-over occurs with a fixed probability P co for each period t and each consumer i. The cross-over operator captures the idea of exchanges of information between agents [START_REF] Arifovic | Evolutionary Algorithms in Macroeconomic Models[END_REF]. This operator allows consumer i to exploit information contained in strategies θ k and θ l : assuming that the strategies of the two mates perform well, a combination of these two strategies is also likely to yield a high utility, or even a better one. However, cross-over does not allow other strategies to be explored beyond the convex set of existing strategies. For this reason, a global exploration operator is also introduced, in order to ensure that all strategies may potentially be reached (the so-called ergodicity property), see e.g. [START_REF] Waltman | Economic modeling using evolutionary algorithms: the effect of a binary encoding of strategies[END_REF] for a comparable mutation operator. With a fixed probability P mut for each period, each consumer randomly draws a new strategy θ ∈ Ω.

The choice of a tournament selection is justified in the light of evidence from social science and psychology 7 . Bounded rationality involves cognitive limitations in processing information, as well as in social interactions and organisational capabilities. As stressed by [START_REF] Simon | The architecture of complexity[END_REF], limits exist to the number of people simultaneously involved in most forms of social interaction. For this reason, in our set-up, agents are supposed to be endowed with both bounded rationality, and what may be called "bounded sociability".

This concept is translated into the choice of a fixed and small number m of agents in the tournament, that each agent is assumed to be able to observe. Moreover, endowing agents with a social "network" of this type provides an explanation for the information requirements of the cross-over, whose interpretation may appear problematic in population-based models (see [START_REF] Fudenberg | Theory of Learning in Games[END_REF].

This choice may also be justified from the perspective of experimental evidence in the field of psychology. For example, [START_REF] Tversky | Choice Under Conflict: The Dynamics of the Deferred Decision[END_REF] show that when an agent has an arresting signal by which to discriminate between two options, he or she does not try to extend the decisions set. In our framework, each consumer i objectively discriminates on the basis of the relative observed utility of the members of their tournament, so that we can assume that they do not feel the need to enlarge the pool of candidates. More generally, social psychologists report that people imitate the actions of those who appear to have expertise (see, e.g., [START_REF] Bikhchandani | Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades[END_REF]. This evidence illustrates why agents select the fittest individuals in the tournament to update their strategies. This is also fully in line with the concept of upward comparison developed in the field of social psychology, according to which individuals tend to choose a comparison-target who slightly outperforms them as a means of self-improvement 8 . It is interesting to note that the tournament selection procedure is in line with findings in the field of behavioural biology too. [START_REF] Janetos | Strategies of female mate choice : a theoretical analysis[END_REF] argues that female animals follow simple rules of thumb to achieve good, but not optimal, matching, and select the best candidate male in a pre-set number of N males, after a process of sequential assessment (the so-called "best-of-N " rule).

TEA is inspired by the analogy with genetic heredity and cross over, and with genetic mutations. Exploration of the search space is purely stochastic, and can reach all points of the set Ω with equal probability (uniform draw). This algorithm exhibits efficient exploratory properties, but also constantly introduces disturbances in the population of strategies and, hence, may hinder coordination onto (or close to) the optimal solution.

Furthermore, a major difference between a learning process and a natural selection process is that learning agents make intentional decisions and deliberate experimentation, while natural mutations are purely random (see, for example, Penrose 1952 for such a distinction). TEA is not able to fully account for such deliberate decision-making processes. Consequently, an oriented search operator is now introduced into the TEA with a twofold objective : allowing for local exploration, and modelling conscious behaviour in intelligent consumers. 

EA2: searching in promising regions

The selection procedure of the two mates k and l remains unchanged, but EA2 brings exploitation and exploration together into a single oriented search operator, which implements a distance-proportionate exploration (we follow here [START_REF] Eshelman | Real-Coded Genetic Algorithms and Interval-Schemata[END_REF][START_REF] Lux | Genetic learning as an explanation of stylized facts of foreign exchange markets[END_REF] 9 . We assume that consumers explore the neighbourhood of their two mates around the barycenter { γ k +γ l 2 , Xk + Xl

The intuition behind that modelling assumption can be stated as follows. Assuming that the two mates perform well, consumers explore the mates' region because they assume that this region is promising. The more distant the two mates, the greater the level of uncertainty regarding the position of the optimal strategy in the search area. Conversely, the closer the mates, the more promising the region, and the less incentive to move away from it.

Formally, for each period, with a fixed probability P co , each consumer i draws a new strategy as follows :

θ k,t = (γ k,t , Xk,t ) and θ l,t = (γ l,t , Xl,t ) -→ θ i,t+1 = (γ i,t+1 , Xi,t+1 ) with γ i,t+1 ֒→ U γ k + γ l 2 -d | γ k,t -γ l,t |, γ k + γ l 2 + d | γ k,t -γ l,t | and Xi,t+1 ֒→ U Xk + Xl 2 -d | Xk,t -Xl,t |, Xk + Xl 2 + d | Xk,t -Xl,t | ([7])
where the nested case d = 0 corresponds to the averaging cross-over ([6]). The random draw introduces noise in the learning operator, which plays the role of randomness during the exploration process 11 .

Figure 2 illustrates that mechanism : consumers k and l, whose strategies are θ k = (γ k , Xk ) = (0.7, 1.3) and θ l = (γ l , Xl ) = (0.5, 1.7), have been selected to be the two mates. By implementing EA1, the new strategy would be the barycenter θ = (γ, X) = (0.6, 1.5), see Equation ([6]). Under EA2, the consumer explores a uniform area around the barycenter, the precise size of this area depending on the absolute distance between the two mates k and l, and on the value of parameter d. The distance between k and l is 0.2 for strategy γ and 0.4 for strategy X, so that the new strategy θ is randomly drawn in This modelling device clearly corresponds with the concept of selective trial and error, which lies at the heart of Simon's explanation of human problem solving: " The trial and error is not completely random or blind; it is, in fact, rather highly selective." (Simon 1962, p. 472). "Selectivity, based on rules of thumb or "heuristics", tends to guide the search into promising regions, so that solutions will generally be found after search of only a tiny part of the total space." (Simon (1978, p. 362)). This gives a strong rationale to the design of learning processes based on EAs, but deliberately departing from the biological analogy.

[Figure 2 about here.]

EA3: enhancing upward comparison

Under EA1 and EA2, the rate of occurrence of the learning operators is assumed to be exogenously fixed (i.e. P co and P mut are set by the modeller). The rationale behind this feature may be seen to be weak as soon as we intend to explicitly model deliberate decision-making in intelligent agents. As already mentioned in Sub-section 3.1, psychology and social sciences provide evidence of upward comparison among people concerned with self-improvement. In our set-up, consumers aim at finding the optimal consumption rule, in order to maximize their utility. We reinforce the upward comparison component of EA2, by assuming that strategy changes are an endogenous decision, following a simple routine. For each period, each consumer draws a new strategy as described in Equation ([7]) whenever he or she is the less fit person in their tournament. Otherwise, individuals leave their strategy unchanged. In this case, the consumer acts according to the satisficing principle, in the sense that they consider that they have met an acceptable utility threshold and, consequently, retain their current strategy (see [START_REF] Simon | From substantial to procedural rationality[END_REF] 12 . The rest of the algorithm is unchanged, most particularly the tournament procedure, as does the selection of mates. We call this learning model EA3.

It should be underlined that this modification of the EA provides parsimony benefits, by ruling out the exogenous parameter P co . EA3 is very frugal: it involves only two free parameters, i.e. the scale of the exploration area d and the tournament size m.

This algorithm is therefore able to address a recurrent criticism levelled against agentbased models, which rightly points out that such models involve a high number of free parameters, making calibration and sensitivity analyses a challenging task (see [START_REF] Judd | Computationally Intensive Analyses in Economics[END_REF] for a discussion).

EA4: endowing agents with a social memory

The selection of the two mates appears as a crucial part of our learning schemes, because both information exploitation and exploration of the search space depend on the two preselected candidates k and l. EA1, EA2 and EA3 all imply that the tournament be randomly and entirely renewed for each period. The concept of bounded sociability introduced in Subsection 3.1 would suggest that individuals could engage in some kind of networking, and keep track of the members of their past tournaments. The learning process could thus be augmented by memory 13 , as stressed by Simon (1962, p. 473): "various paths are tried out, the consequences of following them are noted, and this information is used to guide further research". In our set-up, consumers are information carriers, in the sense that they convey records on pairs of implemented consumption rules/resulting utility. What is essential in the learning process is how this information flows among individuals.

Von Hippel et al. (2009, p. 3) develops the idea of a pyramiding search in order to find people with a rare attribute among a large population : "Pyramiding is a search process based upon the idea that people with a strong interest in a topic tend to know people more expert than themselves". This search model provides an appealing organisational model for the population of consumers, according to which consumers keep track of agents who are fitter than they are, and rule out those who are less fit, in order to reinforce the selectivity of the learning process.

For that reason, we now introduce a simple routine of tournament selection, mainly based on the assumption that agents have a (limited) knowledge and memory of the other consumers. The tournament is only partially renewed for each period, so that consumers tend to memorize agents with a relatively high level of utility: only the less fit consumer is removed from the tournament for each period, and randomly replaced by another, so that the tournament size remains constant (see Box 3.4). This pyramidal organisation is fully decentralized, as each consumer autonomously constitutes their own tournament in dynamic fashion, as it is updated for each period according to the relative fitness of each consumer and the tournament members. The rest of the learning model EA3 remains unchanged. We then obtain EA4, which we refer to as the pyramiding TEA.

This model exhibits three interesting features. i) It is clearly consistent with the concept of bounded rationality and sociability, as information requirements are very limited: consumers only need to know the search space Ω, their current strategies and their resulting utility, and they are assumed to be able to observe m other strategies and corresponding utilities. ii) It selects the best strategies in terms of utility among a subset of the population, which tends to select the best ones among the whole population, through a constant adaptation of that subset according to recorded fitness. iii) It is particularly frugal: as underlined above, besides the number of consumers n, there are only two free parameters, i.e. the size of exploration d and the tournament size m. i. Either consumer i is the less fit of the tournament, i.e. u(C i,t ) ≤ u(C j,t ), ∀j ∈ {1, ..., m}, with j = i, then implement the learning operator (see Equation [7]). ii. Or there exists agents in the tournament with a lower utility than consumer i, i.e. ∃j ∈ {1, ..., m}, so that u(C j,t ) ≤ u(C i,t ), then: A. Remove from the tournament the less fit agent, i.e. consumer j, for who u(C j,t ) ≤ u(C k,t ), k = j. B. Randomly draw one new consumer among the nm -2 other consumers to obtain m different consumers in the tournament.

We now assess whether these four EAs are able to deliver interesting learning dynamics within the optimal consumption rule framework.

The major difference between EA1 and EA2 on the one hand, and EA3 and EA4 on the other hand, lies in the occurrence of the exploration operator: it is implemented with an exogenous probability P co in EA1 and EA2, while consumers activate it whenever they are the less fit among their tournament in EA3 and EA4. This feature directly connects the choice of strategy with the relative performances of the consumers, and appears as the major improvement of the EA in order to obtain interesting learning dynamics.

EA4 displays the best convergence pattern: not only average consumption behaviour moves closer to that obtained under the optimal rule 16 but, when looking at the variance of strategies among consumers, their coordination is particularly salient. It should be underlined how quick convergence and coordination are, typically within the first 100 periods. This is an improvement considering previous results in the literature (see Yıldızoğlu et al. 2012) 17 .

The key difference between EA3 and EA4 lies in the procedure for tournament renewal.

Consequently, our findings show that endowing agents with a dynamic social memory, based on the model of pyramiding search, provides the means to coordinate consumer behaviour with (or, at least more closely with) the optimal consumption rule. This device efficiently balances selection pressure (which is increased under EA4 compared with EA3, as less fit agents are ruled out from the pool of potential mates), and strategy diversity (which is broadly the same under EA3 and EA4, as the learning operator is implemented according through the same procedure). exhibit much more satisfying learning dynamics, and EA4 obviously displays the best convergence between consumers over the four EAs.

The role of the learning parameters

We now analyse which features of the EAs are key to ensuring convergence towards the optimal consumption rule, and we focus on EA3 and EA4, as these models exhibit the The tournament size m measures the selection pressure of the EAs: the larger m, the stronger the selection pressure, so that agents with weak fitness are less likely to be selected as mates, and a deeper exploitation of the information embedded in the consumer population is made possible. On the other side, we should remember that in EA3 and EA4 the learning operator is only implemented when the consumer performs less than all other m consumers in their tournament (see Box 3.4). Consequently, the higher m, the less frequent the exploration, and this effect may weaken the learning dynamics, and hinder the learning process.

[Figure 4 about here.]

In EA3, small-sized tournaments allow for a better convergence towards the optimal rule. This finding suggests that frequent exploration (corresponding to a low value of m) is preferable to a stronger selection pressure (corresponding to a high value of m).

Figures 11 and 12 in Appendix C show a similar effect of m in EA1 and EA2. By contrast, learning dynamics under EA4 are less sensitive to tournament size, because the renewal procedure of the tournament is more selective than it is in EA3. By ruling out the less fit consumer for each period, the tournament gradually excludes consumers with low utilities. These consumers do not manage to smooth out their consumption: even if they may occasionally obtain a high utility in high-income periods, they face a significant drop in their consumption and, hence, in their fitness as soon as they have to cope with a decrease in their income. Even if exploration is less frequent (due to a high value of m),

it is based on mates with a better fitness than under EA3, because the tournament itself is more selective. The pyramiding EA4 thus provides the additional appealing feature of being less sensitive to parameter values.

Robustness checks

Finally, we perform robustness checks in the baseline scenario regarding changes in the number of consumers n, the introduction of imitation through a probabilistic copying process, and heterogeneous initial endowments among consumers. Results are reported in Appendix D.

Changing the size of consumers population This paper emphasizes the importance of social learning. We thus naturally ask whether decreasing or increasing the size of the population may change our results. We find that learning performances are strongly robust to changes in the number of agents: dynamics are fairly comparable with a population of n = 100 or 400 consumers (see the first two panels of Figure 13 in Appendix D). This result contrasts with the social learning mechanism implemented in [START_REF] Palmer | Learning to Consume: Individual versus Social Learning[END_REF], in which increasing the size of the population allows more rules to be evaluated in parallel and mechanically decreases the time necessary for discovering the optimal rule.

Introduction of imitation Social learning is often modelled by implementing a "copycat operator", i.e. by allowing agents to copy the best strategy in the population with some probability for each period (the so-called selection operator, see [START_REF] Waltman | Economic modeling using evolutionary algorithms: the effect of a binary encoding of strategies[END_REF] for a discussion in the social learning context). We therefore incorporate some imitation in the four EAs, with a 0.15 probability for each period and each consumer. On one side, exact imitation may enhance learning dynamics, by allowing the best strategies to spread among the population, and therefore increasing the selectivity of the search process 20 . On the other side, it can potentially lead to a premature loss of diversity in the existing strategies, by purely reproducing the best ones at a given period, to the expense of others and, hence, may impede convergence towards the optimal rule.

Our results show that this second negative effect clearly dominates (see the third panel of Figure 13 in Appendix D). Imitation strongly hinders learning dynamics in all four EAs, probably because it leads to a premature convergence towards existing good-performing strategies, instead of using those strategies to further explore the search space.

This negative result also echoes the disappointing conclusion of [START_REF] Yıldızoğlu | Learning the optimal buffer -stock consumption rule of Carroll[END_REF] as to the role of exact imitation within the same set-up : agents are heterogeneous regarding their income and wealth, so that sharing current rules corresponding to different current situations does not make learning more efficient. This finding emphasises the importance of heterogeneity for social learning efficiency, and should caution us against the use of an imitation process when designing learning algorithms 21 .

Heterogeneous initial wealth Up until this point, we have considered that all consumers start the simulation with the same initial endowment X 0,i = 0, 1, or 2, ∀i. Palmer (2012) suggests that considering heterogeneous initial wealth may hinder the social learning process, thereby making the process for learning the optimal consumption rule more challenging. We then allow for such a set-up : each consumer draws their own initial wealth X 0,i in {0, 1, 2}, so that initial endowments are heterogeneous. The rest of the baseline scenario remains unchanged. Our results are once again strongly robust to that change (see the last panel of Figure 13 in Appendix D).

Conclusions

Starting from a basic evolutionary algorithm, this paper progressively departs from the genetic metaphor, and derives a simple social learning model which might be referred to as a pyramiding tournament evolutionary algorithm after the concept of pyramiding search initiated by [START_REF] Hippel | Pyramiding: Efficient search for rare subjects[END_REF]. This model exhibits several appealing features. i)

It is especially frugal, as it involves only two free parameters, to which learning dynamics are little sensitive. ii) Its interpretation is relatively intuitive in terms of the intentional decision-making of intelligent agents, who try to adapt their behaviour in a complex dynamic environment of which they cannot see the whole picture. In that respect, specific attention is paid to the behavioural interpretation of the modelling assumptions, regarding evidence in psychology and social science. iii) It is easy to apply to a various range of learning objectives, as only the definition of the search space of strategies, whether discrete or continuous, is required. iv) It is parsimonious in terms of procedures and information requirements, thereby complying with the cognitive limitations implied by bounded rationality.

We apply this model to the optimal consumption rule of [START_REF] Allen | Individual learning about consumption[END_REF], and we come up with two main results. First, we obtain convergence within a limited number of periods (less than 200), which is a significant improvement regarding previous attempts in the literature. We demonstrate that the intuition set forward by [START_REF] Allen | Individual learning about consumption[END_REF] on the potential role of social learning in the coordination of consumers on this optimal rule was right. Second, we highlight the key features of an efficient way of dealing with the trade-off between exploration of the search space and exploitation of information, in order to obtain convergence towards optimal behaviour under learning. In that respect, we emphasize the social dimension of learning. We highlight the need to depart from the genetic metaphor when designing learning models, and to account for intentional and oriented decision-making, based on agents' relative performances. By contrast, learning performances are strongly hindered by exact imitation processes (copying), or global exploration mechanisms, which are usually assumed when using EAs to model agents' behaviour under bounded rationality.

However, even if the social learning model is able to coordinate agents on or, at least, close to the optimal consumption rule, agents are not endowed with an optimal behaviour rule beforehand, coordination takes time, so that agents are not capable of behaving optimally in the short-or medium-run. That would have been of minor importance if the economic environment were static and the optimum remained permanently unchanged, as is the case in the simple learning framework considered in this paper. In reality, new elements are constantly introduced into the environment, and optimal behaviour rules are modified as a consequence of these new elements, for example after a policy shock.

Whether social learning, or any learning model, could allow agents to optimally react in the face of such changes within a limited amount of time remains an open question. Our results provide no reason to think that this could be the case.

Nevertheless, our results suggest a promising way of modelling social learning and bounded rationality, which could be tested most interestingly in more complex environments. General equilibrium learning problems, in which the average choices and beliefs of agents in turn affect individual payoffs require reactive learning schemes. Designing learning models suited for such situations constitutes a challenging task for future research.

Another extension of this work concerns the implementation of the social learning model in laboratory experiments with real subjects, in order for it to be confronted and calibrated with observed human behaviour. This exercise may provide further justification for promoting this model as a convincing candidate for the formalization of H. Simon's concept of procedural rationality in order to represent agents' behaviour when departing from the rational and optimizing agent benchmark.

Notes

7 Another popular selection procedure is the roulette-wheel procedure, see inter alia [START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF], [START_REF] Arifovic | Genetic algorithms and inflationary economies[END_REF], [START_REF] Waltman | Economic modeling using evolutionary algorithms: the effect of a binary encoding of strategies[END_REF]. For the reasons we discuss here, we believe that tournament selection results in an easier behavioural interpretation.

8 See Suls & Wheeler (2000) for a general statement, see [START_REF] Huguet | Social comparison choices in the classroom further evidence for students' upward comparison tendency and its beneficial impact on performance[END_REF] for evidence of upward comparison and performance-enhancing effects among children in a classroom.

9 As we assume a single learning operator, we rule out global exploration, and set P mut = 0. 10 Exploration is bounded, so that strategies θ always remain within Ω during the whole simulation. 11 We assume a uniform draw but results are robust to different specifications, e.g. a draw in a normal distribution around the barycenter. The point is that we assume a random draw, and thus allow for exploration, beyond the sole exploitation of the mates' strategies.

12 This routine is similar in two ways to the one introduced in [START_REF] Dawid | Learning of equilibria by a population with minimal information[END_REF] in an evolutionary game theoretical framework: it prescribes a switching rule that is based on the satisficing principle and only on current pay-offs. However, we assume a less rudimentary response. Interestingly, despite the very simple nature of this rule and limited information about the game, the author shows that players are able to find a Nash equilibrium. As it will be clear from Section 5, we also find convergence dynamics thanks to the use of such a routine.

13 For a general statement of memory into EAs for dynamic optimization problems, see e.g. [START_REF] Franke | Memory enhanced evolutionary algorithms for changing optimization problems[END_REF] or [START_REF] Yang | Genetic Algorithms with Memory-and Elitism-Based Immigrants in Dynamic Environments[END_REF].

14 The Netlogo program is available on request, the code is also available in Java. 15 See, for example, [START_REF] Arifovic | Genetic algorithms and inflationary economies[END_REF], [START_REF] Bullard | A model of learning and emulation with artificial adaptive agents[END_REF], [START_REF] Arifovic | Social learning and monetary policy rules[END_REF] or [START_REF] Yıldızoğlu | Learning the optimal buffer -stock consumption rule of Carroll[END_REF].

16 A Student test at 5% leads us to strongly reject the null hypothesis that average distance of consumption to optimal value in period 200 is equal under EA3 and EA4, against the alternative that it is smaller under EA4 (p-value 1.285e -05).

17 [START_REF] Howitt | Adaptive Consumption Behavior[END_REF] attain negligible welfare losses after less than 100 periods, but the learning scheme they implement is much more sophisticated that those we set forward.

18 For instance, in [START_REF] Yıldızoğlu | Learning the optimal buffer -stock consumption rule of Carroll[END_REF], average distances to optimal consumption remain mainly above 0.06.

19 Figures 11 and 12 in Appendix C suggests the negative role of exploration in EA1 and EA2. 20 It can be interpreted as a situation where the tournament size equals the population size, i.e. m = n, and only the information of the fittest individual in the tournament is exploited through copy.

21 See also [START_REF] Salle | Modelling Social Learning in an Agent-Based New Keynesian Macroeconomic Model[END_REF] for an another discussion of harmful effects of imitation in a general equilibrium set-up.

A The pseudo-code of the computational model, inspired by [START_REF] Yıldızoğlu | Learning the optimal buffer -stock consumption rule of Carroll[END_REF] Initialization 1. Choose a learning model: EA1, EA2, EA3 or EA4.

2. Set parameter values.

3. Create n consumers, each consumer i ∈ {1, ..., n} is endowed with:

• a strategy θ i,0 = {γ i,0 , Xi,0 } ∈ Ω,

• the common initial cash-on-hand X i,0 ∈ {0, 1, 2}, ∀i.

• a tournament of m ∈ {2, ..., n -1} other consumers, indexed by j ∈ {1, ..., m}, with j = i.

4.

For each consumer i :

• compute the corresponding consumption C i,0 = min{X i,0 , 1 + γ i,0 (X i,0 -Xi,0 )},

• compute the corresponding utility u(C i,0 ),

• compute the remaining cash-on-hand X i,1 = X i,0 -C i,0 ≥ 0.

• save the corresponding statistics for the analysis (observer only ):

the optimal consumption level that would have been obtained if the optimal strategies θ * had been used: C * i,0 = min{X 0,i , 1 + γ * (X i,0 -X * )}, -the corresponding optimal utility u(C * i,0 ), -the corresponding remaining cash-on-hand X * i,1 = X i,0 -C * i,0 ≥ 0 -the distance between the observed levels and the optimal values Z -Z * for variables Z ≡ γ, X, C, X and u.

5. Compute all other aggregate statistics from individual ones (observer only ). Execution 6. For each period t ≤ T (T being the length of the simulation):

(a) For each consumer i:

• draw a new income Y i,t ∈ {0.7, 1, 1.3} with probability {0.2, 0.6, 0.2},

• update the cash-on-hand X i,t = X i,t-1 + Y i,t ≥ 0,

• compute the corresponding optimal flow X * i,t = X * i,t-1 + Y i,t ≥ 0 (observer only ). • update the tournament.

• update the strategy θ i,t-1 : i. with a probability P imit , take as the new strategy θ i,t the strategy of the fittest consumer in the population in period t -1, ii. with a probability P mut , randomly draw a new strategy θ i,t ∈ Ω, iii. with a probability P co under EA1 and EA2, or if consumer i is the less fit of the tournament (i.e. u(C i,t-1 ) < u(C j,t-1 ), j ∈ {1, ..., m}, with j = i) under EA3 and EA4, perform cross-over according to the chosen EA in Step 1 (Equation ([6]) under EA1, Equation ([7]) under EA2; EA3 and EA4). iv. otherwise, keep the strategy unchanged, i.e. θ i,t = θ i,t-1 .

• Execute Steps 4 and 5 using θ i,t and X i,t .

(b) Update all other aggregate statistics from individual ones (observer only ).

B Calibration of the model

[Table 1 about 
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  Box 3.1 : tournament selection (under EA1, EA2 and EA3) Initialization 1. Endow each consumer i with a pool of m ∈ {2, ..., n -1} other consumers, indexed by j ∈ {1, ..., m}, with j = i.Execution 2. For each period t ≤ T (T being the length of the simulation) and for each consumer i ∈ {1, ..., n}, implement cross-over with an exogenous probability P co (under EA1) or whenever consumer i is the less fit of the tournament, i.e. whenever u(C i,t ) ≤ u(C j,t ), j ∈ {1, ..., m}, with j = i (under EA2 and EA3) : (a) Sort the m consumers of the pool by decreasing utility. (b) Take the first two agents of the pool to become the two mates (indexed by k and l), (c) Compute the new strategy θ (through Equation ([6]) under EA1, or through Equation ([7]) under EA2 and EA3). (d) Renew the tournament: randomly draw m new consumers among the whole population of n -1 consumers.

(0. 6

 6 ± 0.2d, 1.5 ± 0.4d). The higher d, the wider the exploration area. For instance, that area is [0.55, 0.65] × [1.4, 1.6] if we set d = 0.25, and [0.4, 0.8] × [1.1, 1.9] if we set d = 1.

  each consumer i with a pool of m ∈ {2, ..., n -1} other consumers, indexed by j ∈ {1, ..., m}, with j = i. Execution 2. For each period t ≤ T , and for each consumer i ∈ {1, ..., n}:(a) Sort the m consumers by decreasing utility.(b) Consider one of the alternatives:

  These findings are illustrated in Figures 7-10 in Appendix C. A picture of one run under each EA is reported, with specific learning parameter values (we further document the role of parameters in Sub-section 5.2). The 200 yellow points represent the distribution of the 200 consumers over the strategy space Ω, and the red cross indicates the optimal strategy θ * . From the left to the right, pictures display that distribution respectively for the initial period t = 0, and for periods t = 50, t = 100, and at the final stage of the simulation t = 200. We clearly see the poor performances under EA1 and EA2, the lack of coordination under EA1 and the premature convergence under EA2. EA3 and EA4

  most convincing learning dynamics. The two learning parameters d and m may play an ambiguous role. Figures 4 and 5 display how these two parameters affect consumers' ability to move closer to the optimal rule in EA3 and EA4. Whatever the values of d, distances to optimal strategies are small compared with previous yet encouraging results in the literature 18 . Parameter d measures the exploratory strength of EA3 and EA4: the higher d, the wider the search space around the two mates (see Figure 2 and Equation ([7])). However, wide search spaces may hinder coordination between individuals 19 . It appears that moderate values of d, i.e. between 0.4 and 0.8, deliver the most successful convergence.

Figure 1 :Figure 2 :

 12 Figure 1: Discounted utility flow over 200 periods Utility flows are evaluated at 101 × 101 = 10, 201 points, which are uniformly distributed over ( X, γ) ∈ Ω = [1, 3] × [0, 1], and averaged among 1000 agents at each point (X 0 = 1).

Figure 3 :

 3 Figure 3: Average distances of X and γ values to optimal ones at the end of the simulations in the four EAs

Figure 4 :

 4 Figure 4: Average distances to optimal consumption at the end of simulations according to m and d values in EA3, 100 simulations per parameter configurationsbaseline scenario

Figure 5 :Figure 6 :

 56 Figure 5: Average distances to optimal consumption at the end of simulations according to m and d values in EA4, 100 simulations per parameter configurationsbaseline scenario

Figure 7 :

 7 Figure 7: Illustrative run of EA1 (P mut = 0.01, P co = 0.25, m = 10).

Figure 8 :

 8 Figure 8: Illustrative run of EA2 (d = 0.3, P co = 0.25, m = 10).

Figure 9 :

 9 Figure 9: Illustrative run of EA3 (d = 0.46, m = 10).

Figure 10 :

 10 Figure 10: Illustrative run of EA4 (d = 0.57, m = 10).

Figure 12 :

 12 Figure 11: Role of the learning parameters in EA1

  

}. The scale of the search area is proportional to the distance between the two mates (up to a scale factor d ∈]0, 1]) 10 .

A similar question arises in the case of optimal portfolio selection during life cycles, see[START_REF] Binswanger | Dynamic decision making with feasibility goals: A proceduralrationality approach[END_REF].

Other algorithms have also been contemplated, notably classifier systems (see[START_REF] Arthur | Designing Economic Agents that Act Like Human Agents: A Behavioral Approach to Bounded Rationality[END_REF] and artificial neural networks (see, for example,[START_REF] Salmon | Bounded Rationality and Learning: Procedural Learning, in 'Learning and rationality in economics[END_REF][START_REF] Yıldızoğlu | Connecting adaptive behaviour and expectations in models of innovation: The Potential Role of Artificial Neural Networks[END_REF]).

See also[START_REF] Waltman | Economic modeling using evolutionary algorithms: the effect of a binary encoding of strategies[END_REF] for a sensible discussion of the economic interpretation of evolutionary algorithm operators.

It is interesting to note that, in a closely related experimental setting,[START_REF] Brown | Learning and Visceral Temptation in Dynamic Saving Experiments[END_REF] demonstrate that social learning enhances human subject ability to converge towards optimal savings behaviour. The beneficial role of social learning in coordination has also been studied in evolutionary game theory, notably in the context of the choice between which technologies to use, see[START_REF] Ellison | Rules of Thumb for Social Learning[END_REF], 1995).

Precisely, the implied sacrifice ratio is very low, around 0.003.

See notably[START_REF] Bullard | A model of learning and emulation with artificial adaptive agents[END_REF] or[START_REF] Vriend | An illustration of the essential difference between individual and social learning, and its consequences for computational analyses[END_REF] for a use of tournament selection in social learning models.

Simulation protocol

We adapt the agent-based model of [START_REF] Yıldızoğlu | Learning the optimal buffer -stock consumption rule of Carroll[END_REF], whose pseudo-code is given in Appendix A 14 , to assess whether these four EAs may allow consumers to discover the optimal consumption rule of [START_REF] Allen | Individual learning about consumption[END_REF]. Table 1 in Appendix B provides a summary of the features of the four EAs and the calibration for the baseline scenario, as well as for the sensitivity analyses that we consider in Sub-section 5.3. We run the simulations for T = 200 periods. Values for learning parameters correspond to standard values in the literature 15 . We launch 100 simulations for each EA and each parameter configuration, and collect data every 10 periods.

5 Performances of social learning

Overview of the results

Figure 3 compares the average distances of X and γ values to optimal values at the end of the simulations (i.e. in t = 200) for the four EAs. Figure 6 in Appendix C provides the dynamics of those average distances over the whole period [0, 200], as well as the evolution of the variance of the strategies among consumers, in order to assess their coordination.

We clearly see that neither EA1 nor EA2 exhibits any learning dynamics, strategy values are fairly stable during the simulations. Under EA2, consumers coordinate their strategies (their variance sharply decreases over time), but distances to optimal values remain high. This observation indicates that the exploration operator leads to premature convergence under EA2. The global exploration mechanism avoids that pitfall under EA1, and preserves the diversity of strategies, but this is obtained at the expense of consumer coordination.

[Figure 3 about here.] By contrast, EA3 and EA4 allow strategies and the resulting consumption behaviour to move closer to their optimal values throughout time, which is an obvious sign of learning.