
HAL Id: hal-00989233
https://hal.science/hal-00989233

Preprint submitted on 9 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Social Learning about Consumption
Isabelle Salle, Pascal Seppecher

To cite this version:

Isabelle Salle, Pascal Seppecher. Social Learning about Consumption. 2013. �hal-00989233�

https://hal.science/hal-00989233
https://hal.archives-ouvertes.fr


SOCIAL LEARNING ABOUT CONSUMPTION

Documents de travail GREDEG 
GREDEG Working Papers Series

Isabelle Salle

Pascal Seppecher

GREDEG WP No. 2013-18
http://www.gredeg.cnrs.fr/working-papers.html

Les opinions exprimées dans la série des Documents de travail GREDEG sont celles des auteurs et ne relèlent pas nécessairement celles de 
l’institution. Les documents n’ont pas été soumis à un rapport formel et sont donc inclus dans cette série pour obtenir des commentaires et 

encourager la discussion. Les droits sur les documents appartiennent aux auteurs. 

The views expressed in the GREDEG Working Paper Series are those of the author(s) and do not necessarily relect those of the institution. The 
Working Papers have not undergone formal review and approval. Such papers are included in this series to elicit feedback and to encourage 
debate. Copyright belongs to the author(s). 

Groupe de REcherche en Droit, Economie, Gestion

UMR CNRS 7321



Social Learning about Consumption

Isabelle Salle∗ & Pascal Seppecher†

September 10, 2013

∗CeNDEF, Department of Economics - University of Amsterdam - Roetersstraat 11, NL-1018 WB
Amsterdam - The Netherlands & GREThA, UMR CNRS 5113 - University of Bordeaux - Avenue Léon
Duguit - 33608 Pessac - France; Corresponding author: isabelle.salle@u-bordeaux4.fr

†Groupe de Recherche en Droit, Economie, Gestion (GREDEG), UMR CNRS 7321 - University of
Nice Sophia Antipolis - France.

1

isabelle.salle@u-bordeaux4.fr


Abstract: This paper applies a social learning model to the optimal consumption rule of
Allen & Carroll (2001), and delivers convincing convergence dynamics towards the opti-
mal rule. These findings constitute a significant improvement regarding previous results
in the literature, both in terms of speed of convergence and parsimony of the learning
model. The learning model exhibits several appealing features: it is frugal, easy to apply
to a range of learning objectives, requires few procedures and little information. Par-
ticular care is given to behavioural interpretation of the modelling assumptions in light
of evidence from the fields of psychology and social science. Our results highlight the
need to depart from the genetic metaphor, and account for intentional decision-making,
based on agents’ relative performances. By contrast, we show that convergence is strongly
hindered by exact imitation processes, or random exploration mechanisms, which are usu-
ally assumed when modelling social learning behaviour. Our results suggest a method for
modelling bounded rationality, which could be tested most interestingly within the frame-
work of a wide range of economic models with adaptive dynamics.

Keywords: learning, bounded rationality, evolutionary algorithms, consumption rule.
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We are continually living a solution of

problems that reflection cannot hope

to solve.

Van den Berg (1955)

1 Introduction

The standard way to model how individuals deal with intertemporal decisions is to as-

sume that they use a dynamic stochastic optimization procedure, based on a complete

set of elements of information for the problem. Yet, empirical and experimental evidence

questions the plausibility of the framework of substantive – or unbounded – rationality,

and the corresponding optimization under constraints and rational expectation assump-

tions, especially concerning complex dynamic decisions under uncertainty (see, notably,

the extensive literature initiated by Kahneman and Tversky and their colleagues, and

Simon 1996, Chap. 3 and 4). A leading example is the theory of lifetime utility maxi-

mization under labour income uncertainty and liquidity constraints. Carroll (1997, 2001)

demonstrates that the solution to the optimal consumption problem implies that agents

follow a “buffer stock” rule: they target a level of cash-on-hand, and use it to smooth

their consumption path in face of unanticipated variations in their labour income. Even

if the computation of this optimal rule requires an astonishing amount of information

and mathematical ability, empirical findings suggest that consumers do exhibit similar

buffer-stock saving behaviour (see, for example, Deaton 1991, Carroll 1997). The ques-

tion that immediately arises is the following: how can individuals, in real life, come to

this optimal rule if we, quite realistically, hypothesise that they are not endowed with

extremely sophisticated mathematical skills and powerful computers?1

This question is often addressed by means of the Friedman (1953) “as if” postulate,

according to which agents are, of course, not involved in very demanding optimization

programs but, instead, could roughly learn the resulting optimal behaviour by a process

of trial and error. At first glance, this argument sounds plausible, all the more so that

Allen & Carroll (2001) prove that the exact optimal non-linear buffer-stock rule can be
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very efficiently approximated by a simple linear rule involving two parameters, whose

interpretation is straight-forward : the intercept stands for the target level of cash-on-

hand, and the slope for the speed at which consumers try to return to that target when

once they have moved away from it. This simplified form of the rule is thus a natural

candidate to serve as a benchmark situation to test learning models of intertemporal

choice under uncertainty.

However, attempts to test M. Friedman’s assumption within this particular framework

rule yield rather disappointing results, and the literature fails to construct convincing

learning processes to explain how agents come to make use of this rule. This suggests that

the theoretical question, whether boundedly rational agents can actually learn to behave

in a way predicted by models of unbounded rationality, is far from being completely

resolved.

Allen & Carroll (2001) find that individual agents would need an absurd amount of

iterations (roughly four million) to approximate this rule by a simple trial/error process.

The difficulty arises because today’s consumption choices have consequences on consump-

tion during later periods, so that the performance of a given rule is not immediately

observable. Palmer (2012) demonstrates that the number of iterations can be drastically

reduced if the problem is parallelized among agents. This mechanism still requires the

exhaustive exploration of a discrete space of strategies, and the issue of coordination is

not raised, as it is assumed that all agents adopt the optimal rule as soon as it has been

discovered by one of them. Two other contributions consider reinforcement learning, i.e. a

process which selects an action rule within a set of rules, with a probability that increases

with the relative past performance of this rule. Lettau & Uhlig (1999) use a classifier

system to discriminate between different consumption rules, including the optimal one,

and find a selection bias towards rules that yield the highest performances in periods with

high incomes. This bias arises because the selection mechanism is only based on past

performances of the strategies. Moreover, they consider a very simplified intertemporal

choice, by allowing agents to make only discrete and binary consumption choices. Howitt

& Özak (2009) provide more encouraging results, and show that consumers can quickly

discover the optimal rule, but only by adding a very sophisticated updating derivative-
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based mechanism, which involves, among other elements, the computation of marginal

utility. They further show that imitation strongly enhances the speed of convergence to-

wards the optimal rule, but again by using a very sophisticated local imitation process.

The most encouraging results can be found in Yıldızoğlu et al. (2012), in which agents

develop a mental model of their environment thanks to an artificial neural network, and

use it to form adaptive expectations. With this behaviour, agents are able to approximate

and even, under certain circumstances, converge towards the optimal consumption rule.

By contrast, they show that individual learning modelled through a genetic algorithm,

even augmented with an imitation process between consumers, yields unconvincing re-

sults. The main progress initiated by their framework is to offer explicit modelling of

adaptive expectations and forward-looking behaviour in a bounded rationality context.

However, their network involves many parameters (almost ten), and convergence is quite

long (around 1200 iterations).

This paper overcomes these two weak points by means of a parsimonious social learning

model, and delivers convincing convergence dynamics towards the optimal consumption

rule of Allen & Carroll (2001) within a limited amount of time. Modelling learning under

bounded rationality proves to be a very challenging task. While models of substantive

rationality appear to form a self-contained and unified framework, there is no consensus

about the way bounded rationality should be represented, and several attempts have been

developed. This paper is related to two strands of this literature.

The first strand applies evolutionary algorithms, initially developed to optimize non-

linear and sophisticated functions, to model adaptive behaviour, be it collective or indi-

vidual (see, for example, Sargent 1993, Arifovic 1995, Dawid & Hornik 1996, Arifovic

2000, Vallée & Yıldızoğlu 2009). Usually, this form of behaviour is inspired by genetic

algorithms (see, notably, Holland 1975, Goldberg 1989, Holland et al. 1989, Holland &

Miller 1991)2. One criticism that can be made of these algorithms is that they treat

agents as automata, while individuals make deliberate choices (Rubinstein 1998, p. 2).

As noticed by Waltman et al. (2011), little attention is usually paid to the economic

interpretation of these algorithms.
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Closer to the frontier with psychology, the second line of research also explores the

Simon (1955) concept of bounded rationality. In this strand of literature, agents tend to

simplify complex decision problems, and much human decision-making can be described by

simple algorithmic process models, called heuristics. These heuristics specify the cognitive

process that leads agents to a satisficing solution. They are depicted as fast, because they

require a low amount of information, and hence allow for quick decision making, and

frugal, because they involve but few parameters in the design of the process and, hence,

avoid overfitting issues in the case of small learning samples (Hoffrage & Reimer 2004).

Furthermore, their predictive power has been proved to be at least as good as that of

more sophisticated algorithms, such as standard statistical procedures (see Hutchinson

& Gigerenzer 2005 for a variety of examples). Accordingly, Gigerenzer & Selten (2001)

develop the concept of the “adaptive toolbox”, which is a repertoire of specific-purpose

heuristics designed to make decisions under uncertainty, by dispensing with optimization

and calculations of probabilities and utilities. Heuristics and bounded rationality are

not envisioned in the sense of Kahneman & Tversky (1996), that is as a rationale to

the observed systematic deviations from standard probability laws, nor as optimization

under constraints of time, knowledge or resources. Rather they are conceived as simple

procedures that “make us smart”, and allow us to make decisions with realistic mental

resources.

In line with the evolutionary learning literature, this paper starts by implementing

a basic tournament evolutionary algorithm (see e.g. Vriend 2000), and then proceeds

through a series of improvements. Simple heuristics are progressively introduced into

the learning model in order to depart from the genetic metaphor, and this paper culmi-

nates in a simple social learning model, which exhibits several appealing features. First,

its functioning appears to be intuitive, and its behavioural interpretation is made easy.

While our model is derived from an evolutionary algorithm, it models deliberate decision-

making in intelligent agents, and economic and behavioural interpretation is discussed

regarding evidence from experiments and observations in psychology and social science3.

Second, it is particularly frugal, and only involves two free parameters. Third, procedures

and information requirements are extremly limited. This model can thus be applied to a
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various range of problems, either static or dynamic, either in a discrete or in a continu-

ous search space, either in a one-dimensional or in a multi-dimensional set of strategies.

Furthermore, it is well in tune with Simon’s (1955) concept of bounded rationality.

Our main results can be summarized as follows. First, we obtain sound and particu-

larly stable consumption behaviour, without any unrealistic erratic fluctuations, and we

even obtain good convergence to the optimal consumption rule. Importantly, we overcome

one of the weaknesses of previous results within this framework, by drastically reducing

the time taken to converge to the optimal solution. This evidence suggests that the pro-

posed learning model does a very good job in describing the collective learning of agents

with realistic cognitive capacities, acting under bounded rationality, without being able

to see the whole picture of their environment. Second, we highlight the key features of

convergence towards optimal behaviour under learning. The tension between exploration

of the search space and exploitation of collected information is a major feature of choices

under uncertainty. In that respect, we emphasize the social dimension of learning, by

allowing for a collective approach of that tension4. We highlight the need to depart from

the genetic metaphor when designing learning models, and to account for intentional and

oriented decision-making, based on agents’ relative performances. By contrast, learning

performances are strongly hindered by exact imitation processes (“copycat operator”),

or global exploration mechanisms, which are usually assumed when using EAs to model

agents’ behaviour under bounded rationality. Furthermore, we find that increasing the

selectivity of agents’ relationships sharply improves their ability to learn what the optimal

solution is. In this light, we offer an answer to the question asked by Allen & Carroll (2001,

p. 13), and provide a proof of what they sense as being the “most plausible answer”: “the

most interesting question to be addressed in a future literature on social learning about

intertemporal choice is under what circumstances the population does and does not settle

on a reasonably good set of rules”.

The rest of the paper is organized as follows: Section 2 exposes the setting of Allen &

Carroll (2001) and the learning objective. In Section 3, we derive the social learning model

that we intend to test within this setting. Section 4 describes the simulation protocol,
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Section 5 reports the results, and Section 6 presents our conclusions.

2 The general set-up : the learning objective

We use the original intertemporal consumption problem of Allen & Carroll (2001) as a

framework.

The representative consumer solves the following maximization problem under liquid-

ity constraint:

max
{Cs}∞t

Et

[

∞
∑

s=t

βs−tu(Cs)

]

s.t. Xs+1 = Xs − Cs + Ys+1

Cs ≤ Xs ∀s

([1])

where the utility function is derived only from consumption C, and is CRRA, u(C) = C1−ρ

1−ρ

with ρ = 3. Xs is the total sum of resources available for consumption for period s.

The labour income Y follows a stochastic process, and takes the values 0.7, 1 and 1.3,

respectively with probability 0.2, 0.6 and 0.2, so that E(Y ) = 1. Consumers cannot

borrow but can save at a zero interest rate, and discount future utility at a rate β = 0.95.

In this framework, under mild conditions, Carroll (1997) shows that the optimal con-

sumption rule can be rewritten as :

C∗(Xt) = 1 + f
(

Xt − X̄∗
)

([2])

with f(.) a function with specific properties but no analytical expression and, more im-

portantly, X̄∗ ≥ 1 the target level of cash-on-hand. A first-order Taylor expansion of ([2])

around the point X = X̄∗ yields :

C∗(Xt) ≈ 1 + γ∗(Xt − X̄∗) ([3])

where γ∗ ≡ f ′(0). The approximation ([3]) delivers a complete plan of consumption that
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is only characterized by two parameter values, X̄∗ and γ∗.

If we define a strategy θ = (γ, X̄) over a two-dimensional set Ω, taking into account

the liquidity constraint, a consumption rule θ is given by:

Cθ(X) =











1 + γ(X − X̄) if 1 + γ(X − X̄) ≤ X,

X otherwise.
([4])

As underlined in the introduction, the two parameters in θ find a natural interpretation:

X̄ is a cash-on-hand target, and γ indicates the speed at which consumers return to

that target when away from it. Consequently, the rule ([4]) provides a good heuristic:

consumers have a target level for a buffer-stock of liquid assets X̄, that they use to smooth

consumption in face of an uncertain income stream. They consume less than the expected

income (E(Y ) = 1) if the buffer-stock falls below the target, and vice-versa, the degree of

adjustment depending on the coefficient γ.

In this setting, Allen & Carroll (2001) consider the complete set of strategies Ω =

[0.05, 1] × [1, 2.9], and demonstrate that the best approximation of the exact optimal

non-linear rule over Ω is5:

θ∗ = (γ∗, X̄∗) = (0.233, 1.243) ([5])

Figure 1 provides a 3-dimensional representation of the fitness landscape of this op-

timization problem. Starting with a given cash-on hand X0 ∈ {0, 1, 2}, Allen & Carroll

(2001) investigate whether consumers can discover this optimal strategy θ∗ through sys-

tematic and individual exploration of the strategy space Ω, but arrive at very disappoint-

ing conclusions: they identify the fact that a “reasonably good” consumption rule requires

a search time of roughly one million iterations. This therefore leads them to a discussion

of the potential role of social learning and of collective exploration of the space Ω:

If there were a mechanism by which all of that information could be effi-

ciently combined, the number of model periods required for finding the optimal

rule could surely be radically reduced. [...] A potential mechanism to accom-
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plish this purpose is “social learning”. [...] Even if the social learning process

is less than perfectly efficient it still seems plausible that it might lead a pop-

ulation of consumers to converge on the optimum relatively quickly. (Allen &

Carroll 2001, p. 13).

The aim of the next sections is to propose a simple social learning process, and to

demonstrate that their conjecture is right.

[Figure 1 about here.]

3 Modelling social learning

The trade-off between the exploitation of high-payoff strategies (that already have been

already discovered) and the exploration of the search space (looking for new actions that

may potentially improve utility) has been identified as a major feature of iterated choice

problems (Arthur 1991). Beginning with a standard Evolutionary Algorithm (hereafter,

EA), we proceed by successive improvements in how that trade-off is dealtwith, and end

up with a social learning model, that provides a formalization of Simon’s (1955) concept

of procedural rationality.

For each period, each consumer i, i ∈ {1, ...n}, is endowed with a single strategy θi, so

that the population of strategies always contains n elements. The fitness of any strategy

θ for any period t is given by the current utility u(Cθ
t ) of the consumers, who are using

the strategy θ in t. Moreover, strategies are not binary encoded; rather we use real-valued

numbers for γ and X̄ values. This method allows for a direct behavioural interpretation

of the learning model, while avoiding pitfalls associated with the use of elements for which

the economic interpretation is unclear (see Waltman et al. 2011 for a critical discussion

of this point).

3.1 EA1: a basic tournament EA with global exploration

EAs have been used as a collective approach to model the learning of interacting agents

under bounded rationality. In this case, the population of strategies evolves through two
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operators: social learning between individuals (crossover operator) and random experi-

menting by some agents (mutation operator) (Vallée & Yıldızoğlu 2009). EA1 corresponds

to a basic Tournament Evolutionary Algorithm (hereafter, TEA) with those two opera-

tors.

Cross-over is implemented using a deterministic tournament selection of size m < n,

which is summarized in Box 3.16. Each consumer i randomly draws a pool (the so-called

tournament) of m other consumers among the whole population of n consumers, observes

their current strategies and consumption levels, selects the two fittest consumers (say

consumers k and l, k, l 6= i) to be the two mates, and uses cross-over to combine their

strategies θk and θl to update their own strategy θi. We assume an average cross-over, i.e.

consumers simply adopt the barycenter of the two selected strategies (see, for instance,

Yıldızoğlu et al. 2012):

θk,t = (γk,t, X̄k,t) and θl,t = (γl,t, X̄l,t)

−→ θi,t+1 = (γi,t+1, X̄i,t+1) ≡

(

γk,t + γl,t

2
,
X̄k,t + X̄l,t

2

)

([6])

We further assume that cross-over occurs with a fixed probability Pco for each period t and

each consumer i. The cross-over operator captures the idea of exchanges of information

between agents (Arifovic 2000). This operator allows consumer i to exploit information

contained in strategies θk and θl: assuming that the strategies of the two mates perform

well, a combination of these two strategies is also likely to yield a high utility, or even

a better one. However, cross-over does not allow other strategies to be explored beyond

the convex set of existing strategies. For this reason, a global exploration operator is

also introduced, in order to ensure that all strategies may potentially be reached (the

so-called ergodicity property), see e.g. Waltman et al. (2011) for a comparable mutation

operator. With a fixed probability Pmut for each period, each consumer randomly draws

a new strategy θ ∈ Ω.

The choice of a tournament selection is justified in the light of evidence from social

science and psychology7. Bounded rationality involves cognitive limitations in processing
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information, as well as in social interactions and organisational capabilities. As stressed

by Simon (1962), limits exist to the number of people simultaneously involved in most

forms of social interaction. For this reason, in our set-up, agents are supposed to be

endowed with both bounded rationality, and what may be called “bounded sociability”.

This concept is translated into the choice of a fixed and small number m of agents in the

tournament, that each agent is assumed to be able to observe. Moreover, endowing agents

with a social “network” of this type provides an explanation for the information require-

ments of the cross-over, whose interpretation may appear problematic in population-based

models (see Fudenberg & Levine 1998).

This choice may also be justified from the perspective of experimental evidence in the

field of psychology. For example, Tversky & Shaar (1982) show that when an agent has

an arresting signal by which to discriminate between two options, he or she does not try

to extend the decisions set. In our framework, each consumer i objectively discriminates

on the basis of the relative observed utility of the members of their tournament, so that

we can assume that they do not feel the need to enlarge the pool of candidates. More

generally, social psychologists report that people imitate the actions of those who appear

to have expertise (see, e.g., Bikhchandani et al. 1998). This evidence illustrates why

agents select the fittest individuals in the tournament to update their strategies. This

is also fully in line with the concept of upward comparison developed in the field of

social psychology, according to which individuals tend to choose a comparison-target who

slightly outperforms them as a means of self-improvement8. It is interesting to note that

the tournament selection procedure is in line with findings in the field of behavioural

biology too. Janetos (1980) argues that female animals follow simple rules of thumb to

achieve good, but not optimal, matching, and select the best candidate male in a pre-set

number of N males, after a process of sequential assessment (the so-called “best-of-N ”

rule).

TEA is inspired by the analogy with genetic heredity and cross over, and with genetic

mutations. Exploration of the search space is purely stochastic, and can reach all points

of the set Ω with equal probability (uniform draw). This algorithm exhibits efficient
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exploratory properties, but also constantly introduces disturbances in the population of

strategies and, hence, may hinder coordination onto (or close to) the optimal solution.

Furthermore, a major difference between a learning process and a natural selection pro-

cess is that learning agents make intentional decisions and deliberate experimentation,

while natural mutations are purely random (see, for example, Penrose 1952 for such a

distinction). TEA is not able to fully account for such deliberate decision-making pro-

cesses. Consequently, an oriented search operator is now introduced into the TEA with a

twofold objective : allowing for local exploration, and modelling conscious behaviour in

intelligent consumers.

Box 3.1 : tournament selection (under EA1, EA2 and EA3)

Initialization

1. Endow each consumer i with a pool of m ∈ {2, ..., n− 1} other consumers, indexed by j ∈ {1, ...,m},
with j 6= i.

Execution

2. For each period t ≤ T (T being the length of the simulation) and for each consumer i ∈ {1, ..., n},
implement cross-over with an exogenous probability Pco (under EA1) or whenever consumer i is the
less fit of the tournament, i.e. whenever u(Ci,t) ≤ u(Cj,t), j ∈ {1, ...,m}, with j 6= i (under EA2 and
EA3) :

(a) Sort the m consumers of the pool by decreasing utility.

(b) Take the first two agents of the pool to become the two mates (indexed by k and l),

(c) Compute the new strategy θ (through Equation ([6]) under EA1, or through Equation ([7]) under
EA2 and EA3).

(d) Renew the tournament: randomly draw m new consumers among the whole population of n− 1
consumers.

3.2 EA2: searching in promising regions

The selection procedure of the two mates k and l remains unchanged, but EA2 brings

exploitation and exploration together into a single oriented search operator, which im-

plements a distance-proportionate exploration (we follow here Eshelman & Schaffer 1993,

Lux & Schornstein 2002)9. We assume that consumers explore the neighbourhood of

their two mates around the barycenter {γk+γl
2

, X̄k+X̄l

2
}. The scale of the search area is

proportional to the distance between the two mates (up to a scale factor d ∈]0, 1])10.
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The intuition behind that modelling assumption can be stated as follows. Assuming that

the two mates perform well, consumers explore the mates’ region because they assume

that this region is promising. The more distant the two mates, the greater the level of

uncertainty regarding the position of the optimal strategy in the search area. Conversely,

the closer the mates, the more promising the region, and the less incentive to move away

from it.

Formally, for each period, with a fixed probability Pco, each consumer i draws a new

strategy as follows :

θk,t = (γk,t, X̄k,t) and θl,t = (γl,t, X̄l,t) −→ θi,t+1 = (γi,t+1, X̄i,t+1) with

γi,t+1 →֒ U

(

γk + γl

2
− d | γk,t − γl,t |,

γk + γl

2
+ d | γk,t − γl,t |

)

and X̄i,t+1 →֒ U

(

X̄k + X̄l

2
− d | X̄k,t − X̄l,t |,

X̄k + X̄l

2
+ d | X̄k,t − X̄l,t |

)

([7])

where the nested case d = 0 corresponds to the averaging cross-over ([6]). The random

draw introduces noise in the learning operator, which plays the role of randomness during

the exploration process11.

Figure 2 illustrates that mechanism : consumers k and l, whose strategies are θk =

(γk, X̄k) = (0.7, 1.3) and θl = (γl, X̄l) = (0.5, 1.7), have been selected to be the two

mates. By implementing EA1, the new strategy would be the barycenter θ = (γ, X̄) =

(0.6, 1.5), see Equation ([6]). Under EA2, the consumer explores a uniform area around

the barycenter, the precise size of this area depending on the absolute distance between

the two mates k and l, and on the value of parameter d. The distance between k and l is

0.2 for strategy γ and 0.4 for strategy X̄, so that the new strategy θ is randomly drawn in

(0.6± 0.2d, 1.5± 0.4d). The higher d, the wider the exploration area. For instance, that

area is [0.55, 0.65]× [1.4, 1.6] if we set d = 0.25, and [0.4, 0.8]× [1.1, 1.9] if we set d = 1.

This modelling device clearly corresponds with the concept of selective trial and error,

which lies at the heart of Simon’s explanation of human problem solving: “ The trial and

error is not completely random or blind; it is, in fact, rather highly selective.” (Simon
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1962, p. 472). “Selectivity, based on rules of thumb or “heuristics”, tends to guide the

search into promising regions, so that solutions will generally be found after search of only

a tiny part of the total space.” (Simon (1978, p. 362)). This gives a strong rationale to the

design of learning processes based on EAs, but deliberately departing from the biological

analogy.

[Figure 2 about here.]

3.3 EA3: enhancing upward comparison

Under EA1 and EA2, the rate of occurrence of the learning operators is assumed to be

exogenously fixed (i.e. Pco and Pmut are set by the modeller). The rationale behind

this feature may be seen to be weak as soon as we intend to explicitly model deliberate

decision-making in intelligent agents. As already mentioned in Sub-section 3.1, psychology

and social sciences provide evidence of upward comparison among people concerned with

self-improvement. In our set-up, consumers aim at finding the optimal consumption rule,

in order to maximize their utility. We reinforce the upward comparison component of

EA2, by assuming that strategy changes are an endogenous decision, following a simple

routine. For each period, each consumer draws a new strategy as described in Equation

([7]) whenever he or she is the less fit person in their tournament. Otherwise, individuals

leave their strategy unchanged. In this case, the consumer acts according to the satisficing

principle, in the sense that they consider that they have met an acceptable utility threshold

and, consequently, retain their current strategy (see Simon 1976)12. The rest of the

algorithm is unchanged, most particularly the tournament procedure, as does the selection

of mates. We call this learning model EA3.

It should be underlined that this modification of the EA provides parsimony benefits,

by ruling out the exogenous parameter Pco. EA3 is very frugal: it involves only two

free parameters, i.e. the scale of the exploration area d and the tournament size m.

This algorithm is therefore able to address a recurrent criticism levelled against agent-

based models, which rightly points out that such models involve a high number of free

parameters, making calibration and sensitivity analyses a challenging task (see Judd 2006

15



for a discussion).

3.4 EA4: endowing agents with a social memory

The selection of the two mates appears as a crucial part of our learning schemes, be-

cause both information exploitation and exploration of the search space depend on the

two preselected candidates k and l. EA1, EA2 and EA3 all imply that the tournament

be randomly and entirely renewed for each period. The concept of bounded sociability

introduced in Subsection 3.1 would suggest that individuals could engage in some kind of

networking, and keep track of the members of their past tournaments. The learning pro-

cess could thus be augmented by memory13, as stressed by Simon (1962, p. 473): “various

paths are tried out, the consequences of following them are noted, and this information

is used to guide further research”. In our set-up, consumers are information carriers, in

the sense that they convey records on pairs of implemented consumption rules/resulting

utility. What is essential in the learning process is how this information flows among

individuals.

Von Hippel et al. (2009, p. 3) develops the idea of a pyramiding search in order to find

people with a rare attribute among a large population : “Pyramiding is a search process

based upon the idea that people with a strong interest in a topic tend to know people more

expert than themselves”. This search model provides an appealing organisational model

for the population of consumers, according to which consumers keep track of agents who

are fitter than they are, and rule out those who are less fit, in order to reinforce the

selectivity of the learning process.

For that reason, we now introduce a simple routine of tournament selection, mainly

based on the assumption that agents have a (limited) knowledge and memory of the other

consumers. The tournament is only partially renewed for each period, so that consumers

tend to memorize agents with a relatively high level of utility: only the less fit consumer

is removed from the tournament for each period, and randomly replaced by another, so

that the tournament size remains constant (see Box 3.4). This pyramidal organisation is

fully decentralized, as each consumer autonomously constitutes their own tournament in
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dynamic fashion, as it is updated for each period according to the relative fitness of each

consumer and the tournament members. The rest of the learning model EA3 remains

unchanged. We then obtain EA4, which we refer to as the pyramiding TEA.

This model exhibits three interesting features. i) It is clearly consistent with the

concept of bounded rationality and sociability, as information requirements are very lim-

ited: consumers only need to know the search space Ω, their current strategies and their

resulting utility, and they are assumed to be able to observe m other strategies and cor-

responding utilities. ii) It selects the best strategies in terms of utility among a subset of

the population, which tends to select the best ones among the whole population, through

a constant adaptation of that subset according to recorded fitness. iii) It is particularly

frugal: as underlined above, besides the number of consumers n, there are only two free

parameters, i.e. the size of exploration d and the tournament size m.

Box 3.4 : tournament selection under EA4

Initialization

1. Endow each consumer i with a pool of m ∈ {2, ..., n− 1} other consumers, indexed by j ∈ {1, ...,m},
with j 6= i.

Execution

2. For each period t ≤ T , and for each consumer i ∈ {1, ..., n}:

(a) Sort the m consumers by decreasing utility.

(b) Consider one of the alternatives:

i. Either consumer i is the less fit of the tournament, i.e. u(Ci,t) ≤ u(Cj,t), ∀j ∈ {1, ...,m},
with j 6= i, then implement the learning operator (see Equation [7]).

ii. Or there exists agents in the tournament with a lower utility than consumer i, i.e. ∃j ∈
{1, ...,m}, so that u(Cj,t) ≤ u(Ci,t), then:

A. Remove from the tournament the less fit agent, i.e. consumer j, for who u(Cj,t) ≤
u(Ck,t), k 6= j.

B. Randomly draw one new consumer among the n −m − 2 other consumers to obtain
m different consumers in the tournament.

We now assess whether these four EAs are able to deliver interesting learning dynamics

within the optimal consumption rule framework.
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4 Simulation protocol

We adapt the agent-based model of Yıldızoğlu et al. (2012), whose pseudo-code is given

in Appendix A14, to assess whether these four EAs may allow consumers to discover the

optimal consumption rule of Allen & Carroll (2001). Table 1 in Appendix B provides a

summary of the features of the four EAs and the calibration for the baseline scenario,

as well as for the sensitivity analyses that we consider in Sub-section 5.3. We run the

simulations for T = 200 periods. Values for learning parameters correspond to standard

values in the literature15. We launch 100 simulations for each EA and each parameter

configuration, and collect data every 10 periods.

5 Performances of social learning

5.1 Overview of the results

Figure 3 compares the average distances of X̄ and γ values to optimal values at the end

of the simulations (i.e. in t = 200) for the four EAs. Figure 6 in Appendix C provides the

dynamics of those average distances over the whole period [0, 200], as well as the evolution

of the variance of the strategies among consumers, in order to assess their coordination.

We clearly see that neither EA1 nor EA2 exhibits any learning dynamics, strategy

values are fairly stable during the simulations. Under EA2, consumers coordinate their

strategies (their variance sharply decreases over time), but distances to optimal values

remain high. This observation indicates that the exploration operator leads to premature

convergence under EA2. The global exploration mechanism avoids that pitfall under EA1,

and preserves the diversity of strategies, but this is obtained at the expense of consumer

coordination.

[Figure 3 about here.]

By contrast, EA3 and EA4 allow strategies and the resulting consumption behaviour to

move closer to their optimal values throughout time, which is an obvious sign of learning.
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The major difference between EA1 and EA2 on the one hand, and EA3 and EA4 on the

other hand, lies in the occurrence of the exploration operator: it is implemented with an

exogenous probability Pco in EA1 and EA2, while consumers activate it whenever they

are the less fit among their tournament in EA3 and EA4. This feature directly connects

the choice of strategy with the relative performances of the consumers, and appears as

the major improvement of the EA in order to obtain interesting learning dynamics.

EA4 displays the best convergence pattern: not only average consumption behaviour

moves closer to that obtained under the optimal rule16 but, when looking at the variance

of strategies among consumers, their coordination is particularly salient. It should be

underlined how quick convergence and coordination are, typically within the first 100 pe-

riods. This is an improvement considering previous results in the literature (see Yıldızoğlu

et al. 2012)17.

The key difference between EA3 and EA4 lies in the procedure for tournament renewal.

Consequently, our findings show that endowing agents with a dynamic social memory,

based on the model of pyramiding search, provides the means to coordinate consumer

behaviour with (or, at least more closely with) the optimal consumption rule. This device

efficiently balances selection pressure (which is increased under EA4 compared with EA3,

as less fit agents are ruled out from the pool of potential mates), and strategy diversity

(which is broadly the same under EA3 and EA4, as the learning operator is implemented

according through the same procedure).

These findings are illustrated in Figures 7-10 in Appendix C. A picture of one run

under each EA is reported, with specific learning parameter values (we further document

the role of parameters in Sub-section 5.2). The 200 yellow points represent the distribution

of the 200 consumers over the strategy space Ω, and the red cross indicates the optimal

strategy θ∗. From the left to the right, pictures display that distribution respectively for

the initial period t = 0, and for periods t = 50, t = 100, and at the final stage of the

simulation t = 200. We clearly see the poor performances under EA1 and EA2, the lack

of coordination under EA1 and the premature convergence under EA2. EA3 and EA4

exhibit much more satisfying learning dynamics, and EA4 obviously displays the best
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convergence between consumers over the four EAs.

5.2 The role of the learning parameters

We now analyse which features of the EAs are key to ensuring convergence towards the

optimal consumption rule, and we focus on EA3 and EA4, as these models exhibit the

most convincing learning dynamics. The two learning parameters d and m may play an

ambiguous role. Figures 4 and 5 display how these two parameters affect consumers’

ability to move closer to the optimal rule in EA3 and EA4. Whatever the values of d,

distances to optimal strategies are small compared with previous yet encouraging results

in the literature18.

Parameter d measures the exploratory strength of EA3 and EA4: the higher d, the

wider the search space around the two mates (see Figure 2 and Equation ([7])). How-

ever, wide search spaces may hinder coordination between individuals19. It appears that

moderate values of d, i.e. between 0.4 and 0.8, deliver the most successful convergence.

The tournament size m measures the selection pressure of the EAs: the larger m,

the stronger the selection pressure, so that agents with weak fitness are less likely to be

selected as mates, and a deeper exploitation of the information embedded in the consumer

population is made possible. On the other side, we should remember that in EA3 and

EA4 the learning operator is only implemented when the consumer performs less than

all other m consumers in their tournament (see Box 3.4). Consequently, the higher m,

the less frequent the exploration, and this effect may weaken the learning dynamics, and

hinder the learning process.

[Figure 4 about here.]

In EA3, small-sized tournaments allow for a better convergence towards the optimal

rule. This finding suggests that frequent exploration (corresponding to a low value of

m) is preferable to a stronger selection pressure (corresponding to a high value of m).

Figures 11 and 12 in Appendix C show a similar effect of m in EA1 and EA2. By

contrast, learning dynamics under EA4 are less sensitive to tournament size, because the
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renewal procedure of the tournament is more selective than it is in EA3. By ruling out

the less fit consumer for each period, the tournament gradually excludes consumers with

low utilities. These consumers do not manage to smooth out their consumption: even if

they may occasionally obtain a high utility in high-income periods, they face a significant

drop in their consumption and, hence, in their fitness as soon as they have to cope with a

decrease in their income. Even if exploration is less frequent (due to a high value of m),

it is based on mates with a better fitness than under EA3, because the tournament itself

is more selective. The pyramiding EA4 thus provides the additional appealing feature of

being less sensitive to parameter values.

5.3 Robustness checks

Finally, we perform robustness checks in the baseline scenario regarding changes in the

number of consumers n, the introduction of imitation through a probabilistic copying

process, and heterogeneous initial endowments among consumers. Results are reported

in Appendix D.

Changing the size of consumers population This paper emphasizes the importance

of social learning. We thus naturally ask whether decreasing or increasing the size of the

population may change our results. We find that learning performances are strongly robust

to changes in the number of agents: dynamics are fairly comparable with a population

of n = 100 or 400 consumers (see the first two panels of Figure 13 in Appendix D). This

result contrasts with the social learning mechanism implemented in Palmer (2012), in

which increasing the size of the population allows more rules to be evaluated in parallel

and mechanically decreases the time necessary for discovering the optimal rule.

Introduction of imitation Social learning is often modelled by implementing a “copy-

cat operator”, i.e. by allowing agents to copy the best strategy in the population with

some probability for each period (the so-called selection operator, see Waltman et al.

(2011) for a discussion in the social learning context). We therefore incorporate some

imitation in the four EAs, with a 0.15 probability for each period and each consumer. On
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one side, exact imitation may enhance learning dynamics, by allowing the best strategies

to spread among the population, and therefore increasing the selectivity of the search

process20. On the other side, it can potentially lead to a premature loss of diversity in the

existing strategies, by purely reproducing the best ones at a given period, to the expense

of others and, hence, may impede convergence towards the optimal rule.

Our results show that this second negative effect clearly dominates (see the third panel

of Figure 13 in Appendix D). Imitation strongly hinders learning dynamics in all four EAs,

probably because it leads to a premature convergence towards existing good-performing

strategies, instead of using those strategies to further explore the search space.

This negative result also echoes the disappointing conclusion of Yıldızoğlu et al. (2012)

as to the role of exact imitation within the same set-up : agents are heterogeneous re-

garding their income and wealth, so that sharing current rules corresponding to different

current situations does not make learning more efficient. This finding emphasises the

importance of heterogeneity for social learning efficiency, and should caution us against

the use of an imitation process when designing learning algorithms21.

Heterogeneous initial wealth Up until this point, we have considered that all con-

sumers start the simulation with the same initial endowment X0,i = 0, 1, or 2, ∀i. Palmer

(2012) suggests that considering heterogeneous initial wealth may hinder the social learn-

ing process, thereby making the process for learning the optimal consumption rule more

challenging. We then allow for such a set-up : each consumer draws their own initial

wealth X0,i in {0, 1, 2}, so that initial endowments are heterogeneous. The rest of the

baseline scenario remains unchanged. Our results are once again strongly robust to that

change (see the last panel of Figure 13 in Appendix D).

6 Conclusions

Starting from a basic evolutionary algorithm, this paper progressively departs from the

genetic metaphor, and derives a simple social learning model which might be referred to as

a pyramiding tournament evolutionary algorithm after the concept of pyramiding search
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initiated by Von Hippel et al. (2009). This model exhibits several appealing features. i)

It is especially frugal, as it involves only two free parameters, to which learning dynamics

are little sensitive. ii) Its interpretation is relatively intuitive in terms of the intentional

decision-making of intelligent agents, who try to adapt their behaviour in a complex

dynamic environment of which they cannot see the whole picture. In that respect, specific

attention is paid to the behavioural interpretation of the modelling assumptions, regarding

evidence in psychology and social science. iii) It is easy to apply to a various range

of learning objectives, as only the definition of the search space of strategies, whether

discrete or continuous, is required. iv) It is parsimonious in terms of procedures and

information requirements, thereby complying with the cognitive limitations implied by

bounded rationality.

We apply this model to the optimal consumption rule of Allen & Carroll (2001), and

we come up with two main results. First, we obtain convergence within a limited number

of periods (less than 200), which is a significant improvement regarding previous attempts

in the literature. We demonstrate that the intuition set forward by Allen & Carroll (2001)

on the potential role of social learning in the coordination of consumers on this optimal

rule was right. Second, we highlight the key features of an efficient way of dealing with

the trade-off between exploration of the search space and exploitation of information, in

order to obtain convergence towards optimal behaviour under learning. In that respect,

we emphasize the social dimension of learning. We highlight the need to depart from

the genetic metaphor when designing learning models, and to account for intentional and

oriented decision-making, based on agents’ relative performances. By contrast, learn-

ing performances are strongly hindered by exact imitation processes (copying), or global

exploration mechanisms, which are usually assumed when using EAs to model agents’

behaviour under bounded rationality.

However, even if the social learning model is able to coordinate agents on or, at least,

close to the optimal consumption rule, agents are not endowed with an optimal behaviour

rule beforehand, coordination takes time, so that agents are not capable of behaving

optimally in the short- or medium-run. That would have been of minor importance if the
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economic environment were static and the optimum remained permanently unchanged,

as is the case in the simple learning framework considered in this paper. In reality, new

elements are constantly introduced into the environment, and optimal behaviour rules

are modified as a consequence of these new elements, for example after a policy shock.

Whether social learning, or any learning model, could allow agents to optimally react in

the face of such changes within a limited amount of time remains an open question. Our

results provide no reason to think that this could be the case.

Nevertheless, our results suggest a promising way of modelling social learning and

bounded rationality, which could be tested most interestingly in more complex environ-

ments. General equilibrium learning problems, in which the average choices and beliefs of

agents in turn affect individual payoffs require reactive learning schemes. Designing learn-

ing models suited for such situations constitutes a challenging task for future research.

Another extension of this work concerns the implementation of the social learning

model in laboratory experiments with real subjects, in order for it to be confronted and

calibrated with observed human behaviour. This exercise may provide further justification

for promoting this model as a convincing candidate for the formalization of H. Simon’s

concept of procedural rationality in order to represent agents’ behaviour when departing

from the rational and optimizing agent benchmark.

Notes
1A similar question arises in the case of optimal portfolio selection during life cycles, see Binswanger

(2011).
2Other algorithms have also been contemplated, notably classifier systems (see Arthur 1991) and

artificial neural networks (see, for example, Salmon 1995, Yıldızoğlu 2001).
3See also Waltman et al. (2011) for a sensible discussion of the economic interpretation of evolutionary

algorithm operators.
4It is interesting to note that, in a closely related experimental setting, Brown & Camerer (2009)

demonstrate that social learning enhances human subject ability to converge towards optimal savings
behaviour. The beneficial role of social learning in coordination has also been studied in evolutionary
game theory, notably in the context of the choice between which technologies to use, see Ellison &
Fudenberg (1993, 1995).

5Precisely, the implied sacrifice ratio is very low, around 0.003.
6See notably Bullard & Duffy (1998) or Vriend (2000) for a use of tournament selection in social

learning models.
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7Another popular selection procedure is the roulette-wheel procedure, see inter alia Goldberg (1989),
Arifovic (1995), Waltman et al. (2011). For the reasons we discuss here, we believe that tournament
selection results in an easier behavioural interpretation.

8See Suls & Wheeler (2000) for a general statement, see Huguet et al. (2001) for evidence of upward
comparison and performance-enhancing effects among children in a classroom.

9As we assume a single learning operator, we rule out global exploration, and set Pmut = 0.
10Exploration is bounded, so that strategies θ always remain within Ω during the whole simulation.
11We assume a uniform draw but results are robust to different specifications, e.g. a draw in a normal

distribution around the barycenter. The point is that we assume a random draw, and thus allow for
exploration, beyond the sole exploitation of the mates’ strategies.

12This routine is similar in two ways to the one introduced in Dawid (1997) in an evolutionary game
theoretical framework: it prescribes a switching rule that is based on the satisficing principle and only on
current pay-offs. However, we assume a less rudimentary response. Interestingly, despite the very simple
nature of this rule and limited information about the game, the author shows that players are able to
find a Nash equilibrium. As it will be clear from Section 5, we also find convergence dynamics thanks to
the use of such a routine.

13For a general statement of memory into EAs for dynamic optimization problems, see e.g. Franke
(1999) or Yang (2008).

14The Netlogo program is available on request, the code is also available in Java.
15See, for example, Arifovic (1995), Bullard & Duffy (1998), Arifovic et al. (2011) or Yıldızoğlu et al.

(2012).
16A Student test at 5% leads us to strongly reject the null hypothesis that average distance of con-

sumption to optimal value in period 200 is equal under EA3 and EA4, against the alternative that it is
smaller under EA4 (p-value 1.285e− 05).

17Howitt & Özak (2009) attain negligible welfare losses after less than 100 periods, but the learning
scheme they implement is much more sophisticated that those we set forward.

18For instance, in Yıldızoğlu et al. (2012), average distances to optimal consumption remain mainly
above 0.06.

19Figures 11 and 12 in Appendix C suggests the negative role of exploration in EA1 and EA2.
20It can be interpreted as a situation where the tournament size equals the population size, i.e. m = n,

and only the information of the fittest individual in the tournament is exploited through copy.
21See also Salle et al. (2012) for an another discussion of harmful effects of imitation in a general

equilibrium set-up.

References

Allen, T. W. & Carroll, C. (2001), ‘Individual learning about consumption’, Macroeco-

nomic Dynamics 5, pp. 255 – 271.

Arifovic, J. (2000), ‘Evolutionary Algorithms in Macroeconomic Models’, Macroeconomic

Dynamics 4, 373–414.

Arifovic, Y. (1995), ‘Genetic algorithms and inflationary economies’, Journal of Monetary

Economics 36(1), pp. 219–243.

Arifovic, Y., Bullard, J. & Kostyshyna, O. (2011), ‘Social learning and monetary policy
rules’, The Economic Journal . forthcoming.

Arthur, W. B. (1991), ‘Designing Economic Agents that Act Like Human Agents: A
Behavioral Approach to Bounded Rationality’, American Economic Review 81(2), pp.
353–59.

25



Bikhchandani, S., Hirshleifer, D. & Welch, I. (1998), ‘Learning from the Behavior of Oth-
ers: Conformity, Fads, and Informational Cascades’, Journal of Economic Perspectives

12(3), 151–170.

Binswanger, J. (2011), ‘Dynamic decision making with feasibility goals: A procedural-
rationality approach’, Journal of Economic Behavior & Organization 78(3), pp. 219–
228.

Brown, A., C. Z. & Camerer, C. (2009), ‘Learning and Visceral Temptation in Dynamic
Saving Experiments’, Quarterly Journal of Economics 124(1), 197–223.

Bullard, J. & Duffy, J. (1998), ‘A model of learning and emulation with artificial adaptive
agents’, Journal of Economic Dynamics and Control 22(2), 179–207.

Carroll, C. (1997), ‘Buffer stock saving and the life cycle permanent income hypothesis’,
Quarterly Journal of Economics CXII(1), pp. 1–56.

Carroll, C. (2001), ‘A theory of the consumption function, with and without liquidity
constraints’, Journal of Economic Perspectives 15(3), pp. 23–46.

Dawid, H. (1997), ‘Learning of equilibria by a population with minimal information’,
Journal of Economic Behavior & Organization 32, 1–18.

Dawid, H. & Hornik, K. (1996), ‘The dynamics of genetic algorithms in interactive envi-
ronments’, Journal of Network and Computer Applications 19, 5–19.

Deaton, A. (1991), ‘Saving and liquidity constraints’, Econometrica 59(5), pp. 1221 –
1248.

Ellison, G. & Fudenberg, D. (1993), ‘Rules of Thumb for Social Learning’, Journal of

Political Economy 101(4), 612–643.

Ellison, G. & Fudenberg, D. (1995), ‘Word-of-Mouth Communication and Social Learning
’, The Quarterly Journal of Economics 110(1), 93–125.

Eshelman, L. & Schaffer, J. (1993), Real-Coded Genetic Algorithms and Interval-
Schemata, in ‘Foundations of Genetic Algorithms 2’, San Mateo: Morgan Kaufman.

Franke, J. (1999), Memory enhanced evolutionary algorithms for changing optimization
problems, in ‘Evolutionary Computation. proceedings of the 1999 Congress on’, Vol. 3.

Friedman, M. (1953), Essays in Positive Economics, University of Chicago Press.

Fudenberg, D. & Levine, D. (1998), Theory of Learning in Games, Cambridge, MA : MIT
Press.

Gigerenzer, G. & Selten, R. (2001), Bounded Rationality: The Adaptive Toolbox, the MIT
Press.

26



Goldberg, D. E. (1989), Genetic algorithms in search, optimization, and machine learning,
Addison-Wesley.

Hoffrage, U. & Reimer, T. (2004), ‘Models of Bounded Rationality: The Approach of Fast
and Frugal Heuristics’, The International Review of Management Studies 15(4), pp.
437–459.

Holland, J. (1975), Adaptation in natural and artificial systems: An introductory analy-

sis with applications to biology, control, and artificial intelligence, U Michigan Press,
Oxford, England.

Holland, J., Goldberg, D. & Booker, L. (1989), ‘Classifier Systems and Genetic Algorithms
’, Artificial Intelligence 40, pp. 235–289.

Holland, J. & Miller, J. (1991), ‘Artificial Adaptive Agents in Economic Theory’, AER

Papers and Proceedings 91(2), pp. 365–370.

Howitt, P. & Özak, O. (2009), Adaptive Consumption Behavior, NBER Working Papers
15427, National Bureau of Economic Research.

Huguet, P., Dumas, F., Monteil, J. M. & Genestoux, N. (2001), ‘Social comparison choices
in the classroom further evidence for students’ upward comparison tendency and its
beneficial impact on performance’, European Journal of Social Psychology 31, 557–578.

Hutchinson, J. M. & Gigerenzer, G. (2005), ‘Simple heuristics and rules of thumb: Where
psychologists and behavioural biologists might meet’, Behavioural Processes 69, pp.
97–124.

Janetos, A. C. (1980), ‘Strategies of female mate choice : a theoretical analysis’, Behavioral

Ecological Sociobiology 7, pp. 107–112.

Judd, K. (2006), Computationally Intensive Analyses in Economics, in L. Tesfatsion &
K. Judd, eds, ‘Handbook of Computational Economic, vol. 2’, North-Holland, chap-
ter 17, pp. 881–894.

Kahneman, D. & Tversky, A. (1996), ‘On the reality of cognitive illusions’, Psychological

Review 103, pp. 582–591.

Lettau, M. & Uhlig, H. (1999), ‘Rules of thumb versus dynamic programming’, The

American Economic Review 89(1), 148–174.

Lux, T. & Schornstein, S. (2002), Genetic learning as an explanation of stylized facts
of foreign exchange markets, Discussion Paper Series 1: Economic Studies 2002,29,
Deutsche Bundesbank, Research Centre.

Palmer, N. (2012), Learning to Consume: Individual versus Social Learning. mimeo,
George Mason University.

27



Penrose, E. T. (1952), ‘Biological Analogies in the Theory of the Firm’, American Eco-

nomic Review 42(5), pp. 804–809.

Rubinstein, A. (1998), Modeling Bounded Rationality, MIT Press.

Salle, I., Zumpe, M., Yıldızoğlu, M. & Sénégas, M.-A. (2012), Modelling Social Learning
in an Agent-Based New Keynesian Macroeconomic Model, Technical Report 2012-20,
Cahiers du GREThA, University of Bordeaux.

Salmon, M. (1995), Bounded Rationality and Learning: Procedural Learning, in ‘Learning
and rationality in economics’, Oxford : Basil Blackwell edn, Kirman, A. P. and Salmon,
M., chapter 8, pp. 236–275.

Sargent, T. (1993), Bounded Rationality in Macroeconomics, Oxford University Press.

Simon, H. (1955), ‘A behavioural model of rational choice’, Quarterly Journal of Eco-

nomics 69, pp. 99–118.

Simon, H. (1962), The architecture of complexity, in ‘Proceedings of the American Philo-
sophical Society’, Vol. 106, pp. 467–481.

Simon, H. (1976), From substantial to procedural rationality, in ‘Method and Appraisal
in Economics’, cambridge university press edn, S. J. Latsis, pp. 129–148.

Simon, H. (1978), Rational decision-making in business organizations. Nobel Memorial
Lecture.

Simon, H. A. (1996), The Sciences of the Artificial, third ed. edn, Cambridge, Mass. :
MIT Press.

Suls, J. & Wheeler, L., eds (2000), Handbook of social comparison: Theory and research,
the plenum series in social/clinical psychology edn, Kluwer Academic Publishers. Dor-
drecht, Netherlands.

Tversky, A. & Shaar, E. (1982), ‘Choice Under Conflict: The Dynamics of the Deferred
Decision’, Psychological Science 3, 358–361.

Vallée, T. & Yıldızoğlu, M. (2009), ‘Convergence in the finite Cournot oligopoly with social
and individual learning’, Journal of Economic Behavior & Organization 72(2), 670–690.

Van den Berg, J. (1955), The phenomenological approach to psychiatry: an introduction

to recent phenomenological psychopathology, Springfield, Ill.,Thomas.

Von Hippel, E., Franke, N. & Prügl, R. W. (2009), ‘Pyramiding: Efficient search for rare
subjects’, Research Policy 38(9), 1397–1406.

Vriend, N. (2000), ‘An illustration of the essential difference between individual and so-
cial learning, and its consequences for computational analyses’, Journal of Economic

Dynamics and Control 24, 1–19.

28



Waltman, L., van Eck, N. J., Dekker, R. & Kaymak, U. (2011), ‘Economic modeling
using evolutionary algorithms: the effect of a binary encoding of strategies’, Journal of

evolutionary economics 21, 737–756.

Yang, S. (2008), ‘Genetic Algorithms with Memory- and Elitism- Based Immigrants in
Dynamic Environments’, Evolutionary Computation 16(3), 385–416.

Yıldızoğlu, M. (2001), ‘Connecting adaptive behaviour and expectations in models of
innovation: The Potential Role of Artificial Neural Networks ’, European Journal of

Economic and Social Systems 15(3), 51–65.

Yıldızoğlu, M., Sénégas, M.-A., Salle, I. & Zumpe, M. (2012), ‘Learning the optimal buffer
- stock consumption rule of Carroll’, Macroeconomic Dynamics . forthcoming.

29



30



A The pseudo-code of the computational model, in-

spired by Yıldızoğlu et al. (2012)

Initialization

1. Choose a learning model: EA1, EA2, EA3 or EA4.

2. Set parameter values.

3. Create n consumers, each consumer i ∈ {1, ..., n} is endowed with:

• a strategy θi,0 = {γi,0, X̄i,0} ∈ Ω,

• the common initial cash-on-hand Xi,0 ∈ {0, 1, 2}, ∀i.

• a tournament of m ∈ {2, ..., n− 1} other consumers, indexed by j ∈ {1, ...,m}, with j 6= i.

4. For each consumer i :

• compute the corresponding consumption Ci,0 = min{Xi,0, 1 + γi,0(Xi,0 − X̄i,0)},

• compute the corresponding utility u(Ci,0),

• compute the remaining cash-on-hand Xi,1 = Xi,0 − Ci,0 ≥ 0.

• save the corresponding statistics for the analysis (observer only):

– the optimal consumption level that would have been obtained if the optimal strategies θ∗

had been used: C∗
i,0 = min{X0,i, 1 + γ∗(Xi,0 − X̄∗)},

– the corresponding optimal utility u(C∗
i,0),

– the corresponding remaining cash-on-hand X∗
i,1 = Xi,0 − C∗

i,0 ≥ 0

– the distance between the observed levels and the optimal values Z−Z∗ for variables Z ≡ γ,
X̄, C, X and u.

5. Compute all other aggregate statistics from individual ones (observer only).

Execution

6. For each period t ≤ T (T being the length of the simulation):

(a) For each consumer i:

• draw a new income Yi,t ∈ {0.7, 1, 1.3} with probability {0.2, 0.6, 0.2},

• update the cash-on-hand Xi,t = Xi,t−1 + Yi,t ≥ 0,

• compute the corresponding optimal flow X∗
i,t = X∗

i,t−1
+ Yi,t ≥ 0 (observer only).

• update the tournament.

• update the strategy θi,t−1:

i. with a probability Pimit, take as the new strategy θi,t the strategy of the fittest con-
sumer in the population in period t− 1,

ii. with a probability Pmut, randomly draw a new strategy θi,t ∈ Ω,

iii. with a probability Pco under EA1 and EA2, or if consumer i is the less fit of the
tournament (i.e. u(Ci,t−1) < u(Cj,t−1), j ∈ {1, ...,m}, with j 6= i) under EA3 and
EA4, perform cross-over according to the chosen EA in Step 1 (Equation ([6]) under
EA1, Equation ([7]) under EA2; EA3 and EA4).

iv. otherwise, keep the strategy unchanged, i.e. θi,t = θi,t−1.

• Execute Steps 4 and 5 using θi,t and Xi,t.

(b) Update all other aggregate statistics from individual ones (observer only).
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N.B. : observer only indicates the computation of indicators (either aggregate or individual ones)

that we require to perform the results analysis, but that consumers do not observe.
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B Calibration of the model

[Table 1 about here.]

C Further simulation results – baseline scenario

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

D Sensitivity analyses

[Figure 8 about here.]
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Figure 1: Discounted utility flow over 200 periods

Utility flows are evaluated at 101 × 101 = 10, 201 points, which are uniformly distributed over (X̄, γ) ∈

Ω = [1, 3]× [0, 1], and averaged among 1000 agents at each point (X0 = 1).
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Figure 2: Examples of local exploration in EA2, EA3 and EA4.
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Figure 7: Illustrative run of EA1 (Pmut = 0.01, Pco = 0.25, m = 10).

Figure 8: Illustrative run of EA2 (d = 0.3, Pco = 0.25, m = 10).

Figure 9: Illustrative run of EA3 (d = 0.46, m = 10).

Figure 10: Illustrative run of EA4 (d = 0.57, m = 10).
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