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Résumé
Le vote par approbation est une procédure de vote utili-
sée, entre autres, pour élire des comités et qui permet aux
votants de voter pour ("d’approuver"), le nombre de candi-
dats qu’ils souhaitent. Deux règles de vote ont été particu-
lièrement utilisées pour élire des comités à l’aide du vote
par approbation. La règle usuelle, appelée aussi minisum,
choisit l’ensemble des candidats (éventuellement soumis à
une contrainte de cardinalité) ayant été le plus approuvés
par les votants. La règle minimax élit un ensemble de can-
didats qui minimise le maximum, sur l’ensemble des vo-
tants, de la distance de Hamming à chaque vote.
Comme ces deux règles semblent trop extrêmes, nous les
généralisons en un ensemble continu de règles de vote, par
l’utilisation de l’opérateur de moyenne pondérée ordonnée
(ordered weighted averaging OWA). Cette règle est para-
métrée par un vecteur de poids, noté W, qui nous permet
de modéliser des procédures de votes entre minisum et mi-
nimax. Nous nous intéressons aux vecteurs de poids non-
décroissants, et en particulier aux vecteurs de la forme
W (i) = (0, .., 0, 1, .., 1), où i représente le nombre de 0.
Nous étudions la complexité de la détermination d’un co-
mité gagnant, et de l’ensemble des comités gagnants pour
des règles associées aux vecteurs W (i). Nous montrons
qu’il est difficile de trouver l’ensemble des comités ga-
gnants pour ces règles, sauf pour minisum avec un nombre
impair de votants pour laquelle cela est facile. Enfin, nous
prouvons la manipulabilité de ces règles quand elles sont
paramétrées par des vecteurs non-décroissants, et stricte-
ment croissants.

Mots Clef
Choix social computationnel, Vote d’approbation,
Moyenne pondérée ordonnée, Complexité, Manipulation.

Abstract
Approval voting is a well-known voting procedure used,
among others, for electing committees, where each vo-
ter casts a ballot consisting of a set of approved candi-
dates (without any cardinality constraint). Two prominent
rules for electing committees using approval voting are
the standard rule (also called minisum), which selects

the set of candidates (possibly subject to some cardina-
lity constraint) with the highest number of approvals, and
the minimax rule, where the set of elected candidates mini-
mizes the maximum, over all voters, of the Hamming dis-
tance to the voter’s ballot.
As these two rules are in some way too extreme, we ge-
neralize them into a continuum of rules, by using ordered
weighted averaging operators (OWA). The rule is parame-
terized by a weight vector W, which allows us to model
voting procedures between minisum and minimax. We fo-
cus on non-decreasing weight vectors, and in particular,
vectors of the form W(i)=(0,..,0,1,..,1), where i is the num-
ber of 0’s. We address the computational aspects of finding
a winning committee and all the winning committees for
rules associated with the W(i) vectors. We show that finding
a winning committee for these rules is NP-hard whereas it
is computationally easy for minisum. Finally, we address
the issue of manipulating the rules when parameterized by
non-decreasing and strictly increasing weight vectors.

Keywords
Computational social choice, Approval voting, Ordered
weighted averaging, Complexity, Manipulation.

1 Introduction
Approval voting is a well-known voting procedure used for
electing a single winner or a committee [2]. Voters cast ap-
proval ballots, which consist each of a set of approved can-
didates (without any cardinality constraint). An approval
ballot can be seen as a binary vector indicating the candi-
dates approved by a voter. Single-winner approval voting
elects the candidate with the highest number of approvals
(using some tie-breaking if necessary). As for multi-winner
approval voting, there are several different ways of finding
the winning committee, i.e., the winning set of candidates.

The most standard way consists in choosing the candidates
according to their approval scores : in the case where the
committee must be of sizeK, the candidates with theK hi-
ghest number of approvals are elected ; or, if the size of the
committee is not subject to any constraint, the candidates
approved by a majority of voters are elected.

As argued in [3], this rule can be unfair to some voters,



who may completely disagree with the elected committee.
To remedy this, they define minimax approval voting, that
selects a committee that minimizes the maximum, over all
voters, of the Hamming distance to the voter’s ballot, seen
as a binary vector. The minimax outcome tends to be more
widely acceptable than the minisum outcome, as it mini-
mizes the disagreement of the least satisfied voter. Repla-
cing max by sum in the definition of minimax approval vo-
ting (thus electing a committee that minimizes the sum of
the Hamming distances to the ballots) leads back to the
standard rule, that the authors rename minisum.

As these two rules (minimax and minisum) are in some
way too extreme, we generalize them into a continuum of
rules by using ordered weighted averaging (OWA). The
OWA operator is an aggregation operator parameterized
by a weight vector W , which enables us to model various
operators like maximum, minimum, or arithmetic average
[15, 16]. In OWA aggregation, the weights are associated
with ordered values of the input, and the aggregated score
corresponds to the ordered weighted sum.

We introduce multi-winner OWA approval rules, denoted
by AVW . A winning committee for AVW is a committee
minimizing the AVW score, which corresponds to the ag-
gregated score of OWA-W. We study a subset of AVW pa-
rameterized by non-decreasing weight vectors which can
model voting rules between minisum and minimax. First,
we focus on a simple family of non-decreasing weight vec-
tors W (i) = (0, . . . , 0, 1, . . . 1), where i represents the
number of 0’s, and present some properties verified by win-
ning committees. We address the computational aspects of
finding a winning committee and finding the co-winner set
for AVW (i). Furthermore, we give manipulation results on
AVW parameterized by non-decreasing and strictly increa-
sing weight vectors.

This work is related to at least three research streams. The
first of these is a series of works in social choice theory that
study multi-winner approval voting through the two solu-
tion concepts minisum and minimax, [4, 3, 14]. One can
find a review of the procedures that can be used for electing
committees using approval voting in [7]. More generally,
our paper relates to computational aspects of multi-winner
elections [13].

The second related stream is the study of ordered weighted
averaging, introduced in [15]. OWA has been studied in se-
veral domains, especially in multi-criteria decision making
and decision under uncertainty [17].

The third related research stream is a series of works that
study manipulation issues and strategic behaviour in multi-
winner elections [12]. The computational aspects of strate-
gic behavior in standard multiwinner approval voting have
been studied in [1]. The works [5, 10] both address the
computational aspects of minimax approval voting (see
Section 2 for more details) and study the conditions under
which an approximation of minimax is (or not) sensitive to

manipulation. It relates mainly to the section 5, where we
explore manipulation of AVW .

Minimax approval voting also relates to belief merging,
which aims at combining several pieces of information
coming from different sources [8]. More details on this
connection as well as on the computational aspects of
multi-winner elections can be found in [9].

The paper is organized as follows. In Section 2 we intro-
duce the necessary background on multi-winner approval
voting and ordered weighted averaging. In Section 3 we
give some properties on winning committees for AVW (i).
In Section 4 we present some computational results on
determining a winning committee for AVW (i). Section 5
addresses manipulation issues for AVW parameterized by
non-decreasing vectors. In Section 6 we present further re-
search directions.

2 Preliminaries
We are given an election E with m candidates X =
{x1, . . . , xm} and n voters N = {1, . . . , n}. The approval
ballot of a voter i is a subset of X, represented by a binary
vector v ∈ {0, 1}m, where the jth bit of v is 1 if the voter i
approves the candidate j, 0 otherwise. An approval profile
P = (Pi)i∈N is a collection of approval ballots. For a m-
vector v, we denote by vi, the ith coordinate of the vector v,
i = 1, . . . ,m. For two binary vectors v, v′ ∈ {0, 1}m , we
denote by H(v, v′) their Hamming distance, i.e. the num-
bers of bits on which they differ. Given a binary vector
c ∈ {0, 1}m, called a committee, and an approval profile
P , the vector H(c, P ) = (H(c, Pi))i∈N denotes the vector
of Hamming distances between c and each ballot of P . The
approval score of a candidate x, denoted by app(x), is the
number of voters who approve x.

In multi-winner approval voting, the goal is to elect a co-
mittee, that is, a subset of X . Sometimes the size of the
committee is fixed to some integer value K ; sometimes it
is not fixed and any committee is feasible (see [3]).

The minisum rule consists in electing a commit-
tee that minimizes the sum of the Hamming dis-
tances to the ballots. Formally, c∗ ∈ {0, 1}m is
a winning committee for minisum if and only if∑

i∈N H(c∗, Pi) = minc∈{0,1}m
∑

i∈N H(c, Pi). A
majority voting committee is a committee containing all
the candidates approved by strictly more than n/2 voters,
and no candidates approved by strictly less than n/2
voters. It is known that a winning committee for minisum
is equivalent to a majority voting committee [3]. Thus,
given an approval profile P , a winning committee for
minisum can be easily computed.

The minimax rule elects a committee that minimizes the
maximum of its Hamming distances to the ballots, i.e.
c∗ is a winning committee for minimax if and only if
maxi∈N H(c∗, Pi) = minc∈{0,1}m{maxi∈N H(c, Pi)}.



Given an approval profile P , finding a winning committee
for minimax is NP-hard, since it is equivalent to the closest
string problem in coding theory [6, 11].

The following example illustrates these two rules :

Example Consider an election E, with 6 voters
{1, 2, 3, 4, 5, 6}, and 4 candidates {x1, x2, x3, x4},
and the following profile P :

P1 (0110)
P2 (0100)
P3 (0101)
P4 (0011)
P5 (1001)
P6 (0001)

Figure 1 shows the Hamming distance, the minisum score
and the minimax score for some committees. One can ve-
rify that the committees that are not mentioned are not win-
ning committees for neither minisum nor minimax. The

H(c, i) 1 2 3 4 5 6 sum max
c1 = 0000 2 1 2 2 2 1 10 2
c2 = 0001 3 2 1 1 1 0 8 3
c3 = 0101 2 1 0 2 2 1 8 2

FIGURE 1 – Minisum and minimax scores

winning committees for minisum are c2 and c3, whereas
they are c1 and c3 for minimax.

We generalize minisum and minimax into a continuum
of rules by using ordered weighted averaging (OWA) for
multi-winner approval voting. Given a vector H , we can
order its coordinates in a non-decreasing way and the or-
dered vector will be denoted by H↑. OWA is a family of
functions, OW : Rn 7→ R, parameterized by a vector W
of size n. It maps a n-vector of scores H to an agregated
score, called OWA score :H 7→ OW (H) = W×H↑. Note
that the definition of OWA differs from the original intro-
duced in [15] in two respects : we use an opposite ordering
of vectors H , and we do not require any normalization of
weights.

We now introduce multi-winner OWA approval rules,
denoted by AVW . A committee c is a winning co-
mittee for AVW if and only if OW (H(c, P )) =
minc∈{0,1}m{OW (H(c, P ))}. We call co-winner set the
set of all winning committees for an approval profile P .
The following example illustrates OWA approval rules :

Example Consider the election of the previous example.
Figure 2 shows the AVW score for some committees.
Thus, if we take W = (1, 2, 3, 4, 5, 6), the scores of c1, c2
and c3 are respectively 39, 37 and 35 ; we can check that
there is no better committee and that the winning commit-
tee is c3. If we take W = (0, 0, 0, 1, 1, 1), then the scores

c W ×H↑(c, P )
c1 1 ·W1 + 1 ·W2 + 2 ·W3 + 2 ·W4 + 2 ·W5 + 2 ·W6

c2 0 ·W1 + 1 ·W2 + 1 ·W3 + 1 ·W4 + 2 ·W5 + 3 ·W6

c3 0 ·W1 + 1 ·W2 + 1 ·W3 + 2 ·W4 + 2 ·W5 + 2 ·W6

FIGURE 2 – Minisum and minimax scores

of c1, c2 and c3 are respectively 6,6,6 and c1, c2 and c3 are
all winning committees. If we take W = (0, 0, 1, 1, 1, 1),
then the scores of c1, c2 and c3 are respectively 8,7,7 ; c2
and c3 are all winning committees.

For fairness issues, we will focus on non-decreasing weight
vectors W , which give more weight to more unsatisfied
voters than to more satisfied voters. A vector W is non-
decreasing (respectively, strictly increasing) ifWi ≤Wi+1

(resp. Wi < Wi+1), for all i = 1, . . . , n − 1. AVW pa-
rameterized by non-decreasing vectors allows us to mo-
del a range of voting rules between minisum and mini-
max, which can be represented respectively by the vec-
tors W = (1, . . . , 1) and W = (0, . . . , 0, 1). An inter-
esting family of vectors is the family W (i) defined by
W (i) = (0, . . . , 0, 1, . . . , 1), where i is the number of 0’s,
for i = 0, . . . , n − 1 ; this family ranges from minisum
approval voting (corresponding to W (0)) to minimax ap-
proval voting (corresponding to W (n− 1)).

3 Winning committees for AVW (i)

In this section, we focus on non-decreasing weight vectors
W (i) = (0, . . . , 0, 1, . . . , 1), where i is the number of 0’s,
in order to explore properties verified by winning commit-
tees.
First, we give simple sufficient conditions for a specific
candidate to be a member of all winning committees, or
not to be a member of any winning committee.

Proposition 3.1 For AVW (i), i ∈ N , every candidate ap-
proved by at least (n + i + 1)/2 voters is included in all
winning committees.

Proof Consider an election E and an AVW (i) rule. Sup-
pose there exists a candidate x approved by at least (n +
i + 1)/2 voters, such that x is not included in a winning
committee c. Then, the approval score of x verifies the fol-
lowing inequations :

app(x) ≥ (n+ i+ 1)/2

2× app(x)− n ≥ i+ 1

app(x)− (n− app(x)) ≥ i+ 1 (1)

Now we study the AVW (i) score of the committee c′ =
c ∪ {x}. Compared to c, there are app(x) voters who have
their Hamming distance reduced by 1, and (n − app(x))
voters who have their Hamming distance increased by 1.
Since we consider the weight vector W (i), it follows from
inequality 1 that the AVW (i) score of c′ is strictly less than
the AVW (i) score of c, a contradiction.



With a similar argument to the proof of Proposition 3.1 we
can prove the following proposition.

Proposition 3.2 For AVW (i), i ∈ N , every candidate ap-
proved by less than (n − (i + 1))/2 voters is not included
in any winning committee.

Notice that Propositions 3.1 and 3.2 generalize the result
stating that each majority voting committee is a winning
committee for minisum [3]. These two propositions enable
us to establish the following links between minisum and
AVW (1) and between AVW (n−2) and minimax.

Proposition 3.3 There always exists a committee c such
that c is a winning committee for both minisum and
AVW (1).

Proof We distinguish two cases.
First consider an election E with an odd number of voters.
Then we build the following winning committee c for the
AVW (1) rule :
– Candidates that are approved by more than (n + 3)/2

voters are in c. (prop. 3.1)
– Candidates that are approved by less than (n − 3))/2

voters are in not c. (prop. 3.2)
– Candidates that are approved by exactly (n+1)/2 voters

are in c. Clearly, since we consider AVW (1), removing
such candidates from the committee will not decrease
its score.

– Candidates that are approved by exactly (n−1)/2 voters
are not in c. Clearly, since we consider AVW (1), adding
such candidates to the committee will not decrease its
score.

Furthermore, c is clearly a majority voting committee,
hence c is a winning committee for minisum.
Now consider an electionE with an even number of voters.
Let c be a winning committee for AVW (1). Then it follows
from Proposition 3.1 and 3.2 that :
– Candidates that are approved by more than (n + 2)/2

voters are in c.
– Candidates that are approved by less than (n− 2)/2 vo-

ters are in not c
Thus, by definition, the committee c is a majority voting
committee, so c is also a winning committee for minisum.

However, the result of Proposition 3.3 cannot be genera-
lized to AVW (1) and AVW (2), as the following example
(found by a computer program) shows.

Example Consider an electionE with 7 voters {1, . . . , 7},
5 candidates {x1, . . . , x5} and an approval profile defined
by :

P1 (01111)
P2 (01111)
P3 (01110)
P4 (11111)
P5 10000)
P6 (10000)
P7 (01011)

There is unique winning committee for AVW (1) which
is (01111), and a unique winning committee for AVW (2)

which is (11010).

Notice that we were not able to find an example forAVW (1)

and AVW (2) when there is an even number of voters.
Thus it remains open if the property holds for AVW (1)

and AVW (2) and an even number of voters. Also, we
conjecture that the counterexample generalizes to any pair
(i, i + 1) for 2 ≤ i ≤ n − 3, that is, that for all i such
that 2 ≤ i ≤ n − 3, there exists a profile P such that
AVW (i)(P ) ∩ AVW (i+1)(P ) = ∅. On the other hand, for
i = n− 2 we get a positive result again :

Proposition 3.4 There always exists a committee c such
that c is a winning committee for both AVW (n−1), that is
to say minimax, and AVW (n−2).

Proof Let E be an election with n voters and m candi-
dates. Let c be a winning committee for minimax. Also,
let c′ be a winning committee for AVW (n−2) which maxi-
mizes the (n− 1)th coordinate of the ordered vector of the
Hamming distances.
We claim that c′ is a winning committee for minimax or
c is a winning committee for AVW (n−2). Indeed, suppose
that c′ is not a winning committee for minimax and c is
not a winning committee for AVW (n−2). The fact that c′

is not a winning committee for minimax implies that the
AVW (n−1) score of c′ is strictly larger than the AVW (n−1)
score of c :

OW (n−1)(H(c′, P )) > OW (n−1)(H(c, P ))

H↑(c′, P )n ≥ H↑(c, P )n + 1 (2)

Also, the fact that c′ is not a winning committee for
AVW (n−2) implies that the AVW (n−2) score of c is strictly
larger than the AVW (n−2) score of c′ :

OW (n−2)(H(c, P )) > OW (n−2)(H(c′, P ))
n∑

j=n−1
H↑(c, P )j ≥

n∑
j=n−1

H↑(c′, P )j + 1 (3)

From (2) and (3) we obtain :

H↑(c′, P )n−1 + 2 ≤ H↑(c, P )n−1,

Therefore, we have :

H↑(c′, P )n−1 + 2 ≤ H↑(c, P )n,

This, together with (2), implies that :

H↑(c′, P )n−1 + 2 ≤ H↑(c′, P )n − 1,

H↑(c′, P )n−1 + 3 ≤ H↑(c′, P )n (4)

Inequality 4 implies that there exists at least one candidate
x such that the voter corresponding to the (n− 1)th largest



Hamming distance agrees with c′ and the voter correspon-
ding to the nth largest Hamming distance disagrees with c′

on x.
First assume that x is a member of c′. Now if we consi-
der the committee d = c′\{x}, then H↑(d, P )n−1 in-
creases by one, andH↑(d, P )n decreases by one compared
to c′. So, d is also a winning committee for AVW (n−2), but
H↑(d, P )n−1 > H↑(c′, P )n−1 which contradicts the defi-
nition of c′.
With the same argument, assuming that x is a not member
of c′ contradicts the definition of c′.

4 Computational aspects
What we know about the complexity of computing winning
committees for AVW is that (a) finding a winning commit-
tee for minisum approval voting is polynomial, and it is
also easy to give a simple polynomial characterization of
all winning committees ; (b) finding a winning committee
for minimax approval voting is NP-hard. Our conjecture
is that finding a winning committee for AVW is hard for
“most” vectors W . We start by showing that, at least un-
der the restriction to an odd number of voters, minisum is
not the only AVW committee election rule for which win-
ner determination is polynomial : indeed, when the number
of voters is odd, finding a winning committee is easy for
AVW (1).

Proposition 4.1 When n is odd, finding a winning commit-
tee for AVW (1) is polynomial time solvable.

Proof Consider an election E, with an odd number of vo-
ters n, and the following committee c = {x ∈ X , such
that app(x) ≥ (n + 1)/2 }. As we have already shown in
the proof of Proposition 3.3, c is a winning committee for
AVW (1).

The positive result of Proposition 4.1 could let us think that
finding a winning committee is easy forAVW (1) in general.
But the proof of Proposition 4.1 is based on a case study
that cannot be used when there is an even number of vo-
ters. Indeed in that case, there are candidates with exactly
n/2 votes, who could have either a positive or a negative
effect on the score of a committee. Thus the complexity of
finding a winning committee for AVW (1) remains an open
question (and we do not have any conjecture about it). The
complexity of finding a winning committee forAVW (k) for
any k ≥ 2 is also open ; we conjecture it is NP-hard. But
so far, the only NP-hardness we have is for values of k that
are very close to n :

Proposition 4.2 For any fixed i, finding a winning commit-
tee for AVW (n−i) is NP-hard.

Proof Our proof is based on a reduction from winner de-
termination in minimax approval voting. Consider an elec-
tion E′ for minimax approval voting, E′ = (X ′, N ′, P ′)

with |X ′| = m′, |N ′| = n′. We construct an election E for
AVW (n−i) withX = X ′,N = i×N ′ and P = i×P ′ mea-
ning that we create i copies of each voter of N ′. We claim
that a winning committee for E is winning committee for
E′ and vice-versa. To prove this claim, it is sufficient to
show that the AVW (n−i) score of a committee c in E is
i times its minimax score in E′. Clearly for each voter in
N ′ with a Hamming distance h, there exist i voters in N
having the same Hamming distance h.

We may wonder about the complexity of outputting all
winning committees for AVW (i). We start by remarking
that clearly, for minisum with an even number of voters, the
size of the co-winner set can be exponential in the number
of candidates (consider an election where all the candidates
are approved by half of the voters ; then all the commit-
tees are winning committees). On the other hand, with an
odd number of voters, there are no candidates approved by
exactly half of voters, hence there is exactly one winning
committee. We may wonder whether this last result extends
to AVW (i) for i ≥ 1 ; actually, it does not :

Proposition 4.3 There exists a collection of elections such
that the size of the co-winner set for any i ≥ 1, AVW (i)

is exponential in the number of candidates, even when n is
odd.

Proof We study an infinite family of elections
(En×m)n,m∈N , with an even number of voters, such
that for each of its elements, the size of the co-winner set
for any AVW (i) is in Θ(2m). Consider the infinite family
of elections (En×m)n,m∈N = (X,N,P ), where P is the
approval profile defined as follows : n/2 voters approve
all the candidates, and the other n/2 voters approve no
candidates.
Remark that, by construction of such an election, the
ordered vector of Hamming distances, H↑(c, P ), of
any committee c to the profile P verifies : H↑(c, P ) =
(αc, . . . , αc, βc, . . . , βc), with αc, βc ∈ N, n/2 occur-
rences of each αc and βc, αc ≤ βc and αc + βc = m.
Now, consider an election en×m of this family, a vector
W (i), i = 1 . . . n − 1, and a committee c. We distinguish
two cases :
– if i ≥ n/2, then

OW (i)(H(c, P )) = (n− i)× βc

– if i < n/2, then

OW (i)(H(c, P )) = n/2× βc + (n/2− i)× αc

= n/2× (βc + αc)− i× (m− βc)
= n/2×m− i×m+ i× βc
= (n/2− i)m+ i× βc

With these two results we see that finding the minimum
of OW (i)(H(c, P )) is equivalent to minimizing the the va-
lue of βc. The committees that have a minimal value of βc



are the committees with m/2 candidates if m is even, and
bm/2c or bm/2c + 1 if m is odd. Thus, there are 2m/2 of
such committees.
With the same argument, we can construct a similar fa-
mily of elections (En×m)n,m∈N = (X,V, P ), with an odd
number of voters, such that for each of its element, the size
of the co-winner set for an AVW (i) is in Θ(2m), for i ≥ 1.

What this result does not say is whether we can find a
simple, succinct characterization of all winning commit-
tees, as it is the case for minisum (recall that for minisum,
the winning committees are all subsets of candidates that
contain all candidates approved by a strict majority of vo-
ters and do not contain any candidate disapproved by a
strict majority of voters). This question is left for further
research.

5 Manipulability
In this section, we study the manipulability of the AVW
rules. Before starting, note that so far we consider theAVW
rules as nondeterministic rules, that is, mapping profiles
into sets of winning committees. In this section, we consi-
der deterministic rules (because studying the manipulabi-
lity of nondeterministic rules requires much more back-
ground and definitions, that we do not have the space to
expose here). A deterministic multi-winner OWA-approval
rule is obtained as the composition of a nondeterministic
AVW rule and a tie-breaking mechanism ; the obtained de-
terministic rule is denoted by AV R

W . As we do not want
to sacrifice anonymity, a tie-breaking mechanism is a prio-
rity relation R over all possible committees 1 ; thus, in case
there is more than one committee with a minimal score, the
output of a deterministic rule AV R

W will be the most prio-
ritary committee (according to R) among the committees
with minimal score.
We now discuss the manipulability of deterministic AVW
rules. A (deterministic) voting rule is said to be manipu-
lable if a voter (or a group of voters) can change the result
of the election in his/her favor by not expressing his/her
true preferences. So far, we know that minimax approval
voting is manipulable and that minisum approval voting is
not [3]. How does this extend to AVW rules in general ?
We focus here in non-decreasing vectors (for reasons ex-
plained above) and we wonder whether minisum is in fact
the only nonmanipulable rule of the family of AVW rules
with nondecreasing W . The following result gives an ans-
wer.

Proposition 5.1 The AVW rule is manipulable for any
non-decreasing vector W such that W1 < Wn.

1. For instance, a tie-breaking rule could consist in choosing among
the co-winning committees, the committee that contains the first candidate
in a lexicographic order. If there are several such co-winning committees,
then we choose among them the committee that contains the second can-
didate in a lexicographic order, and so on, until, there is a unique winning
committee.

Proof Consider an election E, with 4 voters {1, 2, 3, 4},
and 4 candidates {x1, x2, x3, x4}, and the following profile
P :

P1 : (0100);P2 : (0101);P3 : (0110);P4 : (0111)

Figure 3 shows the Hamming distance vectors for some
committees. One can easily verify that committees that
are not mentioned have AVW scores larger than the AVW
scores of co-winning committees. The AVW scores of

c W ×H↑(c, P )
0100 0 ·W1 + 1 ·W2 + 1 ·W3 + 2 ·W4

0101 0 ·W1 + 1 ·W2 + 1 ·W3 + 2 ·W4

0110 0 ·W1 + 1 ·W2 + 1 ·W3 + 2 ·W4

0111 0 ·W1 + 1 ·W2 + 1 ·W3 + 2 ·W4

FIGURE 3 – AVW scores with true preferences

these committees are equal and minimal, so there are 4 co-
winning committees. Then, according to the tie-breaking
rule, the committee (0111) is elected. The manipulation
comes from voter 1 by voting (1000) instead of his true
preferences. With this new vote, we have new AVW scores
summarized in Figure 4. Then, with a non-decreasing W

c W ×H↑(c, P )
0100 1 ·W1 + 1 ·W2 + 2 ·W3 + 2 ·W4

0101 0 ·W1 + 1 ·W2 + 2 ·W3 + 3 ·W4

0110 0 ·W1 + 1 ·W2 + 2 ·W3 + 3 ·W4

0111 0 ·W1 + 1 ·W2 + 1 ·W3 + 4 ·W4

FIGURE 4 – AVW scores with manipulation of voter 1

such that W1 < Wn, we obtain an unique winning com-
mittee (0100).

This proof can be extended to any numbers of candidates
by adding dummy candidates approved by all the voters,
and to even numbers of voters by adding copies of voters 1
and 4.

6 Conclusion
We have generalized minisum and minimax approval vo-
ting by defining a continuous family of committee voting
rules that contain minisum and minimax as special cases.
We have established a few preliminary results about com-
putational complexity of determining a winning commit-
tee. We have also shown that among our rules, only mini-
sum is nonmanipulable. Further research obviously starts
by establishing further complexity results, by trying to
prove that “almost” all rules of our families are hard to
compute.
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