
HAL Id: hal-00989218
https://hal.science/hal-00989218

Submitted on 9 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relational Learning from Ambiguous Examples
Dominique Bouthinon, Henry Soldano

To cite this version:
Dominique Bouthinon, Henry Soldano. Relational Learning from Ambiguous Examples. Reconnais-
sance de Formes et Intelligence Artificielle (RFIA) 2014, Jun 2014, France. �hal-00989218�

https://hal.science/hal-00989218
https://hal.archives-ouvertes.fr

Relational Learning from Ambiguous Examples

Dominique Bouthinon Henry Soldano

LIPN, CNRS (UMR 7030) Universite Paris13,

Sorbonne Paris Cité F-93430, Villetaneuse, France

{dominique.bouthinon,henry.soldano}@lipn.univ-paris13.fr

Résumé

Dans cet article nous étudions une situation

d’apprentissage relationnel où chaque exemple est

ambigu dans le sens où il est dissimulé au sein d’un

ensemble de descriptions. Ce cas apparait en apprentis-

sage de règles lorsque les valeurs de vérité de certains

atomes décrivant un exemple sont inconnues, alors qu’on

dispose d’une théorie du domaine permettant de limiter

les descriptions possibles de cet exemple. Le but de la

tâche d’apprentissage étudiée ici est de trouver, malgré

l’ambiguité des exemples, la plus simple représentation

du concept sous-jacent. Nous présentons tout d’abord

un cadre d’apprentissage de règles du premier ordre à

partir d’exemples ambigus, puis une implementation de ce

cadre appelée LEAR. Enfin, nous proposons des résultats

expérimentaux où LEAR fait face à des degrés d’ambiguité

croissants.

Mots Clef

Apprentissage relationnel supervisé, incertitude

Abstract

We investigate here relational concept learning from ex-

amples when we only have a partial information regard-

ing these examples, i.e. for each such ambiguous exam-

ple, we only know a set of its possible complete descrip-

tions, denoted as possibilities. A typical such situation is

rule learning when truth values of some atoms are missing

in the example description while we benefit from a back-

ground knowledge. The learning task investigated here is

to find simple representations of the concepts we learn. We

first propose an adaptation of rule learning from ambigu-

ous examples. Then, we describe LEAR, an implementation

of this setting. At least we discuss various experiments in

which we observe how LEAR copes with increasing degrees

of incompleteness.

Keywords

Relational supervised learning, uncertainty.

1 Introduction

We consider here supervised relational learning when data

representation is (very) incomplete. Due, in particular, to

the development of the semantic web, AI is more and more

interested in relational data, i.e. data whose natural rep-

resentation includes relations between objects of various

types. Such data are associated with models of knowledge,

as ontologies, to help their interpretation and therefore their

automatic processing. In this context, data is also naturally

partially known: when gathering observations for some

task most data represents only partial descriptions. We pro-

pose here an approach of supervised relational learning ex-

tensively using background knowledge to deal with high

level of incompleteness in data representation. The present

work relies on two ideas. The first one is that by properly

using background knowledge, we can extract all relevant

information inside incomplete observations, therefore be-

ing able to learn even from very incomplete data. Various

methods, except abductive induction we refer to later in the

related works section, handle such missing data but does

not plainly use background knowledge. The second idea is

that our purpose is not to find a best classifier given the in-

complete observations we expect to encounter in the future,

but rather to find the simplest representations of the un-

derlying concepts we learn, i.e. representations we would

learn should the observations be complete. Our purpose

is therefore the discovery of correct and simple represen-

tations and not building accurate classifiers for incomplete

observations. As a consequence, in our experiments we

will learn from such incomplete examples but compute the

accuracy of the resulting hypotheses on complete exam-

ples.

We illustrate hereunder the latter idea on a very simple ex-

ample. Consider a world of birds from which we want to

learn the unary predicate fly. Any bird is described using

the binary predicates {color, lives}. They are two colors,

red and green (some birds can be both red and green, some

have no color). They are two known continents: europe

and africa (some birds can live in the two continents, some

live neither in Europe nor in Africa). A complete exam-

ple is a clause whose the head is an instance of the tar-

get concept, and the body contains all the true atoms rela-

tive to the example, for instance: fly(t) ← color(t , red)
∧ lives(t , europe). Implicitly this clause stipulates that

color(t , green) and lives(t , africa) are false : the body of

a clause is an Herbrand interpretation of the language used

to describe the birds.

Now suppose the only thing we know about t is that it is

red and not green. From this partial information we can

build four possible complete examples :

x1 = fly(t) ← color(t , red),
x2 = fly(t) ← color(t , red) ∧ lives(t , europe),
x3 = fly(t) ← color(t , red) ∧ lives(t , africa) and

x4 = fly(t) ← color(t , red) ∧ lives(t , europe) ∧
lives(t , africa).

The set e ={x1, x2, x3, x4} is called an ambiguous exam-

ple containing four possibilities. A single possibility of

an ambiguous example (here x2) is the actual complete

example that would has been observed if there was no

ambiguity. In the following we will simply call x this

hidden actual complete example. Consider a hypothesis

H = fly(X) ← lives(X , africa) (we allow constant in

hypotheses). Let us assume that e is labelled positive, so

x is a positive instance of the target concept fly. One won-

ders whether H covers the complete example x hidden in

e. A sceptical view consists in answering no: we cannot

guarantee that H covers x1 because H does not cover all

the possibilities of e. A credulous view answers yes: H

possibility covers x because it covers possibilities of e.

Were the purpose to build a classifier to be used in obser-

vations as ambiguous as the one we observe, we should

be sceptical, in order to guarantee that each actual positive

complete example would be covered by our final hypoth-

esis. This is the approach used by the relational learner

TILDE [1]. But as our purpose is to find the correct repre-

sentation of the target concept, then we have to be credu-

lous: if we have enough ambiguous examples we can elim-

inate most of incorrect hypotheses and return a hypothesis

that can’t be rejected when considering our set of ambigu-

ous examples. This idea was informally proposed in [4] as

an extension of Mitchell’s version space definition. Here,

for instance the hypothesis fly(X) ← color(X, green)
would be rejected: it cannot cover the positive instance x

because it covers no possibility of e. Note that the same

idea applies to negative instances: here being credulous

means we keep in the solution space the hypotheses that do

not cover at least one possibility of the negative ambiguous

examples. Equivalently we reject the hypotheses that cover

all the possibilities of a negative ambiguous example.

Overall this means that learning relies here on a compati-

bility relation. An example is compatible with a hypothe-

sis when what we know does not exclude this hypothesis

from the version space. However, the compatibility rela-

tion depends on the label, either positive or negative, of the

example.

Let us illustrate now the former idea mentioned above,

namely plainly using background knowledge when con-

sidering whether an ambiguous example is compatible or

not with a given hypothesis. Going back to our previ-

ous example, suppose we also know that, whatever is the

observation, its hidden actual complete example should

1in the sense that H θ-subsumes x: there exists a substitution θ with

Hθ ⊆ x.

satisfy the following background knowledge B = {←
lives(X , europe) ∧ lives(X , africa), lives(X , europe) ∨
lives(X , africa)} 2. This new information stipulates that a

bird lives either in Europe or in Africa. This limits the am-

biguity, for instance it allows us to discard the possibilities

x1 and x4 of the previous example e.

Consider now another bird, an ostrich, called o which is

a negative instance of the concept fly. We know that o

either is red and lives in Africa, or is green and lives in

Europe. Then o is represented as the ambiguous example

e− = {y1, y2} with

y1 = fly(o) ← color(o, red) ∧ lives(o, africa) and

y2 = fly(o) ← color(o, green) ∧ lives(o, europe).

Consider a hypothesis having two clauses: H = {fly(X)
← lives(X , europe), fly(X)← color(X , green)}. Such a

multiple hypothesis covers a (complete) example whenever

one of its member covers the example, meaning that the

underlying concept can be satisfied in two different ways.

Then H is compatible with a positive ambiguous exam-

ple e if a clause of H covers a possibility of e. And H is

compatible with a negative ambiguous example e when a

possibility of e is covered by no clause of H . This is the

case of the possibility y1 of the example e−.

Whenever the heads of the clauses are not relevant, the

above informal presentation of concept learning from am-

biguous examples relies on a logical setting denoted as

learning from interpretations. For instance, assume the

target concept fly (there is no variable), then a hypothesis

clause fly ← color(X , green) covers an example clause

fly ← color(t , green) when {color(t , green)} is a Her-

brand model of color(X , green).

The learning from ambiguous examples framework also re-

lies on the framework of learning from entailment: H cov-

ers an ambiguous example e if a clause of H subsumes (or

entails) a clause of e (see [3] for a discussion on the various

logical learning settings).

In [2] we have investigated the effect of incompleteness in

the propositional concept learning from interpretations set-

ting. To handle ambiguity we proposed a concept learning

program, called Lea based on the ideas mentioned above

and using compatibility to evaluate hypotheses.

LEAR is a relational learner that, given a learning set of

incomplete positive and negative examples of a target con-

cept together with some background knowledge, selects a

hypothesis compatible with the examples of the learning

set. LEAR first builds a representation of each ambiguous

example as a set of possibilities, and then uses a standard

greedy set covering strategy to build a hypothesis.

Section 2 introduces the learning from ambiguous exam-

ples setting, whereas LEAR is described section 3. The

results of various experimentations are shown section 4,

followed by the related works and the conclusion sections

5 and 6.

2← a ∧ b is a writing for the clause ¬a ∨ ¬b.

2 Learning first order rules from

ambiguous examples

In our setting, hypotheses and ambiguous examples are ex-

pressed from a first order language whose the set of ground

atoms is HB . All examples are described using the same

predicates, however in the basis HB the number of con-

stants, and therefore the size of the basis depend on the ex-

ample. However in what follows, with no loss of generality,

we consider all these bases as identical. Our general pur-

pose is to learn a set of clauses H = {t1 ← h1, . . . , tn ←
hn}, where each ti is built on the same target predicate t,

and which is compatible with a set of ambiguous exam-

ples E. An ambiguous example is a set of ground clauses

concluding on a ground instance te of t.

2.1 The compatibility relations

We use the following compatibility relations between sets

of clauses :

Definition 1 Let H be a hypothesis and e be an ambiguous

example. H is a set of clauses and e is a set of grounded

clauses:

• H is compatible+with e iff at least one clause of e is

θ-subsumed by a clause of H ,

• H is compatible−with e iff at least one clause of e is

θ-subsumed by no clause of H .

Example 1 Consider a world containing two objects a

and b, each one can be either a rectangle or a triangle,

possibility related by the relation on(X,Y). The goal is to

learn a particular configuration of these two objects rep-

resented by the target concept gc(X,Y). Consider the fol-

lowing ambiguous examples:

e+ = {d1, d2} = {gc(a, b) ← rectangle(a) ∧
rectangle(b) ∧ on(a, b), gc(a, b) ← triangle(a) ∧
rectangle(b) ∧ on(a, b)} and

e− = {d2, d3} = {gc(a, b) ← triangle(a)∧rectangle(b)∧
on(a, b), gc(a, b) ← triangle(a)∧triangle(b)∧on(a, b)}.

Let H be the set of clauses {c1, c2} = {gc(X,Y) ←
triangle(X) ∧ rectangle(Y) ∧ on(X,Y) , gc(X,Y) ←
rectangle(X) ∧ triangle(Y) ∧ on(X,Y)}. H is

compatible+ with e+ (d2 is θ-subsumed by c1) and

compatible−with e− (d3 is θ-subsumed neither by c1 nor

by c2).

2.2 Discarding useless possibilities

We have shown in [2] that there were no need to represent

all the interpretations contained in an ambiguous examples.

We extend this result to our clausal framework. Let e be an

ambiguous example, then min(e) (max(e)) is the set of

minimal (maximal) clauses with respect to the inclusion

order on grounded clause. We have then the following re-

sult:

Proposition 1 Let H be a hypothesis and e be an ambigu-

ous example then:

• H is compatible+with e iff H is compatible+with

max(e),

• H is compatible−with e iff H is compatible−with

min(e).

Proof 1 We give hereunder the proof regarding

the compatible+relation. The proof regarding the

compatible−relation is quite similar.

⇒ H is compatible+ with e means that there is some

clause c of H , a clause d of e, and a substitution

θ such that cθ ⊆ d. Furthermore, d is included in

(or equal to) at least one clause dmax ∈ max(e).
Then cθ ⊆ dmax, and therefore H is compatible+with

max(e).

⇐ H compatible+max(e) means that a clause of H

θ-subsumes a clause of max(e) ⊆ e, so H is

compatible+e.

This means that we only need the maximal ground clauses

of each positive ambiguous example, and the minimal

ground clauses of each negative ambiguous example. This

is important when the background knowledge is a Horn

clausal theory. In such a case each negative ambiguous ex-

ample has one single minimal ground clause and therefore

can be represented as one possibility3. However, in our

experiments we also consider ambiguous examples built

from non Horn clausal theory, i.e. including, for instance,

a clause as dog(X) ∨ wolf(X) ← observed(X) meaning

that the animals we consider are either dogs or wolves.

2.3 Multi-table representation

To save space we have introduced a multi-table represen-

tation of ambiguous examples. The key idea is to part the

bodies of the clauses describing an ambiguous example in

parts, called tables, such that the set of these bodies can be

written as a Cartesian product of these tables, as in the fol-

lowing propositional example (first order examples exactly

follow the same principle):

Example 2 Let e = {t ← a ∧ c, t ← a ∧ d, t ← b ∧
c, t ← b ∧ d}. The set of bodies of the clauses of e is

T (e) = {{a, c}, {a, d}, {b, c}, {b, d}}. Note that T (e) =
T1 × T2 = {{a}, {b}} × {{c}, {d}}. Finally (t, T1 × T2)
is the multi-table representation of e.

Let us sketch the way we find the tables of an ambigu-

ous example through our propositional example (the same

method is used in the relational case). An ambiguous ex-

ample is first intentionally represented as a clausal theory.

Consider the set of atoms HB = {a, b, c, d} used to de-

scribe the above mentioned ambiguous example e. The in-

tentional representation of e is int(e) = {a∨b,¬a∨¬b, c∨

3A Horn clausal model has a unique herbrand minimal model.

d,¬c∨¬d}. Note that the bodies of the clauses in e are the

Herbrand models of the clausal theory int(e).
To compute the tables we first build a graph whose vertices

are the atoms of HB . In the graph an edge links two atoms

whenever they belong to a common clause in int(e). The

connected components of this graph define a partition on

HB . In our example there are two connected components

HB1 = {a, b} and HB2 = {c, d}. This partition induces a

partition of int(e) in two clausal theories int(e)1 = {a ∨
b,¬a∨¬b} and int(e)2 = {c∨ d,¬c∨¬d}, whose atoms

are in HB1 and HB2 respectively (see [2] for the proofs

supporting this partition). At last table T1 (T2) contains the

Herbrand models of int(e)1 (int(e)2). Let us point that the

multi-table representation can lead to an exponential gain

on space.

3 LEAR

LEAR is a swi-prolog ([10]) implementation of the above

mentioned setting of learning from ambiguous examples. It

learns a set of first order clauses H = {t1 ← h1, . . . , tn ←
hn} compatible with a set of ambiguous examples E+ ∪
E−.

3.1 The algorithm

LEAR is a greedy set covering algorithm. In its basic

form, its inputs are a set E+ ∪E− of positive and negative

ambiguous examples together with a parameter W repre-

senting the size of the beam involved in the beam search

performed by the bestClause function (see [2]). Start-

ing from the clausal theory H = ∅, it iteratively adds a

clause c to H , where c is compatible+with a part of E+

and compatible−with E−. Then we remove from E+ the

positive examples compatible+with the current hypothesis

H , and discard newly inconsistent possibilities from each

negative ambiguous examples in E− (see below). Except

this last step, and considering that we use here compatibil-

ity rather than covering, this is a standard Top-Down rule

learner. The bestClause function 4 uses a beam search to

find the next clause to add to the current solution H . It

starts choosing a seed, that is an ambiguous positive ex-

ample, to restrict the space of clauses in the same way as

PROGOL [7]. Then the set of candidates C is initialized

with the single clause t ←. A beam search is then per-

formed. At each step of the search, the refinement oper-

ator ρ(C, seed) returns S, the maximally general special-

izations of the clauses in C that are compatible+ with the

seed. If some clauses in S are better than the current best

clause, a new best clause is defined. Then the W clauses

of S displaying the best ratio of compatible examples over

E+ ∪ E− (i.e the best scores) are selected while exact

compatible−clauses are pruned. This process continues

until C is empty or all clauses can be pruned from C: no

clause in C can be refined with a better evaluation than the

current best solution. Note that the returned clause is nec-

4LEAR and bestClause are similar to the equivalent algorithms de-

scribed in [2] except that they deal with first order clauses.

essarily compatible+with at least the positive ambiguous

example chosen as seed.

3.2 The compatibility relations

Let e = {te ← p1, . . . , te ← pn} be an ambiguous exam-

ple and c be a clause To check whether c is compatible+

with e we verify that c θ-subsumes a possibility of e. To

check whether c is compatible−with e we verify that there

exists a possibility of e that is not subsumed by c.

However, as the solution set H = {c1, . . . , cn} is built

by incrementally adding clauses, we must ensure that H is

compatible−as a whole with the negative examples. This

entails to check that all the clauses in H rely on at least

one same possibility of each negative example. For in-

stance, consider a negative ambiguous example e = {t ←
a, t ← b} and assume H = {t ← b}. Then H is

compatible−with e by the possibility t ← a which is

not subsumed by the single clause in H . Suppose now

t ← a is a candidate clause to be added to H . We see

that {t ← a} is compatible−with e by the clause t ← b.

But H = {t ← b, t ← a} would not be compatible−with

e because the two clauses in H do not rely on the same

possibility of e to ensure the compatibility−.

4 Experiments
LEAR has been experimented on an artificial problem from

the Bongard domain and on the UCI student loan problem.

In all the experiments the concept is learned from ambigu-

ous examples and its accuracy is evaluated on a separated

test set of complete examples. The results of LEAR are

compared to those of TILDE [1] that has to learn from non

ambiguous examples.

We consider that examples are drawn following some dis-

tribution and that each example is then submitted to a

masking process, according to some ambiguity level p, and

results in an ambiguous example, representing all the pos-

sible descriptions of the complete example. This ambigu-

ous example can be used as it is by LEAR. A corresponding

non ambiguous example has to be produced, at the price of

loosing some information, to be used by TILDE. We detail

hereunder the generating process.

4.1 Methodology

Building the ambiguous examples. Each complete ex-

ample has a label l either positive or negative, and is de-

scribed as a clause x = t ← b, where b is a ground conjunc-

tion and t is a ground instantiation of the target concept. In

addition we are provided by a clausal theory B represent-

ing the background knowledge we have about the clause

body. Because x is complete, b is a conjunction whose the

equivalent set of atoms is a Herbrand model of B. The set

of possibilities issued from a complete example is built as

follows:

a) Each atom of the body b is discarded with some fixed

probability p. We obtain then a smaller conjunction

b0 ⊆ b.

b) We build the set of Herbrand models of the resulting

clausal theory b0 ∧B. In such a set {b1, . . . , bn} each

bi is an alternative complete body of the initial clause

and e = {t ← b1, . . . , t ← bn} is the ambiguous

example derived from t ← b0: it contains all possible

complete examples knowing B and b0.

According to Proposition 1 LEAR considers only maximal

clauses in max(e) when e is a positive example and mini-

mal clauses in min(e) when e is a negative example.

The standard way to cope with missing data in TILDE is to

assume that all unknown ground atoms are false. Using the

background knowledge B makes possible to complete the

clause t ← b0, by adding to b0 atoms that can be deduced

from B and b0. This is performed by turning the clause

into t ← b00 where b00 is the intersection of all clauses in

min(e).

Depending of the nature of the background knowledge B

there are various cases:

• B is empty or only made of definite clauses. In this

case, | min(e) |=| max(e) |= 1.

• B is a Horn clausal theory, i.e contains also head-

less clauses representing integrity constraints as ←
square(X) ∧ circle(X). In this case | min(e) |= 1
whereas | max(e) |≥ 1.

• B is a normal clausal theory, i.e also contains clauses

as square(X) ∨ circle(X) ← shape(X), and both

sets of minimal and maximal clauses have size greater

than 1.

When comparing the information about examples given to

LEAR and TILDE, LEAR is given the whole information

about each ambiguous example e and will be credulous,

retaining any hypothesis which is compatible with e. On

contrary TILDE is given a unique clause c (the above men-

tioned t ← b00) and therefore looses some information

when B contains normal clauses. Note that c is included

in all the possibilities of e, so it represents what is certainly

true in e. Therefore, TILDE is credulous regarding nega-

tive examples, not covering c implies not covering at least

one possibility of e, but sceptical regarding positive ones:

covering c implies covering all the possibilities of e.

This means that TILDE performs a cautious (skeptical)

covering of incomplete positive examples resulting in more

branches in the logical tree than necessary to classify com-

plete examples. Therefore, the comparisons in the experi-

ments hereunder are not perfectly fair, as the two method-

ologies have different purposes. TILDE builds a tree which

purpose is to classify incomplete examples as those in the

learning set, whereas LEAR searches for a simple repre-

sentation of the underlying concept and is therefore only

intended to classify complete examples. Still, the accura-

cies on the complete test examples are comparable.

Evaluation. The evaluation is performed through a 10-

10 cross-validation process, applied to each level of ambi-

guity).

In the artificial case, N examples are freely drawn from the

distribution and the masking process is applied to each of

them. As a result we obtain two sets of equal size N : E

containing the original complete examples and Ea contain-

ing the ambiguous versions of these examples. A cross-

validation step consists in considering as the test set the

fold Ei ⊂ E and as the learning set Ea −Ea

i
, where Ea

i
is

the subset of Ea corresponding to Ei.

In the UCI problems case, as we only have a limited sample

E of examples, from each fold Ei containing Ni complete

examples, we build an ambiguous fold Ea

i
of 10 ∗Ni am-

biguous examples by drawing and masking examples from

Ei. We obtain then Ea as the union of these folds and pro-

ceeds as in the artificial case.

4.2 Experiments

Bongard (Artificial). In the Bongard domain [6] ex-

amples are diagrams made of various geometrical ob-

jects. In this experiment each example is made of 4 ob-

jets, and satisfies the following background knowledge:

← in(X,X),← in(X,Y) ∧ in(Y,X), ← triangle(X) ∧
square(X),← triangle(X)∧ circle(X),← square(X)∧
circle(X), ← config(X,up) ∧ config(X, down), ←
config(X,Y)∧circle(X),← config(X,Y)∧ square(X),
square(X) ∨ circle(X) ∨ triangle(X).

The target concept can be represented as the three follow-

ing clauses:

bongard ← config(X , up) ∧ in(X ,Y) ∧ circle(Y),
bongard ← config(X ,Y) ∧ in(Y ,Z) ∧ triangle(Z),
bongard ← in(X ,Y) ∧ circle(Y) ∧ square(X) ∧
config(Z ,C).

We have run experiments with ambiguity levels ranging

from p = 0 to p = 0.9 and with an increasing number

of examples N = 1000, 2000, 4000, 8000, 16000.

In this expriment we want to check the expected conver-

gence of LEAR at any ambiguity level provided that there

is enough learning examples.

0 10 20 30 40 50 60 70 80 90

60

65

70

75

80

85

90

95

100

bongard (artificial) 1000 ex

Lear

Tilde

ambiguity (%)

a
c
c
u

r
r
a
c
y
 (

%
)

Figure 1: Accuracies on the Bongard (artificial) dataset

(1000 ambiguous examples)

LEAR

N 0 10 20 30 40 50 60 70 80 90

1000 100 100 98 98 96 86 89 78 74 74

2000 100 100 100 100 98 95 91 83 75 73

4000 100 100 100 100 99 98 94 88 76 74

8000 100 100 100 100 100 99 96 92 78 76

16000 100 100 100 100 100 99 97 94 79 75

TILDE

N 0 10 20 30 40 50 60 70 80 90

1000 99 92 88 85 83 79 76 71 66 64

2000 100 94 90 87 84 82 80 76 70 66

4000 100 95 91 88 85 82 80 77 72 66

8000 100 95 92 88 85 82 80 78 73 66

16000 100 96 92 89 85 82 80 78 75 69

Table 1: Accuracies of LEAR and TILDE on the bongard

(artificial) problem, with N = 1000, 2000 4000, 8000,

16000 at ambiguity levels ranging from 0% to 90%.

Figure 1 displays the accuracies of LEAR and TILDE

when learning at various accuracy levels from 1000 am-

biguous examples. Clearly LEAR outperforms TILDE

benefiting from its credulous/credulous bias and the related

used of background knowledge, at least for low and mod-

erate ambiguity levels. Table 1 investigates the dynamics:

what is the benefit of having an increasing number of exam-

ples ? Clearly, LEAR, as expected, benefits from process-

ing more examples, the convergence is slow but it reaches

100% accuracy at ambiguity level 40% when learning from

16000 examples. Tilde also benefits form the increasing

number of examples, but, because of its skeptical bias re-

garding positive examples its accuracy reaches, at each am-

biguity level an asymptotic value. For instance, at ambigu-

ity level 40%, TIILDE reaches a 85% accuracy with 4000

examples, and does not increase this accuracy even when

learning from 16000 examples.

Loan (UCI). The Loan problem consists in classifying

bank loans into good and bad loans. As described in [8],

the dataset displays 8 relations and contains, for each loan,

both customer information and account information. In this

problem you did not use any background knowledge, there-

fore a single possibility is enough to represent all possi-

ble complete examples of each ambiguous example. The

initial set of complete examples contained about 1000 ex-

amples from which we have built about respectively 1000,

5000 and 15000 ambiguous examples.

0 10 20 30 40 50 60 70 80 90

60

65

70

75

80

85

90

95

100

loan (UCI) 15 000 ex

Lear

Tilde

ambiguity (%)

a
c
c
u

r
r
a
c
y
 (

%
)

Figure 2: Accuracies on the Loan dataset (15000 ambigu-

ous examples)

ambiguity system 1000 5000 15000

0%
LEAR 96 99 99

TILDE 90 91 91

10%
LEAR 94 99 99

TILDE 87 88 86

20%
LEAR 91 99 99

TILDE 85 85 84

30%
LEAR 87 97 99

TILDE 84 84 84

40%
LEAR 84 95 99

TILDE 82 83 83

50%
LEAR 82 92 97

TILDE 81 82 83

60%
LEAR 77 89 97

TILDE 78 82 82

70%
LEAR 74 82 92

TILDE 77 81 81

80%
LEAR 66 75 81

TILDE 75 78 80

90%
LEAR 62 65 70

TILDE 71 77 78

Table 2: Accuracies of LEAR and TILDE on the Loan

problem, considering 1000, 5000 and 15000 ambiguous

examples.

Table 2 and Figure 2 show that LEAR have much higher

accuracies than TILDE on this problem until level 50%,

then the accuracies of LEAR strongly decrease until both

programs display similar accuracies.

Regarding the running time, building the extensional am-

biguous examples from the facts and the background

knowledge is sometimes expensive but tractable. In all our

experiments this building time never exceeded 20 mn for a

whole dataset whatever was the level of ambiguity. Learn-

ing was in general much faster. However, learning can be

slowed down when the clauses in the current solution are

made of many atoms.

5 Related work

Regarding first order representations, incompleteness, as

defined here, has been mainly addressed in works concern-

ing induction and abduction. in the framework of Inductive

Logic Programming (ILP). Brave induction [9] addresses a

somewhat different problem we do not discuss here. The

work of Kakas and collaborators [5] uses the so-called

“normal ILP learning settings” in which there is only one

observation, (or database), and examples are ground pred-

icates that have to be derived from a hypothesis, facts and

background knowledge. To deal with uncertainty in I-ACL,

some predicates are stated as “abducible”, i.e. assumptions

about their ground occurrences can be made in order to de-

rive the examples. Note that, as there is one unique obser-

vation the assumptions concerning the examples are then

mixed up, resulting in a complex combinatorial problem.

This means that choices regarding sets of assumptions have

to be made very early during learning. Note, however, that

such abductive induction allows expressing dependencies

between assumptions made on different examples.

6 Conclusion
The results of the experimentations show that LEAR copes

well with high level of incompleteness. They also show

that LEAR outperforms the standard closed-world ap-

proach as implemented in TILDE, at least when the avail-

able background knowledge induces a strong reduction on

the number of ground clauses representing any ambiguous

example. The program, written in swi-prolog, is efficient,

and running times generally does not increase much with

the ambiguity level. Still there is room to improve scalabil-

ity.

References
[1] Hendrik Blockeel and Luc De Raedt. Top-down in-

duction of first-order logical decision trees. Artif. In-

tell., 101(1-2):285–297, 1998.

[2] Dominique Bouthinon, Henry Soldano, and

Véronique Ventos. Concept learning from (very)

ambiguous examples. In Petra Perner, editor, MLDM,

volume 5632 of Lecture Notes in Computer Science,

pages 465–478. Springer, 2009.

[3] Luc DeRaedt. Logical settings for concept-learning.

Artif. Intell., 95(1):187–201, 1997.

[4] Haym Hirsh. Generalizing version spaces. Mach.

Learn., 17(1):5–46, 1994.

[5] Antonis C. Kakas and Fabrizio Riguzzi. Abduc-

tive concept learning. New Generation Computing,

18(3):243–294, 2000.

[6] Alexandre Linhares. A glimpse at the metaphysics of

bongard problems, 2000.

[7] S. Muggleton. Inverse entailment and Progol. New

Generation Computing, 13(3-4):245–286, 1995.

[8] Céline Rouveirol and Michèle Sebag, editors. Induc-

tive Logic Programming, 11th International Confer-

ence, ILP 2001, Strasbourg, France, September 9-11,

2001, Proceedings, volume 2157 of Lecture Notes in

Computer Science. Springer, 2001.

[9] Chiaki Sakama and Katsumi Inoue. Brave induction:

a logical framework for learning from incomplete in-

formation. Machine Learning, 76(1):3–35, 2009.

[10] Jan Wielemaker. An overview of the SWI-Prolog

programming environment. In Fred Mesnard and

Alexander Serebenik, editors, Proceedings of the

13th International Workshop on Logic Programming

Environments, pages 1–16, Heverlee, Belgium, de-

cember 2003. Katholieke Universiteit Leuven. CW

371.

