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Résumé

La recherche en fouille de motifs a porté ces dernières an-

nées en particulier sur les opérateurs de fermeture sur des

langages partiellement ordonnés, isomorphes à un sous-

ensemble d’un ensemble d’attributs, ne formant pas néces-

sairement un treillis. Un résultat de M. Boley et co-auteurs

définit une propriété qui garantit qu’un opérateur de fer-

meture existe quel que soit l’ensemble d’objets dans lequel

on cherche le support des motifs. Nous relions ce travail au

cadre classique de l’analyse de Galois et des concepts for-

mels, détaillons la structure des ensemble de fermés, ainsi

que les implications associées, et montrons que la simplifi-

cation par abstraction extensionnelle reste applicable dans

ce cas.

Mots Clef

Analyse Formelle de concepts, Treillis de Galois, abstrac-

tion, motifs fermés

Abstract

Recently pattern mining has investigated closure operators

in families of subsets of an attribute set that are not lattices.

A result due to M. Boley and coauthors defines a property

of such a family, denoted as confluence, that guarantees

that a support closure operator exists whatever is the set

of objects on which supports are computed. We investigate

this pattern mining framework and relate it to FCA. We

give results on closure operators outside lattices and dis-

cuss the structure of closed pattern sets together with the

related set of implications, and show that simplifying the

closed set using extensional abstractions hold for this new

structures.

Keywords

Formal Concept Analysis, Galois lattice, abstraction, clo-

sed patterns

1 Introduction

Until recently searching for closed motifs or patterns when

exploring data was restricted to lattices as pattern lan-

guages. A pattern in some language L is said closed whe-

never it can be obtained by applying a closure operator to

some pattern. This subject has been thoroughly explored in

Formal Concept Analysis, Galois analysis and Data Mining

when considering support-closed patterns where we have a

set of objects O and a motif has a support, i.e. it occurs, in a

set of object. The language is a lattice, and the motif occurs

in an object whenever the motif is more general than the

object description. Motifs that can’t be specialized without

losing some object in their support are said support-closed.

Considering only equivalence classes of motifs sharing the

same support helps investigating the data. Support-closed

motifs are searched for as representatives of such equiva-

lence classes. This can be performed efficiently because

there exists a closure operator on the lattice that returns

as a closed pattern the unique support-closed pattern of the

corresponding equivalence class.

The most investigated pattern language is the power set 2X

of some attribute set X , ordered following the set-theoretic

inclusion order. Formal Concept Analysis [5] as well as

Galois analysis [4] relies on the relation between objects

and attributes. In data mining, these ideas have been inves-

tigated under the name of itemsets mining and also rely on

the same relation[8].

Recently, pattern mining has gone beyond this general fra-

mework in two directions. First, various mining problems

have been investigated that comes down to searching for

closed motifs which can’t be considered, strictly speaking,

as support-closed motifs, as for instance, convex hull of

subsets of a given set of points, or sequential motifs with

wild-cards [1]. To characterize such closure operators, the

authors make use of the well-known one-to-one correspon-

dence between families closed under the meet operator and

the closure operators. Second, various mining problems

have been addressed in which the language is a partial order

but not a lattice, but still there is a support-closure opera-

tors. A general framework has been proposed for that pur-

pose, in which the language is a family F included in a host

lattice 2X . For instance, consider the set of the subgraphs

generated by a subset of the set X of the edges of a given

graph (V,X). Such a subgraph can be represented as a sub-

set of X , however the family F of connected subgraphs is

not a lattice 1. Still there is a closure operator that relates

a connected subgraph to a support-closed connected sub-

graph. In their paper, [3] , M. Boley and coauthors state in

particular the necessary and sufficient conditions that have

to fulfill a set system the family F of a set system (F,X),
in order to guarantee, that whatever, with some mild restric-

tion, is the dataset O of objects we consider.The correspon-

ding property of confluence mainly consists in requiring a

1. the intersection of two such connected subgraphs is not necessarily

connected



kind of local union closure. and we will further denote as

confluence⇤ a slightly stronger property that eliminate the

mild restriction above.

Our contribution concerns the two directions. First, we

state sufficient conditions to obtain closed patterns for

structures weaker than lattices. These conditions, are deno-

ted here as the pre-confluence property. The main condition

we require is that given three elements t, t1, t2 of F , if t1
and t2 belongs to the up set "t then there exists a greatest

lower bound of t1 and t2 in the upset "t of F , and this local

meet element is denoted as t1 ^t t2. In Figure 1, the pre-

confluent family F where a, b, c, d are the edges of a graph

is represented on the left.
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FIGURE 1 – On the left, the Hass diagram of a family of

connected subgraphs each generated by a subset (repre-

sented by a word) of the edges {a, b, c, d} of the origi-

nal graph.The subgraphs generated by a and by b are the

minimal elements. F is a pre-confluent family in which,

for instance, {abc, abd} have two maximal lower bounds,

a = abc^aabd greater than a, and the other, b = abc^babd

greater than b. Furthermore, as for all pair of elements grea-

ter than some other element in F the union of these ele-

ments also belongs to F , F also is a confluent* family. F is

such that for any element x, the up set "x is a lattice. In par-

ticular "a = {a, abc, abd, abcd} is a lattice. On the right,

the Hass diagram of the support closed connected sub-

graphs pre-confluence f [F ] with respect to the set of sub-

graphs O = {o1, o2, o3} (on the middle part of the figure).

The thick box around closed patterns a and b indicates that

both patterns have the same extension {o1, o2, o3}.

Second, we show that, when the pre-confluence F is a sub-

set of some lattice T and follows some simple conditions

leading to the notion of confluence*, there exists a closure

operator returning the support-closed elements of F with

respect to any object set O whose objects are represented

as elements of the lattice T . In left part of Figure 1 we also

note that for any element x of the pre-confluence F , the up

set "x is a lattice. This is a general and straightforward re-

sult, that allow to link closure operators in pre-confluences

to closure operators on lattices, and therefore to FCA, and

help defining implication basis on confluences*.

Finally, a last contribution consists in noticing that, when

F is a confluence*, applying projections to the extensional

space 2O preserves closure operators existence and there-

fore, abstract Galois lattices, as alpha Galois lattices [10]

are extended to Galois pre-confluences.

2 Closure subsets of a partial order
We are interested here with closed elements of an ordered

set. When this ordered set refers to a language for pattern

mining, we call patterns the elements of the ordered set.

2.1 Preliminaries

We first recall definitions of closure and dual closure ope-

rators :

Definition 1 Let E be an ordered set and f : E ! E be

an automorphism such that for any x, y 2 E, f is mono-

tone, i.e. x  y =) f(x)  f(y) and idempotent, i.e.

f(f(x) = f(x), then :

— if f is extensive, i.e. f(x) ≥ x, f is called a clo-

sure operator

— if f is intensive, i.e. f(x)  x, f is called a dual

closure operator or an interior operator, or also a

projection.

In the first case, an element such that x = f(x) is called a

closed element.

We define hereunder a closure subset of an ordered set E

as the range f [E] of a closure operator on E. We give then

a necessary and sufficient condition for a subset of E to be

a closure subset. This condition answers the general ques-

tion of which subsets of some pattern language are sets of

closed patterns. The set of upper bounds of some element x

in E is denoted as the up set "x = {y | y ≥ x} also deno-

ted as Ex when more than one partial order is concerned.

In the same way, the set of lower bounds of x is denoted as

the down set #x = {y | y  x} also denoted as Ex.

Definition 2 (T.S. Blyth [2]) A subset C of an ordered set

E is called a closure subset if there is a closure f : E ! E

such that C = f [E].

Proposition 1 (T.S. Blyth [2]) A subset C of an ordered

set E is a closure subset of E if and only if for every x 2 E

the set "x \ C has a bottom element x⇤. The closure f :
E ! E is then unique and defined as f(x) = x⇤.

However this property does not give a direct information

in which pattern languages closed patterns are to be found

and in which conditions closure operators exist. A direct

information is provided by a well known result on closure

subsets of complete ^-semilattices [5]. This result states

that in such a pattern language, the closure subsets are the

subsets closed by the meet operator ^. When the language

is the power set of some set X , the meet operator simply is

the intersection operator \.

Proposition 2 Let T be a lattice. A subset C of T is a clo-

sure subset if and only if C is closed under meet. The clo-

sure f : T ! T is then unique and defined as f(x) =
^{c2C\"x}c and C is a lattice.



All ordered sets considered here are finite, and as all lat-

tices are finite lattices they are also complete lattices : any

subset of a lattice T is then closed under arbitrary meet and

arbitrary join. Note that when saying that C is closed under

meets we intend here that the meet of ; also belongs to C.

Therefore > = ^;c belongs to C.

We will also further need the dual proposition which states

that a subset A of T is a dual closure subset, also deno-

ted as an abstraction, whenever A is closed under joins.

The interior operator p : T ! T is then defined as

p(x) = _{a2A\#x}a, A is a lattice and ? belongs to A. In

particular when T is a powerset 2K , p(x) = [{a2A|a✓x}a.

We are interested now in pre-confluences which are struc-

tures weaker than lattices.

2.2 Closure subsets in pre-confluences

Definition 3 Let F be an ordered set such that for any t 2
F , "t is a ^-semilattice and has a top element. F is called

a pre-confluence, x ^t y is a local infimum or local meet,

and >t a local top.

Lemma 1 Let F be a pre-confluence, then for any t in F

and x, y 2 F\ "t

1. "t is a lattice with as join, denoted as x _F y, the

least element of "x\ "y

2. Let t0 ≥ t then "t0 is a sublattice of "t.

Proof

1. As F is a pre-confluence, "t is a finite ^-semilattice

(with meet x ^t y) and has a top element (>t).

As a consequence of a well known result on lat-

tice theory, "t is lattice. The join x _t y is the least

upper bound of {x,y} in "t, i.e. the least element of

"t\ "x\ "y which is also "x\ "y, as both x and y

are greater than or equal to t. As it does not depend

on t we simply denote it as x _F y.

2. For any t0 ≥ t and x, y in " t0, x, y also belong

to " t, As a consequence, x ^t0 y is also a lower

bound of {x, y} in "t, and therefore t0  x ^t0 y 
x^t y. But this means that x^t y belongs to "t0 and

therefore is also smaller than or equal to x^t0 y. As

a consequence we have that x^t0 y = x^t y. As "t0

has same meet and join as "t, it is a sublattice of "t.

2

Furthermore we only need minimal elements of F to check

whether F is a pre confluence : whenever there is a local

meet and a local top on the up set of minimal elements,

there is also a local meet and a top element in the up set of

any element of F .

Lemma 2 F is a pre-confluence if and only if for any m 2
min(F ), "m is a ^-semilattice and has a top element.

Proof if F is a pre-confluence, as M ✓ F obviously

all "m are ^-semilattices and have a Top element. Now

suppose that all elements m of M are such that "m is a

^-semilattice and has a Top element, then consider some

t ≥ m and two elements t1, t2 2" t, we have then that

t1, t2 2"m. We know that t1 ^m t2 is the greatest lower

bound of {t1, t2} in "m and as t is a lower bound of {t1, t2}
and t 2"m, we have that t1 ^m t2 2"t. As a consequence

t1^mt2 is also the greatest lower bound of {t1, t2} 2"t and

so t1 ^t t2 exists and this means that "t is a ^-semilattice.

Furthermore, >m also belongs to "t and therefore "t also

has a greatest element. As for any t 2 F there exists some

m 2 M such that t ≥ m, then F is a pre-confluence. 2

Definition 4 A subset C of a pre-confluence F is called

closed under local meet whenever for any element t and

any C 0 ✓ C\ "t we have

^

t {c2C0}

c belongs to C.

This means in particular that >t =
V

t;
c belongs to any

subset which is closed under local meet and then, by defi-

nition, C is also a a pre-confluence. The following theorem

extends Proposition 2 to pre-confluences :

Theorem 1 Let F be a pre-confluence. A subset C of F

is a closure subset if and only if C is closed under local

meet. The closure f : F ! F is then defined as f(t) =
^t{c2C\"t}c and C = f [F ] is a pre-confluence.

Proof

We use Proposition 2 and the fact that " t in a pre-

confluence is a lattice.

— )C is a closure subset of F means that there exists

a closure operator f : F ! F such that f [F ] = C.

As F is a pre-confluence, for any t 2 F , Ct ="t\C
is a lattice with meet operator ^t. Furthermore, for

any x 2"t, we have that f(x) 2"t (extensivity of

f ). We can then define ft :"t !"t such that for any

x 2"t, ft(x) = f(x). It is straightforward that ft is

a closure on "t as f is a closure on F .

As a result, from Proposition 2 we have that Ct =
ft["t] is closed under the meet operator ^t of "t.
But, as this is true for any t in F , this also means

that C = [t2FC
t is by definition closed under lo-

cal meet.

— ( Let C be a subset of F closed under local meet,

and let for any t in F , Ct = "t\C. By hypothesis,

for any x, y 2"t, x^t y belongs to C, and as x^t y

is the greatest lower bound of x and y in " t, we

have that x ^t y belongs to Ct. This means that Ct

is a subset of the lattice "t and is closed under the

meet operator. As a result of Proposition 2 we have

then that there exists a closure ft :"t !"t which

is such that for any x 2" t, ft(x) = ^tc2"x\Ctc.

Furthermore, as x 2"t, we have that "x\Ct ="x\
C and therefore ft(x) = ^tc2"x\Cc and also as "x
is a sublattice of "t, ft(x) = fx(x) = ^xc2"x\Cc .



Let then define f : F ! F as f(x) = fx(x). It is

straightforward that f is a closure :

— f(x) = ft(x) for any t  x, therefore as ft is a

closure, ft(x) ≥ x. As there always exists such

a t, then f(x) ≥ x

— if x ≥ y we have some t such that x, y 2" t,
therefore f(x) = ft(x) and f(y) = ft(y) and

therefore f(x) ≥ f(y).
— We have that f(x) ≥ x and there is some t in

F such that f(x), x both belong to "t, therefore

f(f(x)) = ft(ft(x)) = ft(x) = f(x).
2

As a summary, we have a generalization of the meet ope-

rator which is the basis of most work on closed patterns

in data mining, as well as all work on formal concept ana-

lysis. This generalization, denoted as local meet operator

ensures the existence of closure operators whose ranges are

subsets closed with respect to the local meet operator. Whe-

never we consider a pre-confluence as a subset of a finite

powerset 2X we call F also a pre-confluent family. A ty-

pical example of such a structure is the set of subgraphs

generated by the vertices (or edges) of a given graph. We

consider here the family F = {a, b, abc, abd, abcd} which

diagram is represented in the leftmost part of Fgure 1. Here

we have that abc ^a abd = a and abc ^b abd = b i.e. there

are two maximal lower bounds of abc and abd in F because

ab does not belong to F . Note that the up sets F a and F b

are lattices, and share the same join operator, which in this

case is the union operator.

3 Support closed patterns

3.1 Support closures in lattices

The standard case in which closed patterns are searched for

is when the language is a lattice and that closure of a pattern

relies on the occurrences of the pattern in a set of objects. In

data mining the set of occurrences is known as the support

of the pattern whereas in Formal concept analysis the set

of occurrences defines the extension of the pattern and the

extent of the corresponding concept.

We give hereunder a general notion of occurrence

Definition 5 Let F be a partial order and O a set of ob-

jects, a relation of occurrence on F ⇥ O is such that if

t1 ≥ t2 and t1 occurs in o then t2 occurs in o.

The extension of t in O is defined as ext(t) = {o 2 O |
t occurs in o}.

The cover of o is defined as the part of F whose elements

occur in the object o, i.e. S(o) = {t 2 F | t occurs in o}.

The cover of a subset e of objects is defined as the part

of F whose elements occur in all objects of e, i.e. S(e) =T
{o2e} S(o).

We will say hereafter indifferently that t belongs to the co-

ver of o, or that t occurs in o. We consider the standard case

where we start from a lattice T in which each object o of

O has a description d(i), and we further consider that any

element of T can be such a description. We are then inter-

ested in which subsets F of T have support-closures with

respect to any O. We connect here to the seminal result of

M. Boley and collaborators [3] on confluent systems. To

avoid confusion, up sets and down sets of a partial order E

starting from an element x will be denoted respectively as

Ex and Ex.

We will need the following lemma to characterize how an

object,as an element x of T , can be represented in F .

Lemma 3 Let F be a subset of a lattice T .

If for any t 2 F and any x 2 T t, there exists a greatest

element pt(x) in F t \ Tx, then the mapping pt : T
t ! T t

is a projection on the lattice T t and pt(T
t) = F t

pt(x) is the local description of x in F t.

Proposition 3 Let F be a subset of a lattice T , the three

following properties are equivalent :

1. For any t 2 F and any x 2 T t, there exists a grea-

test element pt(x) in F t \ Tx

2. For any x, y, t in F with x ≥ t and y ≥ t, we have

that x _ y belongs to F

3. F is a pre-confluence with join _F = _

F is then denoted as a confluence* on T and we have that

pt(x) = _q2F t\Tx
q

Proposition 4 Let F be a confluence* of a lattice T and O

a set whose objects are described as elements of T , then :

Let pt denote the local description operators on F , we have

that

f(t) = pt◦ int◦ext(t) where (int, ext) is a Galois connec-

tion on (T,O), is a support closure operator on F with

respect to O.

Conversely, in order to guarantee that such a support clo-

sure operator exists for any set of objects O described in T ,

a subset of T has to be a confluence* :

Proposition 5 Let F be a subset of the lattice T , then the

support closure operator on F with respect to any set O

whose objects are described as elements of T exists if and

only if F is a confluence*.

In Boley and collaborators, the lattice T is a powerset 2X

and a confluent system S is similar to the latter definition

of confluences* except that ? = ; belongs to S but x [ y

is only required to belong to F when x ◆ t and y ◆ t for

any t! = ;. Proposition 5 is a straightforward adaptation

and rewriting of the theorem of Boley and collaborators in

the case in which T = 2X , where confluent systems re-

places confluences*, and which prohibits to have any attri-

bute common to all objects in O in order to ensure a grea-

test element in the cover of ;.

A useful Lemma is the following :



Lemma 4 If F is a confluence*, then if q  t, and x 2 T q ,

then pt(x) = pq(x)

This means that to compute the support closure of some t

we only need pm where m 2 min(F ). Implicitly this also

means that whether t is greater than two minimal elements

m and m0 then pm(t) = p0m(t). This is interesting as, these

minimal elements are in general well known and the cor-

responding projection easy to define.

To summarize, the support closure set f(F ) of a

confluence* F on some lattice T , forms a pre-confluence of

T , made of projected Galois lattices and we only need the

minimal elements of F to characterize the pre-confluence

f [F ]. When considering T = 2X ,T t is 2X\t and pt is a

projection on 2X\t.

3.2 Implications

Another question regards the definition and construction of

an implication basis whose implications have both left part

and right part in F . An implication p ! q holds on F whe-

never ext(p) ✓ ext(q) and a basis of such implications is

typically made of implications such that both p and q be-

long to the same equivalence class i.e. ext(p) = ext(q).
Whenever F is a lattice, the nodes of the concept lattice re-

presents these equivalence classes and q is a closed pattern

i.e. the greatest element of the class, and therefore we have

p  q. As an example the min-max basis is made of the im-

plications p ! q where p 6= q and p is a minimal element

of the class of q [8]. Whenever F is a confluence*, we have

seen that each such equivalence class is associated to seve-

ral closed patterns q1...qm each being the greatest element

of a subclass. We have then in the basis both implications

of the form pi ! qi where pi  qi and both belong to

subclass i together with implications of the form pj ! qi
where j 6= i and therefore pj and qj are unordered. We

extend the idea of the min-max basis to confluences* as

follows :

Definition 6 Let F be a confluence*, and F (e) = {t 2
F | ext(t) = e}, the min-max basis B = Bi [ Be of

implications in F is defined as the set

{p ! q | ext(p) = ext(q), p 6= q, p 2 min(F (e)), q 2
f [F (e)] }

The internal sub basis Bi is made of the implications of the

form pi ! qi where pi  qi and the external sub basis

Be is made of the implications of the form pj ! qi where

{pj , qj} are unordered.

There are other implication basis such as the minimal

Guigue-Duquenne basis [6] that can be as well extended

to the case of confluences*.

3.3 Example

We consider here the example displayed in Figure 1. We

have F = {a, b, abc, abd, abcd} and O = {ab, abc, abcd}.

To compute the closures in F we take advantage of the fact

that F has two minimal elements a and b and that for any

t ≥ a (resp. t ≥ b) we can write f(t) = pa ◦ int ◦ ext(t)
(resp. (f(t) = pb ◦ int ◦ ext(t)). We obtain then :

— f(a) = pa ◦ int({ab, abc, abcd}) = pa(ab) = a

— f(b) = pb ◦ int({ab, abc, abcd}) = pb(ab) = b

— f(abc) = pa ◦ int({abc, abcd}) = pa(abc) = abc

(we could have used pb as abc 2 T b with the same

result abc)

— f(abd) = pa ◦ int({abcd}) = pa(abcd) = abcd

(same remark as above)

— f(abcd) = pa ◦ int({abcd}) = pa(abcd) = abcd

(same remark as above)

Note that the confluence* F is the union of the two lattices

F a = {a, abc, abd, abcd} and F b = {b, abc, abd, abcd}.

Therefore we have f [F ) = {a, b, abc, abcd} which is a

pre-confluence whose minimal elements are f(a) = a

and f(b) = b. We have that f [F ] = f [FA] [ f [F b]
where f [F a] and f [F b] are the sets of closed patterns from

the concept lattices built respectively from (F a, Oa), and

from (F b, Ob). We have here f [F a] = {a, abc, abcd} and

f [F b] = {b, abc, abcd}.

Regarding the min-max implication basis we first

consider the set of extensions ext[F ] = {e1 =
{ab, abc, abcd}, e2 = {abc, abcd}, e3 = {abcd}}
together with the corresponding equivalence classes

F (e1), F (e2), F (e3). Each each equivalence class is divi-

ded into subclasses each containing one closed element :

— F (e1) = {a}+ {b}
— F (e2) = {abc}
— F (e3) = {abd, abcd}

Figure 1 displays on the left the confluence* F , on the

middle we have the object set O, and on the right is re-

presented the pre-confluence f [F ] of support closed pat-

terns of F . The min-max implication basis is made of the

internal basis Bi = {abc ! abcd} (this implication holds

both in (F a, Oa) and in (F b, Ob)) plus the external basis

Be = {a ! b, b ! a}.

4 Abstract closed patterns in

confluences*

In this section we consider abstract closed patterns as those

obtained in extensionally abstract Galois lattices, denoted

here as abstract Galois lattices for short, by constraining the

space 2O. The general idea, as proposed in [9] and resul-

ting in Proposition ?? in section 3.1 is that an abstract Ga-

lois lattice is obtained by selecting as an extensional space

a subset A of 2O closed under union i.e. an abstraction (or

dual closure subset) and therefore such that A = pA(2
O)

where pA where pA is an interior operator on 2O. The intui-

tive meaning is that the abstract extension extA(t) of some

pattern t will then be the union of the elements of A contai-

ned in its (standard) extension, i.e. extA = pA ◦ ext and

the corresponding abstract support closure operator with

respect to A is therefore fA = int ◦ pA ◦ ext. Intuitively,

as noticed in [10], this is because the corresponding abs-

tract Galois lattice is isomorphic, and as same support clo-

sure subset as the Galois lattice associated to the object set



O(A) each object a of which is an element of A and descri-

bed in T as int(a) 2. It is then straighforward that we obtain

that abstract Galois pre-confluences are simply the Galois

pre-confluences obtained through this change on object set.

Theorem 2 Let F be a confluence* of a lattice T , O a set

whose objects are described as elements of T , A = pA(O)
an abstraction of A, then :

Let pt denote the local description operators on F , we have

that

fA(t) = pt ◦ int ◦ pA ◦ ext(t), where (int, pA ◦ ext) is a

Galois connection on (T,A), is a support closure operator

on F with respect to A and fA[F ] is a pre-confluence.

We continue here the example of section 3.3 by using the

abstraction

A = {{o1, o2}, o1, o3}} = {{ab, abc}, {ab, abcd}}. Re-

call that pA(e) = [{a2A|a✓e}a. We obtain then :

— fA(a) = pa ◦ int ◦ pA({o1, o2, o3}) = a as

pA({o1, o2, o3}) = {o1, o2, o3} = {ab, abc, abcd}
— fA(b) = pb ◦ int ◦ pA({o1, o2, o3}) = b (same rea-

son as above)

— fA(abc) = pa ◦ int ◦ pA({o2, o3}) = >a = abcd

as pA({o2, o3}) = ; and therefore pa ◦ int(;) =
pa(>a) = >a

— fA(abd) = pa ◦ int ◦ pA({o3}) = >a = abcd as

pA({o3}) = ; (as above)

— fA(abcd) = pa ◦ int ◦ pA({o3}) = abcd (same as

above)

F is represented on the left of Figure 2. The corresponding

abstract support closure pre-confluence fA[F ] is displayed

on the right of the figure. What happens here, is that there

are only two possible extensions as extA[F ] = {;, O}. As

a result the two minimal elements of fA[F ] share the same

abstract extension O whereas the unique maximal element

>a = >b = abcd have an empty abstract extension.

5 Algorithmics

An algorithm to build closure support on confluent fami-

lies on 2X has been proposed in [3] whenever F is stron-

gly accessible. This restriction 3ensures a polynomial de-

lay in outputting support closed elements. This algorithm

has further been implemented as a generic tool and in or-

der to be efficient on multicores architectures particular in

PARAMINER [7]. Adapting it to confluences* is straight-

forward by avoiding computing the support closure of ;.

Basically, the algorithm performs a depth-first search each

step of which consists in adding an attribute x to the cur-

rent closed pattern t, checking whether the resulting pattern

2. In fact we just need the ∪-irreducible elements of A as objects

3. For (F,X) to be a strongly accessible set system, it is required

that between any pair of elements t1, t2 with t1 ≤ t2 in F there is a path

t1, t1 ∪ {x1}, ..., t1 ∪ {x1, . . . xk} = t2 all elements of which belong

to F .

a b

c

ba

d

a b

c

ba

d

1 2 3 1 2 3

ba

d

c

ba A = {{o ,o },{o ,o }}

{o ,o ,o } = p ({o ,o ,o })
A

{} = p ({o })
3

1 2 1 3

FIGURE 2 – Diagram of the abstract support closed

connected subgraphs pre-confluence fA[F ] (on the left

part of the figure) with respect to the abstraction A =
{{o1, o2}, {o1, o3}} of O. The support closed element abc

of f [F ] as been projected to the maximal element of F ,

abcd, because its extension {abc, abcd} is projected on ;
as no element of A is included in {abc, abcd}.

t [ {x} is in F , and closing the pattern. A SELECT func-

tion states whether a pattern belongs to F and closure is

only computed if it returns TRUE. The function has an ad

hoc implementation according to the problem in hand. In

terms of interior operators, SELECT implicitly tests whe-

ther pt(t [ {x}) = t [ {x} is true. A CLOSURE function

computes the closure of any t 2 F by implicitly applying

pt to int(ext(t)). Again the implementation is ad hoc, de-

pending of the problem at hand. An open question is the

construction and visualisation of the diagram of the pre-

confluence of support closed elements and of the corres-

ponding min-max implication basis.

6 Conclusion

Motivated by the problem of finding closed patterns in lan-

guages as the set of connected subgraphs of a graph, we

have investigated an extension of FCA where the pattern

language is a pre-confluence, i.e. a partial order defined

through the existence of a local meet operator, and that can

be expressed as a constrained union of a set of lattices. We

have first extended the standard property that relates clo-

sure subsets and subsets closed under the meet operator to

the case of pre-confluences. Then we have discussed the

existence of support-closure operators in pre-confluences,

extending a result of [3]. We have also shown that applying

interior operators to the powerset of objects we obtain, as in

the lattice case, abstract support closures. The connection

to FCA we have attempted to rises some technical ques-

tions, as the construction of diagrams of closure subsets,

as well as more fundamental questions. For instance, when

considering a support closed element as the intensional part

of some concept, i.e. an intent, we may have two different

concepts with the same extent which is somewhat distur-

bing. On the other hand, we could consider that the exten-

sion defines the concept, i.e. is an extent and in this case, a

concept may have several intents. Finally, regarding appli-



cations, its seems worthwhile to consider such structures,

as they are frequent when modeling data using graphs.
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