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Résumé

La sélection de motifs basée sur la similarité structu-
relle exacte ou approximative est un moyen de réduire
le nombre élevé des sous-graphes fréquents. Cependant,
les stratégies actuelles de similarité structurelle ne sont
pas efficaces dans beaucoup de contextes réels. En outre,
la nature combinatoire des graphes rend I’isomorphisme
exact ou approximatif trés coiiteux. Dans ce papier, nous
proposons une approche qui permet de sélectionner un
sous-ensemble de sous-graphes topologiques représenta-
tifs parmi les fréquents. L’ approche proposée surmonte le
coifiteux test d’isomorphisme exact ou approximatif en me-
surant la similarité structurelle globale en se basant sur un
ensemble d’attributs topologiques considérés. Elle permet
aussi de détecter des similaritées structurelles cachées (tels
que la densité, le diameétre, etc.) qui ne sont pas considé-
rées par les approches existantes. En outre, I’approche pro-
posée est flexible et peut étre facilement étendue avec des
attributs définis par ['utilisateur selon ’application. Les
analyses expérimentales sur des bases de graphes réelles
et synthétiques montrent l’efficacité de notre approche.

Mots Clef

Sélection de motifs, sous-graphes topologiques représenta-
tifs, sous-graphes fréquents, bases de graphes.

Abstract

Feature selection based on exact or approximate structural
similarity is a way to reduce the high number of frequent
subgraphs. However, current structural similarity strate-
gies are not efficient in many real-world cases. Besides,
the combinatorial nature of graphs makes performing exact
or approximate isomorphism very costly. In this paper, we
propose an approach that mines a subset of topological re-
presentative subgraphs among frequent ones. The propo-
sed approach overcomes the costly exact or approximate
isomorphism by measuring the overall structural simila-
rity based on a considered set of topological attributes. It
also allows detecting hidden structural similarities (such
as density, diameter; etc.) that existing approaches ignore.
In addition, the proposed approach is flexible and can be

easily extended with any user defined attributes depending
on the application. Empirical studies on real and synthetic
graph datasets show the efficiency of our approach.

Keywords

Feature selection, topological representative subgraphs,
frequent subgraphs, graph databases.

1 Introduction

With the emergence of graph databases, the task of frequent
subgraph discovery has been extensively addressed. Many
approaches have been proposed in the literature allowing
the extraction of frequent subgraphs in an efficient way.
Yet, the number of discovered frequent subgraphs is ex-
tremely high which causes information overload that may
hinder or even makes unfeasible further exploration.
Feature selection is a way to tackle this information over-
load problem. As structural similarity represents one major
cause of redundancy in frequent subgraphs, many works
have been proposed for subgraph selection based on exact
or approximate structural similarity [1, 2, 3, 4]. Some
works have been proposed based on closed and maximal
subgraphs such as [1, 2, 6, 5]. Although the set of closed or
maximal subgraphs is much smaller than that of frequent
ones, the number of subgraphs is still very high. In some
applications, slight differences between subgraphs do not
matters. Yet, in real-world cases very similar subgraphs so-
metimes slightly differ in structure. Exact structural iso-
morphism does not help to overcome this issue.

Many works have been proposed for subgraph selection
based on approximate structural similarity. In [3], authors
proposed an approach for subgraphs extraction and selec-
tion. For selection, the structural similarity between two
subgraphs is measured by how much does their maximum
common subgraph represents from their overall structure.
A very close work is [4], where authors proposed an ap-
proach for mining a set of structural representative sub-
graphs among the frequent ones. They adopted a two-step
approach that is based on approximate structural similarity
on micro and macro sides. In the first step, they consider
a tolerance threshold to summarize approximately isomor-



phic subgraphs into one representative. In the second step,
they collapse multiple structurally similar subgraphs into
one representative using a clustering algorithm.

Existing selections approaches, that are based on exact or
approximate structural similarity, look into every single de-
tail and test the structural similarity by establishing a mat-
ching between subgraphs. This similarity detection stra-
tegy is not efficient in many real-world applications. On
one hand, because computing every possible matching bet-
ween subgraphs is very costly. On the other hand, exact
structural similarity does not allow detecting similar yet
slightly different subgraphs, and approximate structural
similarity has the problem of threshold setting. Since a
tight threshold will prevent detecting similar subgraphs that
slightly differ in structure beyond the tolerance threshold.
In contrast, a loose threshold will hinder the soundness of
the selection because of false positives. This rises the need
for a different way to consider the structural similarity such
that both close and distant structural similarities would be
detected with respect to the soundness of results.

In order to overcome these drawbacks, we propose a novel
approach that mines a subset of topological representative
subgraphs among frequent ones. At a glance, our approach
involves two steps. In the first step, each subgraph is en-
coded into a topological description-vector containing the
corresponding values for a set of topological attributes. In
the second step, subgraphs with similar topological des-
criptions are clustered and the central subgraph in each
cluster is considered as the representative delegate. Our ap-
proach overcomes the costly exact or approximate isomor-
phisms and allows detecting hidden similarities between
subgraphs (such as spectral radius or closeness centrality)
that existing structural similarity approaches ignore. Be-
sides, It can be easily extended by enabling the user to
target a specific set of topological attributes depending on
how important each one is to the application.

Considering topological properties was inspired by works
like [8, 9, 10] where authors showed the efficiency of to-
pological attributes in describing graph data. For instance,
in [8], authors proposed a classification framework based
on the assumption that graphs belonging to the same class
have similar topological descriptions. Our approach is ba-
sed on similar assumption and consider that structurally si-
milar subgraphs should have similar topological properties
such that even a slight difference does not affect the ove-
rall topological similarity. Besides, in some applications,
the user may be only interested in some specific structu-
ral properties. Considering exact or approximate structural
similarity approaches does not allow this specificity.

The remainder of the paper is organized as follows. Section
2 presents and defines the preliminary concepts as well as
the main algorithm of our approach. Section 3 describes
the datasets and the experimental settings. In Section 4, we
present the obtained results and the discussion.

2 Material and methods

In this section, we present the fundamental definitions and
the formal problem statement of the proposed approach.

2.1 Preliminaries

Definition 1. (Graphs and graph databases) Let G be a da-
tabase of connected graphs. Each graph G = (V,E, X, L)
of G is given as a set of nodes V and edges E. The nodes
are labeled within an alphabet 3 and L is the label func-
tion. |V | and |E| represent the number of nodes and edges.

Definition 2. (Subgraph isomorphism) A labeled graph G
is subgraph of another one G', denoted by G C G, if there
exists an injective function f : V. — V', such that :

- Vu,v eV iV{u,v} € E— {f(u), f(v)} € E
-YoeV:Lw)=L(f(v))

- Hu, v} € B(G) : L{u,v} = L'{f(u), f(v)}

where L and L’ are the label functions of G and G’'. Under
these conditions, [ is called an embedding of G in G', G is
a subgraph of G, and G’ is a supergraph of G.

Definition 3. (Frequent subgraph) Given a subgraph g, a
graph database G, and a minimum frequency threshold T,
let G, be the set of graphs where g appears (i.e. g has a
subgraph isomorphism in each graph in G4). The subgraph

g is considered as frequent if support(g) = |‘gg‘7|| >

Problem Statement : Even though the existing approaches
for subgraph selection greatly enhanced the selection pro-
cess, the number of selected subgraphs is still high. Yet, we
want to show as few subgraphs as possible so that the user’s
reviewing efforts are minimized. The general framework of
our selection strategy is as follows. Given a set of frequent
subgraphs  and an integer k£ € [1..€2]], we want to select
up to k representative subgraphs Q; C €2 such that each
frequent subgraph g € () has one representative subgraph-
delegate g* € )i, and each representative subgraph is the
closest one to all the subgraph it represents.

2.2 Naive approach

A fundamental part in our selection approach is the graph
encoding which consists in transforming each subgraph
into a different format that is accepted by the clustering al-
gorithm. A very common way of encoding in the literature
(for instance [8] and [12]) is to transform the input sub-
graphs into a context-matrix where each subgraph is repre-
sented by a binary vector denoting by 1 or O the presence
or the absence of the subgraph in each graph in the data-
base. After that, the context-matrix is considered as input
for clustering. We term this method naive approach and we
consider it for comparison.

2.3 Topological representative subgraph se-
lection
The main idea of our approach, termed TRS (for

Topological Representative Subgraph), is based on the as-
sumption that structurally similar subgraphs should have



similar topological properties such that even a slight diffe-
rence in the structure does not affect the overall similarity.
Accordingly, we adopt a two-step selection approach. In
the first step, we encode each subgraph into a topological
description-vector based on a set of topological attributes.
In the second step, we cluster the topological description-
vectors in order to select one representative delegate from
each set of topologically similar subgraphs.

Topological attributes. We select a set of topological at-
tributes from the literature [8] that are interesting and effi-
cient in describing connected graphs. In the following, we
list and define the considered attributes :

1. Number of nodes : The total number of nodes in the
graph, also called the graph order |V|.

2. Number of edges : The total number of edges in the
graph, also called the graph size |E|.

3. Average degree : The degree of a node u, denoted
deg(u), represents the number of nodes adjacent to .
The average degree of a graph G is the average value
of the degrees of all nodes in G. Formally : deg(G) =
LS deg(u;) where deg(u;) is the degree of the
node u; and n is the number of nodes in G.

4. Density : The density of a graph G = (V, E) mea-
sures how many edges are in £ compared to the maxi-
mum possible number of edges between the nodes in

V. Formally : den(G) = %

5. Average clustering coefficient : The clustering co-
efficient of a node u, denoted by c(u), measures
how complete the neighborhood of w is i.e. c(u) =
m where k, is the number of neighbors of u
and e, is the number of connected pairs of neighbors.
The average clustering coefficient of an entire graph

G having n nodes, is given as the average value over
I

all the nodes in G. Formally : C(G) = — >"." | ¢(u;).
n

6. Average effective eccentricity : For a node u, the ef-
fective eccentricity represents the maximum length of
the shortest paths between u and every other node
vin G, i.e., e(u) = maz{d(u,v) : v € V}. The
average effective eccentricity is defined as Ae(G) =
L5 | e(u;), where n is the number of nodes of G.

7. Effective diameter : The effective diameter repre-
sents the maximum value of effective eccentricity
over all nodes in the graph G, i.e., diam(G) =
maz{e(u) | u € V} where e(u) represents the ef-
fective eccentricity of u as defined above.

8. Effective radius : The effective radius represents the
minimum value of effective eccentricity over all nodes
in the graph G, i.e., rad(G) = min{e(u) | v € V}
where e(u) represents the effective eccentricity of .

9. Closeness centrality : It measures how fast infor-
mation spreads from a given node to other reachable
nodes in the graph. For a node u, it represents the re-
ciprocal of the average shortest path length between

u and every other reachable node in the graph, i.e.,
- n=1 :

Ce(u) = S o, D) where d(u,v) is the length

of the shortest path between the nodes v and v. For a

graph GG, we consider the average value of closeness

centrality of all the nodes, i.e., Co(G) = £ 37w,

n
10. Percentage of central nodes : Here, we compute the
ratio of the number of central nodes from the number
of nodes in the graph. A node u is considered as cen-
tral point if the value of its eccentricity is equal to the
effective radius of the graph, i.e., e(u) = rad(G).

11. Percentage of end points : It represents the ratio of
the number of end points from the total number of
nodes of the graph. A node w is considered as end
point if deg(u) = 1.

12. Number of distinct eigenvalues : Any graph G can
be represented by an adjacency matrix A. Here, we
count the number of distinct eigenvalues of A.

13. Spectral radius : Let A be the adjacency matrix of the
graph G and X1, Xg, ..., N, be the set of eigenvalues
of A. The spectral radius of G, denoted p(G), repre-
sents the largest magnitude eigenvalue, i.e., p(G) =
maz(| ~; |) where i € {1,..,m}.

14. Second largest eigenvalue : The value of the second
largest eigenvalue of the adjacency matrix.

15. Energy : The energy of an adjacency matrix A of a
graph G is defined as the squared sum of the eigenva-
lues of A. Formally : E(G) = Y1 | X2,

16. Neighborhood impurity : The impurity degree of a
node u belonging to a graph G, having a label L(u)
and a neighborhood (adjacent nodes) N (u), is defined
as ImpurityDeg(u) =| L(v) : v € N(u), L(u) #
L(v) |. The neighborhood impurity of a graph G re-
presents the average impurity degree over all nodes
with positive impurity.

17. Link impurity : An edge (u,v) is considered to be
impure if L(u) # L(v). The link impurity of a graph
G with k edges is defined as : |(u’“)€Ei(“#L(”)| i

As efficiency and scalability remain big challenges for
graph mining algorithms, the proposed description is uni-
fied which helps to overcome both challenges. On one
hand, these attributes are an efficient description that allows
revealing hidden topological similarities that exact and ap-
proximate structural isomorphism do not consider. On the
other hand, considering a fixed number of descriptors gua-
rantee that the encoded vectors would be of a fixed size no
matter what the number of graphs in the database is.

K-medoids clustering. Here, we discuss the second part
of our selection approach which is the clustering step. We
use k-Medoids [11] which is a well known clustering algo-
rithm that is widely used in unsupervised learning. It takes
as input a set of objects {2 and a number of clusters &, and
gives as output the k clusters’ centers (called medoids). To
do so, k-Medoids uses these definitions :



Definition 4. (Pairwise distance between objects) Given
two objects O1 and O correspondingly described by the
vectors X and Y, the distance between them, denoted
d(0O1, O3), is defined as follows :

X
d(O1,02) = X1 | — il
Definition 5. (Global distance between objects) Given a

set of objects ), the total distance between an object O
and all the other ones in () is defined by :

Do = Zvoieﬂ\o d(0,0;)
Definition 6. (Cluster medoid) An object O* is said to be
cluster’s medoid (the most centrally located object of the
cluster), if it has the minimum sum of distances to all the
other objects O; within the cluster C. Formally :

DO* = minoi cC (Doi )

The general algorithm of k-Medoids is described in Algo-
rithm 1. First, it randomly selects k objects from {2 to be the
medoids, i.e. 2*. Then, it assigns each non-selected object
to the cluster of the nearest medoid. After that, it swaps the
k medoid objects with other non-medoid objects aiming to
minimize the overall distance. D({2*) is the total distance
before the swap and D(€2)) is the total distance after the
swap. If the cost of the swap (C' = D(§) — D(Q2%)) is
strictly negative then the swap is considered as beneficial,
otherwise it is ignored. The assignment and swap steps are
iteratively performed until no change or until a user-defined
maximum number of iteration is reached. Many implemen-
tations of k-Medoids have been proposed in the literature.
We use CLARANS [11] since it was shown that it is effi-
cient for large-scale data clustering.

Algorithme 1: K-MEDOIDS
Data : Set of objects 2, number of clusters k, maximum
number of iterations max;ie,

Result : Set of medoids Q* = {O1, 0o, ..., O}
begin
QF « Qy, : start with K objects randomly selected
from €;
repeat
Assign each one of the non-selected objects to the
cluster having the most similar medoid;
Calculate the cost C; = (D(2},) — D(Q2*)) for
each swap of one medoid with another object;
if C; < 0 then

L O — Qs

nbiter = nbiter +1 5

| until (no change) or (nbjter > MATjter);

3 Experimental analysis
3.1 Datasets

To experimentally evaluate our approach, we use different
graph datasets : protein 3D-structures and chemical com-

pounds. Table 1 summarizes the characteristics of the data-
sets : dataset, |G|, Avg.|V|, Avg.|E| and | Q | correspond
respectively to the name of the corresponding protein fa-
mily or chemical compound dataset, number of graph, ave-
rage number of nodes, average number of edges and num-
ber of frequent subgraphs obtained from each dataset.

TABLE 1 — Benchmark datasets

Dataset |G| Avg.|[V| Avg.E| [ Q|
G-proteins 66 246 971 114792
C1 set domains 76 238 928 258371
AIDS antiviral screen 43850 28 30 6749

The first two datasets were previously used in [12]. Both
datasets will be used to evaluate the quality of the selec-
ted subgraphs. Each dataset is equally divided between
positive and negative samples. Positive proteins are sam-
pled from a selected protein family, namely G-proteins and
C1 set domains, whereas negative proteins are randomly
sampled from the Protein Data Bank [13]. The last data-
set contains the activity test information of 43850 chemi-
cal compounds. This dataset was previously used in many
studies such as [4] and is publicly available on the website
of the Developmental Therapeutics Program !.

3.2 Protocol and settings

Graph building : For chemical compounds, each atom is
represented by a node and labeled with the atom type. An
edge exists between two nodes if there exists a chemical
bond between their corresponding atoms. For protein 3D-
structures, each protein is parsed into a graph of amino
acids. Each node represents an amino acid residue and is
labeled with its amino acid type. Two nodes u and v are lin-
ked by an edge if the euclidean distance between their two
C,, atoms is below a threshold distance §. We use § = 7A.
Frequent subgraph mining : We use the state-of-the-art
method gSpan [14] to find frequent subgraphs in each da-
taset. We tried different minimum frequency threshold in
order to obtain a reasonable number of frequent subgraphs
from each dataset. The retained minimum frequency thre-
shold are 30% for G-proteins and C1 set domains, and 5%
for AIDS antiviral screen dataset.

Representative subgraph selection : Both selection me-
thods (naive approach and TRS) were implemented in R.
Subgraph encoding : To measure the quality of subgraphs,
each one of them is encoded into a binary vector by deno-
ting 1 or O, the presence or the absence of the subgraph in
each graph in the dataset. The quality of the selected sub-
graphs is measured over their encoding vectors.

4 Results and discussion
4.1 Empirical Results

As previously mentioned, we first evaluate our approach
using the classification datasets G-proteins and C1 set do-

1. http ://dtp.nci.nih.gov/docs/aids/aids_data.html



mains. We measure the quality of the selected subgraphs
using the information gain which is one of the most po-
pular interestingness measures in data mining. The infor-
mation gain is measured separately for each subgraph in
each set in order to measure how each representative is in-
formative for the considered task (i.e. classifying the two
protein datasets). The average value of information gain is
computed for all the frequent subgraphs then for the repre-
sentative subgraphs selected by TRS and those selected by
the naive approach using different number of representa-
tives. The average information gain value obtained with all
the frequent subgraphs is considered as standard value for
comparison such that a good set of representatives should
be at least as informative as the whole initial set of all
frequent subgraphs. Table 2 shows the obtained results.

TABLE 2 — Comparison of average information gain of the
topological representative subgraphs (TRS) with those se-
lected by the naive approach (NA) and the initial set of all
frequent subgraphs (FSG).

G-proteins C1 set domains

FSG 0.216 0.148
#irepresentatives NA TRS NA TRS
50 0.104 0.324 0.068 0.254
100 0.092 0.342 0.061 0.285
200 0.096 0.343 0.044 0.273
300 0.097 0.347 0.058 0.267
400 0.094 0.339 0.051 0.276
500 0.090 0.348 0.052 0.269
600 0.096 0.340 0.054 0.267
700 0.097 0.343 0.055 0.272
800 0.098 0.352 0.054 0.274
900 0.094 0.358 0.054 0.276
1000 0.094 0.353 0.056 0.276

=000 F00T3 FEF0.0T2 F00T3
Average 0.09570 005 0-344707030 0055767011 027175017

Table 2 shows that TRS is able to select a subset of sub-
graphs that are more informative than those selected by the
naive approach and the initial frequent subgraphs. Whe-
reas, the quality of the subsets of representative subgraphs
selected by the naive approach did not even reach the infor-
mation gain value of the whole set of frequent subgraphs.
Both previous interpretations goes with all the used num-
bers of representatives. This proves the reliability of our
selection approach and shows that using the topological at-
tributes for description is more efficient than using the oc-
currence information. It enables k-medoids to better detects
similarity relations between subgraphs and thus to select a
subset of representatives that are most informative.

4.2 Runtime analysis

In this section, we study the runtime of our algorithm com-
pared to that of the naive approach.

Scalability to higher number of clusters. We study the
effect of varying the number of clusters k£ on the runtime
of clustering for both TRS and the naive approach. We se-
lect the representative subgraphs among the frequent ones
previously extracted from the AIDS antiviral screen data-
set. Figure 1 illustrates the evolution of runtime using dif-

ferent values of k£ ranging from 200 to 800 with a step-size
of 200. Figure 1 shows a huge difference in runtime bet-

—+—Naive Approach -®TRS
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FIGURE 1 — Runtime of clustering for TRS and naive ap-
proach with different number of clusters (k).

ween the two approaches. In fact, for 200 clusters, the naive
approach consumed more than one and half hour to fi-
nish the clustering, whereas TRS needed only few seconds.
This difference becomes much bigger with higher values
of k. As the number of clusters increases, the runtime of
the naive approach considerably increases as well. Yet, the
clustering time in TRS did not increase significantly and al-
most stays steady with higher values of k. Since the cluste-
ring is almost polynomial and considers each possible pair
of subgraphs for comparison, the smaller the description of
the subgraphs is, the faster the clustering would be. Conse-
quently, the huge gain in runtime is basically due to the
small and fixed size of the topological description-vectors
used in TRS compared to the context description-vectors
in the naive approach.

Scalability to higher number of subgraphs. Here, we
study the effect of varying the number of frequent sub-
graphs on clustering runtime for both TRS and the naive
approach. We select the representative subgraphs among
different sets of frequent subgraphs ranging from 10000
to 100000 with a step size of 10000. The input subgraphs
were randomly selected among the frequent subgraphs pre-
viously extracted from the C1 set domains dataset. Figure
2 illustrates the evolution of runtime with higher number
of subgraphs, for 100 clusters. As shown in the Figure,
TRS takes only few seconds to select the representative
subgraphs, whereas, the naive approach takes clearly much
more time. Increasing the number of subgraphs does no af-
fect the runtime of TRS as much as it does with the naive
approach. This shows that TRS is more scalable than the
naive approach to higher numbers of subgraphs.

Scalability to higher number of graphs. In real-world
applications, the size of databases is usually very high. We
study the effect of varying the number of graphs on the
runtime of both TRS and the naive approach. We fix the
number of subgraphs to 10000, and we synthetically mani-
pulate the list of occurrences of each frequent subgraph and
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FIGURE 2 — Runtime of clustering for TRS and naive ap-
proach to select 100 representatives among different num-
bers of subgraphs.

replace it by a random list of random occurrences between
0 and a considered number of graphs. The considered num-
bers of graphs are between 1000 and 10000, with a step size
of 1000. Figure 3 illustrates the evolution of runtime with
higher number of graphs for 100 clusters.
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FIGURE 3 — Runtime of clustering for TRS and naive ap-
proach to select 100 representatives among 10000 sub-
graphs whith variation of the number of graphs.

As the naive approach uses the occurrence information
to construct the context description-vectors, this makes it
highly affected by the increasing of the size of the database.
Figure 3 shows that the runtime of the naive approach in-
creases considerably with higher numbers of graphs. Whe-
reas, the runtime of TRS is only few seconds and remains
stable no matter what the size of the database is. This shows
that TRS is scalable and more robust in real-world applica-
tions that usually deals with huge amounts of data.

5 Conclusion

We proposed a novel approach that mines a subset of to-
pological representative subgraphs among frequent ones.
Instead of exact or approximate structural similarity our
approach follows a more meaningful selection strategy,

that helps on both selecting a subset of topologically irre-
dundant and informative subgraph-delegates, and detecting
hidden similarities between subgraphs that current selec-
tion approaches ignore. This approach can be easily exten-
ded using any user defined attribute. Besides graph data-
bases, it can also handle other scenarios such as subgraph
selection in single graph. Empirical studies on real and syn-
thetic graph datasets showed that our approach is fast and
allows selecting informative subgraphs. In many applica-
tion, the user may not be able to define a specific number
of clusters. A promising future direction could be to re-
move the k constraint. This can be done using a parameter
free clustering algorithm such as Medoids-shifts [15]. In
order to extend our work to supervised classification, we
also plan to compare our approach with other approaches
based on structural similarity such as treelets [17, 16]. We
will study how to combine this approach with a semantical
based one as described in [7].
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