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Résumé

Mesurer le degré d’incohérence des bases de connais-

sances permet aux agents une meilleur compréhension de

leur environnement. Différentes approches sémantiques et

syntaxiques ont été proposées pour quantifier l’incohé-

rence. Dans ce papier, nous proposons d’analyser les li-

mites des approches existantes. Tout d’abord, nous explo-

rons la propriété logique d’additivité en considérant les

composantes connexes du graphe représentant les bases de

connaissances. Ensuite, nous montrons comment la struc-

ture de ce graphe peut être prise en compte pour identifier

d’une manière plus fine la responsabilité de chaque for-

mule dans l’incohérence. Finalement, nous étendons notre

approche pour fournir une mesure d’incohérence de la

base entière en satisfaisant des propriétés définies.

Mots Clef

Mesure d’incohérence, Logique classique.

Abstract

Measuring inconsistency degrees of knowledge bases of

different agents facilitates the understanding of an agent

to her environment. Several semantic and syntactic based

approaches have been proposed to quantify inconsisten-

cies. By analyzing the limitations of existing approaches,

we deeply explore the logical property of the Additivity

condition through the connected components based on a

graph representation of knowledge bases. Then, we show

how the structure of this graph can be taken into account

to discriminate in a fine-grained way the blame of each

formula for the inconsistency. Finally, we extend our fra-

mework to provide an inconsistency measure for the whole

base satisfying desired properties.

Keywords

Measuring Inconsistency, Classical Logic.

1 Introduction

Measuring inconsistency has been proved useful and at-

tractive in diverse scenarios including software specifica-

tions [19], e-commerce protocols [2], belief merging [25],

news reports [10], integrity constraints [5], requirements

engineering [19], databases [20, 8], ontologies [29], se-

mantic web [29], and network intrusion detection [21].

Indeed, we cannot expect large-sized knowledge bases

(KBs, for short) inconsistency free in real intelligent sys-

tems, such as multi-agents communicating with each other

to build a common KB or to perform some actions in a

complex environment.

Analyzing inconsistency has gained a considerable atten-

tion and become an important issue in computer science

recently [1]. Indeed, measuring inconsistency is helpful to

compare different KBs and to evaluate their quality [4]. For

instance, giving the opportunity for an agent to choose bet-

ween different KBs, naturally he may try to choose the one

that is less inconsistent.

To understand the nature of inconsistency and to quantify

it in turn, a number of logic-based inconsistency measures

have been studied, including the maximal η-consistency

[15], measures based on variables or via multi-valued mo-

dels [4, 9, 24, 10, 6, 18, 27, 17], n-consistency and n-

probability [3], minimal inconsistent subsets based incon-

sistency measures [12, 22, 23, 28], the Shapley inconsis-

tency value [11, 13], and the inconsistency measurement

based on minimal proofs [14]. Although it is hardly pos-

sible to have a complete comparison of the proposed mea-

sures, one way to categorize the existing measures can be

by the dependence of syntax or semantics : Semantic ba-

sed ones aim to compute the proportion of language that

is affected by the inconsistency. The inconsistency values

belonging to this class are often based on some paracon-

sistent semantics and thus syntax independent. Whilst, syn-

tax based ones are concerned with the minimal number of

formulae that cause inconsistencies. Viewing minimal in-

consistent subsets as the cornerstones of inconsistency, it

is natural to derive inconsistency measures from minimal

inconsistent subsets of a KB. Another possible classifica-

tion of different measures originates in the measuring ob-

jective : formula oriented or knowledge base oriented.

In this paper, we propose a new approach for measuring

inconsistency, both formula oriented and knowledge base

oriented. It is inspired, on one hand, by the observation

that existing measures fail to distinguish certain KBs which

should have different inconsistency degrees. On the other

hand, we explore a specific property, namely Additivity,

that is rarely discussed in the literature due to the modeling

difficulty [13]. This is done by analyzing connections bet-

ween minimal inconsistent subsets which is shown a use-

ful and general way to quantify more finely the inconsis-



tency responsibility of a formula or the inconsistency of

a whole base. We show that measures based on this ap-

proach are different from existing inconsistency ones, and

are able both to look inside the minimal inconsistent sub-

sets, and to take into account the distribution of the contra-

dictions among different formulae of a base. We also en-

hance the additivity property to be more intuitive. Our mea-

sures are shown satisfying the basic properties and the en-

hanced additivity. Clearly, such measures belong to syntax-

dependent category.

The paper is organized as follows : Section 2 reviews syn-

tactic approaches to measuring inconsistencies. In Section

3, we revisit the additivity property and propose the graph

representation of a KB based on which we introduce the

notion of MUS decomposition. This notion is then used in

Section 4 to evaluate the degree of inconsistency of each

formula in the KB. In Section 5, we generalize our incon-

sistency measure to quantify inconsistency of a whole base.

Section 6 concludes by giving perspectives of this work.

2 Preliminaries
Through this paper, we consider the propositional language

L built from a finite set of propositional symbols P un-

der connectives {¬,^,_,!}. We will use a, b, c, . . . to

denote propositional variables. Also, we use Greek letters

α, β, γ, . . . to denote propositional formulae and sets the-

reof are denoted Φ,Ψ,Θ, . . .

A KB K consists of a finite set of propositional formu-

lae. Please note that K is fixed in the sequel. We denote

by V ar(K) the set of variables occurring in K and |S| the

cardinality of a set S. Moreover, a KB K is inconsistent if

there is a formula α such that K ` α and K ` ¬α, where

` is the deduction in classical propositional logic.

If K is inconsistent, then one can define the notion of Mini-

mal Inconsistent Subset as an unsatisfiable set of formulae

M in K such that any of its subsets is satisfiable. Formally,

Definition 1 (MUS) Let K be a KB and M be a subset of

K. M is a minimal unsatisfiable (inconsistent) subset of K

iff M ` ? and 8M0 ⇢ M, M0
0 ?.

Clearly, an inconsistency K can have multiple minimal

inconsistent subsets. The set of all minimal inconsistent

subsets of K is defined as MUSes(K ) = {M ✓ K |
M is a MUS}. When a MUS is a singleton, the single

formulae in it is called a self-contradictory formula. A

formula α that is not involved in any MUS of K is cal-

led free formula. That is, α do not have any relationship

with the inconsistency of K. We denote SelfC(K) =
{α 2 K | {α} ` ?} and use free(K) = {α | α 62
MUSes(K)}.

At the same time, we can define the Maximal Consistent

Subset (MC) and Hitting set as follows :

Definition 2 (MC) Let K be a KB and M be a subset of

K. M is a maximal consistent subset of K iff M 0 ? and

8α 2 K \M, M[ {α} ` ?.

We denote by MCes(K) the set of all maximal consistent

subsets of K.

2.1 Inconsistency Measures

In this section, we review some inconsistency measures.

We limit our presentation to the most important and related

measures to the ones proposed in this paper.

There have been a number of proposals for measuring in-

consistency in KBs defined through minimal inconsistent

subsets theories. In [13], Hunter and Konieczny introduce

a scoring function allowing to measure the degree of in-

consistency of a subset of formulae of a given KB. In other

words, for a subset K 0 ✓ K, the scoring function is de-

fined as the diminution of the number of minimal incon-

sistent subsets while K 0 is removed (i.e. |MUSes(K )| −
|MUSes(K −K 0)|). By extending the scoring function,

the authors introduce an inconsistency measure of the

whole base, defined as the number of minimal inconsistent

subsets of K. Formally, IMI(K) = |MUSes(K )|. In the

same paper, a family of “MinInc inconsistency values"

MIV based on minimal inconsistent subsets is also pre-

sented :

– MIVD(K,α) is a simple measure that values 1 if α be-

longs to a minimal inconsistent subset and 0 otherwise.

– MIV# is defined in the way of the scoring function, i.e.

MIV#(K,α) = |{M 2 MUSes(K ) | α 2 M}|.
– MIVC takes into account the size of each MUS in

addition to the number of MUSes of K, formally

MIVC(K,α) =
X

α2M|M2MUSes(K )

1

|M|
.

Additionally, another inconsistency value IM , that com-

bines both the MUSes and the MCes, has been introduced

in [7]. The IM measure counts for a given KB, the num-

ber of its MCes and its Self-contradictory formulae, i.e.

IM (K) = |MCes(K)|+ |SelfC(K)| − 1.

3 MUS partitioning in knowledge

bases

There are a set of well accepted basic properties that incon-

sistency measures should satisfy (see Definition 3), while

leaving one property Additivity debatable [12]. In this sec-

tion, we propose an enhancement of the additivity property

to make it more intuitive and give a way to modify the

IM (K) measure which is not additive to satisfy the en-

hance additivity.

Definition 3 A basic inconsistency measure I is an incon-

sistency measure satisfying the following properties, for all

KBs K and K 0 and for every two formulae α and β in L :

(1) Consistency : I(K) = 0 iff K is consistent

(2) Monotony : I(K)  I(K [K 0)
(3) Free Formula Independence : if α is a free formula in

K [ {α}, then I(K [ {α}) = I(K)
(4) Dominance : if α ` β and α 0 ?, then I(K [ {β}) 

I(K [ {α})



These properties result from translating the ones of Sha-

pley’s characterization [26]. The monotony property shows

that the inconsistency value of a KB has to be increased

while adding new formulae. And the free formula indepen-

dence property states that the set of formulae not invol-

ved in any minimal inconsistent subset is not considered in

the inconsistency measure. Finally the dominance property

states that if we substitute a consistent formula by a logi-

cal consequence one, the inconsistency measure can not be

increased.

Besides, another property called Additivity 1 has been pro-

posed in [13] by translating the additivity axiom of Sha-

pley’s characterization as following [26].

Definition 4 (Additivity) Let K1, . . . ,Kn be KBs and I

an inconsistency measure. I is additive if it satisfies

the following condition : If MUSes(K1 [ . . . [Kn) =
MUSes(K1 ) ⊕ . . .⊕ MUSes(Kn)

2, then I(K1 [ . . . [
Kn) = I(K1) + . . .+ I(Kn).

The additivity was proposed to ensure that the inconsis-

tency degree of a KB K can be obtained by summing

up the degrees of its sub-bases Ki under the condition

that {MUSes(Ki)} is a partition of MUSes(K). Ho-

wever, Luce and Raiffa have pointed out that the interac-

tion of sub-bases (sub-games in [16]) is not taken into ac-

count by Additivity, which is one of the criticisms about

this condition [16, 13]. Although the partitionability of

MUSes is used to describe a sort of interaction in Defi-

nition 4, we argue that it is not enough. Consider the follo-

wing example :

Example 1 Let K1 = {a,¬a},K2 = {¬a, a ^ b},K3 =
{c,¬c}, each of which contains only one single MUS.

Consider two bases K = K1 [ K2,K
0 = K1 [ K3.

Clearly, MUSes(K)= MUSes(K1) ⊕ MUSes(K2),
MUSes(K 0) = MUSes(K1) ⊕ MUSes(K3). For any

measure I , if I satisfies Additivity by Definition 4, we have

I(K) = I(K1) + I(K2) and I(K 0) = I(K1) + I(K3).
Taking the MIV inconsistency measure family introdu-

ced in Section 2.1, single MUS leads to the same incon-

sistency value. Then K and K’ will have the same va-

lue, which is counterintuitive because the components of

MUSes(K 0) are less interactive thus more spreading than

that of MUSes(K), and in turn K 0 should, intuitively,

contain more inconsistencies than K.

To enhance the consideration of interaction among sub-

bases, we propose the following Enhanced Additivity :

Definition 5 (Enhanced Additivity) Let K1, . . . ,

Kn be KBs and I an inconsistency measure. If

MUSes(K1 [ . . . [Kn) = MUSes(K1 ) ⊕ . . .⊕
MUSes(Kn) and {α 2 MUSes(Ki)} \ {β 2
MUSes(Kj)} = ; for all 1  i 6= j  n,

1. The Additivity condition is named Decomposability in [12].

2. We denote a partition {A,B} of a set C by C = A ⊕ B, i.e.,

C = A ∪B and A ∩B = ∅.

I(K1 [ . . . [ Kn) = I(K1) + . . . + I(Kn). I is

then called an independent-additive measure.

Note that the enhanced additivity requires an extra pre-

condition, which is to encode a stronger independence

among sub-bases to perform additivity. Clearly, enhan-

ced additivity implies additivity. The enhanced additivity

can exclude the counterintuitive conclusions as given in

Example 1 : suppose I satisfies the enhanced additivity,

then we have I(K 0) = I(K1)+ I(K3), but not necessarily

I(K 0) = I(K1) + I(K2). Hence I(K) is not necessarily

equal to I(K 0).
While we can see that the MIV measure family satisfies

the additivity and the enhanced additivity, it is not case for

the IM measure as showed below.

Proposition 1 The IM measure is neither additive nor en-

hanced additive.

Proposition 2 Let K1 and K2 be tow KBs such that

{α 2 MUSes(K1)} \ {β 2 MUSes(K2)} = ;. Then,

|MCes(K1 [K2 )| = |MCes(K1 )| ⇥ |MCes(K2 )|.

Because the enhanced additivity gives a more intuitive cha-

racterization of interaction among sub-sets to be added up,

in the following, we are interested in restoring the enhan-

ced additivity property of IM measure. To simplify termi-

nology, in the rest of the paper, we call the enhanced addi-

tivity simply Additivity by default unless other claims are

made. To reach this goal, we first define the three following

new concepts : graph representation, MUS decomposition,

and elementary MC.

Definition 6 Given a KB K with MUSes(K ) =

{M1, . . . ,Mn}, the graph representation of K, de-

noted GMUS(K), is a graph such that :

– each vertex is labeled by an element from

{M1, . . . ,Mn}
– 8M,M0 2 MUSes(K ) such that M\M0 6= ;, there

exists an edge between M and M0.

The graph representation of a KB K allows us to obtain

a structure gathering all the interconnected MUSes of K.

Now, we introduce in the light of the graph representation

the notion of MUS decomposition :

Definition 7 Let K be a KB and {C1, . . . , Cp} with Ci ✓
K for 1  i  p. {C1, . . . , Cp} is the MUS decomposition

of K iff {C1, . . . , Cp} is the set of the connected compo-

nents of GMUS(K).

A MUS decomposition {C1, . . . , Cp} of a KB K represents

a partition of the minimal inconsistent subsets of K into

connected components. Clearly, it is easy (P-time) to obtain

such set since each two interconnected MUSes belong to

the same connected component.

Proposition 3 Let K be a KB such that MUSes(K ) 6= ;.

K possesses a unique MUS decomposition.



Definition 7 allows us to associate to a given KB K a set

of sub-bases K1, . . . ,Kp such that the elements of each

sub-base Ki are the formulae of the connected component

Ci.
In the following, we present an alternative to the inconsis-

tency measure IM so as to make it additive. To this end, we

introduce the concept of elementary MC by using the MUS

decomposition.

Definition 8 Let K be a KB such that K 0 ✓ K and

{C1, . . . , Cp} be the MUS decomposition of K. K 0 is an

elementary MC of K iff there exists a connected component

Ci of K such that K 0 2 MCes(Ci). We denote EMC (K )
the set of all elementary MC of K, i.e. EMC (K ) =
p
[

i=1

MCes(Ki).

That is, an elementary maximal consistency should be local

restricted by a connected component of MUSes(K).

Example 2 Let K = {a ^ d,¬a,¬b, b _ ¬c,¬c ^ d,¬c _
e, c,¬e, e^d}. The MUS decomposition of K contains two

subsets, C1 = {M1}, and C2 = {M2,M3,M4,M5}
such that M1 = {¬a, a ^ d}, M2 = {c,¬b, b _ ¬c},

M3 = {c,¬c ^ d}, M4 = {¬c _ e, c,¬e}, and M5 =
{¬e, e ^ d}. Then, EMC (K ) = {{a ^ d}, {¬a}, {¬b, b _
¬c,¬c ^ d,¬c _ e, e ^ d}, {¬b, b _ ¬c,¬c ^ d,¬c _
e,¬e}, {b_¬c,¬c_e, c, e^d}, {¬b,¬c_e, c, e^d}, {b_
¬c, c,¬e}, {¬b, c,¬e}}.

EMC (K ) allows us to define an alternative of the IM mea-

sure. This result is stated in Proposition 4.

Definition 9 Let K be a KB. The inconsistency degree I 0M
is defined as :

I 0M (K) =

8

<

:

|EMC (K )|+ |SelfC (K )| if K ` ?;

0 otherwise.

Proposition 4 The I 0M measure is additive.

The additivity property shows a way to take into ac-

count the connection between minimal inconsistent subsets

through the connected components, and to offer then a finer

grained evaluation of the inconsistencies.

4 Measuring Inconsistency using

MUS-Decomposition

In this section, we use the MUS decomposition of a KB,

defined in the previous section, to assign a formula oriented

measure to estimate the responsibility of a formula to the

inconsistency of its base.

Given two minimal inconsistent subsets and based on De-

finition 6, a distance, as defined below, is an assignment of

a real number to each MUS pair of K.

Definition 10 Let K be a KB. The distance between two

MUSes M and M0 of K, denoted dMUS(M,M0), is de-

fined as the shortest path between M and M0 in the graph

representation GMUS(K).

Next, we will extend Definition 10 to compute the distance

between a formula and a MUS as follows.

Definition 11 Let K be a KB, α 2 K and M 2
MUSes(K ). The distance between α and M is defined as

dMUS(α,M) = min{dMUS(M,M0) | α 2 M0}.

In fact, the distance between a given formula α 2 K and

a MUS M corresponds to the shortest path from α to M
along a sequence of intersecting MUSes . Note that if α and

M do not belong to the same connected component, this

means that M is not reachable from α and in this case, the

distance is equal to an infinite value i.e. dMUS(α,M) =
+1.

Example 3 (Example 2 Contd.) Let α = ¬b, we have

dMUS(α,M2) = 0 dMUS(α,M3) = 1
dMUS(α,M4) = 1 dMUS(α,M5) = 2

We note that the distance dMUS allows us to give an orde-

ring over the minimal inconsistent subsets of K according

to their distance from α.

In the following, we quantify the inconsistency value of

α in the light of the distance from α with respect to rea-

chable MUSes of K. Indeed, for each formula belonging

to some MUSes, there exists at least one finite distance.

To compare different formulae by their inconsistency va-

lues, only finite distances are meaningful. For free for-

mulae, all the distances will be +1. But by Free For-

mula Independence principle, they should not be contri-

butors to inconsistency anyway. Let us note dmax
MUS(α) =

max{dMUS(α,M) | M 2 MUSes(K ), dMUS(α,M) 6=
+1}. Note that the maximum distance is not more than

the cardinality of the connected component that α belongs

to, that is, dmax
MUS(α) < |C|.

Definition 12 Let K be a KB and α 2 K. Write

SMUS (α, k) = {M 2 MUSes(K ) | dMUS(α,M) = k}.

We define SQMUS(α) as SQMUS (α) = (SMUS (α, 0 ),
SMUS (α, 1 ), . . . ,SMUS (α, d

max
MUS

(α))).

Note that SMUS (α, k) represents the set of MUSes with a

distance k from α, and SQMUS (α) signifies the sequence

of MUSes distributed in terms of the distance dMUS .

Example 4 (Example 2 Contd.) For α = ¬b, we have

SMUS(α, 0) = {M2}, SMUS(α, 1) = {M3,M4},

SMUS(α, 2) = {M5}. Then, SQMUS(α) =
{{M2}, {M3,M4}, {M5}}.

Figure 1 depicts a graphical representation of the connec-

ted components of K. Also, Figure 2 represents the

distribution of MUSes according to their distances to α.
It is easy to check that MIV# measure is just a characteri-

zation of the set SMUS when applying uniquely the mini-

mum distance from the formulae. More formally,
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FIGURE 2 – Distribution of MUSes according to α

Proposition 5 Let K be a KB and α 2 K. Then,

MIV#(K,α) = |SMUS(α, 0)|.

Proposition 5 shows that the MIV# value considers only

the nearest neighbors of α. However, this measure is not

sufficiently discriminating for our purposes, since it takes

into account only the first level of MUSes. Indeed, let us

consider the formulae d ^ e and ¬c _ e of Example 2.

According to MIV# or MIVC measures, these two for-

mulae have the same inconsistency value. However, accor-

ding to Figure 1 these two formulae do not have the same

structural properties. Indeed, the MUS containing ¬c_ e is

more connected than the one of d ^ e. Hence, one has to

go beyond the nearest neighbors to obtain a finer-grained

measure. A first inconsistency measure can be defined as

follows :

Definition 13 Let K be a KB. We define DIMC as :

DIMC(α,K) =
|SMUS(α, 0)|

dmax
MUS(α) + 1

.

Unlike MIV#, the DIMC value takes into account the

structure of the connected components by considering

the nearest and the farthest MUSes . More precisely, the

DIMC measure aims to assign a better value to the for-

mulae having numerous nearest neighbors and remaining

MUSes concentrated around. Put differently, while two

formulae have the same number of neighbors of distance

0, the distance from the farthest MUS allows us to find

out the most inconsistent one. Note that if α is a self-

contradictory formula, then DIMC measure takes value

one, i.e. DIMC(α,K) = 1.

Let us now illustrate the behavior of the DIMC measure

in the next example.

Example 5 (Example 2 Contd.) It is not hard to see :

DIMC(a ^ d,K) = 1 DIMC(¬a,K) = 1
DIMC(¬b,K) = 1

3 DIMC(¬c ^ d,K) = 1
3

DIMC(¬e,K) = 1 DIMC(b _ ¬c,K) = 1
3

DIMC(d ^ e,K) = 1
3 DIMC(c,K) = 3

2
DIMC(¬c _ e,K) = 1

2

Notice that now we can make a distinction between d ^ e,

and ¬c_ e since DIMC(d^ e,K) < DIMC(¬c_ e,K).

However, the problem remains between the formulae d^ e

and ¬b. In order to make the measure more accurate, we

propose to extend this measure by not only considering

the farthest MUS, but the whole structure of the connec-

ted components, which leads to the second inconsistency

measure defined as follows :

Definition 14 Let K be a KB. We define DIMH as :

DIMH(α,K) =
X

M2MUSes(K)

dMUS(α,M) 6=+1

1

dMUS(α,M) + 1
.

We can see more clearly by the following example that

DIMH can give a more precise view of the conflict

brought by each formula.

Example 6 (Example 2 Contd.) We have :

DIMH(a ^ d,K) = 1 DIMH(¬a,K) = 1
DIMH(¬b,K) = 7

3 DIMH(¬c ^ d,K) = 7
3

DIMH(¬e,K) = 3 DIMH(b _ ¬c,K) = 7
3

DIMH(d ^ e,K) = 13
6 DIMH(c,K) = 7

2
DIMH(¬c _ e,K) = 7

3
Using DIMH measure, the formula d ^ e has now an in-

consistency value 13
6 less than 7

3 the one of ¬b.

The DIMH measure could be refined by using the follo-

wing notion of a weighting function that assigns a weight

to each MUS in the connected component. The idea is that

a weight represents the significance of each MUS with res-

pect to their distance from the given formula, and we get

then a better assignment of inconsistency responsibility to

formulae. These weights can take into consideration other

criteria like the degree of each MUS in the graph repre-

sentation. A general definition is stated as follows.

Definition 15 Let K be a KB. We define DIMW as :

DIMW (α,K) =
X

M2MUSes(K)

dMUS(α,M) 6=+1

w(M)

dMUS(α,M) + 1
.

Where w(M) 2 R represents the weight associated to M.

The following result shows that the DIMW measure can

be expressed by using the sequence SQMUS(α). The idea

is that w(M) only depends on the distance between M and

α.

Proposition 6 Let K be a KB and α 2 K. We have

DIMW (α,K) =
X

SMUS2SQMUS

w(i)⇥
|SMUS(α, i)|

(i+ 1)
.



5 Measuring inconsistencies of a

whole base

This section is devoted to the definition of an inconsistency

measurement for a whole KB.

To address this question, let us firstly give a general cha-

racterization of our measure with respect to the additivity

property. Then, we discuss different measures obtained by

different restrictions of the general case.

Definition 16 Let K be a KB. Let CC = {C1, . . . , Cn} be

the connected components of K. The inconsistency mea-

sure of K, denoted ICC(K), is defined as ICC(K) =
i=n
X

i=1

δ(Ki) where δ is a function taking its values in R and

Ki represents the sub-base KCi
.

The above general definition allows for a range of possible

measures to be defined in various ways. Next we introduce

some extensions of ICC to instantiate our framework. Let us

review some resulting instances of ICC according to some

δ functions. The simplest one is obtained when δ(Ki) = 1.

In this case, we get a measure that assigns to K the num-

ber of its connected components i.e. ICC(K) = |CC|. Note

that this measure in not monotonic. Indeed, adding new

formulae to the knowledge can decrease the number of

connected components. For instance, if we consider the KB

K = {a,¬a, b,¬b} that contains two connected compo-

nents C1 = {a,¬a} and C2 = {b,¬b} ; now adding the for-

mula a _ b to K leads to a new KB containing the unique

connected component C = {a,¬a, b,¬b, a _ b}. Note that

this simple measure considers each connected component

as an inseparable entity.

Moreover, when we consider δ(Ki) = |Ci|, the ICC mea-

sure leads to an existing measure. More precisely, as |Ci|
corresponds exactly to the number of MUSes of Ki in-

volved in the connected component Ci, it is obvious to

see that ICC(K) is equal to IMI measure i.e. ICC(K) =
|MUSes(K )|. This second value is of little interest, since

it states exactly the fact that the inconsistency value only

takes into account only the number of the minimal incon-

sistent subsets of the base.

In the following, we propose to deeply explore the proper-

ties of additivity and monotony to define a new inconsis-

tency measure.

Definition 17 Let K be a KB. A conditional independent

MUS partition of K, is defined as a set {K1, . . . ,Kn} such

that :

(1) 8i, Ki ✓ K and Ki ` ?
(2) MUSes(K1 [ . . . [Kn) = MUSes(K1 ) ⊕ . . . ⊕

MUSes(Kn)
(3) 8i 6= j, Ki \Kj = ;.

According to Definition 17, K can be written using the set

{K1, . . . ,Kn} as K = K1[. . .[Kn[R where R is a sub-

set of K and {K1, . . . ,Kn} is a conditional independent

MUS partition of K. Otherwise, when removing the set of

formulae R from K the remaining base can be partitioned

into sub-bases K1, . . . ,Kn that are inconsistent, disjoints

and having disjoint MUSes.

It is clear that generally for a given KB K, there exist

different subsets R ✓ K such that Definition 17 holds.

Moreover, if K = K1 [ . . . [ Kn [ R, then there

exists {M1, . . . ,Mn} ✓ MUSes(K) a conditional in-

dependent MUS partition of K. In other words, K =
M1[. . .[Mn[R

0 where Mi\Mj = ;, 8i 6= j. Indeed, it

is sufficient to pick a MUS Mi from each Ki since Ki ` ?
and consider R0 = R [ {K1 \M1} [ . . . [ {Kn \Mn}.

Let us now characterize an inconsistency measure I in the

light of both additivity and monotony properties. Using De-

finition 17, I(K) = I(K1[. . .[Kn[R). Using monotony

property, we have I(K) ≥ I(K1 [ . . . [ Kn). Finally by

additivity, we conclude that I(K) ≥ I(K1)+ . . .+I(Kn).
Let us denote by µmax(K) the maximal cardinality of sets

{K1, . . . ,Kn} satisfying the conditions (1), (2) and (3) of

the Definition 17. µmax(K) corresponds to the number of

maximal connected components that can be obtained while

removing some formulae from K i.e., the maximal va-

lue taken by n. By considering the maximal conditional

independent partition value µmax, one can deduce that if

the measure I is additive then, I(K) ≥ I(K1) + . . . +
I(Kµmax(K)). Now, by using this bound one can define a

new inconsistency measure as stated in Definition 18.

Definition 18 Let K be a KB. We define the inconsistency

measure of K as I 0CC(K) = µmax(K).

Proposition 7 The inconsistency measure I 0CC(K) is addi-

tive and monotonic.

Example 7 Let us consider K = {a,¬a, a _
b,¬b, b, c,¬c^d,¬d^e^f,¬e,¬f}. K has two connected

components C1 and C1 such that K1 = {a,¬a, a_b,¬b, b}
and K2 = {c,¬c^d,¬d^ e^f,¬e,¬f}. The conditional

independent MUS partition of K1 of maximum size is

equal to 2 and can be obtained from K1 by removing

a _ b. For K2, for all removed subset of K2, the number

of resulting connected components cannot exceed 1. Then,

we have I 0CC(K) = I 0CC(K1) + I 0CC(K2) = 3.

6 Conclusion
We proposed in this paper a new framework for defining

inconsistency values that allow to associate each formula

with its degree of responsibility for the inconsistency of

a whole KB. We showed that such a framework can be

extended to measure the inconsistency of the whole base.

We also proposed an enhanced additivity property to better

capture its intuition according to the debate existing in the

literature.

In the future, we plan to study the computational com-

plexity of our inconsistency measures , and then develop al-

gorithms and implementations of computing inconsistency

degrees.
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