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Abstract—This paper studies the boundedness and termination
problems for vector addition systems equipped with one stack. We
introduce an algorithm, inspired by the Karp & Miller algorithm,
that solves both problems for the larger class of well-structured
pushdown systems. We show that the worst-case running time
of this algorithm is hyper-Ackermannian for pushdown vector
addition systems. For the upper bound, we introduce the notion
of bad nested words over a well-quasi-ordered set, and we provide
a general scheme of induction for bounding their lengths. We
derive from this scheme a hyper-Ackermannian upper bound for
the length of bad nested words over vectors of natural numbers.
For the lower bound, we exhibit a family of pushdown vector
addition systems with finite but large reachability sets (hyper-
Ackermannian).

I. INTRODUCTION

Vector addition systems (VAS) are an important class of

well-structured transition systems. They are powerful enough

to model concurrent infinite-state systems but still many im-

portant properties are decidable, like boundedness, termination

and reachability. Adding more power to VAS while retaining

decidability is an active area of research (see, e.g., [12], [15],

[24], [10], [17], [4]). Techniques developed for VAS are often

extended to the more general class of well-structured systems.

In this work, we extend the power of VAS by adding one

stack. We give decidability and complexity results, and show

how these fit in the general scheme of well-structured systems.

It is well known that a finite-state machine equipped with

two stacks is Turing powerful. Replacing one of the stacks by

multiple stacks over a singleton stack alphabet (and without

bottom test) will result in VAS with one stack, which we study

here. This model is close to the border of undecidability and

very little is known about the decidability of many problems.

Here we prove that the boundedness and termination problems

are decidable for this model. The basis of these results is the

reduced reachability tree, which is also the basis for many

results about VAS and well-structured systems. Our main

contributions are twofold.

First, we introduce well-structured pushdown systems, of

which pushdown VAS are an important class. We extend

the well-known reduced reachability tree technique for well-

structured transition systems [14] to the pushdown case. The

reduced reachability tree allows us to decide the boundedness

and termination problems for well-structured pushdown sys-

tems.

Second, we give hyper-Ackermannian upper and lower

bounds for the size of the reduced reachability trees of

pushdown VAS. For the upper bound, we introduce the notion

of bad nested words over a well-quasi-ordered set, and we

provide a general scheme of induction for bounding their

lengths. We derive from this scheme a hyper-Ackermannian

upper bound for the length of bad nested words over vectors

of natural numbers. For the lower bound, we exhibit a family

of pushdown vector addition systems with finite but large

reachability sets (hyper-Ackermannian).

Many decidability results about well-structured systems

depend on the behavior of well-quasi-orders. In the presence

of a stack, making these work require new insights, as done

in our results mentioned above. While results like Dickson’s

lemma and Higman’s lemma can prove decidability of some

algorithms, deriving complexity bounds for such algorithms

has recently received attention [9], [13], [18]. Such bounds

help to compare the power of different models and understand

the structure of the models under study. Again, making these

work in the presence of a stack require substantial extensions,

as we have done for deriving bounds for the size of the reduced

reachability tree. In particular, we extend the framework

for deriving bounds on bad sequences [13] to bad nested

sequences [3].

The upper and lower bounds that we derive in this paper

for the size of the reduced reachability tree do not apply for

the complexity of the problems themselves, since there may

be better algorithms. The best known lower bound is the non-

elementary lower bound given by [19]. Very few upper bounds

are known and none of them match this lower bound. Closing

these gaps are challenging open problems.

Related work. In [5], a model called RVASS is introduced,

which allows vector additions during stack operations. How-

ever, the semantics of this model resembles that of branching

VAS [10] rather than that of a VAS with a stack. In [6],

a different version of well-structured pushdown systems are

introduced, which are systems where both the set of control

states and the stack alphabet can be infinite and are well-

quasi-ordered. They consider the coverability problem for

subclasses. In contrast, the model we consider here has a finite

stack alphabet and we consider termination and boundedness

for the whole class. In [1], the authors introduce a model called



pushdown automata with data and prove that the control state

reachability problem is decidable. In this model again, the set

of messages that can be pushed onto the stack can be infinite.

The authors introduce a well-quasi-order on this set to decide

control state reachability. It is not clear whether the techniques

developed for models with infinite stack alphabet can be used

in our model and vice-versa. A general framework for well-

structured transition systems with auxiliary storage has been

introduced in [7]. Decidability is shown for the coverability

problem in some subclasses that have a ranking function

compatible with the transition relation. Our focus on the other

hand is specifically on reduced reachability trees and deriving

upper bounds for algorithms based on them. The authors of [7]

extend their work in [8] to decide some branching properties of

asynchronous programs. They prove that termination and other

problems are decidable for our model, provided counters are

decreased only when the stack is empty. A similar restriction

is imposed by the authors of [26] on their model called multi-

set pushdown systems, closely related to our model. We do not

impose such restrictions. The fundamental techniques used for

deriving Ackermannian and hyper-Ackermannian bounds are

developed mostly in [13], [25], on top of which we develop

techniques for working with the stack.

Outline. We present in Section III our reduced reachability

tree technique1 for well-structured pushdown systems. Sec-

tion IV provides a general scheme of induction for bounding

the length of bad nested words. Basic notions on fast growing

functions are recalled in Section V. We derive in Section VI

a multiply-recursive upper bound for the length of bad nested

sequences over Nd. Section VII shows that the worst-case size

of the reduced reachability tree is hyper-Ackermannian for

pushdown VAS.

II. PRELIMINARIES

A quasi-order on a set S is a binary relation � on S that is

reflexive and transitive. As usual, we write s ≺ t when s � t
and t 6� s. A partial-order is an antisymmetric quasi-order.

A well-quasi-order (wqo) on S is a quasi-order � such that

every infinite sequence s0, s1, s2, . . . in S contains an infinite

nondecreasing subsequence si0 � si1 � si2 · · · (with i0 <
i1 < i2 · · · ).

The concatenation of a finite sequence (resp. word) σ with

a finite or infinite one w is denoted by σ,w (resp. σ ·w). The

length of a finite sequence or word σ is denoted |σ|.

III. WELL-STRUCTURED PUSHDOWN SYSTEMS

A pushdown system is a 4-tuple P = 〈S, sinit,Γ,∆〉 where S
is a set of states, sinit ∈ S is the initial state, Γ is a finite stack

alphabet, and ∆ ⊆ S×Op×S is a set of rules. The set Op of

operations is given by Op = {ε}∪{push(γ), pop(γ) | γ ∈ Γ}.

Observe that we do not require S to be finite. Informally, a rule

(s, op, t) means that the pushdown system can move from state

s to state t by performing the operation op on the stack. We say

1This section motivates the developments of the following sections, but its
results are only used in Section VII.

that P is finitely-branching if the set {(op, t) | (s, op, t) ∈ ∆}
is finite for every state s ∈ S. A simulation relation for P is

any binary relation R on S satisfying the following condition:

for every (s, op, t) ∈ ∆ and s′ ∈ S such that (s, s′) ∈ R,

there exists t′ ∈ S such that (s′, op, t′) ∈ ∆ and (t, t′) ∈ R.

We define the operational semantics of a pushdown system

P = 〈S, sinit,Γ,∆〉 as follows. A configuration is a pair χ =
(s, σ) where s ∈ S is a state and σ ∈ Γ∗ is a word denoting

the contents of the stack. The initial configuration is χinit =
(sinit, ε). The transition relation is the least binary relation

→ ⊆ (S × Γ∗)× (S × Γ∗) satisfying the following rules:

(s, ε, t) ∈ ∆

(s, σ) → (t, σ)

(s, push(γ), t) ∈ ∆

(s, σ) → (t, σ · γ)

(s, pop(γ), t) ∈ ∆

(s, σ · γ) → (t, σ)

A run is a (finite or infinite) sequence χ0, χ1, χ2, . . . of

configurations such that χ0 = χinit and χi−1 → χi for every

index i > 0 of the sequence. The reachability set is the set of

all configurations that occur on some run.

We investigate two verification questions on pushdown sys-

tems, namely termination and boundedness. The former asks

whether all runs of a given pushdown system are finite, and the

latter asks whether its reachability set is finite. Recall that these

questions are decidable for pushdown systems with finitely

many states. In our setting, the set of states may be infinite

(e.g., Q×N
d for pushdown vector addition systems with states,

see Section VII). By extending well-known techniques from

the theory of well-structured transition systems [14], [2], [16],

we obtain a class of pushdown systems for which termination

and boundedness are decidable.

Definition III.1. A well-structured pushdown system is a

finitely-branching pushdown system P = 〈S, sinit,Γ,∆〉
equipped with a well-quasi-order � ⊆ S × S on states such

that � is a simulation relation for P.

Remark III.2. The monotonicity condition of Definition III.1

matches the one given in [2] for infinite-state labeled transition

systems. In our setting, the labels of [2] are operations

op ∈ Op. More general monotonicity conditions have been

proposed in [16] for unlabeled infinite-state transition systems.

The condition of Definition III.1 corresponds to the strong

compatibility requirement of [16].

The reachability tree of a well-structured pushdown system

P = 〈S, sinit,Γ,∆,�〉 is the directed unordered tree defined

as follows. Nodes of the tree are labeled by configurations

of P. The root r is labeled by the initial configuration χinit,

written r :χinit. Each node n :χ has one child m :ψ for each

configuration ψ such that χ → ψ. Note that the reachability

tree of P is finitely branching.

The reachability tree is usually infinite for well-structured

pushdown systems. We show how to truncate it while pre-

serving enough information to decide termination and bound-

edness. A node n : (s, σ) subsumes a node m : (t, τ) if n is
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a proper ancestor of m, s � t and σ is a prefix of σ′ for

every node n′ : (s′, σ′) on the path from n to m. The reduced

reachability tree of P is the largest prefix of the reachability

tree such that every subsumed node has no child.

Proposition III.3. The reduced reachability tree of any well-

structured pushdown system is finite.

Proof. Consider a well-structured pushdown system P =
〈S, sinit,Γ,∆,�〉. By contradiction, assume that its reduced

reachability tree T is infinite. Recall that this tree is finitely

branching. By König’s lemma, T contains an infinite branch

n0 : (s0, σ0) → n1 : (s1, σ1) → n2 : (s2, σ2) → · · · . Observe

that σ0 = ε since n0 is the root of the tree. We extract

from n0, n1, n2, . . . an infinite subsequence ni0 , ni1 , ni2 , , . . .
defined as follows:

i0 = 0
ik+1 = min {i > ik | ∀j > ik, |σi| ≤ |σj |}

By definition, |σik | ≤ |σj | for all j, k ∈ N with ik ≤ j. It

follows from the operational semantics of pushdown systems

that σik is a prefix of σj for all j, k ∈ N with ik ≤ j. Since �
is a well-quasi-order, there exists k < l such that sik � sil . We

obtain that the node nik subsumes the node nil . This entails

that nil has no child in T , which is impossible.

Proposition III.4. A well-structured pushdown system P has

an infinite run if, and only if, its reduced reachability tree

contains a subsumed node.

Proof. If P has an infinite run, then its reachability tree

contains an infinite branch. Since the reduced reachability

tree of P is finite, this infinite branch necessarily contains

a subsumed node. Hence, the reachability tree of P contains a

subsumed node, and so does its reduced reachability tree. For

the converse, assume that the reachability tree of P contains

a subsumed node. The path from the root to this subsumed

node yields a run

(s0, σ0)
op1−−→ · · ·

opk−−→ (sk, σk)
opk+1

−−−−→ · · ·
opl−−→ (sl, σl)

such that k < l, sk � sl and σk is a prefix of σj for all k ≤
j ≤ l. Here, we have decorated each transition of the run with

its associated operation. Let zk, . . . , zl be the words satisfying

σj = σk · zj for all k ≤ j ≤ l. Define (tk, τk) = (sl, σl).
Since sk � tk and � is a simulation relation for P, we derive

that there exists tk+1, . . . , tl such that, for every k < j ≤ l,
sj � tj and (tj−1, opj , tj) ∈ ∆. Observe that the sequence

of operations opk+1, . . . , opl never pops from σk. Hence, we

may also perform opk+1, . . . , opl starting from σl = τk · zk.

So the above run may be extended by appending

(sl, σl) = (tk, τk · zk)
opk+1

−−−−→ · · ·
opl−−→ (tl, τk · zl)

We obtain an infinite run by repeating this construction.

The boundedness problem requires stronger monotonic-

ity requirements. A well-structured pushdown system P =
〈S, sinit,Γ,∆,�〉 is called strict when � is a partial order and

≺ is a simulation relation. Similarly, in the reachability tree

of P, a node n : (s, σ) strictly subsumes a node m : (t, τ) if n
subsumes m, and s ≺ t or |σ| < |τ |.

Proposition III.5. A strict well-structured pushdown system

P has an infinite reachability set if, and only if, its reduced

reachability tree contains a strictly subsumed node.

Proof. Assume that P has an infinite reachability set. Let T
be the largest prefix of its reachability tree such that, on each

branch, all nodes have distinct labels. The tree T is infinite

since every configuration in the reachability set is the label

of some node in T . By König’s lemma, it follows that the

reachability tree of P contains an infinite branch where all

nodes have distinct labels. Since the reduced reachability tree

of P is finite, this infinite branch necessarily contains two

nodes n : (s, σ) and m : (t, τ), both contained in the reduced

reachability tree, such that n subsumes m. Recall that (s, σ) 6=
(t, τ). If |σ| < |τ | then n strictly subsumes m. Otherwise,

σ = τ since σ is a prefix of τ . It follows that s 6= t, which

entails that s ≺ t as � is a partial order. We get, again, that

n strictly subsumes m.

For the converse, assume that the reduced reachability tree

of P contains a strictly subsumed node. The path from the

root to this subsumed node yields a run

(s0, σ0)
op1−−→ · · ·

opk−−→ (sk, σk)
opk+1

−−−−→ · · ·
opl−−→ (sl, σl)

such that k < l, sk � sl, σk is a prefix of σj for all k ≤ j ≤ l,
and sk ≺ sl or |σk| < |σl|. With the same arguments as in the

proof of Proposition III.4, we extend this run into an infinite

one by iterating the sequence of operations opk+1, . . . , opl. If

sk ≺ sl then the resulting infinite run visits infinitely many

states (as � is a partial order). If |σk| < |σl| then it visits

infinitely many stack contents. In both cases, we obtain that

P has an infinite reachability set.

IV. BAD NESTED SEQUENCES OVER A WQO SET

Nested words [3] offer a convenient formalism to study

some properties of pushdown systems. Since we are dealing

with sets of reachable configurations, our notation is slightly

different from that of [3], where the main concern is the theory

of languages. For us, an alphabet S is usually the set of

states of a pushdown system, and the content of the stack

is abstracted by its length.

Definition IV.1. A nested sequence over a set S is a (finite or

infinite) sequence (s0, h0), (s1, h1), . . . of elements in S × N

satisfying h0 = 0 and hj ∈ hj−1 + {−1, 0, 1} for every index

j > 0 of the sequence.

Example IV.2. The empty sequence is a nested sequence. The

nested sequence (a, 0), (b, 1), (c, 2), (d, 1) over {a, b, c, d} can

be depicted as follows:

2− c
1− b d
0− a

Remark IV.3. In a well-structured pushdown system, every

run can be seen as a nested sequence, by mapping each
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configuration (s, σ) to the pair (s, |σ|). Similarly, every branch

of the reachability tree can be seen as a nested sequence.

Definition IV.4. A nested sequence (s0, h0), (s1, h1), . . . over

a quasi-ordered set (S,�) is said to be good if there exists

i < j such that si � sj and hi+1, . . . , hj ≥ hi. A bad nested

sequence is one that is not good.

Example IV.5. The following nested sequence over (N,≤) is

bad:

3− 0
2− 1 0 0
1− 2 1 1 0 0
0− 3 2 1 0

Remark IV.6. A nested sequence (s0, 0), (s1, 0), . . . is good

iff si � sj for some i < j. Hence good/bad nested sequences

are generalizations of good/bad (non-nested) sequences [13].

Remark IV.7. Consider a branch in the reachability tree of

some well-structured pushdown system. The nested sequence

associated with the branch is good if, and only if, the branch

contains a subsumed node.

Lemma IV.8. Bad nested sequences over a wqo are finite.

Proof. Similar to the proof of Proposition III.3.

The finiteness of the reduced reachability tree presented

in the previous section relies on the finiteness of bad nested

sequences. In order to derive complexity arguments, bounds on

these sequences must be obtained. Normed wqo sets provide

a framework for deriving such bounds. We first present some

simple examples of (non-nested) bad sequences that motivate

normed wqo sets.

The following nested sequence shows that the length of bad

nested sequences over a wqo cannot be bounded since there

exist bad nested sequences over (N,≤) of length n for every n.

0− 100 99 98 . . . 1 0

Hence, the initial element must be bounded somehow. In the

algorithms presented in the previous section, nested sequences

starts from the same element, the initial state of the well-

structured pushdown system. However, even if the initial

element is fixed, the problem is not yet solved as shown by

the following bad nested sequence over (N2,≤).

0− (0, 1) (100, 0) (99, 0) (98, 0) . . . (1, 0) (0, 0)

This problem appears because the second element of the

sequence is arbitrarily large compared to the first one. In order

to control the growth of values in a nested sequence, we use

the notion of normed wqo sets.

Definition IV.9. A norm for a wqo set (S,�) is a function

||.|| : S 7→ N such that {s ∈ S | ||s|| ≤ n} is finite for every

n. The structure (S,�, ||.||) is called a normed wqo.

Example IV.10. The wqo set (Nd,≤) is normed by the

function that maps any vector to its largest component.

Definition IV.11. A nested sequence (s0, h0), (s1, h1), . . .
over a normed wqo set (S,�, ||.||) is said to be n-controlled

for some n ∈ N if ||sj || ≤ n + j for every index j of the

sequence.

While there exist bad nested sequences of arbitrarily long

lengths, König’s lemma shows that there exists a maximal

length for n-controlled bad nested sequences. Indeed, these

sequences can be organized in a forest where nodes are labeled

by elements in S×N. By definition of the norm function, this

forest is finite branching and the number of roots is finite.

Hence, if the forest is infinite, the König’s lemma shows that

it contains an infinite branch. Since infinite nested sequences

are good we get a contradiction.

Let BADS(n) be the set of n-controlled bad nested se-

quences over S. This set is non empty since it contains the

empty sequence. The maximal length function LS : N 7→ N is

defined as follows:

LS(n) = max{|w| | w ∈ BADS(n)}

The maximal length function LS satisfies a recurrence

relation that we call the descent equation. For this, we need

the set S|≤n defined as follows:

S|≤n = {s ∈ S | ||s|| ≤ n}

Given s ∈ S|≤n, let us denote by BADS,s(n) the set of n-

controlled bad nested sequences starting from (s, 0). This set is

non-empty since it contains (s, 0). Let LS,s(n) be the number

defined as follows:

LS,s(n) = max{|w| | w ∈ BADS,s(n)}

The following equality is immediate for every n ∈ N such that

S|≤n is non empty:

LS(n) = max
s∈S|≤n

LS,s(n)

Let (S/s,�, ||.||) be the normed wqo set where S/s (called

the quotient of S by s ∈ S) is defined as S/s = {t ∈ S | s 6�
t}. In the following, we prove the following equality, called

the descent equation for every n ∈ N and for every s ∈ S|≤n:

LS,s(n) = 1 + LS/s(n+ 1) + LS/s(n+ 1 + LS/s(n+ 1))

Let us first prove that LS,s(n) is bounded by the above

term. We pick a n-controlled bad nested sequence w over S
starting from (s, 0) with s ∈ S|≤n. The nested sequence w can

be decomposed into w = (s, 0)w′ where w′ is a sequence of

elements in S×N. Since w is bad, w′ is in fact a sequence of

elements in (S/s)×N. Let us introduce the maximal prefix w′′

of w′ such that w′′ is a sequence of elements in S× (N\{0}).
Let us show that |w′| ≤ LS/s(n + 1). The sequence w′′ can

be decomposed into w′′ = (s1, h1), . . . , (sk, hk) where k =
|w′′|. Note that (s1, h1 − 1), . . . , (sk, hk − 1) is a (n + 1)-
controlled bad nested sequence over the wqo set S/s. Thus,

|w′′| ≤ LS/s(n + 1). Now, let us consider the sequence w′′′

such that w′ = w′′, w′′′. Let us prove that |w′′′| ≤ LS/s(n +
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1+k). Observe that if w′′′ is empty the relation is immediate.

So, let us assume that w′′′ is non empty. By maximality of

w′′, we deduce that w′′′ starts with an element in S × {0}.

Thus w′′′ is a (n + 1 + k)-controlled bad nested sequence

over S/s. We get |w′′| ≤ LS/s(n + 1 + k). Since LS/s is

monotonic and k ≤ LS/s(n + 1), we deduce that |w′′′| is

bounded by LS/s(n+1+LS/s(n+1)). Hence |w| is bounded

by 1+LS/s(n+1)+LS/s(n+1+LS/s(n+1)). We have proved

one inequality of the descent equation, namely that LS,s(n) is

bounded by 1+LS/s(n+1)+LS/s(n+1+LS/s(n+1)) for

every n ∈ N and for every s ∈ S|≤n.

To prove the converse inequality, we need to concatenate

bad nested sequences. The concatenation will be possible

thanks to the following lemma.

Lemma IV.12. Every w ∈ BADS(n) with |w| = LS(n) is

either empty or the last element is in S × {0}.

Proof. If LS(n) = 0, then the proof is immediate. Assume

that LS(n) > 0 and let us consider a n-controlled bad

nested sequence w such that |w| = LS(n). Let (s, h) be

the last element of w. By contradiction, suppose that h > 0.

It is readily seen that the sequence obtained by appending

(s, h − 1) to w is also a n-controlled bad nested sequence.

This contradicts the maximality of w. We derive that h = 0,

which concludes the proof of the lemma.

Let us now complete the proof of the descent equation, by

showing that 1+LS/s(n+1)+LS/s(n+1+LS/s(n+1)) is

bounded by LS,s(n) for every n ∈ N and for every s ∈ S|≤n.

Pick n ∈ N and s ∈ S|≤n. Let n1 = LS/s(n + 1). There

exists w1 ∈ BADS/s(n + 1) with |w1| = n1. According to

Lemma IV.12, if n1 > 0 then the last element of w1 is in

S × {0}. Let n2 = LS/s(n + 1 + n1). By definition, there

exists w2 in BADS/s(n+1+n1) with |w2| = n2. We introduce

the nested sequence w = (s, 0), w′
1, w2 where w′

1 is obtained

from w1 by replacing every occurrence of (t, h) ∈ S × N by

(t, h + 1). Observe that w is a bad nested sequence that is

n-controlled. Since w ∈ BADS,s(n), we get LS,s(n) ≥ |w|.
It follows that 1+LS/s(n+1)+LS/s(n+1+LS/s(n+1)) is

bounded by LS,s(n), which concludes the proof of the descent

equation.

In order to simplify the presentation of the descent equation,

we introduce the function KS : N 7→ N defined for every

n ∈ N as follows:

KS(n) = n+ LS(n)

Intuitively, KS(n) explicitly accounts for the starting value

n by adding it to LS(n). It is understood that, like LS , the

function KS is parametrized by a normed wqo set (S,�, ||.||).

Now, just observe that for every n ∈ N and every s ∈ S|≤n,

the descent equation entails that:

n+ LS,s(n)

= n+ 1 + LS/s(n+ 1) + LS/s(n+ 1 + LS/s(n+ 1))

= KS/s(KS/s(n+ 1))

In particular, if S|≤n is non empty, we obtain that:

KS(n) = n+ LS(n)

= n+ max
s∈S|≤n

LS,s(n)

= max
s∈S|≤n

n+ LS,s(n)

= max
s∈S|≤n

KS/s(KS/s(n+ 1))

We have proved the following theorem.

Theorem IV.13. For every normed wqo set (S,�, ||.||) and

for every n ∈ N, we have:

KS(n) =

{

maxs∈S|≤n
KS/s(KS/s(n+ 1)) if S|≤n 6= ∅

n otherwise

V. FAST GROWING FUNCTIONS

The next sections classify the maximal length function in the

fast-growing hierarchy [20]. We shall work with set-theoretic

ordinals less than ωω , written in Cantor’s Normal Form.

Each limit ordinal λ has a canonical fundamental sequence

(λn)n∈N, satisfying λ0 < λ1 < · · · < λn < λn+1 < · · · , with

λ being the supremum of this sequence. For limit ordinals

below ωω , this fundamental sequence is given by

(ωd. ad + · · ·+ ωr. ar)n =

ωd. ad + · · ·+ ωr+1. ar+1 + ωr. (ar − 1) + ωr−1. (n+ 1)

assuming d ≥ r and ar > 0.

The family of fast growing functions (Fα)α, indexed by

ordinals α ≤ ωω , is defined as follows:

F0(n) = n+ 1,

Fα+1(n) = Fn+1
α (n) =

n+1 times
︷ ︸︸ ︷

Fα(Fα(· · ·Fα(n) · · · ))

Fλ(n) = Fλn
(n) if λ < ωω is a limit ordinal

Fωω (n) = Fωn+1(n)

The value F1(n) is linear in n, F2(n) is exponential in

n, and F3(n) is a tower of exponential of height n. The

function Fω is an Ackermannian function. This function is

defined by diagonalization over the ordinals α < ω, since

Fω(n) = Fn+1(n). The hyper-Ackermannian function Fωω

used in this paper is defined in the same fashion, by diagonal-

ization over the ordinals α < ωω .

Example V.1. The above definition induces:

Fω2.4(8) = Fω2.3+ω.9(8)

= Fω2.3+ω.8+9(8)

= Fω2.3+ω.8+8(· · · (Fω2.3+ω.8+8
︸ ︷︷ ︸

9 times

(8)) · · · )

In addition to the usual linear order ≤ on ordinals, we will

also use a partial order, called embedding in [9], and defined

as follows. For two ordinals α, β such that α = ωd. ad+ · · ·+
ω0. a0 and β = ωd. bd+ · · ·+ω0. b0, α embeds in β if ai ≤ bi
for all i ∈ {0, . . . , d}. We write α ⊑ β when α embeds in
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β. We will use the following monotonicity properties of fast

growing functions. These properties are shown by induction

over ordinals (see, for instance, Lemmas 2.1 and 2.2 in [9]).

Lemma V.2 (Monotonicity, [9]). For all ordinals α, β < ωω

and for all natural numbers m,n ∈ N,

α ⊑ β and m ≤ n ⇒ m < Fα(m) ≤ Fβ(n)

VI. BAD NESTED SEQUENCES OVER N
d

In this section, we derive upper bounds for the length of

bad nested sequences over multiple disjoint copies of Nd. The

sum of c ∈ N distinct copies of N
d is the Cartesian product

{1, . . . , c} ×N
d, denoted by c×N

d. This set naturally corre-

sponds to states of vector addition systems with c locations and

d counters ranging over the natural numbers. The set c×N
d is

equipped with the wqo �c×Nd defined by (p,u) �c×Nd (q,v)
if p = q and u ≤ v, and the norm ||.||c×Nd defined by

||(q,v)||c×Nd = ||v||∞, where ||v||∞ maps v to its largest

component (to zero for the empty vector). In this section, we

prove the following theorem.

Theorem VI.1. For every c, d ≥ 1 and n ≥ 2, we have:

Lc×Nd(n) ≤ Fωd.c(d.n)

Remark VI.2. The previous theorem requires d ≥ 1. When

d = 0, the norm of any element in c×N
0 is zero, so the value

Lc×N0(n) does not depend on n. Let us denote by kc this

value. As the quotient of c×N
0 by an element v ∈ c×N

0 is

equal to (c−1)×N
0, Theorem IV.13 shows that kc = 2kc−1+1

for every c ≥ 1. From k0 = 0, we derive kc = 2c − 1 which

proves the following equality:

Lc×N0(n) = 2c − 1

The rest of this section is the technical part for proving The-

orem VI.1. In particular, we assume that d ≥ 1. Our approach

is based on the descent equation introduced in Theorem IV.13.

This approach introduces sums of multiple disjoint copies of

sets Ni for various dimensions i ∈ {0, . . . , d}. Let us show this

property on the normed wqo set Nd (no multiple copy). The

descent equation introduces the quotients Nd/v where v ∈ N
d.

A vector x in such a quotient satisfies x(j) ∈ {0, . . .v(j)−1}
for some index j. Hence, the quotient Nd/v can be embedded

into (v(1) + · · ·+ v(d))×N
d−1. By applying recursively the

descent equation, starting from c×N
d, finite sums of disjoint

copies of sets N
i for various dimensions i ∈ {0, . . . , d} are

introduced.

Those finite sums are denoted formally thanks to the notion

of types introduced in [13]. We refer to this paper for further

explanations. A type is a function τ : {0, . . . , d} 7→ N, also

viewed as a multiset. We associate to a type τ the set N
τ

defined as follows:

N
τ =

d⋃

i=0

τ(i)× N
i

The set Nτ is equipped with a wqo �τ and a norm ||.||τ by

observing that the sets τ(i) × N
i are pairwise disjoint. More

formally, the wqo �τ on N
τ is defined by u �τ v if there

exists i such that u, v ∈ τ(i)× N
i and u �τ(i)×Ni v, and the

norm ||.||τ is defined by ||v||τ = ||v||τ(i)×Ni where i is such

that v ∈ τ(i)× N
i.

Since the structure (Nτ ,�τ , ||.||τ ) is a normed wqo, the

function KNτ is well defined. To simplify notations, we denote

this function by Kτ . In the sequel, we assume that the reader

is familiar with multiset notations. In particular, since a type

is a multiset of natural numbers in {0, . . . , d}, we denote by ∅
the empty type that maps any i on zero. Given a type τ such

that τ(i) ≥ 1, we denote by τ − {i} the type ̺ defined by

̺(i) = τ(i)− 1 and ̺(j) = τ(j) if j 6= i.

Following the approach introduced in [13] (explained in the

beginning of this section on the quotients Nd/v), the quotients

N
τ/v, where v ∈ N

τ , can be embedded into N
̺ for types

̺ derived from τ and v. These types are defined as follows.

Given a type τ , a dimension i ∈ {0, . . . , d} such that τ(i) ≥ 1
and a natural number n ≥ 0, the derivation type ∂in(τ) is

defined by:

∂in(τ) = τ − {i}+ n.
∑

0≤j<i

{j}

We obtain the following lemma, whose proof (which can be

found in the appendix) is similar to that of [13, Lemma A.3]:

Lemma VI.3. It holds that:

KNτ/v(m) ≤ K∂i
d.n

(τ)(m)

for every type τ , for every i ∈ {1, . . . , d}, for every v ∈
τ(i)× N

i, for every n ≥ ||v||τ , and for every m ∈ N.

Combining this lemma with Theorem IV.13 and the fact that

Kτ is monotonic for all τ , we get the following inequalities,

which hold for every natural number n ≥ 0, and for every

type τ 6= ∅:

Kτ (n) ≤ max
i:τ(i)≥1

{K∂i
d.n

(τ)(K∂i
d.n

(τ)(n+ 1))}

For a type τ , we denote by Fτ the function defined by:

Fτ = Fωd.τ(d)+···+ω0.τ(0)

We associate to a type τ 6= ∅ and a natural number n ∈ N the

type τn = ∂in(τ) where i is the minimal index such that τ(i) >
0. An immediate induction shows the following equality for

every type τ 6= ∅:

Fτ (n) = Fn+1
τn (n)

In the sequel, we prove that for every type τ , for every

n ≥ 2 we have:

Kτ (n) ≤ Fτ (d. n) (1)

Note that Theorem VI.1 is a direct consequence of this

inequality with the type τ = c.{d}.

We write τ ⊑ ̺ if τ(i) ≤ ̺(i) for all i. We will use the

lexicographic order < on types, with τ(i + 1) being more

significant than τ(i) for all i. This is a well-founded linear
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order, which is the same as the order used for types in [11],

[13]. We first prove some results on the family (Fτ ).

Lemma VI.4. For every type τ , for every i ∈ {0, . . . , d} such

that τ(j) > 0 implies j ≥ i, and for every n ≥ 0:

Fτ+{i}(n) ≥ Fτ (2n)

Proof. The case n = 0 comes from F̺(0) = 1 for every

type ̺ (the equality is obtained by induction on ̺ with the

lexicographic order) . We introduce ̺ = τ+{i}. Since τ(j) >
0 implies j ≥ i, we have ̺n = τ + n.({i − 1} + · · · + {0}).
Lemma V.2 provides Fn

̺n
(n) ≥ Fn

∅ (n) = 2n. We have:

F̺(n) = Fn+1
̺n

(n)

≥ F̺n
(Fn

∅ (n)) [Lemma V.2]

≥ Fτ (2n) [Lemma V.2]

This concludes the proof of the lemma.

Notice that for every type τ 6= ∅ and for every n ≥ 0, the

type τn is equal to ∂in(τ) where i is the minimal index such

that τ(i) > 0. The following lemma shows that if we consider

a larger index, we get a smaller value.

Lemma VI.5. For every type τ 6= ∅, for every i such that

τ(i) > 0, and for every n ≥ 2, for every k ≥ n, we have:

F∂i
n(τ)

(k) ≤ Fτn(k)

Proof. We decompose τ into τ = τ ′ + ̺ such that τ ′(j) = 0
if j < i and ̺(j) = 0 if j ≥ i. Observe that ∂in(τ) = τ ′n + ̺.

If ̺ = ∅ then i is the minimal index such that τ(i) > 0. In

this case the lemma is immediate. So, we can assume that

̺ 6= ∅. In this case τn = τ ′ + ̺n. If ̺n = ∅ then ̺ = {0} and

Fτn(k) = Fτ ′(k). Thus

F∂i
n(τ)

(k) = Fτ ′
n+̺(k)

= Fτ ′
n+{0}(k)

= F k+1
τ ′
n

(k)

≤ F k+1
τ ′
k

(k) [Lemma V.2]

= Fτ ′(k) = Fτn(k)

Hence, we can assume that ̺n 6= ∅. We introduce the

norms ||̺n||1 =
∑d

j=0 ̺n(j) and ||̺||1 =
∑d

j=0 ̺(j). Thus

||̺n||1 ≥ 1. Lemma VI.4 and Lemma V.2 show by induction

that Fτn(k) ≥ Fτ ′(m) where m = k.2||̺n||1 . Note that m ≥
k.(1+ ||̺n||1) ≥ k+(k−1).||̺n||1+ ||̺n||1 ≥ k+1+ ||̺n||1
from k − 1 ≥ 1 and ||̺n||1 ≥ 1. As ||̺n||1 ≥ ||̺||1 − 1,

we get m ≥ k + ||̺||1. Now, just observe that Fτ ′(m) =
Fm+1
τ ′
m

(m) ≥ Fτ ′
m
(k) from Lemma V.2. For every j < i,

we have ∂in(τ)(j) = τ(j) + n = ̺(j) + n ≤ ||̺||1 + k ≤
m = τ ′m(j). Hence we infer that ∂in(τ) ⊑ τ ′m and so

Lemma V.2 provides F∂i
n(τ)

(k) ≤ Fτ ′
m
(k). The lemma follows

from this inequality, and the inequalities Fτ ′(m) ≥ Fτ ′
m
(k)

and Fτn(k) ≥ Fτ ′(m) previously proved.

Lemma VI.6. x.Fτ (n) + y ≤ Fτ (x.n+ x− 1 + y) for every

x ≥ 1, y, n ≥ 0, and for every type τ .

Proof. The lemma is proved by induction on types, with the

lexicographic order. The base case τ = ∅ is immediate since

x.F∅(n) + y = x(1 + n) + y = 1 + x.n + x − 1 + y =
F∅(x.n + x − 1 + y). Induction case for a type τ 6= ∅. We

have x.Fτ (n) + y = x.Fn+1
τn (n) + y. Since τn < τ , and Fτn

is monotonic, by induction on r ≥ 0, we get for every k ≥ 0:

x.F r
τn(k) + y = F r

τn(x.k + r(x− 1) + y)

By introducing m = x.n+ x− 1 + y, we get:

x.Fn+1
τn (n) + y ≤ Fn+1

τn (m+ n.(x− 1))

≤ Fn+1
τm (m+ n.(x− 1)) [Lemma V.2]

Notice that F
n.(x−1)
∅ (m) = m+ n.(x− 1). Thus m+ n.(x−

1) ≤ F
n.(x−1)
τm (m) from Lemma V.2. As m−n = n.(x−1)+

x − 1 + y ≥ 0, we deduce that F
n.(x−1)
τm (m) ≤ Fm−n

τm (m)
from Lemma V.2. Combined with the previous relations, we

get:

x.Fn+1
τn (n) + y ≤ Fn+1+m−n

τm (m) [Lemma V.2]

= Fm+1
τm (m)

= Fτ (m)

= Fτ (x.n+ x− 1 + y)

We have proved the induction.

Lemma VI.7. We have Kτ (n) ≤ Fτ (d.n) for every n ≥ 2.

Proof. We prove the lemma by induction on types with the

lexicographic order. The base case τ = ∅ is immediate. Let us

consider the case τ = {0}. In this case Kτ (n) ≤ K∅(K∅(n+
1)) = n + 1. Since Fτ (d.n) ≥ F∅(d.n) = d.n + 1, we are

done. Let us prove the induction step with a type τ such that

τ 6= ∅ and τ 6= {0}. Let n ≥ 2 and i be an index such that

Kτ (n) ≤ K∂i
d.n

(τ)(K∂i
d.n

(τ)(n+ 1)). We have:

Kτ (n) ≤ F∂i
d.n

(τ)(d.F∂i
d.n

(τ)(d.(n+ 1)))

[IH and Lemma V.2]

≤ Fτd.n(d.Fτd.n(d.(n+ 1)))

[Lemma VI.5 and Lemma V.2]

≤ Fτd.n(Fτd.n(d
2.(n+ 1) + d− 1))

[Lemma VI.6 and Lemma V.2]

Since τ 6= ∅ and τ 6= {0}, we deduce that τd.n 6= ∅. With an

immediate induction, and Lemma VI.4, we get:

F dn−1
τd.n

(dn) ≥ 2dn−1(dn+ 1)− 1

≥ dn(dn+ 1)− 1

≥ 2d(dn+ 1)− 1

≥ d2.(n+ 1) + d− 1

Therefore Kτ (n) ≤ Fτd.n(Fτd.n(F
d.n−1
τd.n

(d.n))) =
F d.n+1
τd.n

(d.n) = Fτ (d.n). We have proved the induction

step.

Since Lτ (n) ≤ Kτ (n) ≤ Fτ (dn), Theorem VI.1 is proved.
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VII. APPLICATION TO PUSHDOWN VASS

We now apply the results of the previous sections to

vector addition systems with states (VASS) extended with a

pushdown stack. Consider a dimension d ∈ N, with d ≥ 1. A

pushdown VASS is a 5-tuple A = 〈Q, qinit,vinit,Γ,∆〉 where

Q is a finite set of locations, qinit ∈ Q is the initial location,

vinit ∈ N
d is the initial vector, Γ is a finite stack alphabet,

and ∆ ⊆ Q × Z
d × Op × Q is a finite set of transition

rules. As before, the set Op of operations is given by Op =
{ε} ∪ {push(γ), pop(γ) | γ ∈ Γ}. Informally, a pushdown

VASS can be viewed as a pushdown automaton equipped

with d counters ranging over natural numbers. Operations on

counters are limited to translations. A rule (q,a, op, r) means

that the pushdown VASS can move from location q to location

r by performing the operation op on the stack and adding the

vector a to its counters, provided that they remain nonnegative.

The operational semantics of a pushdown VASS A is

defined in two steps. First, we associate with A the pushdown

system PA = 〈SA, sAinit,Γ,∆
A〉 given by:

SA = Q× N
d

sAinit = (qinit,vinit)
((q,u), op, (r,v)) ∈ ∆A ⇔ (q,v − u, op, r) ∈ ∆

Note that PA is finitely-branching. Second, we define the

operational semantics of A to be the operational semantics

of PA (see Section III). Let us introduce the partial-order �A

on SA defined by (q,v) �A (q′,v′) when q = q′ and v ≤ v
′.

This partial-order makes PA a well-structured pushdown sys-

tem (see Definition III.1). According to Propositions III.3,

III.4 and III.5, the termination and boundedness problems for

pushdown VASS can be solved by constructing the reduced

reachability tree, which is finite. We show in this section that

the worst-case size of this tree is hyper-Ackermannian.

For the remainder of this section, we restrict ourselves

to pushdown VASS such that ||a||∞ ≤ 1 for each rule

(q,a, op, r). The hyper-Ackermannian upper bound that we

obtain below can be extended to the general case by splitting

each rule (q,a, op, r) into ||a||∞ basic ones. The size of a

pushdown VASS A = 〈Q, qinit,vinit,Γ,∆〉 is defined as

|A| = d + |Q| + d · ||vinit||∞ + |Γ| + d · |∆|

According to Remark IV.3, every run of PA can be seen

as a nested sequence over (SA,�A). Let us introduce the

norm ||.||SA on (SA,�A), defined by ||(q,v)||SA = ||v||∞.

This nested sequence is n-controlled, for n = ||vinit||∞ + 2,

since the initial state of PA is (qinit,vinit) and ||a||∞ ≤ 1 for

each rule (q,a, op, r). Recall that every subsumed node in the

reduced reachability tree of PA is necessarily a leaf. It follows

from Remark IV.7 that the height of this tree is bounded

by the maximal length of n-controlled bad nested sequences,

namely LSA(n). Note that (SA,�A, ||.||SA) is isomorphic to

(|Q| × N
d,�|Q|×Nd , ||.|||Q|×Nd). Since Q 6= ∅, d ≥ 1 and

n ≥ 2, we get from Theorem VI.1 that the height of the

reduced reachability tree is at most Fωd.|Q|(d · n). Each node

Bi

0 ≤ i < d

A0

Aα+1

Ai
λ

0 < i < d

q2 q3q1q0

qinit

qf

r↓, κ++
d−1 r↑

push(F ) r−−

r++

pop(F )

push(Ii)

κ−−
i

r↓, κ++
i−1, push(Di−1)

push(F )

r↑
Ai

λ

pop(F )

push(I0)

κ−−
0

r↓, push(F ) r↑
Aα+1

pop(F )
r++

A0

pop(Ii), κ
++
i

pop(Di), κ
−−
i

Bi

Figure 1. Pushdown VASS Ad(n) that weakly computes F
ωd (n).

of the reduced reachability tree can have at most |∆| children.

We derive the following upper bound on its size.

Theorem VII.1. The reduced reachability tree of a pushdown

VASS A has at most Fωω (|A|) nodes.

Remark VII.2. For classical VASS (i.e., op = ε for each rule

(q,a, op, r)), the reduced reachability tree has at most Fω(|A|)
nodes [22], [13]. For pushdown finite-state systems, it follows

from Remark VI.2 that its size is bounded by |∆|2
|Q|

.

We next give an almost matching lower bound for the

above-mentioned size of the reduced reachability tree. We

introduce a pushdown VASS Ad(n), depicted in Figure 1, that

is parametrized by a “target” dimension d ≥ 1 and an initial

value n ∈ N. The lower bound is obtained as follows. First,

we show that Ad(n) computes, in a weak sense, the value

Fωd(n). This computation requires, in Ad(n), a run of length

at least Fωd(n). Second, we prove that all runs of Ad(n) are

finite. Therefore, its reduced reachability tree is identical to

its reachability tree, and so its height is at least Fωd(n). The

remainder of this section presents these ideas in detail. To

simplify notation, we will shortly write Ad when the parameter

n is understood from the context.

The dimension of Ad is d + 2. But, for clarity, we will

use counter names to refer to individual coordinates of the
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vectors in the configurations of Ad. The parameter n is the

initial value of the first counter, called r, which will also

contain the result at the end. For intermediate steps, we use the

counters r, κ0, . . . , κd−1. The notation r↓ in Figure 1 is short

for r−−, r++, i.e., a decrement of r followed by an increment

of r. Similarly, the notation r↑ is short for r++, r−−, i.e.,

an increment of r followed by a decrement of r. The stack

alphabet is Γ = {F,D0, I0, . . . , Dd−1, Id−1}. Intuitively, the

stack and counters of Ad are used to represent the recursive

definition of Fωd(n). As expected, the stack is used to store the

pending recursive calls. The innermost Fα(m) computation is

encoded as α = ωd−1. κd−1 + · · · + ω0. κ0 and r = m + 1.

For example, Fω2.3+ω.5+2(8) is represented by having F on

top of the stack, κ2 = 3, κ1 = 5, κ0 = 2 and r = 9. The stack

symbols Di, Ii are used to restore the calling context (i.e., the

counters κi) of pending recursive calls.

The initial location of Ad is qinit, and its initial vector is

vinit = (n, 0, . . . , 0). This means that the initial value of the

counter r is n and all other counters have initial value 0. First,

we increment r by one and move to q0. The loop at q0 allows

us to increment κd−1 to the value n + 1 and the loop at q1
allows us to set r back to n + 1. Then we push F on the

stack and reach q2. At this point, the stack contents is σ = F ,

the counters κd−1, . . . , κ0 contain n+1, 0, . . . , 0, respectively,

and r = n+ 1. This configuration represents Fwd−1.(n+1)(n),
which is equal to Fωd(n), i.e., the number that we want to

compute. From the location q2, Ad can either execute Ai
λ or

Aα+1 or A0 or Bi to reach q3. From the location q3, Ad can

either go back to q2 to continue the computation, or move to

the final location qf .

At q2, if the top of the stack is F and κ0 = 0, then it

represents Fωd−1.κd−1+···+ωi.κi
(r − 1), assuming that κi > 0

and κi−1 = · · · = κ0 = 0. In that case, the purpose of Ai
λ is

to replace the top of the stack with something that represents

Fωd−1.κd−1+···+ωi.(κi−1)+ωi−1.r(r− 1). Accordingly, Ai
λ first

pops F from the stack. Then it decrements κi and pushes Ii
on the stack to “shield” the part of the stack below from this

decreased value of κi. Then Ai
λ increments the counter κi−1

r times, also pushing the symbol Di−1 each time. The purpose

of Di−1 is to “guard” the part of the stack below from this

increased value of κi−1. Finally, Ai
λ pushes F on the stack,

restores the value of r and exits.

At q2, if the top of the stack is F and κ0 > 0, then it repre-

sents Fα+1(r−1), where α = ωd−1. κd−1+ · · ·+ω0. (κ0−1).
In that case, the purpose of Aα+1 is to replace the top of the

stack with something that represents F r
α(r− 1). Accordingly,

Aα+1 first pops F from the stack. Then it decrements κ0 and

pushes I0 on the stack to “shield” the part of the stack below

from this decreased value of κ0. Then it pushes r copies of

the symbol F , restores the value of r and exits.

At q2, if the top of the stack is F and κd−1 = · · · = κ0 = 0,

then it represents F0(r − 1). Accordingly, A0 simply pops F
from the stack, increments r and exits.

At q2, if the top of the stack is Ii or Di, then sometime back,

either 1) Ai
λ decremented κi, pushed one Ii to shield the bot-

tom part of the stack from this decrement, incremented κi−1

n times and pushed n copies of Di−1 to guard the bottom

part of the stack from these increments, or 2) i = 0, n = 0,

Aα+1 decremented κ0 once and pushed one I0 to shield the

bottom part of the stack from this decrement. The purpose of

B0, . . . ,Bd−1 is to backtrack and access the bottom part of

the stack by removing guards and shields, and restoring the

counter values. Accordingly, Bi either pops the symbol Di

from the top of the stack, decrements κi and exits, or it pops

Ii, increments κi and exits.

Lemma VII.3. Suppose Ad is in location q2, F is on the

top of the stack and the counter r has value m + 1. Then

there is a partial2 run in Ad that reaches q3, removes F
from the top of the stack, sets the counter r to the value

Fωd−1.κd−1+···+ω0.κ0
(m) + 1, and does no other change.

Corollary VII.4. There is a run in Ad(n) that reaches qf with

the empty stack and the counter r having the value Fωd(n).

Proof. A witnessing run is provided in the table below. The

partial run from q2 to q3 is derived from Lemma VII.3.

Loc. r κd−1 Stack

(qinit, n, 0, ε)
r++

−−→

(q0, n+ 1, 0, ε)
(r↓,κ++

d−1
)n+1

−−−−−−−−→

(q1, 0, n+ 1, ε)
(r↑)n+1push(F )
−−−−−−−−−−→

(q2, n+ 1, n+ 1, F ) →∗

(q3, Fωd−1.(n+1)(n) + 1, n+ 1, ε)
r−−

−−−→
(qf , Fωd−1.(n+1)(n), n+ 1, ε)

The observation that Fωd(n) = Fωd−1.(n+1)(n) concludes the

proof of the corollary.

Next, we prove that all runs of Ad are finite. The intuition

is to measure, by an ordinal, the “size” of both the stack

contents and the values of the counters κd−1, . . . , κ0, and

prove that the size decreases at each step. Consider a vector

v = (vd−1, . . . , v0) in N
d. The ordinal associated with v is

defined as Ord(v) = ωd−1. vd−1+ · · ·+ω0. v0. Let σ ∈ Γ∗ be

a string over the stack alphabet. The ordinal associated with

σ and v is defined as follows, by induction on |σ|.

Ord(ε,v) = 0

Ord(σF,v) = Ord(σ,v) + ωOrd(v)

Ord(σIi,v) = Ord(σ,v + ei)

Ord(σDi,v) =

{

undefined if vi = 0

Ord(σ,v − ei) if vi > 0

The ordered pair dr(σ,v) = (Ord(σ,v), |σ|) is the depth of

remaining recursion associated with a configuration of Ad

whose stack contents is σ and where the counter values of

κd−1, . . . , κ0 form the vector v. We use the lexicographic or-

der on ordered pairs to compare depths of remaining recursion.

2By partial run, we mean a run that is not required to start from the initial
configuration.
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Lemma VII.5. Every partial run of Ad(n) that starts and

ends in q2, but does not visit q2 in between, makes the depth

of remaining recursion strictly decrease.

Corollary VII.6. All runs of Ad(n) are finite.

Proof. By contradiction, suppose that there is an infinite run.

It is readily seen that, after a finite prefix, the run must stay

within q2, q3, Ai
λ, Aα+1, A0 and Bi. Upon entering into

Ai
λ, Aα+1, A0 or Bi, the run must exit after a finite number

of steps, since the loops inside these can only be executed

finitely many times for each entry. Hence, the run must visit q2
infinitely often. Now from Lemma VII.5, we infer that there is

an infinite strictly decreasing sequence of depths of remaining

recursion, which is a contradiction.

We obtain the following lower bound on the size of the

reduced reachability tree for pushdown VASSs.

Theorem VII.7. For every n ∈ N, there exists a pushdown

VASS An, of size quadratic in n, such that the reduced

reachability tree of An has at least Fωω (n) nodes.

Proof. Corollary VII.6, combined with Proposition III.4,

shows that the reachability tree of An+1(n) contains no

subsumed node. Therefore, the reachability tree of An+1(n)
coincides with its reduced reachability tree, which is finite

according to Proposition III.3. The height of this tree is at

least Fωω (n) = Fωn+1(n) by Corollary VII.4. It is readily

seen that |An+1(n)| is quadratic in n.

Remark VII.8. The hyper-Ackermannian lower and upper

bounds of Theorems VII.1 and VII.7 also apply to the reach-

ability set when it is finite.

VIII. CONCLUSION

Reachability sets of bounded VASS (without stack) are

known to be Ackermannian large. The lower-bound was pro-

vided by [21] thanks to a family of VASS with finite, but large

reachability sets (Ackermannian). The upper-bound was first

derived in [22] from bounds on the length of bad sequences

of vectors of natural numbers. However, the boundedness

problem for VASS is decidable in exponential space. This

complexity was proved by Rackoff in [23] by observing that

unboundedness of a VASS can be witnessed by finite runs of

length at most doubly exponential.

In this paper, reachability sets of bounded pushdown VASS

are shown to be hyper-Ackermannian large. The lower-bound

is obtained thanks to a family of bounded pushdown VASS

with finite, but large reachability sets (hyper-Ackermannian).

The upper-bound is derived from a precise complexity analysis

of an adaptation of the Karp & Miller algorithm. Based on this

algorithm, we deduce that the unboundedness of pushdown

VASS can be witnessed by finite runs. We think that the precise

complexity of the boundedness problem can be obtained by

bounding the length of these witnesses. However, adapting

Rackoff’s techniques to pushdown VASS is a difficult and

challenging problem. Note that witnesses have a length that is

at least a tower of exponentials, i.e., a length in F3(n), where

n is the size of the pushdown VASS. Such a lower-bound

can be easily obtained by adapting [19]. The complexity gap

between the lower-bound F3(n) and the upper-bound Fωω (n)
is an open problem.
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APPENDIX

A. Proofs of Section IV

Lemma IV.8. Bad nested sequences over a wqo are finite.

Proof. We consider an infinite sequence (s0, h0), (s1, h1), . . . of elements in S × N with h0 = 0. From the infinite sequence

hi0 , hi1 , hi2 , . . . we extract an infinite sequence i0, i1, i2, . . . defined as follows:

i0 = 0
ik+1 = min {i > ik | ∀j > ik, hi ≤ hj}

By definition hi+k ≤ hj By definition, hik ≤ hj for all j, k ∈ N with ik ≤ j. Since � is a well-quasi-order, there exists k < l
such that sik � sil . Thus the sequence (s0, h0), (s1, h1), . . . is good.

B. Proofs of Section VI

Lemma VI.3. It holds that:

KNτ/v(m) ≤ K∂i
d.n

(τ)(m)

for every type τ , for every i ∈ {1, . . . , d}, for every v ∈ τ(i)× N
i, for every n ≥ ||v||τ , and for every m ∈ N.

Proof. Since v ∈ τ(i) × N
i there exist q ∈ {1, . . . , τ(i)} and v ∈ N

i such that v = (q,v). By adapting the following proof,

we can assume without loss of generality that q = τ(i). Since τ(i) > 0, the derivation type ̺ = ∂id.n(τ) is well defined.

We introduce the projection function πr : Ni 7→ N
i−1 that removes the component indexed by r, and formally defined as

follows:

πr(u) = (u(1), . . . ,u(r − 1),u(r + 1), . . . ,u(i))

Let us observe that for every u ∈ N
i/v there exists a minimal r ∈ {1, . . . , i} such that u(r) < v(r). We denote by µ(u) this

minimal index r. Since ||v||∞ ≤ n we deduce that u(r) ∈ {0, . . . , n− 1}. Notice that this set can be empty if n = 0.

We introduce the function ν : Nτ/v 7→ N
̺ defined for every u = (p,u) ∈ τ(j)× N

j by:

ν(u) =

{

u if j 6= i ∨ (j = i ∧ p < τ(i))

(τ(i− 1) + r + i.u(r), πr(u)) if j = i ∧ p = τ(i) ∧ r = µ(u)

Observe that if (u0, h0) . . . , (uk, hk) is a m-controlled bad nested sequence in N
τ/v then (ν(u0), h0), . . . , (ν(uk), hk) is a

m-controlled bad nested sequence in N
̺. We have proved the lemma.

C. Proofs of Section VII

Lemma A.1. For every n ∈ N, Fω(n) ≥ nn+1.

Proof. We first show that F 2
2 (n) ≥ nn+1 for every n ∈ N. Observe that F1(n) = 2n+ 1 for all n ∈ N. An easy induction on

k shows that F k
1 (n) = (n+ 1)2k − 1 for every k, n ∈ N. It follows that F2(n) = (n+ 1)2n+1 − 1, hence, F2(n) ≥ n2n for

all n ∈ N. By monotonicity of F2 (see Lemma V.2), we obtain that:

F 2
2 (n) ≥ F2(n2

n) ≥ n2n2
n

≥ n22
n

≥ nnn = nn+1

Let us now prove the statement of the lemma, namely that Fω(n) ≥ nn+1 for all n ∈ N. It is readily seen that this inequality

holds for n ≤ 1, since Fω(0) = F1(0) = 1 and Fω(1) = F2(1) = 7. Assume for the remainder of the proof that n ≥ 2. By

Lemma V.2, we get that

Fω(n) = Fn+1(n) ≥ F3(n) = Fn+1
2 (n) ≥ F 2

2 (n)

Hence, Fω(n) ≥ F 2
2 (n) ≥ nn+1, which concludes the proof of the lemma.

Theorem VII.1. The reduced reachability tree of a pushdown VASS A has at most Fωω (|A|) nodes.

Proof. Consider a pushdown VASS A = 〈Q, qinit,vinit,Γ,∆〉, and let T denote its reduced reachability tree. Recall that d ≥ 1
and |A| = |Q|+ |Γ|+ d · (1+ ||vinit||∞ + |∆|). The case where ∆ is empty is trivial, since Fωω (n) = Fωn+1(n) > n for every

n ∈ N (by Lemma V.2), and T contains only one node if ∆ = ∅. So we assume for the remainder of the proof that ∆ 6= ∅.

We have shown in the main text preceding the theorem that the height h of T satisfies h ≤ Fωd.|Q|(d · (||vinit||∞ + 2)).
Non-emptiness of ∆ entails that |A| ≥ d · (||vinit||∞ + 2). Hence, by monotonicity of Fωd.|Q|, we get that

h ≤ Fωd.|Q|(|A|)
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Since each node of T can have at most |∆| children, we obtain that T has at most |∆|h+1 nodes. To reduce clutter in the

inequations below, we introduce n = |A|, α = ωn. n + · · · + ω0. n, and β = ωd. |Q|. Observe that n ≥ |Q| and n ≥ d ≥ 1.

It follows that α ⊒ β and α ⊒ ω. Recall also that, according to Lemma V.2, for each ordinal γ < ωω , Fγ is monotonic and

Fγ(m) ≥ m for all m ∈ N. We derive that:

Fωω (n) = Fωn+1(n)

= Fωn.(n+1)(n)

= Fωn.n+···+ω1.n+ω0.(n+1)(n)

= Fα+1(n)

= Fn+1
α (n)

≥ Fn
α (Fβ(n)) [α ⊒ β]

≥ Fα(Fβ(n)) [n ≥ 1]

≥ Fω(Fβ(n)) [α ⊒ ω]

≥ (Fβ(n))
Fβ(n)+1 [Lemma A.1]

≥ (Fβ(n))
h+1 [Fβ(n) ≥ h]

≥ |∆|h+1 [Fβ(n) ≥ n ≥ |∆|]

We conclude that T has at most Fωω (n) nodes.

Lemma VII.3. Suppose Ad is in location q2, F is on the top of the stack and the counter r has value m+1. Then there is a

partial3 run in Ad that reaches q3, removes F from the top of the stack, sets the counter r to the value Fωd−1.κd−1+···+ω0.κ0
(m)+

1, and does no other change.

Proof. By assumption, the starting value of r is m + 1, and the starting location is q2. Let cd−1, . . . , c0 denote the starting

values of the counters κd−1, . . . , κ0, respectively. The proof is by induction on the ordinal ωd−1. cd−1+ · · ·+ω0. c0. We write

configurations as tuples enclosed in parentheses, with the location as first element, followed by the values of r, κd−1, . . . , κ0,

and finally the stack content.

• ωd−1. cd−1 + · · ·+ ω0. c0 = 0. Recall that F0(m) = m+ 1.

(q2, r = m+ 1, 0, . . . , 0, σF )
A0−−→ (q3, r = m+ 2, 0, . . . , 0, σ)

• ωd−1. cd−1 + · · ·+ ω0. c0 = α+ 1, a successor ordinal. This means that c0 > 0. Recall that Fα+1(m) = Fm+1
α (m).

State r κd−1 · · · κ1 κ0 Stack

(q2, m+ 1, cd−1, . . . , c1, c0, σF )
Aα+1

−−−→
(q3, m+ 1, cd−1, . . . , c1, c0 − 1, σI0F

m+1) →
(q2, m+ 1, cd−1, . . . , c1, c0 − 1, σI0F

m+1) →∗ IH

(q3, Fα(m) + 1, cd−1, . . . , c1, c0 − 1, σI0F
m) →

(q2, Fα(m) + 1, cd−1, . . . , c1, c0 − 1, σI0F
m) →∗ IH

(q3, F 2
α(m) + 1, cd−1, . . . , c1, c0 − 1, σI0F

m−1) →
... (m− 1) times

(q3, Fm+1
α (m) + 1, cd−1, . . . , c1, c0 − 1, σI0) →

(q2, Fα+1(m) + 1, cd−1, . . . , c1, c0 − 1, σI0)
B

0

−−→
(q3, Fα+1(m) + 1, cd−1, . . . , c1, c0, σ)

• ωd−1. cd−1+ · · ·+ω0. c0 = λ, a limit ordinal. Suppose ci > 0 and ci−1 = · · · = c0 = 0, with i > 0. Then, by definition of

3By partial run, we mean a run that is not required to start from the initial configuration.
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the canonical fundamental sequence, λm = ωd−1. cd−1+ · · ·+ωi. (ci−1)+ωi−1. (m+1). Recall that Fλ(m) = Fλm
(m).

State r κd−1 · · · κi κi−1 Stack

(q2, m+ 1, cd−1, . . . , ci, 0, σF )
A

i
λ−−→

(q3, m+ 1, cd−1, . . . , ci − 1, m+ 1, σIiD
m+1
i−1 F ) →

(q2, m+ 1, cd−1, . . . , ci − 1, m+ 1, σIiD
m+1
i−1 F ) → IH

(q3, Fλm
(m) + 1, cd−1, . . . , ci − 1, m+ 1, σIiD

m+1
i−1 ) →

(q2, Fλ(m) + 1, cd−1, . . . , ci − 1, m+ 1, σIiD
m+1
i−1 )

B
i−1

−−−→
(q3, Fλ(m) + 1, cd−1, . . . , ci − 1, m, σIiD

m
i−1) →

... m times

(q3, Fλ(m) + 1, cd−1, . . . , ci − 1, 0, σIi) →

(q2, Fλ(m) + 1, cd−1, . . . , ci − 1, 0, σIi)
B

i

−−→
(q3, Fλ(m) + 1, cd−1, . . . , ci, 0, σ)

This concludes the proof of the lemma.

Lemma VII.5. Every partial run of Ad(n) that starts and ends in q2, but does not visit q2 in between, makes the depth of

remaining recursion strictly decrease.

Proof. By case analysis on whether the partial run executes Ai
λ, Aα+1, A0 or Bi. We use the following properties of ordinals.

α ≥ 0, β < γ ⇒ α+ β < α+ γ

α 6= 0, β < γ ⇒ α. β < α. γ

α > 1, β < γ ⇒ αβ < αγ

In the following, we denote by v = (vd−1, . . . , v0) the vector of natural numbers formed by the values of the counters

κd−1, . . . , κ0. The contents of the stack is denoted by σ.

• Ai
λ: (σF,v)

A
i
λ−−→ (σIiD

m
i−1F,v − ei +m. ei−1), with m ∈ N, i > 0, vi > 0

dr(σIiD
m
i−1F,v − ei +m. ei−1)

= (Ord(σIiD
m
i−1,v − ei +m. ei−1) + ωOrd(v−ei+m.ei−1), |σIiD

m
i−1F |)

= (Ord(σ,v) + ωOrd(v−ei+m.ei−1), |σIiD
m
i−1F |)

< (Ord(σ,v) + ωOrd(v), |σF |)

= (Ord(σF,v), |σF |)

= dr(σF,v)

• Aα+1: (σF,v)
Aα+1

−−−→ (σI0F
m,v − e0), with m ∈ N, v0 > 0

dr(σI0F
m,v − e0) = (Ord(σI0F

m,v − e0), |σI0F
m|)

= (Ord(σ,v) + ωOrd(v−e0).m, |σI0F
m|)

< (Ord(σ,v) + ωOrd(v−e0). ω, |σF |)

= (Ord(σ,v) + ωOrd(v), |σF |)

= (Ord(σF,v), |σF |)

= dr(σF,v)

• A0: (σF,v)
A0−−→ (σ,v)

dr(σ,v) = (Ord(σ,v), |σ|)

< (Ord(σ,v) + ωOrd(v), |σF |)

= (Ord(σF,v), |σF |)

= dr(σF,v)
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• Bi with Ii on top: (σIi,v)
B

i

−−→ (σ,v + ei)

dr(σ,v + ei) = (Ord(σ,v + ei), |σ|)

< (Ord(σ,v + ei), |σIi|)

= (Ord(σIi,v), |σIi|)

= dr(σIi,v)

• Bi with Di on top: (σDi,v)
B

i

−−→ (σ,v − ei), with vi > 0

dr(σ,v − ei) = (Ord(σ,v − ei), |σ|)

< (Ord(σ,v − ei), |σDi|)

= (Ord(σDi,v), |σDi|)

= dr(σDi,v)

We have shown that, in all cases, the partial run makes the depth of remaining recursion strictly decrease.
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