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Abstract Counterparty risk reduced-form models typically hinge on an immersion property of a ref-
erence filtration into the full model filtration enlarged by the default times of the counterparties, as
well as on a continuity assumption on some of the data at default time. This is too restrictive for cases
of strong wrong-way risk, i.e. adverse dependence between the exposure and the credit riskiness of the
counterparty. In this paper we generalize the approach by switching from the class of pseudo-stopping
times, which is classically used to model the defaults of the counterparties, to the much more flexible
class of invariant times. For instance, these can be marked default times, where the role of the mark
is to convey some additional information about the defaults, in order to account for various possible
wrong-way and gap risk scenarios and features. Additional tools are introduced to analyze the cure
period (time interval between the default and the liquidation) and the ensuing gap risk of diverging
evolutions of the portfolio and of its collateral. In particular, the liquidation time is predictable (as an-
nounced by the default), which modifies the nature of the pricing problem. We illustrate our approach
in two dynamic copula models of portfolio credit risk.

Keywords: Counterparty risk, funding, reduced-form credit modeling, BSDE, immersion, invariant
times, wrong-way risk, gap risk, collateral, credit derivatives, dynamic copulas.
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1 Introduction

Counterparty risk is the risk of default of a party in an OTC derivative transaction, a topical issue
since the global financial crisis. As banks themselves have become risky, counterparty risk must be
understood in a bilateral perspective (not only CVA, i.e. credit valuation adjustment but also DVA,
i.e. debit valuation adjustment), which raises the companion issue of a proper accounting of funding
costs (FVA, i.e. funding valuation adjustment). See ?) for a general reference. To mitigate counterparty
risk, a margining procedure is set up according to the specifications of a CSA (credit support annex).
However, accounting for various frictions and delays, notably the cure period (time interval between
default and liquidation), there is gap risk, i.e. risk of a residual gap between the collateral and the debt
of the defaulted counterparty. This is why another layer of collateralization, called initial margins (as
opposed to the variation margin that accounts for market risk), is now maintained in both centrally
cleared transactions and bilateral transactions under a sCSA (standard CSA). Gap risk is magnified
in the presence of wrong-way risk, i.e. adverse dependence between the underlying exposure and the
credit risk of the counterparty. This is a special case of concern regarding counterparty risk on credit
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E-mail: stephane.crepey@univ-evry.fr

S. Song
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derivatives, given the strong dependence (contagion) effects between the credit risks of the two parties
and the ones of the underlying credit names.

In a bilateral counterparty risk framework also accounting for the nonlinear funding costs in-
volved, the pricing equations for the corresponding valuation adjustment (TVA equations, where TVA
stands for total valuation adjustment) are implicit and nonlinear (see ?), ?)). Moreover, they are posed
over random time intervals determined by the first default time of a party. To deal with such equations,
a first reduced-form counterparty risk modeling approach was proposed in ?, Part II), under a stan-
dard immersion hypothesis between the reference (or market) filtration and the full model filtration
progressively enlarged by the default times of the two parties. But this basic immersion setup, with the
related continuity assumptions on some of the data at default time, is too restrictive for wrong-way risk
applications, like counterparty risk of credit derivatives (an issue that also poses specific dependence
modeling and dimensionality challenges). Moreover, additional tools are required to analyze the cure
period. In particular, the liquidation time is predictable (as announced by the default), which modifies
the nature of the pricing problem.

In the first part of this paper (Sect. 2 through 4), we generalize, resorting to the notion of invariant
times in ?), the basic reduced-form approach of ?, Part II), in view of a proper wrong-way and gap risk
modeling in applications. In a second part (Sect. 5 through 7), the general approach is implemented
through marked default times in two dynamic copula models of portfolio credit risk. The role of the
mark is to convey some information about the default, in order to account for various possible wrong-
way and gap risk scenarios and features. The detailed outline of the paper is as follows. Sect. 2 fixes
the setup and provides the full TVA BSDE with respect to the full model filtration G. Sect. 3 develops
an extended reduced-form approach with τ modeled as an invariant time. Sect. 4 deals with the cure
period. In the marked default time specification of Sect. 5, we derive a CVA, DVA, FVA decomposition
of the all-inclusive TVA. Sect. 6 and Sect. 7 illustrate our approach in two dynamic copula models of
counterparty risk for credit derivatives. Sect. 8 concludes with numerical perspectives.

Any “deterministic function” of real arguments is measurable with respect to the corresponding
Borel σ field, denoted in the case of R by B(R). We write P(F), O(F) and R(F) for the predictable,
optional and progressive σ fields with respect to a filtration F. When a process ft can be represented
in terms of a function of some factor process X, we typically write f(t,Xt) (i.e. the function is denoted
by the same letter as the related process, if no confusion arises). Order relationships between random
variables (respectively processes) are meant almost surely (respectively in the indistinguishable sense).

2 Counterparty Risk Setup

We consider a netted portfolio of OTC derivatives with maturity T between two defaultable counter-
parties, generically referred to as the “contract between the bank and its counterparty”. After having
bought the contract from its counterparty at time 0, the bank sets-up a hedging, collateralization
(i.e. margining) and funding portfolio. We call “funder” of the bank a third party (possibly composed
in practice of several entities or devices) insuring funding of the bank’s strategy. The funder, assumed
default-free for simplicity, plays the role of lender/borrower of last resort after exhaustion of the inter-
nal sources of funding provided to the bank through its hedge and its collateral. For reasons explained
in Sect. 1 of ?, Part II), the price of the contract is computed as the difference between a reference price
(ignoring counterparty risk and assuming a risk-free funding rate) and a counterparty risk and funding
adjustment. Let (Ω,G,G,Q), with G = (Gt)t∈R+

satisfying the usual conditions and Q expectation
denoted by E, represent a prevailing pricing stochastic basis, such that all our processes are G adapted
and all random times are G stopping times. The meaning of a risk-neutral pricing measure in our
setup, with different funding rates in particular, will be specified by martingale conditions introduced
below in the form of pricing BSDEs, i.e. backward stochastic differential equations. In the first place
(cf. Assumption 1.1 in ?, Part I)), a pricing measure must be such that the gain processes related to
the trading of the hedging assets (assumed done via repo and swap markets) are local martingales.
We denote by rt a progressive OIS rate process (overnight indexed swap rate, the best market proxy
for a risk-free rate), by Dt a finite variation cumulative promised dividend process of the contract
(contractual cash-flows ignoring counterparty risk) and by Pt the corresponding mark-to-market (risk-
neutral conditional expectation of future promised cash flows discounted at the OIS rate rt). But the
two parties are defaultable, with first-default-time modeled as a stopping time τ with intensity γt (so
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that any event {τ = t} for a fixed time t has zero probability and can be ignored in the analysis). This
results in an effective time horizon of the problem τ̄ = τ ∧ T (there are no cash-flows beyond τ̄) and
an effective dividend stream JtdDt on [0, τ̄ ], where Jt = 1{t<τ}. The position of the bank is supposed
to be closed at τ (if τ < T ), with a terminal cash-flow given as a Gτ ⊗ B(R) measurable function ξ(π)
(exposure at default) of the form

ξ(π) = ξc − Λ(π − C?)
+, (2.1)

for Gτ measurable random variables ξc, Λ and C? respectively corresponding to the CVA/DVA exposure
(of the bank to the default of its counterparty/its own default), to the fractional loss of the funder
(in case of default of the bank) and to the collateral funded by the bank; see Sect. 5 for a concrete
specification. By Lemma 2.2 in ?), for any Gτ ⊗ B(R) measurable function ζ(π) (e.g. ζ = ξ), if ζ is
nonnegative, then there exists a P(G)⊗ B(R) measurable nonnegative function ζ̂t(ω, x) such that, for
any real valued Gτ− measurable random variable η,

1{τ<∞}E[ζ(η)|Gτ−] = 1{τ<∞}ζ̂τ (η), (2.2)

and the (respectively Gτ− local) integrability of ζ(η) implies that of ζ̂τ (η). For a general (nonnecessarily

≥ 0) ζ(η), we define ζ̂ = ζ̂+ − ζ̂− whenever well defined as an R̄ valued function, which we assume
henceforth regarding ζ = ξ (see Lemma 5.1 for a concrete specification), so that it also holds for 1τ<T ξ,

with 1̂τ<T ξ = 1[0,T )ξ̂.

Lemma 2.1 For every (G,Q) semimartingale Y such that 1τ<T ξ(Yτ−)J has locally integrable total varia-

tion, the process ξ(Yt−)dJt + γtξ̂t(Yt)dt is a (G,Q) local martingale on [0, τ̄ ].

Proof. Without loss of generality, we suppose that 1τ<T ξ(Yτ−)J has integrable total variation, so that
1τ<T ξ(Yτ−) is integrable. Then, for every stopping time υ, we have in R :

E
∫ υ

0

1t<T ξ(Yt−)dJt = −E[1{τ≤υ}1τ<T ξ(Yτ−)] = −EE
[
1{τ≤υ}1τ<T ξ(Yτ−)

∣∣Gτ−]
= −E[1{τ≤υ}1τ<T ξ̂τ (Yτ−)] = E

∫ υ

0

1t<T ξ̂t(Yt−)dJt,

where the Gτ− measurability of 1{τ≤υ} was used to pass to the second line. Therefore, Theorem 4.40 in

?) shows that the process 1τ<T (ξ(Yt−)− ξ̂t(Yt−))dJt is a martingale on R+, hence (ξ(Yt−)− ξ̂t(Yt−))dJt
is a martingale on [0, τ̄ ], as is in turn

ξ(Yt−)dJt + γtξ̂t(Yt)dt = (ξ(Yt−)− ξ̂t(Yt−))dJt + ξ̂t(Yt−) (dJt + γtdt)

(since ξ̂t(Yt−) (dJt + γtdt) also is, as a well defined stochastic integral against a local martingale).

Moreover, the bank needs to fund its position (contract, hedge and collateral) before τ̄ . We denote by
gt = gt(π) an R(G)⊗B(R) measurable funding coefficient such that (rtπ+gt(π))dt represents the bank’s
funding cost over (t, t+dt), depending on the contract’s value represented by π. Concrete specifications
for ξ and gt will be studied in Sect. 5. Writing ft(ϑ) = gt(Pt − ϑ) − rtϑ, ϑ ∈ R, a TVA process Θ on
[0, τ̄ ] is implicitly defined as a solution to the following BSDE over [0, τ̄ ]:

Θτ̄ = 1{τ<T}ξ(Pτ− −Θτ−),

dµt := dΘt + ft(Θt)dt is a (G,Q) local martingale on [0, τ̄ ]
(2.3)

(which includes the time integrability of ft(Θt) on [0, τ̄ ]; similar convention is in force and will not
be repeated regarding the various BSDEs introduced below). The reader is referred to Proposition
2.1 of ?, Part II) for more details and for the derivation of the TVA BSDE (2.3) as the output of a
computation based on a TVA primarily defined as

Θt = Pt −Πt +

∫
[τ,t]

e
∫ t
s rududDs, (2.4)

where Π represents the overall price process of the contract (cost of the hedge inclusive of counterparty
risk and funding costs) and where the integral includes the jump ∆τ = Dτ −Dτ− of D at τ . Instead, for
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simplicity of presentation in this paper, we take (2.3) as a definition. Of course, this approach assumes
the existence (at the very least) of a solution to (2.3), a quite nonstandard BSDE. The object of the
next section is to develop a reduced-form approach for (2.3), beyond the basic immersion setup of ?,
Part II).

3 Reduced Form Approach

For t ∈ [0, τ̄ ] and ϑ ∈ R, we write

f̂t(ϑ) := ft(ϑ) + γt
(
ξ̂t(Pt − ϑ)− ϑ

)
= gt(Pt − ϑ) + γtξ̂t(Pt − ϑ)− r̃tϑ, (3.1)

where r̃t = rt + γt. By a (left-limited) process Y stopped at τ−, we mean the process Y τ− =
JY + (1− J)Y−.

Condition (C). There exist:

(C.1) a subfiltration F of G satisfying the usual conditions and such that F semimartingales stopped
at τ are G semimartingales,

(C.2) a probability measure P equivalent to Q on FT and such that any (F,P) local martingale stopped
at τ− is a (G,Q) local martingale on [0, T ],

(C.3) an F representative f̃t(ϑ) of f̂t(ϑ), i.e. an R(F) ⊗ B(R) function f̃t(ϑ) such that
∫ ·
0
f̂t(ϑ)dt =∫ ·

0
f̃t(ϑ)dt on [0, τ̄ ].

The condition (C.1) relates to the (H′) hypothesis between F and G, i.e. F semimartingales are G
semimartingales (see ?)). The condition (C.3) is a mild technical condition, which holds in particular
under the condition (B) in ?) that any G predictable process Y admits an F predictable process Ỹ
coinciding with Y until τ ; see ?), where it is shown that the condition (B) also implies (C.1). The
condition (C.2) is the condition (A) of ?), where it is characterized in terms of the Azéma super-
martingale St = Q(τ > t|Ft) of τ . This condition obviously holds if (F,P) local martingales don’t
jump at τ (then “stopped at τ−” reduces to “stopped at τ” in (C.2)) and (F,P) local martingales
stopped at τ are (G,Q) local martingales. In the case where P = Q, these properties are related to the
notions of immersion of F into G, i.e. F local martingales are G local martingales (see ?)) and of an F
pseudo-stopping time τ , i.e. F local martingales stopped at τ are G local martingales (see ?)). However,
even in this “immersion” case where P = Q, the condition (C) offers a richer setup than a standard
reduced-form intensity model of credit risk, where the full model filtration G is given as the reference
filtration F progressively enlarged by τ , i.e. in a standard notation: “G = F∨H” (see ?)). Indeed, under
(C.1-2-3), the full filtration G can be bigger than F ∨ H (to some extent limited, as discussed in ?),
by the condition (B) that is latent in (C.3)). In particular, the conditions (C.1-2-3) (even for P = Q)
do not exclude a jump of an F adapted càdlàg process at time τ , which happens for instance with a
nonvanishing random variable ∆τ = Dτ −Dτ− in the DMO model of Sect. 7 (e.g. to render the case,
actually the key feature in ?), of a joint default of the counterparty and a reference firm in a CDS). By
contrast, a jump of an F adapted càdlàg process at time τ cannot happen in a standard reduced-form
setup of credit risk (see Lemma 2.1(ii) in ?, Part II)). But all these comments should not hide the
main feature, namely, the great flexibility of the condition (C) comes from the possibility to choose
(F,P) ensuring (C.1-2-3): see Sect. 6 and Sect. 7 for concrete examples, with P 6= Q (and ∆τ = 0) in
the first case and P = Q (but ∆τ 6= 0) in the second case. In this paper we work under the “minimal
condition” (C). However, since the condition (B) of ?) is in fact latent in (C.1) and (C.3) and since
(C.2) is exactly the condition (A) of ?), our random time τ is essentially an invariant time in the sense
of ?).

Theorem 3.1 (Reduced-form TVA modeling) Assume that an (F,P) semimartingale Θ̃ satisfies the

following pre-default TVA BSDE on [0, T ]:

Θ̃T = 0 and dµ̃t := dΘ̃t + f̃t(Θ̃t)dt is an (F,P) local martingale on [0, T ]. (3.2)

Let Θ = Θ̃ on [0, τ̄) and Θτ̄ = 1{τ<T}ξ(Pτ− − Θ̃τ−). We write ξ? = ξ(Pτ− − Θ̃τ−) and ξ̂?t = ξ̂t(Pt − Θ̃t).
If 1τ<T ξ?J has locally integrable total variation, then Θ satisfies the full TVA equation (2.3) on [0, τ̄ ] and

dµt = dµ̃τ−t −
(

(ξ? − Θ̃t−)dJt + γt(ξ̂
?
t − Θ̃t)dt

)
, t ∈ [0, τ̄ ]. (3.3)
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Proof. By definition of Θ here, a (G,Q) semimartingale by (C.1), we have, for t ∈ [0, τ̄ ]:

dΘt = d(JtΘ̃t)− ξ?dJt = dΘ̃τ−t + Θ̃t− dJt − ξ?dJt. (3.4)

Then by (3.2), for t ∈ [0, τ̄ ]:

−dΘt = f̃t(Θ̃t)dt− dµ̃τ−t + (ξ? − Θ̃t−)dJt

= ft(Θt)dt− dµ̃τ−t +
(

(ξ? − Θ̃t−)dJt + γt(ξ̂
?
t − Θ̃t)dt

)
,

by (C.3). By (C.2), µ̃τ−t is a (G,Q) local martingale, as is also on [0, τ̄ ]

(ξ? − Θ̃t−)dJt + γt(ξ̂
?
t − Θ̃t)dt,

by Lemma 2.1. This yields the decomposition (3.3) of the (G,Q) local martingale part µ of Θ, which
implies (2.3).

3.1 Markov Case

Assume that the pre-default TVA BSDE (3.2) is Markov, in the sense that there exists an (F,P) Markov
process X̃, called (F,P) (or pre-default) factor process, along with:

• a deterministic function f̃(t, x̃, ϑ) such that

f̃t(ϑ) = f̃(t, X̃t, ϑ), t ∈ [0, T ], (3.5)

• a stochastic or random measure stochastic integral “Zt · dM̃t” and a linear operator B̃ such that,
for any sufficiently regular function ϕ = ϕ(t, x̃), the (F,P) local martingale part of ϕ(t, X̃t) is given
in Itô-Markov form as

B̃ϕ(t, X̃t−) · dM̃t. (3.6)

Then the pre-default TVA BSDE (3.2) reduces to the following Markov BSDE in Θ̃t = Θ̃(t, X̃t):

 Θ̃(T, X̃T ) = 0 and, for t ∈ [0, T ],

− dΘ̃(t, X̃t) = f̃
(
t, X̃t, Θ̃(t, X̃t)

)
dt− B̃Θ̃(t, X̃t−) · dM̃t,

(3.7)

for which an equivalent semilinear PIDE could be written in terms of the generator of X̃ (a similar
statement applies and will not be repeated regarding the various Markov BSDEs introduced below).
Accordingly, Theorem 3.1 admits the following Markov counterpart. Note that under mild regularity
and growth conditions on the data, the BSDE (3.7) is well-posed in the space of square integrable

processes Θ̃ (assuming an (F,P) martingale representation in M̃).

Proposition 3.1 If the BSDE (3.7) has a solution Θ̃t = Θ̃(t, X̃t) such that 1τ<T ξ?J has locally integrable

total variation, where ξ? = ξ(Pτ− − Θ̃τ−), then we obtain a solution Θ to the full TVA equation (2.3) by

Θ = Θ̃ on [0, τ̄) and Θτ̄ = 1τ<T ξ. Writing ξ̂?t = ξ̂t(Pt − Θ̃t),

dµt = B̃Θ̃(t, X̃t−) · dM̃τ−
t −

(
(ξ? − Θ̃t−)dJt + γt(ξ̂

?
t − Θ̃t)dt

)
, t ∈ [0, τ̄ ]. (3.8)
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4 Cure Period

An additional feature is a time lag δ > 0, called the cure period, typically taken as ten (respectively
five) days in the case of bilateral (respectively cleared) transactions, between default (at time τ) and
liquidation (delivery of the close-out cash-flow). We assume that the liquidator takes in charge the
funding of a defaulted party during the cure period (for possibly modified funding conditions, which
would correspond to a funding coefficient gt(π) presenting a “change of regime” at the default time of
a party). For every time u, we write

ū = u ∧ T , uδ = u+ δ, ūδ = 1u<Tu
δ + 1{u≥T}T ,

and we define

P δt = Pt +

∫
[τ,t]

e
∫ t
s rududDs, f

δ
t (ϑ) = gt(P

δ
t − ϑ)− rtϑ (4.1)

(in particular, P δt = Pt and fδt = ft for t ≤ τ). With a positive cure period δ, the effective time horizon
of the problem becomes τ̄δ. If τ < T , the position is liquidated at τδ, for a modified exposure ξδ(π) of
the same general structure as (2.1), i.e.

ξδ(π) = ξc − Λ(π − C?)
+, (4.2)

except that the random variables ξc, Λ and C? are now Gτδ measurable (and in fact, typically, Gτδ−
measurable; see Lemma 5.2). Following the approach of ?, Part II), the full TVA BSDE with cure
period is written as:

Θδτ̄δ = 1{τ<T}ξ
δ(P δτδ− −Θ

δ
τδ−) and

dµδt := dΘδt + fδt (Θδt )dt is a (G,Q) local martingale on [0, τ̄δ].
(4.3)

This BSDE is structurally different from (2.3) in that τδ in (4.3) is predictable, as announced by τ

(see Theorem 3.27 in ?)), whereas τ in (2.3) is totally inaccessible, as endowed with an intensity (see
the third assertion of Corollary 5.23 in ?)). In particular, as will become clear after Lemmas 4.1-4.2,
the terminal condition in (4.3) really plays the role of an equation for Θδτ̄δ−, instead of the role of a
recovery that is played by the terminal condition in (2.3).

Lemma 4.1 If ξc, Λ and C? are Gτδ− measurable and Λ < 1, then the equation

θ = 1{τ<T}ξ
δ(P δτδ− − θ) (4.4)

has a unique Gτ̄δ− measurable solution θ = 1{τ<T}ξ
δ
?, where

ξδ? =

{
(1− Λ)−1ξc + (1− (1− Λ)−1)(P δτδ− − C?) if {ξc ≤ P δτδ− − C?}
ξc otherwise.

(4.5)

Proof. In view of (4.2), (4.4) is equivalent to(
1{τ<T}ξc − θ

)+ − (1{τ<T}ξc − θ)− = 1{τ<T}Λ(P δτδ− − C? − θ)+, (4.6)

i.e. {
θ ≤ 1{τ<T}ξc
1{τ<T}ξc = θ + 1{τ<T}Λ(P δτδ− − C? − θ)+.

(4.7)

Let us assume that a ∈ Gτ̄δ− measurable random variable θ solves (4.4), or equivalently (4.7).

We write A = {τ < T} ∩ {ξc ≤ P δτδ− − C?}. Then 1{τ<T}ξc = θ outside A. Indeed this follows from

the second line in (4.7) if τ ≥ T, whereas on the set {τ < T} but for ξc > P δτδ− − C?, we have

1{τ<T}ξc − θ > P δτδ− − C? − θ, only compatible with the second line in (4.7) for P δτδ− − C? − θ ≤ 0, in

which case this second line yields θ = 1{τ<T}ξc = 1{τ<T}ξ
δ
?. Moreover, on A, we have by the first line

in (4.7) θ ≤ ξc ≤ P δτδ− − C? by definition of A. Therefore on A the second line in (4.7) is rewritten as
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ξc = θ + Λ(P δτδ− − C? − θ), i.e. θ = (1− Λ)−1ξc + (1− (1− Λ)−1)(P δτδ− − C?) = ξδ? = 1{τ<T}ξ
δ
? (on A).

In conclusion, θ = 1{τ<T}ξ
δ
?.

Conversely, let us prove that 1{τ<T}ξ
δ
? solves (4.7). Noticing that ξδ? ≤ ξc (as Λ < 1), therefore

1{τ<T}ξ
δ
? satisfies the first line in (4.7). If τ ≥ T, then 1{τ<T}ξ

δ
? trivially satisfies the second line in

(4.7). On the set {τ < T}, either P δτδ−−C? < ξc and 1{τ<T}ξ
δ
? = ξδ? = ξc, (P

δ
τδ−−C?−1{τ<T}ξδ?)+ = 0,

thus 1{τ<T}ξ
δ
? satisfies the second line in (4.7); or ξc ≤ P δτδ−−C? and ξδ? ≤ ξc ≤ P δτδ−−C?, (P

δ
τδ−−C?−

1{τ<T}ξ
δ
?)+ = P δτδ−−C?−1{τ<T}ξ

δ
?, so that 1{τ<T}ξ

δ
? = (1−(1−Λ)−1)ξc+(1−(1−(1−Λ)−1))(P δτδ−−C?)

again satisfies the second line in (4.7).

Henceforth in this section, we assume the conditions of Lemma 4.1.

Lemma 4.2 The full TVA BSDE with cure period (4.3) is equivalent to

Θτ̄δ = 1{τ<T}ξ
δ
? and dµδt := dΘδt + fδt (Θδt )dt is a (G,Q) local martingale on [0, τ̄δ]. (4.8)

Proof. Since
τ̄δ = 1{τ<T}τ

δ + 1{T≤τ}T = τδ{τ<T} ∧ T{T≤τ},

where T and τδ (by Theorem 3.27 in ?)) and in turn τδ{τ<T} and T{T≤τ} (by Theorem 3.29 in ?))

are predictable stopping times, so is therefore τ̄δ. If Θδ solves (4.8), then the (G,Q) local martingale

µδ, hence Θδ, cannot jump at the predictable time τ̄δ. That’s because E
(
∆µδτ̄δ

∣∣Gτ̄δ−) = 0 (τ̄δ being

predictable), joint to the Gτ̄δ− measurability of

1{τ<T}ξ
δ
? −Θδτ̄δ− = ∆Θδτ̄δ = ∆µτ̄δ .

Consequently,

1{τ<T}ξ
δ(P δτδ− −Θ

δ
τδ−) = 1{τ<T}ξ

δ(P δτδ− −Θ
δ
τ̄δ ) = Θδτ̄δ ,

by (4.4), so that Θδ also solves (4.3). Conversely, if Θδ solves (4.3), then, likewise, Θδ cannot jump at
τ̄δ and

Θδτ̄δ = 1{τ<T}ξ
δ(P δτδ− −Θ

δ
τδ−) = 1{τ<T}ξ

δ(P δτδ− −Θ
δ
τ̄δ )

solves (4.4), so that by the uniqueness in Lemma 4.1:

Θδτ̄δ = 1{τ<T}ξ
δ
?,

hence Θδ solves (4.8).

4.1 Reduced-Form Approach

Obviously, we can rewrite (4.8) in two parts, after and until τ̄ :

Lemma 4.3 If{
Θ̌τ̄δ = 1{τ<T}ξ

δ
? and

(
dΘ̌t + fδt (Θ̌t)dt

)
is a (G,Q) local martingale on [τ̄ , τ̄δ] (4.9)

Θ̄τ̄ = Θ̌τ̄ and
(
dΘ̄t + ft(Θ̄t)dt

)
is a (G,Q) local martingale on [0, τ̄ ], (4.10)

then Θδ = 1[0,τ̄)Θ̄ + 1[τ̄ ,τ̄δ]Θ̌ solves (4.8).

Given Θ̌ solving (4.9), (4.10) will be solved in Theorem 4.1 much like (2.3) in Theorem 3.1 above. But
first, in order to solve (4.9), we need to be able to view it as a “classical” BSDE on a deterministic
time interval. Since it is posed on [τ̄ , τ̄δ], which is random but Gτ̄ measurable, this is possible through
the concept of regular conditional probability, assuming G given as the usual augmentation of the
natural filtration Z = (Zt)t≥0 of some Polish space valued càdlàg process Z. Note that Z∞ is Borel as
generated by the paths of Z. We identify Ω with the path space set of Z equipped with the Skorohod
topology (cf. ?)). By Theorem 13.6 in ?), there exists a (Q,Gτ̄ ) regular conditional probability of the



8 S. Crépey and S. Song

identity map from (Ω,G) into (Ω,Z∞).

Condition (G). Gτ̄ is generated by Z·∧τ̄ and the Q negligible sets.

Under this assumption, the above regular conditional probability can be taken as a function of w =
w|[0,τ̄(w)] and we write Qw̄, with related expectation denoted by Ew̄, for every w ∈ Ω. In particular,
for Q almost every w, ω̄ = w̄ holds Qw̄(dω) a.s., so that under Qw̄ any dependence on ω reduces to a
dependence on ω|[τ̄(ω),τ̄δ(ω)]. Note that Qw̄ is only defined on Z∞, for Q almost every w.

Lemma 4.4 For any measurable space (E, E) and Z∞ ⊗ E measurable function ζ(ω, e), for any E valued

Gτ̄ measurable random variable η, if ζ(η) is Gτ̄ locally integrable, then

E[ζ(η)|Gτ̄ ] =
(
E·̄[ζ(e)]

)
|e=η ,Q a.s.. (4.11)

Proof. The identities (4.11) without “parameter” η characterize Q̄̇. The extension with η can be proven
by a standard monotone class argument.

We consider the following family of (Z,Qw̄) BSDEs with solutions, assumed to exist, Θw̄ (one per
w ∈ Ω):

Θw̄τ̄δ = 1{τ<T}ξ
δ
?

dµw̄t := dΘw̄t + fδt (Θw̄t )dt is a (G,Qw̄) local martingale on [τ̄(w), τ̄δ(w)],
(4.12)

and we write Θ̌ : (t, ω) 7→ Θω̄t (ω), µ̌ : (t, ω) 7→ µω̄t (ω) (or Θ·̄t, µ
·̄
t for short).

Lemma 4.5 If (t, ω, w) 7→ Θw̄t (ω) is O(Z) ⊗ G∞ measurable and if there exists a sequence (υn)n≥0 of Z
stopping times increasing to∞, reducing Θ̌·−Θ̌·∧τ̄ and

∫ ·
τ̄
fδt (Θ̌t−)dt to (G,Q) uniformly integrable processes

and localizing every (Z,Qw̄) local martingale dΘw̄t + fδt (Θw̄t )dt on [τ̄ , τ̄δ], then the process 1τ<T Θ̌ restricted

to [τ̄ , τ̄δ] solves (4.9).

Proof. By a standard class monotone argument, Θ̌· − Θ̌·∧τ̄ can be shown to be a G optional process,
hence so is in turn µ̌· − µ̌·∧τ̄ . Let υ be a Z stopping time such that τ̄ ≤ υ ≤ υn ∧ τ̄δ (assuming without
loss of generality that τ̄ ≤ υn). For any reals a < b and A ∈ Za, we compute by Lemma 4.4 with e ≡ w,
η ≡ ·̄ and ζ(e) ≡ 1{τ̄(w)≤υ}1A1{τ̄(w)≤a}

(
µw̄b∧υ − µ

w̄
τ̄(w)

)
:

E[1A1{τ̄≤a}
(
µ̌b∧υ − µ̌τ̄∧b∧υ

)
] = EE[1{τ̄≤υ}1A1{τ̄≤a}

(
Θ̌b∧υ − Θ̌τ̄ +

∫ b∧υ

τ̄

fδs (Θ̌s−)ds
)
|Gτ̄ ]

= EE·̄[1{τ̄≤υ}1A1{τ̄≤a}
(
Θ·̄b∧υ −Θ

·̄
τ̄ +

∫ b∧υ

τ̄

fδs (Θ·̄s−)ds
)
] = EE·̄[1{τ̄≤υ}1A1{τ̄≤a}

(
µ·̄b∧υ − µ

·̄
τ̄

)
]

= EE·̄[1{τ̄≤υ}1A1{τ̄≤a}
(
µ·̄a∧υ − µ·̄τ̄

)
] = E[1A1{τ̄≤a}

(
µ̌a∧υ − µ̌τ̄∧a∧υ

)
].

In the same way,

E[1A1{a<τ̄≤b}
(
µ̌b∧υ − µ̌τ̄∧b∧υ

)
] = EE[1{τ̄≤υ}1A1{a<τ̄≤b}

(
Θ̌b∧υ − Θ̌τ̄ +

∫ b∧υ

τ̄

fδs (Θ̌s−)ds
)
|Gτ̄ ]

= EE·̄[1{τ̄≤υ}1A1{a<τ̄≤b}
(
Θ·̄b∧υ −Θ

·̄
τ̄ +

∫ b∧υ

τ̄

fδs (Θ·̄s−)ds
)
]

= EE·̄[1{τ̄≤υ}1A1{a<τ̄≤b}(µ
·̄
b∧υ−µ

·̄
τ̄ )] = 0 = E[1A1{a<τ̄≤b}

(
µ̌a∧υ − µ̌τ̄∧a∧υ

)
]

and of course E[1A1{b<τ̄}
(
µ̌b∧υ − µ̌τ̄∧b∧υ

)
] = 0 = E[1A1{b<τ̄}

(
µ̌a∧υ − µ̌τ̄∧a∧υ

)
]. Adding them up and

sending n, hence υn, to ∞, these identities for every A ∈ Za show that

E[(µ̌b − µ̌τ̄∧b) | Za] = E[(µ̌a − µ̌τ̄∧a) | Za].

But these Za conditional expectations Q almost surely coincide with their Ga analogs, so that

E[(µ̌b − µ̌τ̄∧b) | Ga] = E[(µ̌a − µ̌τ̄∧a) | Ga] = µ̌a − µ̌τ̄∧a,

by G adaptedness of µ̌· − µ̌·∧ā. Consequently, Theorem 4.40 in ?) shows that the process µ̌ is a (G,Q)
local martingale on [τ̄ , τ̄δ].
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Theorem 4.1 (TVA modeling with cure period) Assuming the conditions of Lemma 4.5 and 1τ<T Θ̌τJ

of locally integrable total variation, let Θ̂δ be a G predictable process such that

1τ<TE(Θ̌τ | Gτ−) = 1τ<T Θ̂
δ
τ . (4.13)

We denote by f̃δt (ϑ) an F representative (cf. (C.3)), assumed to exist, of f̂δt (ϑ), where

f̂δt (ϑ) = ft(ϑ) + γt
(
Θ̂δt − ϑ

)
(4.14)

(i.e. f̂t(ϑ) of (3.1) with ξ̂t(Pt − ϑ) replaced by Θ̂δt ). If an (F,P) semimartingale Θ̃δ satisfies the BSDE

Θ̃δT = 0 and dµ̃δt := dΘ̃δt + f̃δt (Θ̃δt )dt is an (F,P) local martingale on [0, T ], (4.15)

then the process Θδ = 1[0,τ̄)Θ̃
δ + 1[τ̄ ,τ̄δ]1τ<T Θ̌ satisfies the full TVA BSDE with cure period (4.3), and

dµδt = d((µ̃δ)τ−)t −
(

(Θ̌τ − Θ̃δt−)dJt + γt(Θ̂
δ
t − Θ̃δt )dt

)
, 0 ≤ t ≤ τ̄ . (4.16)

Proof. The existence of Θ̂δ in (4.13) is ensured by Corollary 3.23 2) in ?). By Lemma 4.5, 1τ<T Θ̌
satisfies the BSDE (4.9) over [τ̄ , τ̄δ]. An application of Theorem 3.1 with f̃t(ϑ) replaced by f̃δt (ϑ) shows
that 1[0,τ̄)Θ̃

δ + 1{τ̄}1τ<T Θ̌ satisfies the BSDE (4.10) over [0, τ̄ ]. We conclude that Θδ = 1[0,τ̄)Θ̃
δ +

1[τ̄ ,τ̄δ]1τ<T Θ̌ satisfies (4.9)–(4.10), i.e. (4.8) by Lemma 4.3, or equivalently (4.3) by Lemma 4.2.

4.2 Markov Case

We want to solve (4.3) or, as sufficient by Theorem 4.1, (4.12) (one BSDE (4.12) per w̄) and (4.15).
For solving (4.12), we assume, on top of the condition (G), that there exist:

• a (G,Q) jump-diffusion Xδ with a (3.6)-like (G,Q) Itô-Markov local martingale part formula
Bδϕ(t,Xδ

t−) · dMδ
t , for some Z optional Mδ; hence, Lemma 4.6 below shows that Xδ

|[τ̄(w),+∞) has

the analogous properties relative to (G,Qw̄), for Q a.e. w;
• functions φw̄(t, xδ) and f w̄(t, xδ, ϑ) such that

1τ<T ξ
δ
? = φ·̄(τδ, Xδ

τδ ) and fδt (ϑ) = f ·̄(t,Xδ
t , ϑ), t ∈ [τ̄ , τ̄δ]. (4.17)

Lemma 4.6 Let M be a Z optional (G,Q) local martingale. The restriction of M to [τ(w),∞) is a (Z,Qw)
local martingale, for Q almost every w.

Proof. By stopping, we can assume that supt>0 |Mt| is Q integrable, hence E
(

supt>0 |Mt|
∣∣Gτ̄ ) is Q

almost surely finite, i.e. supt>0 |Mt| is Qw integrable for Q almost every w. For B ∈ Z(b+ε)− (b, ε > 0),

E[1A1B(M∞ −Mτ̄(w))] = E[1A1B(M(b+ε) −M(b+ε)∧τ̄(w))], A ∈ Gτ̄(w),

hence Ew̄[1B(M∞ −Mτ̄(w))] = Ew̄[1B(M(b+ε) −M(b+ε)∧τ̄(w))], Q(dw) a.s.. But Z(b+ε)− is countably
generated, so that: Q(dw) almost surely,

Ew̄[1B(M∞ −Mτ̄(w))] = Ew̄[1B(M(b+ε) −M(b+ε)∧τ̄(w))], B ∈ Z(b+ε)−

and therefore by dominated convergence for B ∈ Zb ⊆ Z(b+ε)−

Ew̄[1B(M∞ −Mτ̄(w))] = Ew̄[1B(Mb −Mb∧τ̄(w))], B ∈ Zb,

hence the restriction of M to [τ̄(w),∞) is a (Z,Qw) local martingale, by Theorem 4.40 in ?).

In this setup the BSDE (4.12) is equivalent to the following (G,Qw̄) Markov BSDE in Θw̄t = Θw̄(t,Xδ
t ):Θw̄(τδ(w), Xδ

τδ(w)) = φw̄(τδ(w), Xδ
τδ(w)) and, for t ∈ [τδ(w), τδ(w)],

− dΘw̄(t,Xδ
t ) = f w̄

(
t,Xδ

t , Θ
w̄(t,Xδ

t )
)
dt− BδΘw̄(t,Xδ

t−) · dMδ
t .

(4.18)
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Therefore Θ̌t = Θ·̄(t,Xδ
t ) and, in view of (4.13), Θ̂δt in f̂δt (ϑ) must satisfy

1τ<T Θ̂
δ
τ = 1τ<TE(Θ·̄(τ,Xδ

τ ) | Gτ−). (4.19)

Next, in order to solve the pre-default (F,P) TVA BSDE (4.15), we assume, regarding f̃δt (ϑ) there,
that

f̃δt (ϑ) = f̃δ(t, X̃δ
t , ϑ), (4.20)

where X̃δ is a pre-default (F,P) factor process in the sense of X̃ in Sect. 3.1, with corresponding Itô-

Markov local martingale part formula B̃δϕ(t, X̃δ
t−) · dM̃δ

t . This results in the following Markov form,

similar to (3.7), of the BSDE (4.15) for Θ̃δt = Θ̃δ(t, X̃δ
t ): Θ̃δ(T, X̃δ

T ) = 0 and, for t ∈ [0, T ],

− dΘ̃δ(t, X̃δ
t ) = f̃δ

(
t, X̃δ

t , Θ̃
δ(t, X̃δ

t )
)
dt− B̃δΘ̃δ(t, X̃δ

t−) · dM̃δ
t .

(4.21)

These observations imply the following Markov counterpart of Theorem 4.1. Note that under mild
regularity and growth conditions on the data, the BSDEs (4.18) (one per w̄) and (4.21) are well-posed
in the related spaces of square integrable processes (assuming a (G,Q) martingale representation in

Mδ and an (F,P) martingale representation in M̃δ, respectively).

Proposition 4.1 Assuming solutions Θw̄t = Θw̄(t,Xδ
t ) to (4.18) (one per w̄) satisfying the conditions of

Lemma 4.5 and such that 1τ<TΘ
·̄(τ,Xδ

τ )J has locally integrable total variation, assuming in turn a solution

Θ̃δt = Θ̃δ(t, X̃δ
t ) to (4.21), then Θδt = 1t<τ̄ Θ̃

δ
t + 1t≥τ̄1τ<TΘ

·̄(t,Xδ
t ) solves the full TVA equation with

positive cure period (4.3) on [τ̄ , τ̄δ], and:

• on [0, τ̄ ],

dµδt = B̃δt Θ̃δ(t, X̃δ
t−) · dM̃τ−

t −
(

(Θ·̄(τ,Xδ
τ )− Θ̃δt−)dJt + γt(Θ̂

δ
t − Θ̃δt )dt

)
,

• on [τ̄ , τ̄δ],

dµδt = BδΘ·̄(t,Xδ
t−) · dMδ

t .

Summarizing so far, assuming the main condition (C) of an invariant default time τ (a mild
assumption), based on Theorems 3.1 and 4.1, we can design a TVA process in terms of a solution to
the pre-default BSDE (3.2) or, in case of a positive cure period δ, to the BSDEs (4.12) (one per w̄) and
(4.15). Note that this approach is not arbitrary since, using the results of ?) (see in particular Lemma
4.4 there), one can establish a converse to these results. In jump diffusion setups all these equations
are well-posed under mild technical conditions on the data. The next sections implement this program
based on invariant times obtained as times with a mark, where the role of the mark is to convey some
additional information about the default, e.g. to encode wrong-way and gap risk features that would
be out-of-reach in a basic immersion setup.

5 Marked Default Times Specification

For concrete applications, we need to specify the exposure at default ξ(π) and the funding coefficient
gt(π). At time τ (if < T ), a terminal cash-flow R paid to the bank closes out its position, where
R = R(π) can also depend on the value, represented by the real number π, of the contract right before
time τ (see ?, Part I)). In case δ = 0 (no cure period), consistent with (2.4) and a terminal condition
Πτ̄ = 1τ<TR(Πτ̄−) for Π at τ̄ , the exposure of the bank is

ξ(π) = Pτ +∆τ −R(π), (5.1)

where we need to specify R(π) conformly with usual CSA specifications (see Sect. 1), in particular a
CSA close-out valuation scheme Qt and a CSA collateralization scheme. Let τb and τc stand for the
default times of the bank and the counterparty, so that τ = τb ∧ τc. The bank’s close-out cash-flow
R = R(π) decomposes into a close-out cash-flow Rc from the counterparty to the bank plus, in case
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τ = τb (default of the bank), a cash-flow from the funder to the bank, Rf (π), depending on the wealth
π of the bank right before time τ . These two cash-flows are respectively derived from the debt of the
counterparty to the bank, the debt of the bank to the counterparty and the debt of the bank to its
funder, respectively modeled at time τ as

χ = (Qτ +∆τ − Cτ )+, X = (Qτ +∆τ − Cτ )−, X̄(π) = (π − Cτ−)+, (5.2)

where

C = M +N and C = M + N (5.3)

respectively represent the collateral funded by the counterparty and by the bank: re-hypothecable
variation margin M plus segregated initial margin N ≥ 0, respectively N ≤ 0 (so that χ × X ≡ 0).
Specifically, the close-out cash-flow is given as R(π) = Rc +1τ=τbRf (π), where Rf (π) = (1− R̄b)X̄(π)
and

Rc =


Cτ +Rcχ if χ > 0 and τ = τc,

Cτ −RbX if X > 0 and τ = τb,

Qτ +∆τ otherwise.

(5.4)

Here Rc and Rb stand for the recovery rates between the two parties and R̄b for the recovery rate of
the bank to its funder (all assumed constant). The ensuing exposure at default results from (5.1) as

ξ(π) = Pτ +∆τ −R(π)

= Pτ −Qτ + 1τ=τc(1−Rc)χ− 1τ=τb

(
(1−Rb)X + (1− R̄b)X̄(π)

)
,

(5.5)

consistent with the general form postulated in (2.1). Moreover, given spreads ct for the remuneration
of the collateral and λt and λ̄t for the external lending and borrowing costs of the bank, the funding
coefficient of the bank is defined by

gt(π) = ct(Mt + Nt +Nt) + λ̄t (π − Ct)
+ − λt (π − Ct)

−

= ct(Ct +Nt) + λ̄t (π − Ct)
+ − λt (π − Ct)

− (5.6)

(see ?, Part I) and ?)).
In the sequel we assume that τ is endowed with a mark e in a finite set E, in the sense that

τ = min
e∈E

τe, (5.7)

where each τe is a stopping time with intensity γet , such that Q(τe 6= τe
′
) = 1, e 6= e′. We denote by E

the powerset of E.

Lemma 5.1 Given a Gτ ⊗ B(R) measurable function ζ(π), if there exists a P(G) ⊗ E ⊗ B(R) measurable

function ζ̃et (π) such that

1{τ=τe}ζ(π) = 1{τ=τe}ζ̃
e
τ (π), e ∈ E, (5.8)

then ζ̂ exists and a version of it is given by ζ̂ = J−
∑
E
γe

γ ζ̃
e (with 0

0 = 0). In particular, γ = 1[0,τ ]

∑
e∈E γ

e.

Proof. For any Gτ− measurable random variable η, the ζ̃eτ (η) are Gτ− locally integrable, by predictabil-
ity of the ζ̃et (π), so that, by localization, one can assume the ζ̃eτ (η) integrable. Then, on {τ <∞},

E[ζ(η)|Gτ−] = E[
∑
e∈E 1{τ=τe}ζ̃

e
τ (η)|Gτ−] =

∑
e∈E ζ̃

e
τ (η)E[1{τ=τe}|Gτ−].

Let qe ∈ P(G) : qeτ1{τ<∞} = E[1{τ=τe}|Gτ−]1{τ<∞}, which exists by Corollary 3.23 2) in ?). For
bounded Z ∈ P(G), we compute E[Zτ1{τ=τe<∞}] in two ways:

E[Zτ1{τ=τe<∞}] = E[Zτ q
e
τ1{τ<∞}] = E[

∫ ∞
0

Zsq
e
sγsds],

and

E[Zτ1{τ=τe<∞}] = E[Zτe1{τ=τe<∞}] = E[Zτe1{τe≤τ<∞}] = E[

∫ ∞
0

Zs1{s≤τ}γ
e
sds].
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Hence, Q almost surely: qet γt = 1{t≤τ}γ
e
t , dt almost surely, so that

Q[qeτγτ 6= γeτ , τ <∞] = E[1qeτγτ 6=γeτ , τ<∞] = E[

∫ ∞
0

1qet γt 6=γet γtdt] = 0.

We conclude that on {τ <∞}

γτ ζ̂τ (η) = γτE[ζ(η)|Gτ−] =
∑
e∈E

ζ̃eτ (η)γτ q
e
τ =

∑
e∈E

ζ̃eτ (η)γeτ .

Consistent with (5.7), we assume

τb = min
e∈Eb

τe, τc = min
e∈Ec

τe, (5.9)

for some finite sets Eb and Ec such that E = Eb ∪ Ec (not necessarily a disjoint union, as will be
illustrated in Sect. 7). Let us postulate that

For every process U = P,∆,Q,C and C, there exists a P(G)⊗ E measurable function

Ũet such that Uτ = Ũeτ on the event {τ = τe}.
(5.10)

Then, in view of (5.5) and (5.2), ξ satisfies (5.8), for

ξ̃et (π) = P̃ et − Q̃et + 1e∈Ec(1−Rc)(Q̃
e
t + ∆̃et − C̃et )+

− 1e∈Eb
(
(1−Rb)(Q̃et + ∆̃et − C̃et )

− + (1− R̄b)(π − Ct−)+). (5.11)

Thus, by Lemma 5.1, f̂t(ϑ) in (3.1) can be taken as (on [0, τ̄ ])

f̂t(ϑ) = gt(Pt − ϑ) +
∑
E

γet ξ̃
e
t (Pt − ϑ)− r̃tϑ, (5.12)

where r̃t = rt + γt, so that

f̂t(ϑ) + rtϑ = (1−Rc)
∑
e∈Ec

γet

(
Q̃et + ∆̃et − C̃et

)+

− (1−Rb)
∑
e∈Eb

γet

(
Q̃et + ∆̃et − C̃et

)−
+ ct(Ct +Nt) + λ̃t (Pt − ϑ− Ct)

+ − λt (Pt − ϑ− Ct)
−

+
∑
e∈E

γet

(
P̃ et − ϑ− Q̃et

)
,

(5.13)

where λ̃t = λ̄t−(1−R̄b)
∑
e∈Eb γ

e
t can be interpreted as a liquidity borrowing spread for the bank, net of

its credit spread. From the perspective of the bank, the four terms (lines) in the decomposition (5.13) of
the TVA coefficient f̂t(ϑ) (up to the rtϑ discount term at the OIS rate rt) can respectively be interpreted
as a costly credit valuation adjustment (CVA coefficient), a beneficial debit valuation adjustment (DVA
coefficient), a funding liquidity valuation adjustment (LVA coefficient) and a replacement cost/benefit
(RC coefficient). The positive (respectively negative) TVA terms can be considered as deal adverse
(respectively deal friendly) as they increase (respectively decrease) the TVA Θ and therefore decrease
(respectively increase) the cost of the hedge Π = P−Θ for the bank—with, depending on the sign of Π,
a “less positive” Π interpreted as a lower buyer price by the bank or a “more negative” Π interpreted
as a higher seller price by the bank.

Remark 5.1 The materiality of a debit benefit at own default (DVA proportional to (1 − Rb)) or
of a funding benefit at own default (proportional to (1 − R̄b)) is clearly subject to caution, unless a
corresponding hedge allows the bank to monetize these before its default. Otherwise, the bank should
better set the recovery rates Rb and R̄b equal to one in the equations, in order to avoid reckoning such
“fake benefits” (or, at least, benefits to senior bondholders only, whereas a sound management should
only consider the interest of the shareholders; see ?) and ?)).
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5.1 Gap Risk

As illustrated by the bailout of AIG on 16 September 2008, largely triggered by increasing margin
calls on sell-protection CDS positions (on the distressed Lehman, in particular), it is important to use
an accurate model of the collateral (processes M, N and N). An extreme form of variation margining
would correspond to M = Q at all times. However, accounting for various frictions and delays regarding
formation (Sect. 5.1.1) and delivery (Sect. 5.1.2) of the collateral, there is gap risk, i.e. risk of a residual
gap between the variation margin M and the debt of a defaulting party at the time of liquidation,
which is the motivation for the initial margins.

5.1.1 Collateral Slippage, Thresholds and Minimal Transfer Amounts

In practice, variation margin calls are executed according to a discrete schedule (tl), based on the
following CSA data:

• the thresholds (free credit lines) of the bank and the counterparty : εb ≤ 0 and εc ≥ 0
• the minimum transfer amounts (MTA) of the bank and the counterparty: εb ≤ 0 and εc ≥ 0.

In a realistic variation margin scheme conform to ISDA requirements, Mt tracks the thresholded ex-
posure

Qεt = (Qt − εc)+ − (Qt − εb)− (5.14)

through a càdlàg and piecewise-constant process reset at every tl < τ, unless the corresponding margin
adjustment is less than the MTA of the concerned party. Namely, at every tl < τ,

Mtl −Mtl− = 1Qεtl−−Mtl− /∈ [εb,εc](Q
ε
tl− −Mtl−), (5.15)

so that, in particular,

Mtl ∈ [Qtl− − (εc + εc), Qtl− − (εb + εb)]. (5.16)

The initial margins N and N are also updated at discrete times (of the same grid (tl) as above for
notational simplicity below), based on risk measures (see ?) for concrete specifications) of the profit-and-
loss of the position at the horizon of the cure period δ that is dealt with below. Note that discrete-time
collateralization induces a path dependence, which, from a computational perspective, implies to add
Mt, Nt and Nt as extra dimensions to the factor process (see Sect. 7.3).

5.1.2 Cure Period

With a positive cure period δ as in Sect. 4, we need to modify the definition of the debts χ and X in
(5.2) into (assuming Q = P for simplicity)

χδ = (P δτδ − Cτ̂ )+, Xδ = (P δτδ − Cτ̂ )− (5.17)

(so that χδ ×Xδ ≡ 0 by nonnegativity of the initial margins), where, for every t, t̂ denotes the greatest
tl less or equal than t. The ·τ̂ in (5.17) reflect the fact that the collateral is frozen during the margin
period of risk (τ̂ , τ̄ ]. Note that

P δτδ − Cτ̂ = (Pτ̂− −Mτ̂ ) +

∫
[τ,τδ]

e
∫ τδ
s rududDs + (Pτδ − Pτ̂−)−Nτ̂ (5.18)

(and likewise for P δτδ−Cτ̂ ), where Pτ̂−−Mτ̂ ∈ [εb+εb, εc+εc] (by (5.16)) is controlled by the thresholds
and the MTAs, but where the “gaps” β−1

τδ

∫
[τ,τδ]

βsdDs (including ∆τ = Dτ −Dτ−) and (Pτδ−Pτ̂−) can

be quite substantial, hence the need for the initial margin N . This results in the following expressions
for the terminal cash-flow Rδ(π) and the exposure ξδ(π) = P δτδ −Rδ(π) (cf. (5.1) through (5.4)):

Rδ(π) = Rδ
c + 1τb≤τδcRf (π),
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where

Rc =


Cτ̂ +Rcχ

δ if χδ > 0 and τc ≤ τδb ,

Cτ̂ −RbX
δ if Xδ > 0 and τb ≤ τδc ,

P δτ +∆τ otherwise

and therefore, consistent with (4.2):

ξδ(π) = P δτδ −Rδ(π) = ξc − Λ(π − C?)
+,

for the random variables ξc, Λ and C? given as

ξc = 1τc≤τδb
(1−Rc)χδ − 1τb≤τδc (1−Rb)Xδ, Λ = 1τb≤τδc (1− R̄b), C? = Cτ̂ . (5.19)

Remark 5.2 The resulting expression of ξc is consistent with the equation (14) in ?) (note that they
don’t consider the possibility of a funding benefit at own default, i.e. R̄b = 1 and thus Λ = 0 in their
setup). According to them, to render the case of a cleared transaction where one of the parties is a
clearing member of a clearinghouse (here or already in (5.4) in case δ = 0), it is sufficient to set the
corresponding recoveries and initial margin equal to one and zero, respectively (as clearing members
of a clearinghouse are backed-up by others if they default and don’t post initial margins).

Lemma 5.2 If P δ cannot jump at τδ (as for typical contracts in the models of Sect. 6 and 7; see before

Lemma 7.4), then ξc, Λ and C? are Gτδ− measurable. Assuming R̄b 6= 0, the conditions of Lemma (4.1)

hold and ξδ? in (4.5) can be rewritten as

ξδ? =

{
R̄−1
b ξc + (1− R̄−1

b )(P δτδ− − Cτ̂ ) on {τb ≤ τδc } ∩ {P δτδ− ≥ Cτ̂}
ξc otherwise.

(5.20)

Proof. (5.20) follows from (4.5) and (5.19). Regarding the Gτδ− measurabilities, it suffices to check

that {τc ≤ τδb } (and, likewise, {τb ≤ τδc }) is Gτδ− measurable, which holds since

{τc ≤ τδb } ∩ {τc ≤ τb} = {τc ≤ τb} ∈ Gτ ⊆ Gτδ−

and

{τc ≤ τδb } ∩ {τc > τb} = {τc ≤ τδ} ∩ {τc > τ} = {τc < τδ} ∩ {τc > τ} ∈ Gτδ−,

where the last equality follows by avoidance between predictable and totally inacessible stopping
times.

Remark 5.3 The above collateralization scheme finely renders the path dependence of the margins.
It does not include other gap risk features, such as a possible jump of the collateral at the default of
a party (e.g. in case of a collateral posted in a currency strongly dependent on the credit of a party;
cf. ?)). However, the general framework (5.10) does allow for such features if wanted, through C̃e and/or

C̃e in (5.10) that would effectively depend on e—whereas they do not in the above specification.

In the remaining sections, we apply the above approach to deal with the counterparty risk of
credit derivatives in the dynamic copula models of ?) (DGC for dynamic Gaussian copula) or ? (?,?))
(common-shock model or DMO for dynamic Marshall-Olkin copula). In each case, we dynamize a
copula model of portfolio credit risk by the introduction of a suitable filtration.

For any Euclidean vector k = (ke) indexed by marks e, we denote by ke (respectively ke,t) the
vector obtained from k by replacing the component with index e by 1 (respectively t). MRP refers to
a local martingale predictable representation property. The optional splitting formula is Theorem 6.9
in ?), which holds in any density or immersion model of portfolio credit risk (such as the DGC and
the DMO model, respectively, as will be seen below).
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6 Dynamic Gaussian Copula TVA Model

6.1 Model of Default Times

Let N = {−1, 0, 1, . . . , n}, N? = {1, . . . , n}. We consider a multivariate Brownian motion B = (Bi)i∈N
with pairwise correlation % ≥ 0 in its own completed filtration B = (B)t≥0. For any i ∈ N, let hi be a
continuously differentiable increasing function from R∗+ to R, with lim0 hi(s) = −∞ and lim+∞ hi(s) =
+∞, and let

τi = h−1
i

( ∫ +∞

0

ς(u)dBiu
)
, (6.1)

where ς(·) is a square integrable function with unit L2 norm. We set τb = τ−1 τc = τ0, whilst the
(τi)i∈N? represent the default times of n reference credit names. Thus the (τi)i∈N follow the standard
Gaussian copula model of ?), with correlation parameter % and with marginal survival function Φ◦hi of
τi, where Φ is the standard normal survival function. In order to make the model dynamic as required
by counterparty risk applications, we introduce the model filtration G given as the Brownian filtration
B progressively enlarged by the τi (augmented so as to satisfy the usual conditions, as is standard).
We write, for every i ∈ N,

mi
t =

∫ t

0

ς(u)dBiu, k
i
t = τi1{τi≤t}

and mt = (mi
t)i∈N , kt = (kit)i∈N , Xt = (mt,kt).

Lemma 6.1 For every t ≥ 0,

Gt = Bt ∨
∨
i∈N

(
σ(τi ∧ t) ∨ σ({τi > t})

)
. (6.2)

There exist processes βit and γit of the form

βit , γ
i
t= βi, γi (t,mt,kt), (6.3)

such that G Brownian motions dW i
t = dBit − βitdt and (G,Q) compensated default indicator processes

dM i
t = d1τi≤t − γ

i
tdt, i ∈ N, have the (G,Q) MRP. The process X = (m,k) is a (G,Q) jump-diffusion.

Proof. For the Markov and martingale (other than representation) properties, see ?). The expression
of the γi is given in (6.16), whilst the βi can be computed by making use of the probability measure

Q? such that dQ?
dQ ∝ pT (τi, i ∈ N), where p is the conditional density of the τi in (6.14). More precisely,

all the τi are Q? independent between them and from BT (cf. Theorem 4.7 in ?)), so that the Bi are
(G,Q?) Brownian motions. Hence, their (G,Q) drifts βi can be obtained by application of a Girsanov
formula from (G,Q?) to (G,Q), which reveals the functional form claimed in (6.3). The MRP and
(6.2) are proved by induction over the cardinality of N as follows. We write G = GN . If N is reduced
to a singleton, then the density property of τ given Bt implies the results, by the optional splitting
formula for (6.2) and by Theorem 6.4 in ?) for the MRP. If one adds a new name, say (n + 1), to
N, then the density properties of τn+1 and of (τi)i∈N given Bt imply the density property of τn+1

given Bt
∨
∨i∈N

(
σ(τi ∧ t) ∨ σ({τi > t})

)
. Hence, the results for GN∪{n+1} follow as above from those,

if assumed, for GN .

6.2 TVA Model

A DGC setup can be used as a TVA model for credit derivatives, with mark i and Eb = {−1}, Ec = {0}
in (5.9). Since there are no joint defaults in this model, it is harmless to assume that the contract
promises no cash-flow at τ, ∆τ = 0, so that (cf. (5.2))

χ = (Qτ − Cτ )+, X = (Qτ − Cτ )−.

We assume that for every process U = P, Q, C and C, there exists a continuous function Ũi such that

Uτ = Ũi(τ,mτ ,kτ−) (6.4)
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(= Ũ iτ for brevity) on every event of the form {τ = τi}, i = −1, 0. The results of ?) show that the
condition (6.4) holds regarding U = P (for every i ∈ N) for vanilla credit derivatives, including CDS
contracts and CDO tranches, with semi-explicit formulas for P . The conditions (6.4) regarding U = Q,

C and C may be satisfied or not depending on the CSA (see e.g. Sect. 5.1 regarding C and C). By
(5.11) and (5.13),

ξ̃it(π) = P̃ it − Q̃it + 1i=0(1−Rc)(Q̃it − C̃t)+

− 1i=−1

(
(1−Rb)(Q̃it − C̃t)

− + (1− R̄b)(π − Ct−)+), i = −1, 0,

f̂t(ϑ) + rtϑ = (1−Rc)γ0
t

(
Q̃0
t − C̃0

t

)+ − (1−Rb)γ−1
t

(
Q̃−1
t − C̃−1

t

)−
+ ct(Ct +Nt) + λ̃t (Pt − ϑ− Ct)

+ − λt (Pt − ϑ− Ct)
− +

∑
i=−1,0

γit

(
P̃ it − ϑ− Q̃it

)
, t ∈ [0, τ̄ ],

where λ̃t = λ̄t − (1− R̄b)γ−1
t . We assume that the processes r, c, λ, λ̄, P, C and N are given before τ as

continuous functions of (t, X̃t), where X̃t = (mt, k̃t) with k̃t = (kit)i∈N? .

Lemma 6.2 The condition (C) holds with, writing k = (0, 0, k̃) for every k̃ ∈ Rn+:

(DGC.1) a reference filtration F = (Ft)t≥0 in (C.1) given as B progressively enlarged by the default times

of the reference names, which satisfies

Ft = Bt ∨
∨
i∈N?

(
σ(τi ∧ t) ∨ σ({τi > t})

)
, t ≥ 0, (6.5)

(DGC.2) a changed measure P (6= Q, so that this is a case of “no immersion” in the sense of the comments

following the statement of (C)) equivalent to Q on FT and such that a family of (F,P) martingales with

the MRP is given by the

dW̃ i
t = dBit − β̃itdt, i ∈ N and dM̃ i

t = d1τi≤t − γ̃
i
tdt, i ∈ N?, (6.6)

where

β̃it = β̃i(t,mt, k̃t) := βi(t,mt,kt), γ̃
i
t = γ̃i(t,mt, k̃t) := γi(t,mt,kt), (6.7)

(DGC.3) a Markov specification f̃t(ϑ) = f̃(t, X̃t, ϑ) in (C.3), for the function f̃ = f̃(t, x̃, ϑ) given, writing

x̃ = (m, k̃) and x = (m,k), by

f̃(t,x̃, ϑ) + r(t, x)ϑ = (1−Rc)γ0

(
Q̃0 − C̃0

)+

(t, x)− (1−Rb)γ−1

(
Q̃−1 − C̃−1

)−
(t, x)

+
(
c(C +N) + λ̃ (P − ϑ− C)+ − λ (P − ϑ− C)−

)
(t, x̃) +

∑
i=−1,0

γi

(
P̃i − ϑ− Q̃i

)
(t, x),

(6.8)

where λ̃ = λ̄− (1− R̄b)γ−1, and for the (F,P) jump-diffusion X̃t = (mt, k̃t).

Proof. (DGC.1) and (DGC.3) can be proven as Lemma 6.1 above. (DGC.2) is proven in Sect. 6.3 (see
Theorem 6.1). Note that (DGC.2) implies (C.2) (so the condition (C) holds) via the included (F,P)
MRP, where each of the (F,P) fundamental martingales in (6.6) stopped at τ− (or, equivalently by
avoidance in this model, at τ) is a (G,Q) local martingale.

Since (C) is satisfied, we can state the following specification of Proposition 3.1, where the shape (6.10)
of µ̃ reflects the Itô-Markov local martingale part formula (3.6) that applies to the (F,P) jump-diffusion
X̃t = (mt, k̃t), and where there is no need to stop µ̃ at τ− in (6.11) since µ̃ does not jump at τ .

Proposition 6.1 We obtain a solution Θ to the full TVA BSDE (2.3) by setting Θ = Θ̃ on [0, τ̄) and

Θτ̄ = 1τ<T ξ, provided Θ̃t = Θ̃(t, X̃t) is such that 1τ<T ξ?J (with ξ? = ξ(Pτ−− Θ̃τ−)) has locally integrable

total variation, Θ̃T = 0 and, for t ∈ [0, T ],

−dΘ̃t = f̃(t,mt, k̃t, Θ̃t)dt− dµ̃t, (6.9)
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where

dµ̃t = ς(t)
∑
i∈N

∂miΘ̃(t,mt, k̃t)dW̃
i
t +

∑
i∈N?

δiΘ̃(t,mt, k̃t−)dM̃ i
t . (6.10)

On [0, τ̄ ], writing ξ̃?,it = ξ̃it(Pt − Θ̃t),

dµt = dµ̃t −

(ξ? − Θ̃t−)dJt +
∑

i=−1,0

γit(ξ̃
?,i
t − Θ̃t)dt

 . (6.11)

6.3 Proof of (DGC.2)

We use the notation � for stochastic integration and λ for the Lebesgue measure. For i ∈ N?, let

γi be the (F,Q) intensity of τi and let M
i

= Hi − γi � λ. Let St = Q(τ > t | Ft) denote the Azéma
supermartingale of τ , with continuous local martingale part Qc. We consider the (F,Q) exponential

martingale E(ν), where ν = 1(0,T ]
1
S � Qc +

∑
i∈N? 1(0,T ](

γ̃i

γi
− 1) �M

i
, in which γ̃i, defined through γi

by (6.6), is positive until τi, by (6.16). Hence

E(ν) = E
(
1(0,T ]ν

c) ∏
i∈N?

(
1 + (

γ̃iτi
γiτi
− 1)Hi

·∧T

)
exp

∫ ·∧τi∧T
0

(
γis − γ̃

i
s

)
ds > 0, (6.12)

where νc = 1
S �Qc. Also, S > 0 by (6.15), so that:

Lemma 6.3 Two F predictable processes α and α̃ undistinguishable until τ are undistinguishable on R+.

Proof. Otherwise, the optional section theorem would imply the existence of an F stopping time κ

with indicator process K such that E[1ακ 6=α̃κSκ] 6= 0 (since also S > 0), in contradiction with

E
[
1ακ 6=α̃κSκ

]
= E

[
1α6=α̃S �K

]
= E

[
1α6=α̃J �K

]
= 0,

where Theorems 5.4 and 5.16 1) in ?) were used in the next-to-last equality.

Theorem 6.1 E(ν) is an (F,Q) martingale. The probability measure P with Q density process E(ν) satisfies

the condition (DGC.2).

Proof. We claim the following property, which is proved after (cf. Lemma 6.4):

There exists ε > 0 such that, for any s ∈ [0, T ]: E
[
E
(
1(s,t]ν

) ∣∣Fs] = 1, t ∈ [s, s+ ε]. (6.13)

If T ≤ ε, the first part of the theorem follows from the above claim. Otherwise, we write

EE(ν) = E
[
E
(
1(0,T−ε]ν

)
E
[
E
(
1(T−ε,T ]ν

) ∣∣FT−ε]] = E
[
E
(
1(0,T−ε]ν

)]
,

so that the first part of the theorem follows by induction. The equivalence of P and Q on FT follows
by positivity of E(ν) in (6.12). By Girsanov’s theorem, the (F,P) intensity of τi is γ̃i, i ∈ N?, and,

denoting by W
i

= Bi − βi � λ the (F,Q) local martingale part (Brownian motion) of Bi, i ∈ N, the
process

Ŵ i = W
i − 〈νc, Bi〉 = Bi − (β

i
� λ + 〈νc, Bi〉)

is an (F,P) Brownian motion. Moreover, by the Jeulin formula (see e.g. no 77 Remarques b) in ?)),

Ŵ i is a (G,Q) Brownian motion until time τ, as is also W̃ i = Bi − β̃i �λ in (6.6) (since W̃ i
·∧τ = W i

·∧τ ).
Therefore, the F predictable processes β̄i � λ + 〈νc, Bi〉 and β̃i � λ coincide until τ , hence on [0, T ]

by Lemma 6.3. In conclusion, W̃ i = Ŵ i, an (F,P) Brownian motion. Finally, the (F,P) MRP of the

W̃ i, i ∈ N and M̃ i, i ∈ N? follows by equivalent change of measure from the (F,Q) MRP of the W
i
, i ∈ N

and M
i
, i ∈ N?, which can be proven as the (G,Q) MRP of the W i, i ∈ N and M i, i ∈ N in Lemma 6.1.

From now on in this section we prove the claim used in the proof of Theorem 6.1. For notational
simplicity, we only prove it for s = 0, i.e.:

Lemma 6.4 For t small enough, E (ν) is an (F,Q) martingale on [0, t].
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6.3.1 Explicit Formulas

Let f2(t) =
∫+∞
t

ς2(v)dv, assumed positive for all t for simplicity of presentation. Denoting by I and J

generic subsets of N (representing sets of defaulted and alive obligors in the financial interpretation),
we write:

BI = (BIt )t≥0 with BIt = Bt ∨
∨
i∈I

τi,

ρI =
%

|I|%+ 1
, (σI)2 =

(|I| − 1)%+ 1− %2|I|
(|I| − 1)%+ 1

, αI =
%

(|I| − 1)%+ 1
,

Zj,It (u) =
hj(u)−mj

t

f(t)
− αI

∑
i∈I

hi(τi)−mi
t

f(t)
,

dζj,It , the (F,Q) local martingale part of

(
− 1

f(t)
dmj

t + αI
∑
i∈I

1

f(t)
dmi

t

)
,

Φρ,σ(z) = Q(Zj > zj , j ∈ J), ψjρ,σ
(
z
)

= −
∂zjΦρ,σ

Φρ,σ

(
z
)
,

where z = (zj)j∈J , whilst Z = (Zj)j∈J follows a |J |-dimensional centered Gaussian vector with ho-
mogenous marginal variances σ2 and pairwise correlations ρ. In addition, we define

ρt, σt, κt = ρI , σI , αI , Zjt = Zj,It (t) on {I = supp(kt)},

I?t = BIt , ρ?t , σ
?
t , α

?
t = ρI , σI , αI , Z?,jt = Zj,It (t), dζjt = dζj,It on {I = supp(k̃t)},

where supp(kt) and supp(k̃t) respectively correspond to the defaulted obligors in N and in N?. Let
also

Jt = N \ supp(kt), J?t = N? \ supp(k̃t), J̃t = {−1, 0} ∪ J?t ,

Zt =
(
Z?,jt , j ∈ Jt

)
, Z?t =

(
Z?,jt , j ∈ J∗t

)
, Z̃t =

(
Z?,−1
t , Z?,0t ;Z?,jt , j ∈ J∗t

)
and pt(ti, i ∈ N) = ∂t1 . . . ∂tnQ(τi < ti, i ∈ N | Bt), the conditional Lebesgue density of the τi, i ∈ N.

Lemma 6.5 For any nonnegative t and ti, i ∈ N ,

pt(ti, i ∈ N) =

∫
R
φ(y)

∏
i∈N

φ(
hi(ti)−mi

t + f(t)
√
%y

f(t)
√

1− %
)

h′i(ti)

f(s)
√

1− %
dy, (6.14)

St =
Φρ?t ,σ?t

(
Z̃t
)

Φρ?t ,σ?t
(
Z?t
) > 0 , dνct =

∑
j∈J̃t−

ψjρ?t ,σ?t

(
Z̃t
)
dζjt −

∑
j∈J?t−

ψjρ?t ,σ?t

(
Z?t
)
dζjt . (6.15)

For any nonnegative t and j ∈ N , respectively N?,

γjt = 1{τj≥t}
(h′j
f

)
(t)ψjρt,σt

(
Zt
)

= γj(t,mt,kt), (6.16)

respectively

γjt = 1{τj≥t}
(h′j
f

)
(t)ψjρ?t ,σ?t

(
Z?t
)

= γj(t,mt, k̃t). (6.17)

Proof. The expression for the conditional density p of the τi is obtained by differentiation of their
conditional survival function given by the last line page 3 in ?). The expression for St, which implies
the one for dνct , results from the following “multiname key lemma formula” valid in any density model
of default times (as can be established by optional splitting):

St =
Q(τ > t; τj > t, j ∈ J?t | I?t )

Q(τj > t, j ∈ J?t | I?t )
.
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Finally, (6.16) and (6.17) result from the following Laplace formulas that can also be established by
optional splitting:

γjt = −1{τj≥t}
∂uΦρt,σt

(
Zj,It (u);Zlt, l ∈ Jt \ {j}

)
|u=t,I=supp(kt)

Φρt,σt

(
Zjt ;Zlt, l ∈ Jt \ {j}

)
γjt = −1{τj≥t}

∂uΦρ?t ,σ?t

(
Zj,It (u);Z?,lt , l ∈ J?t \ {j}

)
|
u=t,I=supp(k̃t)

Φρ?t ,σ?t

(
Z?,jt ;Z?,lt , l ∈ J?t \ {j}

) .

6.3.2 Estimates

Let g(y) = −Γ
′(y)
Γ (y) and G(y) =

∫∞
y
tkΓ (t)dt, where Γ (y) a positive decreasing C1 function on R+ such

that
∫
R+

tkΓ (t)dt <∞ and limt↑∞ tk−1Γ (t)→ 0, for some integer k ≥ 0.

Lemma 6.6 Let y ≥ 0 and α, ε > 0.

(i) If g(y) ≥ αy for y > y, then

G(y) ≤
( 1

α
+ ε
)
yk−1Γ (y) for y > y ∨

√
|k − 1|( 1

εα2
+

1

α
).

(ii) If g(y) ≤ αy for y > y, then

G(y) ≥
( 1

α
− ε
)
yk−1Γ (y) for y > y ∨

√
|k − 1|( 1

εα2
− 1

α
).

Proof. We only prove (i) (the proof of (ii) is similar). For every positive C1 function ϕ on R∗+,

(G(y)− ϕ(y)Γ (y))
′ = −ykΓ (y)− ϕ′(y)Γ (y) + ϕ(y)g(y)Γ (y)

= (ϕ(y)g(y)− yk − ϕ′(y))Γ (y) ≥ (αyϕ(y)− yk − ϕ′(y))Γ (y)

for y ≥ y. For ϕ(y) = ( 1
α + ε)yk−1,

αyϕ(y)− yk − ϕ′(y) = (1 + εα)yk − yk − (
1

α
+ ε)(k − 1)yk−2 =

εαyk − (
1

α
+ ε)(k − 1)yk−2 = (εαy2 +−(

1

α
+ ε)(k − 1))yk−2.

Therefore, if y > y ∨
√
|k − 1|( 1

εα2 + 1
α ), then (G(y)− ϕ(y)Γ (y))

′ ≥ αyϕ(y) − yk − ϕ′(y) ≥ 0. But

limy↑∞ (G(y)− ϕ(y)Γ (y)) = 0, hence G(y)− ϕ(y)Γ (y) ≤ 0.

By a first application of Lemma 6.6, to the standard normal density Γ (y) = φ, we recover the following
classical inequalities on ψ = φ

Φ (recall Φ is the standard normal survival function): for any constant
c > 1,

c−1y ≤ ψ(y) ≤ cy, y > y0, (6.18)

for some y0 > 0 depending on c. The following estimate, where c and y0 are as in (6.18), can be seen
as a multivariate extension of the right hand side in (6.18).

Lemma 6.7 There exist constants a and b such that, for every j ∈ J,

0 ≤ ψjρ,σ
(
z
)
≤ a+ b||z||∞.
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Proof. By conditional independence in the Gaussian copula model, we have Φρ,σ
(
z
)

=
∫
R Γ (y)dy,

where Γ (y) =
∏
l∈J Φ

(
zl+σ

√
ρ y

σ
√

1−ρ

)
φ(y). Hence

ψjρ,σ
(
z
)

=
1

σ
√

1− ρ

∫
R
wρ,σ(z, y)ψ

(
zj + σ

√
ρ y

σ
√

1− ρ

)
dy, (6.19)

where wρ,σ(z, y) = Γ (y)

Φρ,σ
(
z
) . Straightforward computations yield

g(t) = −Γ
′(t)

Γ (t)
=
∑
l∈J

ψ(
zl + σ

√
ρt

σ
√

1− ρ
)

σ
√
ρ

σ
√

1− ρ
+ t ≥ t,

whereas for t > maxl∈J
1

σ
√
ρ (σ
√

1− ρy0 − zl) and t > 1
σ
√
ρ maxl∈J zl, we have

g(t) ≤
∑
l∈J c

zl+σ
√
ρt

σ
√

1−ρ
σ
√
ρ

σ
√

1−ρ + t ≤ ᾱt,

with ᾱ :=
∑
l∈J 2c

σ
√
ρ

σ
√

1−ρ
σ
√
ρ

σ
√

1−ρ + 1 ≥ 1. Applying Lemma 6.6 (i) with k = 1, α = 1 and ε = 1,

respectively (ii) with k = 0, α = ᾱ and ε = 1
2ᾱ , yields∫ ∞

y

tΓ (t)dt ≤ 2Γ (y), y > 0, respectively

∫ ∞
y

Γ (t)dt ≥ 1

2ᾱy
Γ (y), y > y ∨ 1√

ᾱ
,

where y = 1
σ
√
ρ maxl∈J |zl|+ 1

σ
√
ρσ
√

1− ρy0. Thus, setting y1 = y+1 = 1
σ
√
ρ maxl∈J |zl|+ 1

σ
√
ρσ
√

1− ρy0+

1, ∫ ∞
0

tΓ (t)dt =

∫ y1

0

tΓ (t)dt+

∫ ∞
y1

tΓ (t)dt ≤ y1

∫ y1

0

Γ (t)dt+ 2Γ (y1)

≤ y1

∫ y1

0

Γ (t)dt+ 4ᾱy1

∫ ∞
y1

Γ (t)dt ≤ (1 + 4ᾱ)

∫ ∞
0

Γ (t)dt,

i.e. ∫ ∞
0

twρ,σ(z, t)dt ≤ (1 + 4ᾱ)y1. (6.20)

Now, by (6.19) and the right-hand side inequality in (6.18),

0 ≤ σ
√

1− ρψjρ,σ
(
z
)

≤
∫
R

(
1

Φ(y0)
1
{
zj+σ

√
ρy

σ
√

1−ρ ≤y0}
+ c

zj + σ
√
ρy

σ
√

1− ρ
1
{
zj+σ

√
ρy

σ
√

1−ρ >y0}

)
wρ,σ(z, y)dy

=

(
1

Φ(y0)
+

czj

σ
√

1− ρ

)
+

cσ
√
ρ

σ
√

1− ρ

∫
R
1{σ√ρy>σ

√
1−ρy0−zj}ywρ,σ(z, y)dy

≤
(

1

Φ(y0)
+

czj

σ
√

1− ρ

)
+

cσ
√
ρ

σ
√

1− ρ

∫ ∞
0

ywρ,σ(z, y)dy,

(6.21)

so that by substitution of (6.20) into (6.21)

0 ≤ σ
√

1− ρψjρ,σ
(
z
)
≤
(

1

Φ(y0)
+

czj

σ
√

1− ρ

)
+

cσ
√
ρ

σ
√

1− ρ
(1 + 4ᾱ)y1.

Corollary 6.1 (i) There exists a constant C > 0 such that, for 0 ≤ r ≤ t and j ∈ N?,

〈νc〉t ≤ C(
∑
i∈N

sup
0<s≤t

|mi
s|2 + 1)t, (6.22)

γ̃jr ∨ γ̄jr ≤ C(
∑
i∈N

sup
0<s≤t

|mi
s|+ 1), γ̃jr ln(γ̃jr ∨ γjr) ≤ C

∑
i∈N

sup
0<s≤t

(|mi
s|+ 1) ln(|mi

s|+ 1). (6.23)
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Proof. Applying Lemma 6.7 to the formulas derived in Lemma 6.5 (and γ̃jt = γj(t,mt, (0, 0, k̃t))), we
obtain, for constants C changing from line to line

〈νc〉t ≤ C
∫ t

0

(
∑
I⊆N

∑
j∈N\I

|Zj,Is (s)|+ 1)2ds ≤ C(
∑
I⊆N

∑
j∈N\I

sup
0<s≤t

|Zj,Is (s)|+ 1)2t,

as well as the left-hand side inequality in (6.23), whence the right-hand side follows by

γ̃jr ln(γ̃jr ∨ γjr) ≤ C(max
i∈N

sup
0<s≤t

|mi
s|+ 1) ln

(
C(max

i∈N
sup

0<s≤t
|mi

s|+ 1)
)

= max
i∈N

sup
0<s≤t

C(|mi
s|+ 1) ln(C|mi

s|+ 1).

Lemma 6.8 For any constant q > 0, for sufficiently small t, eq sup0≤s≤t(m
i
s)

2

is Q integrable, i ∈ N.

Proof. The process (mi
t)t≥0 is equal in law to a time changed Brownian motion (Bt̄)t≥0, where B is a

a univariate standard Brownian motion and t̄ =
∫ t
0
ς2(s)ds goes to 0 with t. Thus, it suffices to show

the result with mi replaced by B. Let rt be the density function of the law of sup0≤s≤t |Bs| and let

Rt(y) =
∫∞
y
rt(x)dx, y > 0, so that

E[eq sup0≤s≤t B
2
s ] =

∫ ∞
0

eqy
2

rt(y)dy = −[Rt(y)e
qy2

]∞0 + 2q

∫ ∞
0

yRt(y)e
qy2

dy (6.24)

and
Rt(y) = P[sup0≤s≤t(B

+
s +B−s ) > y] ≤ P[sup0≤s≤tB

+
s > y

2 ] + P[sup0≤s≤tB
−
s > y

2 ]
= 2P[sup0≤s≤tBs >

y
2 ] = 2P[|Bt| > y

2 ] = 2P[|B1| > y

2
√
t
] = 4Φ( y

2
√
t
),

where by the left-hand side in (6.18)

Φ(
y

2
√
t
)
y

2
√
t
≤ cφ(

y

2
√
t
) =

c√
2π
e−

y2

8t ,
y

2
√
t
> y0.

Therefore, for 1
8t > q, both terms are finite in the right-hand side of (6.24).

By Corollary 6.1, multivariate Hölder inequality and Lemma 6.8,

exp
(
〈νc〉t +

∑
i∈N?

∫ t

0

(γ̃is ln(γ̃is)− γ̃is ln(γis)− γ̃
i + γis)ds

)
is Q integrable for sufficiently small t. Hence Lemma 6.4 follows by an application of Theorem IV.3 in
?).

7 Dynamic Marshall-Olkin Copula TVA Model

The above dynamic Gaussian copula (DGC) model can suffice to deal with TVA on portfolios of CDS
contracts. If CDO tranches are also present in the portfolio, a Gaussian copula dependence structure
is not rich enough. Instead one can use the following dynamic Marshall-Olkin (DMO) copula model.

7.1 Model of Default Times

We define a family Y of “shocks”, i.e. subsets Y ⊆ N of obligors, including the singletons {−1}, {0}, {1}, . . . , {n}
and a (typically small) number of “common shocks” representing simultaneous defaults. The shock in-
tensities are given in the form of extended CIR processes as, for every Y ∈ Y,

dXY
t = a(bY (t)−XY

t )dt+ c

√
XY
t dW

Y
t , (7.1)

for nonnegative constants a and c, functions bY (t) and for independent Brownian motions WY in
their own completed filtration W = (Wt)t≥0, under the pricing measure Q (the case of deterministic
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intensities XY
t = bY (t) can be embedded in this framework as the limiting case of an “infinite mean-

reversion speed” a). For Y ∈ Y, we define

τY = inf{t > 0;

∫ t

0

XY
s ds > εY }, HY

t = 1τY ≤t, (7.2)

where the εY are i.i.d. standard exponential random variables. We consider the filtration G given
as W progressively enlarged by the random times τY , so that G is the usual Q augmentation of
the natural filtration Z of Z = (W,H). We denote by MY the compensation of HY , i.e. dMY

t =
dHY − (1−HY

t )XY
t dt, t ≥ 0.

Lemma 7.1 For t ≥ 0,

Gt =Wt ∨
∨
Y ∈Y

(
σ(τY ∧ t) ∨ σ({τY > t})). (7.3)

The WY and the MY , Y ∈ Y, have the (G,Q) MRP. In addition, X = (X,H) = ((XY )Y ∈Y , (H
Y )Y ∈Y)

is a (G,Q) jump-diffusion.

Proof. The MRP and (7.3) are proved by induction as follows. We write G = GY . If Y is a singleton
(case of a Cox time in view of (7.2)), then the immersion of W into GY implies the results, by the
optional splitting formula for (7.3) and by Theorem 6.4 in ?) for the MRP. Moreover, if Z is obtained by
addition of a new Z ⊆ N to Y, then the independence between the εY implies that τZ is in turn a Cox
time with intensity in GY , hence immersion of GY into GZ follows and the results for GZ are implied
as above from those, if assumed, for GY . Regarding the (G,Q) jump-diffusion feature of X = (X,H),
see ?, Part I).

7.2 TVA Model

A DMO setup can be used as a TVA model for credit derivatives, with

Eb = Yb := {Y ∈ Y; −1 ∈ Y }, Ec = Yc := {Y ∈ Y; 0 ∈ Y }, E = Y• := Yb ∪ Yc.

We assume that for every process U = P, ∆, Q, C and C, there exists a continuous function Ũ such
that

Uτ = ŨY (τ,Xτ ,Hτ−) (7.4)

(= ŨYτ for brevity) on every event of the form {τ = τY }, Y ∈ Y•. The results of ?, Part II) show that
the condition (7.4) holds on U = P and ∆ for vanilla credit derivatives, including CDS contracts and
CDO tranches, with semi-explicit formulas for P . The conditions (7.4) on U = Q, C and C may be
satisfied or not depending on the CSA (regarding C and C, see Sect. 5.1 and 7.3). By (7.4) assumed
for every U = P, ∆, Q, C and C, the coefficient ξ̃ in (5.11) is given as

ξ̃Yt (π) = P̃Yt − Q̃Yt + 1Y ∈Yc(1−Rc)(Q̃
Y
t + ∆̃Yt − C̃Yt )+

− 1Y ∈Yb
(
(1−Rb)(Q̃Yt + ∆̃Yt − C̃Yt )− + (1− R̄b)(π − Ct−)+), Y ∈ Y•. (7.5)

The coefficient f̂t(ϑ) in (5.13) is given by

f̂t(ϑ) + rtϑ = (1−Rc)
∑
Y ∈Yc

XY
t

(
Q̃Yt + ∆̃Yt − C̃Yt

)+ − (1−Rb)
∑
Y ∈Yb

XY
t

(
Q̃Yt + ∆̃Yt − C̃Yt

)−
+ ct(Ct +Nt) + λ̃t (Pt − ϑ− Ct)

+ )− λt (Pt − ϑ− Ct)
− +

∑
Y ∈Y•

XY
t

(
P̃Yt − ϑ− Q̃Yt

)
, t ∈ [0, τ̄ ],

(7.6)

where λ̃t = λ̄t − (1 − R̄b)
∑
Y ∈Yb X

Y
t . Let Y◦ = Y \ Y• (collection of the Y ∈ Y that don’t intersect

{−1, 0}) and X̃t = (Xt, H̃t), where H̃ = (HY )Y ∈Y◦ . We assume that the processes r, c, λ, λ̄, P, C and

N are given before τ as continuous functions of (t, X̃t). The next result is the DMO analog of Lemma
6.2 in the DGC setup, where the main difficulty, related to (DGC.2), was due to the fact that P 6= Q
there, so we give no proof here.
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Lemma 7.2 The condition (C) holds, with:

(DMO.1) a reference filtration F = (Ft) in (C.1) given as W progressively enlarged by the τY , Y ∈ Y◦,
which satisfies

Ft =Wt ∨
∨

Y ∈Y◦

(
σ(τY ∧ t) ∨ σ({τY > t})

)
, t ≥ 0,

(DMO.2) P = Q in (C.2) (so that “immersion holds” in the sense of the comments following the statement

of the condition (C)), where the WY , Y ∈ Y, and the MY , Y ∈ Y◦, have the (F,Q) MRP,

(DMO.3) a Markov specification f̃t(ϑ) = f̃(t, X̃t, ϑ) in (C.3), for the function f̃ = f̃(t,x, k̃, ϑ) given,

writing k = (1Y ∈Y◦ k̃Y )Y ∈Y and x̃ = (t,x, k̃), x = (t,x,k) for every x = (xY )Y ∈Y , k̃ = (k̃Y )Y ∈Y◦ , by:

f̃(t, x̃, ϑ) + r(t, x)ϑ =

(1−Rc)
∑
Y ∈Yc

xY
(
Q̃Y + ∆̃Y − C̃Y

)+
(t, x)− (1−Rb)

∑
Y ∈Yb

xY
(
Q̃Y + ∆̃Y − C̃Y

)−
(t, x)

+
(
c(C +N) + λ̃

(
P − ϑ− C

)+ − λ(P − ϑ− C
)−)

(t, x̃) +
∑
Y ∈Y•

xY
(
P̃Y − ϑ− Q̃Y

)
(t, x),

(7.7)

with λ̃ = λ̄− (1− R̄b)
∑
Y ∈Yb xY , and for the (F,Q) jump-diffusion X̃t = (Xt, H̃t).

Lemma 7.2 implies the following specification of Proposition 3.1, where the shape (7.9) of µ̃ reflects the
Itô-Markov local martingale part formula (3.6) that applies to the (F,P) jump-diffusion X̃t = (Xt, H̃t),
and where there is no need to stop µ̃ at τ− in (7.10) since µ̃ does not jump at τ .

Proposition 7.1 We obtain a solution Θ to the full TVA equation (2.3) by setting Θ = Θ̃ on [0, τ̄) and

Θτ̄ = 1τ<T ξ, provided Θ̃t = Θ̃(t, X̃t) is such that 1τ<T ξ?J (with ξ? = ξ(Pτ−− Θ̃τ−)) has locally integrable

total variation, Θ̃T = 0 and, for t ∈ [0, T ],

−dΘ̃t = f̃(t,Xt, H̃t, Θ̃t)dt− dµ̃t, (7.8)

where

dµ̃t = c
∑
Y ∈Y

√
xY ∂xY Θ̃(t,Xt, H̃t)dW

Y
t +

∑
Y ∈Y◦

δY Θ̃(t,Xt, H̃t−)dMY
t . (7.9)

On [0, τ̄ ], writing ξ̃?,Yt = ξ̃Yt (Pt − Θ̃t),

dµt = dµ̃t −

(ξ? − Θ̃t−)dJt +
∑
Y ∈Y•

XY
t (ξ̃?,Yt − Θ̃t)dt

 . (7.10)

This proposition can be used for any TVA valuation and hedging purposes in a DMO setup. One can
for instance extend to the present TVA setup the unilateral CVA dynamic hedging developments of
?), the extension being straightforward in an asymmetrical (but still bilateral) CVA approach with
Rb = R̄b = 1 (see the remark 5.1).

7.3 Gap Risk

In the DGC and DMO examples of Sect. 6 and 7, we postulated a “vanilla” collateralization scheme,
without path dependence of Γ := (M,N,N) nor cure period. In both models, the only modification
required to deal with a path-dependent Γ as in Sect. 5.1.1 (but without cure period) would be to
augment the corresponding pre-default factor process X̃t into X̃Γ

t = (X̃t,Γt).

Remark 7.1 Under the margining scheme of Sect. 5.1.1, Γ can only jump at the constant times tl,
hence it cannot jump at τ (which is totally inaccessible). In particular, for U = C or C, ŨYτ does in
fact not depend on Y in (7.4). As explained in the remark 5.3, the flexibility given by a potential
dependence in Y could be used to deal with other gap risk features, such as a jump of U = C and/or
C at τ .
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In addition, let’s assume a positive cure period δ as in Sect. 5.1.2, with for simplicity Q = P (as already
done there) and deterministic interest rates, in the above DMO setup (very similar considerations
would apply in a DGC setup). Recall that G is the usual Q augmentation of the natural filtration of
Z = (W,H).

Lemma 7.3 The condition (G) holds.

Proof. By σ-algebra order relationships here, we mean relationships between the completed σ-algebras.
Since the τY , Y ∈ Y•, don’t intercept each other nor F stopping times, we have by Lemma 2.6 in ?):

Gτ = Gτ− ∨ σ({τ = τY }, Y ∈ Y•),

where Gτ− ⊆ σ(Z·∧τ ) and where, for Y ∈ Y•,

τ = τY ⇐⇒ HY
τ

∏
Z∈Y•\Y

(1−HZ
τ ) = 1,

so that {τ = τY } ∈ Zτ ⊆ σ(Z·∧τ ). Thus, Gτ = σ(Z·∧τ ). In addition, by the optional splitting formula,
GT = FT ∨σ(H·∧T ), where FT = σ(W·∧T ) by Markov, hence GT = σ(Z·∧T ). Finally, denoting by S+T
the collection of (disjoint) unions of a set in a collection S and a set in a collection T , we have

Gτ̄ = {τ ≤ T} ∩ Gτ + {T < τ} ∩ GT = {τ ≤ T} ∩ σ(Z·∧τ ) + {T < τ} ∩ σ(Z·∧T ) = σ(Z·∧τ̄ ),

since {τ ≤ T} ∈ σ(Z·∧τ̄ ).

The probability of a default at time τδ is zero because τδ is predictable whereas default times
are totally inaccessible in a DMO setup. Therefore, the conditions of Lemma 5.2 hold. In the case

of credit derivatives with deterministic interest rates, the process
∫
[τ,t]

e
∫ t
s rududDs in P δt is a function

of the default times in [τ, t], which we assume henceforth. We write KY
t = τY 1τY ≤t, K = (KY )Y ∈Y

and we consider a cure period (G,Q) factor process Xδ
t = (Xt,Kt). For concreteness we assume the

definition (5.6) for g, but it could be any other definition respecting the Markov structure of the setup
(cf. the first paragraph in Sect. 4).

Lemma 7.4 There exist functions P w̄(t, xδ) and f w̄(t, xδ, ϑ), xδ = (x,k), such that

P δt = P ·̄(t,Xδ
t ), fδt (ϑ) = f ·̄(t,Xδ

t , ϑ), t ∈ [τ̄ , τ̄δ]. (7.11)

We have

1τ<T ξ
δ
? = φ·̄(τδ, Xδ

τδ ) (7.12)

where, writing, for a = b or c, ka = min {kY ;Y ∈ Ya, kY > 0} or 0 if there are no such kY ,

φw̄(v, xδ) = 1τ(w)<T×
R̄−1
b ψw̄(v, xδ) + (1− R̄−1

b )(P w̄(v, xδ)− Cτ̂(w)(w)) if

(kb > 0 ∧ (kc = 0 ∨ (kc > 0 ∧ kb ≤ kδc)) and P w̄(v, xδ) ≥ Cτ̂(w)(w)
ψw̄(v, xδ) otherwise,

(7.13)

with

ψw̄(v, xδ) =1(kc>0∧(kb=0∨(kb>0∧kc≤kδb))(1−Rc)(P
w̄(v, xδ)− Cτ̂(w)(w))+

− 1(kb>0∧(kc=0∨(kc>0∧kb≤kδc))(1−Rb)(P
w̄(v, xδ)− Cτ̂(w)(w))−.

(7.14)

Moreover, P w̄, f w̄ and φw̄ only depend on w̄ through τ(w) and Cτ̂(w)(w).



Counterparty Risk Modeling: Beyond Immersion 25

Proof. Since Pt = P (t,Xδ
t ) and

∫
[τ,t]

e
∫ t
s rududDs in P δt is a function of the default times in [τ, t], (7.11)

just rephrases (4.1). Likewise, (7.12) through (7.14) are simply the Markov counterparts of (5.20) and
(5.19).

We consider the pre-default (F,Q) factor process X̃δ
t = (Xt, K̃t,Γt), K̃ = (KY )Y ∈Y◦ , where we

recall that Q = P in a DMO setup. We postulate that the process gt(Pt − ϑ) is given before τ as a
continuous function g̃(t, X̃δ

t , ϑ). In (7.18) below, we write, with x̃δ = (x, k̃,γ),

f̃δ(t, x̃δ, ϑ) + r(t)ϑ = g̃(t, x̃δ, ϑ) + (
∑
Y ∈Y•

xY )
(
Θ̂δ(t, x̃δ)− ϑ

)
, (7.15)

where Θ̂δ(t, x̃δ) is the function such that (observing that, by the final statement in Lemma 7.4, all the
data of (7.17) and hence its solution Θw̄ only depend on w̄ through τ(w) and Cτ̂(w)(w)), on {τ < T},

Θ̂δ(τ, X̃δ
τ ) :=

∑
Y ∈Y•

XY
τ∑

Z∈Y• X
Z
τ
Θ·̄
(
τ,Xτ , ((1Z∈Y◦K̃

Z
τ )Z∈Y)Y,τ

)
= E(Θ·̄(τ,Xδ

τ ) | Gτ−), (7.16)

by Lemma 5.1 applied with

ζ(π) ≡ Θ·̄(τ,Xδ
τ ), ζ̃Yτ (π) ≡ Θ·̄

(
τ,Xτ , ((1Z∈Y◦K̃

Z
τ )Z∈Y)Y,τ

)
= Θ·̄

(
τ,Xτ , ((1Z∈Y◦K̃

Z
τ−)Z∈Y)Y,τ

)
(independent of π).

Since (C) and (G) hold by Lemmas 7.2 and 7.3, comparing (7.11)-(7.12) with (4.17) as well as
(7.15)–(7.16) with (4.19)–(4.20), it comes by application of Proposition 4.1:

Proposition 7.2 We obtain a solution Θ to the full TVA equation with positive cure period (4.3) by setting

Θδt = 1t<τ̄ Θ̃
δ
t + 1t≥τ̄1τ<TΘ

·̄(t,Xδ
t ), provided:

• for every w, Θw̄t = Θw̄(t,Xδ
t ) satisfies Θw̄τ̄δ(w) = φw̄(τδ(w), Xδ

τδ(w)) and, for t ∈ [τ̄(w), τ̄δ(w)],

−dΘw̄t = f w̄(t,Xt,Kt, Θ
w̄
t )dt− dµw̄t (7.17)

with

dµw̄t = c
∑
Y ∈Y

√
Xδ
Y ∂XδY

Θw̄(t,Xt,Kt)dW
Y
t +

∑
Y ∈Y

δY Θ
w̄(t,Xt,Kt−)dMY

t ,

• 1τ<TΘ·̄(τ,Xδ
τ )J has locally integrable total variation and Θ̃δt = Θ̃δ(t, X̃δ

t ) satisfies Θ̃δT = 0 and, for

t ∈ [0, T ],

−dΘ̃δt = f̃δ(t,Xt, K̃t,Γt, Θ̃
δ
t )dt− dµ̃δt (7.18)

with

dµ̃δt = c
∑
Y ∈Y

√
Xδ
Y ∂XδY

Θ̃δ(t,Xt, K̃t,Γt)dW
Y
t +

∑
Y ∈Y◦

δZΘ̃
δ(t,Xt, K̃t−,Γt)dM

Y
t .

On [0, τ̄),

dµδt = dµ̃δt −

(Θ·̄(τ,Xδ
τ )− Θ̃δt−

)
dJt + (

∑
Y ∈Y•

XY
t )
(
Θ̂δ(t,Xt, K̃t,Γt)− Θ̃δt

)
dt

 ,

and dµδt = dµ·̄(t,Xδ
t ) on [τ̄ , τ̄δ].
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8 Perspectives

Accounting for funding costs, the TVA equations are nonlinear. In the case of credit derivatives, the
problem is also very high-dimensional. For nonlinear and very high-dimensional problems, any numeri-
cal scheme based, even to some extent, on dynamic programming, such as purely backward deterministic
PDE schemes, but also forward/backward simulation/regression BSDE schemes, are ruled out by the
curse of dimensionality. The only feasible TVA schemes are purely forward simulation schemes, such as
the linear expansions of ?) in vanilla cases with explicit formulas for Pt, or the CVA branching particles
of ?) in more exotic situations. To conclude this paper, Fig. 11 shows TVAs (CVA and FVA, no DVA
to ease the interpretation of the results, and no collateral nor cure period) computed by expansions a
la ?) of increasing order, for different levels of nonlinearity (the unsecured borrowing spread λ̄ in (6.8)
and (7.7)). These numerical aspects will be developed in a follow-up paper.

Fig. 1 TVA computed by linear Monte Carlo expansions a la ?) (“FT schemes”) of order 1 to 3. Left: TVA on a
netted portfolio of ten CDS on ten different names in a DGC model (equations (6.9)-(6.10)) with 105 paths (at time 0
the protection legs of the CDS have a cumulative mark-to-market of 45.12). Right: TVA on a junior-mezzanine CDO
tranche in a DMO model (equations (7.8)-(7.9)) with 120 names and 2 × 104 paths (at time 0 the protection leg of
the tranche has a mark-to-market of 5.69).
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