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CONCRETE EXAMPLES OF H (b) SPACES

EMMANUEL FRICAIN, ANDREAS HARTMANN, AND WILLIAM T. ROSS

Abstract. In this paper we give an explicit description of de
Branges-Rovnyak spaces H (b) when b is of the form qr, where q

is a rational outer function in the closed unit ball of H∞ and r is
a positive number.

1. Introduction

The purpose of this paper is to explicitly describe the elements of the
de Branges-Rovnyak space H (b) for certain b ∈ b(H∞). Here H∞

is the algebra of bounded analytic functions on the open unit disk D

normed by
‖f‖∞ := sup

z∈D
|f(z)|,

and
b(H∞) := {g ∈ H∞ : ‖g‖∞ 6 1}

is the closed unit ball in H∞ and, for b ∈ b(H∞), the de Branges-

Rovnyak space H (b) is the reproducing kernel Hilbert space of analytic
functions on D whose kernel is

kbλ(z) :=
1− b(λ)b(z)

1− λz
, λ, z ∈ D.

The spaces H (b), and their vector–valued analogues, are the setting for
the operator model theory of de Branges and Rovnyak [3, 4]. Besides
possessing a fascinating internal structure, it also became clear that
H (b) spaces have a key role to play in several questions in function
theory and operator theory, most importantly, in the model theory for
many types of contraction operators.
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Nevertheless, the elements of H (b) are rather opaque and besides the
kernel functions kbλ, λ ∈ D (whose linear span is indeed dense in H (b)),
the exact contents of H (b) is mysterious.

In this paper, we give a precise description of the elements of H (b)
for certain relatively simple b, namely roots of rational outer functions.
Our description needs the following set up. If b ∈ b(H∞) satisfies

∫

T

log(1− |b|)dm > −∞,

(such functions are called non-extreme elements of the unit ball in H∞)
where T := {ζ ∈ C : |ζ | = 1} andm Lebesgue measure on T normalized
so thatm(T) = 1, then there exists a unique outer function a ∈ b(H∞),
called the Pythagorean mate for b, such that a(0) > 0 and |a|2+|b|2 = 1
almost everywhere on T. The pair (a, b) is said to be a Pythagorean

pair. By means of the Fejer-Riesz theorem (we give a proof of this in
Section 5), one can prove that if b is a rational (or polynomial) function
then so is a. In this case, also notice that for ζ ∈ T, we have |b(ζ)| = 1
if and only if a(ζ) = 0.

Our first observation is that in certain situations H (br) does not de-
pend on r > 0.

Theorem 1.1. Suppose b ∈ b(H∞) is outer and non extreme with

Pythagorean mate a. If (a, b) is a corona pair, i.e.,

inf{|a(z)|+ |b(z)| : z ∈ D} > 0,

then for any r > 0 we have H (br) = H (b).

Note that since b is outer it has no zeros on D and we can define br by
taking any logarithm of b.

In the special situation when b is a rational outer function, or any
positive power of a rational function, we get the following complete de-
scription of H (b). In order to state the result, we also need derivatives
of kernels. When b = qr, where q is outer and rational and r > 0, we
set

vℓr,λ(z) :=
dℓ

dλ
ℓ
kq

r

λ (z) =
dℓ

dλ
ℓ

(
1− qr(λ)qr(z)

1− λz

)
,

for any z ∈ D, λ ∈ D−, and ℓ = 0, 1, 2, . . ..

We let H2 denote the classical Hardy space in D [6].

Theorem 1.2. Suppose q ∈ b(H∞) is a rational outer function and r
is a positive real number. Then
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(1) H (qr) = H (q).

(2) If a is the Pythagorean mate for q and a has distinct zeros

ζ1, . . . , ζn on T with corresponding multiplicities m1, . . . , mn,

then

(a) the functions vℓr,j := vℓr,ζj are well-defined and belong to

H (qr) for 1 6 j 6 n and 0 6 ℓ 6 mj − 1. Moreover, they

are orthogonal to

aH2 =

(
n∏

j=1

(z − ζj)
mj

)
H2.

(b) H (qr) is equal to
(

n∏

j=1

(z − ζj)
mj

)
H2 ⊕

∨{
vℓr,j : 0 6 ℓ 6 mj − 1, 1 6 j 6 n

}
,

where the orthogonal decomposition is in terms of the inner

product in H (qr).

Writing vℓj = vℓ1,j , the theorem above implies that H (qr) is equal to
(

n∏

j=1

(z − ζj)
mj

)
H2 ∔

∨{
vℓj(z) : 0 6 ℓ 6 mj − 1, 1 6 j 6 n

}
,

where the sum is no longer necessarily orthogonal.

It was shown in [2], and rediscovered in [1], that

H (q) =

(
n∏

j=1

(z − ζj)
mj

)
H2 ∔ Pn−1,(1.3)

where Pn−1 is the n-dimensional space of polynomials of degree at
most n − 1 and the sum is an algebraic direct sum (not necessarily
an orthogonal one). The novelty here is that we can precisely identify

the orthogonal complement of aH2 =
(∏n

j=1(z − ζj)
mj

)
H2 in H (q)

without using (1.3).

A key ingredient in showing statement (1) of Theorem 1.2, and an
added bonus to our result, is that if ar is the Pythagorean mate for qr

then the co-analytic Toeplitz operators Ta and Tar on the Hardy space
H2 have the same range and this range can be precisely identified as
H (q).
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2. Preliminaries

There are several equivalent definitions of the de Branges-Rovnyak
space H (b) for b ∈ b(H∞). We can for instance define it in the stan-
dard way (see [7]) as the reproducing kernel Hilbert space associated
with the (positive definite) reproducing kernel

kbλ(z) :=
1− b(λ)b(z)

1− λz
, λ, z ∈ D.

By definition,

f(λ) = 〈f, kbλ〉b, f ∈ H (b), λ ∈ D,

where 〈·, ·〉b stands for the scalar product in H (b).

The space H (b) can also be defined as the range space (I−TbTb)1/2H2

equipped with the norm making (I − TbTb)
1/2 a partial isometry. Here

Tϕ is the Toeplitz operator on H2 with symbol ϕ ∈ L∞(T) defined by

Tϕf = P+(ϕf), f ∈ H2,

where P+ is the orthogonal projection of L2(T) onto H2. The book [8]
is the classic reference for H (b) spaces.

When ‖b‖∞ < 1, H (b) turns out to be a reformed version of H2 while,
on the other extreme, if b is an inner function, then H (b) turns out to
be one of the classical and well-studied model spaces H2 ⊖ bH2.

When b is non-extreme, two important (not necessarily closed) vector
spaces of functions in H (b) are

M (a) := TaH
2 and M (a) := TaH

2.

It is known (see [8, page 24]) that

M (a) ⊂ M (a) ⊂ H (b).

3. Corona pairs

This following lemma is well-known but we record it here along with a
proof for the sake of completeness and for the discussion of the examples
in Section 5.

Lemma 3.1. Suppose q ∈ b(H∞) is rational and not inner. Then q
is non-extreme and if a is the Pythagorean mate for q then a is also

rational.
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Proof. Since q is rational then q = p1/p2 where p1 and p2 are analytic
polynomials and p2 has no zeros on D−. We can of course choose p2 such
that p2(0) > 0. Since q ∈ b(H∞) we see that 1− |q(eiθ)|2 > 0 for all θ
and so |p2(eiθ)|2−|p1(eiθ)|2 is a non-negative trigonometric polynomial,
which, by the Fejer-Riesz theorem, must be equal to |p(eiθ)|2, where p
is an analytic polynomial which is zero free in D and p(0) > 0. Note
that |p2(eiθ)|2 − |p1(eiθ)|2 is non zero because q is assumed to be not
inner.

Let

a =
p

p2
.

Note that a is rational and zero free in D, hence outer. Moreover
a(0) > 0.

Furthermore, on T we have

|a|2 =
∣∣∣∣
p

p2

∣∣∣∣
2

=
|p2|2 − |p1|2

|p2|2
= 1−

∣∣∣∣
p1
p2

∣∣∣∣
2

= 1− |q|2.

This means that (a, q) is a Pythagorean pair which, in particular, im-
plies that q is non-extreme. �

Two functions u, v ∈ H∞ which satisfy

inf
z∈D

(|u(z)|+ |v(z)|) > 0

are said to be a corona pair. Carleson’s corona theorem [6] says that if
u, v form a corona pair then there are function φ, ψ ∈ H∞ such that

φu+ ψv = 1.

Lemma 3.2. Suppose b ∈ b(H∞) is outer and r is a positive real

number. Then b and br are simultaneously non-extreme. Moreover,

if ar is the Pythagorean mate for br, the pairs (a, b) and (ar, b
r) are

simultaneously corona.

Proof. Since

(3.3)
1− xr

1− x
≍ 1, x ∈ [0, 1],

we see that 1 − |b|r ≍ 1 − |b| when b ∈ b(H∞). This proves the first
part of the Lemma.

Now observe that
|a|2
|ar|2

=
1− |b|2
1− |b2|r ≍ 1,



6 FRICAIN, HARTMANN, AND ROSS

and since a and ar are outer, by Smirnov’s theorem (which says that
if the boundary function of f ∈ H2 is bounded, then f ∈ H∞), a/ar is
invertible in H∞. Thus both expressions

inf
z∈D

(|a(z)|+ |b(z)|) and inf
z∈D

(|ar(z)|+ |br(z)|)

are strictly positive simultaneously. Indeed, if there is a sequence
{zn}n>1 in D such that one expression goes to 0 then, since both a(zn)
and b(zn) go to zero, the other expression will go to zero as well. �

A special situation where b forms a corona pair with its Pythagorean
mate is when b is rational, as explained in the following lemma.

Lemma 3.4. Suppose q ∈ b(H∞) is rational and not inner. If a is the

Pythagorean mate for q, then (a, q) is a corona pair.

Proof. According to the proof of Lemma 3.1, we know that a is rational,
a = p/p2, where p and p2 are polynomials, p2 has no zeros in D− and
p is zero free in D. In particular, a is continuous on D− and it has a
finite number of zeros on T, say {ζ1, . . . , ζM}. Note that, due to the
identity |a|2 + |q|2 = 1 on T, the zeros of a (on T) must lie where q is
unimodular on T.

Let Dj be open disjoint disks with center at the zeros ζj of a and let

F = D
− \

M⋃

j=1

Dj.

By making the disks smaller, one can, by using the continuity of |q| on
D−, arrange things so that |q| > 1

2
on each Dj ∩ D−.

Notice that F is closed and omits all of the zeros of a in D− and so

inf
z∈F

|a(z)| = δ > 0.

Thus

inf
z∈D

(|a(z)|+ |q(z)|) > min(1
2
, δ) > 0

concluding the proof. �

The first statement of our main theorem (Theorem 1.2) H (q) = H (qr)
depends of the following two results. The first is from Sarason’s book
[8, p. 62].

Proposition 3.5. For b ∈ b(H∞) and non-extreme, the following are

equivalent:
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(1) (a, b) is a corona pair;

(2) H (b) = M (a).

The second is the following.

Proposition 3.6. If a, a1 ∈ H∞ are two outer functions such that a/a1
and a1/a belong to L∞, then M (a) = M (a1).

Proof. Again, by Smirnov’s theorem, we know that a/a1 and a1/a be-
long to H∞, so that Ta/a1 and hence Ta/a1 are invertible. Then we
get

M (a) = TaH
2 = Ta1Ta/a1H

2 = Ta1H
2 = M (a1). �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.2 we know that since (a, b) is a
corona pair, then so is (ar, b

r). Thus from Proposition 3.5 we see that
H (b) = M (a) and H (br) = M (ar). As in the proof of Lemma 3.2
a/ar and ar/a are in H∞ so that by Proposition 3.6, we get M (a) =
M (ar) which concludes the proof. �

4. Proof of the main theorem 1.2

Statement (1) of the theorem follows from Lemma 3.4 and Theorem
1.1.

Let us consider statement (2).

In [5] it was shown that if ζ ∈ T and

(4.1)

∫

T

| log |b(w)||
|w − ζ |2n+2

dm(w) <∞,

then every function in H (b), as well as their derivatives up to order n,
has a finite non-tangential limit at ζ .

Recalling the notation vℓr,λ for the ℓ-th derivative in the variable λ of

the reproducing kernel in H (qr), under (4.1), we have vℓr,ζ ∈ H (qr),
0 6 ℓ 6 n, and

f (ℓ)(ζ) = 〈f, vℓr,ζ〉qr , f ∈ H (qr), 0 6 ℓ 6 n.
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Remark 4.2. In the above, we are using 〈·, ·〉b to denote the inner
product in the space H (b). Note that H (0) = H2 with the integral
inner product

〈f, g〉0 =
∫

T

f(ζ)g(ζ)dm(ζ).

When the contact is clear, we will drop the subscript b from the inner
product.

Let us check condition (4.1) for our situation. Since q is rational then
its Pythagorean mate a is also rational and can be written as

(4.3) a(z) = s(z)
n∏

j=1

(z − ζj)
mj ,

where s is a rational function whose poles and zeros lie on the com-
plement of D−. Pick w = eit near one of the zeros ζj = eiθj of a,
then

| log |qr(eit)|| ≍ | log |q(eit)|2| = | log(1− |a(eit)|2)|
≍ |a(eit)|2 ≍ |eit − eiθj |2mj

This means that for t near θj we have

| log |qr(eit)||
|eit − eiθj |2(mj−1)+2

≍ 1

and so, by (4.1),

vℓr,ζj ∈ H (qr), 0 6 ℓ 6 mj − 1.

So far we know that
(4.4)

H (qr) = M (ar) = M (a) ⊃ M (a)+
∨

{vℓr,ζj : 1 6 j 6 n, 0 6 ℓ 6 mj−1}.

First we show that

vℓr,ζj ⊥ M (a), 1 6 j 6 n, 0 6 ℓ 6 mj − 1.

Indeed, for each f ∈ H (qr) the radial limits f (ℓ)(tζj) exist as t → 1−.
Since

f (ℓ)(tζj) = 〈f, vℓr,tζj〉qr ,
we can apply the principle of uniform boundedness to see that ‖vℓr,tζj‖qr
is uniformly bounded as t→ 1−. Since vℓr,tζj converges pointwise to v

ℓ
r,ζj

as t→ 1− we see that vℓr,tζj converges weakly to vℓr,ζj . Thus, since v
ℓ
r,tζj
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reproduces the ℓ-th derivative of H (qr)-functions at point tζj , for any
g ∈ H2, we have

〈ag, vℓr,ζj〉qr = lim
t→1−

〈ag, vℓr,tζj〉qr = lim
t→1

(ag)(ℓ)(tζj)

= lim
t→1

ℓ∑

p=0

(
ℓ

p

)
a(p)(tζj)g

(ℓ−p)(tζj).

Using the estimate

|a(p)(tζj)| . (1− t)mj−p

along with the following standard H2 estimate on the growth of the
derivative of an H2 function

|g(ℓ−p)(tζj)| .
1

(1− t)(ℓ−p)+1/2
,

we see that

|a(p)(tζj)g(ℓ−p)(tζj)| . (1− t)mj−p−((ℓ−p)+1/2).

But since 0 6 ℓ 6 mj − 1 we see that

mj − p− ((ℓ− p) + 1/2) = mj − ℓ− 1
2
> 1

2

and so
lim
t→1−

|a(p)(tζj)g(ℓ−p)(tζj)| = 0.

Thus 〈ag, vℓr,ζj〉qr = 0 and vℓr,ζj ⊥ M (a) in H (qr), for all 0 6 ℓ 6 mj−1.

This upgrades (4.4) to

(4.5) H (qr) = M (a) ⊃ M (a)⊕
∨

{vℓr,ζj : 1 6 j 6 n, 0 6 ℓ 6 mj−1},
and orthogonality is with respect to H (qr).

To show equality in (4.5), our second step is to show that if f ∈ M (a)
and f ⊥ vℓr,ζj for all 1 6 j 6 n, 0 6 ℓ 6 mj − 1 then f ∈ M (a). Since

M (a) = TaH
2 this is equivalent to proving that if g ∈ H2 and

0 = (Tag)
(ℓ)(ζj) = lim

t→1−
(Tag)

(ℓ)(tζj)

for all 1 6 j 6 n, 0 6 ℓ 6 mj−1 then Tag ∈ M (a). To simplify matters
a bit, let us recall the formula for a from (4.3). Since s is a rational
function with zeros and poles outside D− then certainly the Toeplitz
operators T1/s and T1/s are invertible, so that M (a) = M (a/s). We
can thus assume that

a(z) =

n∏

j=1

(z − ζj)
mj .
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A preliminary step towards proving what we want is to show it for a
special case. Indeed we will show that if a(z) = (z − 1)m and g ∈ H2

then

(4.6) (Tag)
(ℓ)(1) = 0, 0 6 ℓ 6 m− 1 =⇒ Tag ∈ aH2.

Notice that

a(ζ) = (−1)mζ
m
a(ζ), ζ ∈ T,

and thus

Tag = (−1)mP+(aζ
m
g).

We claim that

(4.7) ĝ(0) = ĝ(1) = · · · = ĝ(m− 1) = 0.

This will show that ζ
m
g ∈ H2 and so

Tag = (−1)mP+(aζ
m
g) ∈ aH2.

We prove the claim (4.7) as follows. Consider the kernels

kλ,ℓ(z) = cℓ
zℓ

(1− λz)ℓ+1
,

where cℓ is adapted so that these are the reproducing kernels for ℓ-th
derivatives at point λ ∈ D in the Hardy space H2, that is to say,

f (ℓ)(λ) = 〈f, kλ,ℓ〉2, f ∈ H2.

Observe that for 0 6 ℓ 6 m− 1

a(z)kt,ℓ(z) = cℓ
zℓ(1− z)m

(1− tz)ℓ+1

= cℓz
ℓ(1− z)m−(ℓ+1)

(
1− z

1− tz

)ℓ+1

= cℓz
ℓ(1− z)m−(ℓ+1)

(
1 + z

t− 1

1− tz

)ℓ+1

.

One can see that akt,ℓ converges pointwise to cℓz
ℓ(1−z)m−ℓ−1 as t→ 1−

and is uniformly bounded on T. Thus by the dominated convergence
theorem, akt,ℓ → cℓz

ℓ(1 − z)m−ℓ−1 in the norm of H2. Now pick a
function f = Tag ∈ M (a) = H (qr) with Tag

(ℓ)(1) = 0 for all 0 6 ℓ 6
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m− 1, then

0 = (Tag)
(ℓ)(1) = lim

t→1−
(Tag)

(ℓ)(t) = lim
t→1−

〈Tag, kt,ℓ〉0 = lim
t→1−

〈g, akt,ℓ〉0

= cℓ〈g, zℓ(1− z)m−ℓ−1〉0

= cℓ

〈
g,

m−ℓ−1∑

j=0

(
m− ℓ− 1

j

)
(−1)jzj+ℓ

〉

0

= cℓ

m−ℓ−1∑

j=0

(
m− ℓ− 1

j

)
(−1)j ĝ(j + k)

=
m−1∑

p=ℓ

(
m− ℓ− 1

p− ℓ

)
(−1)p−ℓĝ(p).

If

Ai,j =

(
m− i− 1

j − i

)
(−1)j−i,

then A = (Ai,j)06i,j6m−1 is an upper triangular invertible matrix and
hence the above system of equations can be written as

A(ĝ(0), ĝ(1), . . . , ĝ(m− 1))T = (0, . . . , 0),

which proves (4.7) and thus (4.6).

We finish the proof by establishing the following claim. If

a(z) =
n∏

j=1

(z − ζj)
mj ,

and g ∈ H2 is such that, for any 1 6 j 6 n, and any 0 6 ℓ 6 mj − 1,
we have

(4.8) (Tāg)
ℓ(ζj) = 0,

then Tāg ∈ aH2.

We argue by induction on n. If n = 1, then we can of course assume
without loss of generality that ζ1 = 1 and then, the proof of the claim
is given by (4.6).

Assume the claim is true for n − 1 points. Suppose g ∈ H2 satisfies
(4.8). Decompose a as a = a1a2 where a1(z) = (z − ζ1)

m1 and

a2(z) =

n∏

j=2

(z − ζj)
mj .
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Since

Ta = Ta1Ta2 = Ta2Ta1 ,

we easily see that the induction hypothesis implies that the function
h := Tāg belongs to a1H

2 ∩ a2H
2. In other words, there exists two

functions ϕ, ψ ∈ H2 such that

h = a1ϕ = a2ψ.

Now note that (a1, a2) is a corona pair. Hence, there exists u, v ∈ H∞

such that

a1u+ a2v = 1.

Multiply this equation by ψ gives

ψ = a1ψu+ a2ψv = a1ψu+ a1ϕv = a1(ψu+ ϕv).

Therefore, we obtain

h = a2ψ = a2a1(ψu+ ϕv),

which shows that h ∈ a1a2H
2 = aH2. The claim is established and the

proof of Theorem 1.2 is complete.

5. Examples

Example 5.1. Consider the function

q(z) =
1

2
(1 + z)

and notice that q is outer and ‖q‖∞ = 1. One can easily guess the
Pythagorean mate for q to be

a(z) =
1

2
(1− z).

The function a(z) has one zero of order 1 at z = 1 and a computation
reveals that

v01,1(z) =
1− q(1)q(z)

1− z
=

1

2
.

In this case

H (q) = (z − 1)H2 ⊕ C

and so for any positive real number we get H (qr) = H (q) and

H (qr) = (z − 1)H2 ∔ C = (z − 1)H2 ⊕ C

1−
(1 + z

2

)r

1− z
.
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For more general q we need to review the proof of the Fejer-Riesz
theorem which says that if

w(eiθ) =
n∑

j=−n

cje
ijθ

is a non-zero trigonometric polynomial which assumes non-negative
values for all θ, then there is an analytic polynomial

p(z) =
n∑

j=0

ajz
j

so that

w(eiθ) = |p(eiθ)|2.
Since the proof gives us the algorithm for computing p, we give a quick
sketch. Indeed, as a function of the complex variable z, we see that if

w(z) =
n∑

j=−n

cjz
j

then w(1/z) = w(z), z ∈ T. Assuming that c−n 6= 0 we see that
s(z) = znw(z), z ∈ C, is a polynomial of degree 2n and the roots of s
occur in pairs α, 1/α of equal multiplicity. It follows that

w(z) = c

n∏

j=1

(z − αj)(
1

z
− αj)

for some positive constant c and where α1, . . . , αn satisfy |αj | > 1 for
1 6 j 6 n. The desired polynomial p is

p(z) =
√
c

n∏

j=1

(z − αj).

Note that p is zero free in D and we can multiply p by a unimodular
constant so that p(0) > 0.

Recall from the proof of Lemma (3.1) that if q = p1/p2 is rational then
the Pythagorean mate a for q is given by

a =
p

p2
,

where p is the analytic polynomial (guaranteed by the Fejer-Riesz the-
orem) which satisfies |p(eiθ)|2 = w(eiθ) = |p2(eiθ)|2−|p1(eiθ)|2 > 0, and
p is chosen to that a(0) > 0.
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Example 5.2. Consider the function

q(z) =
1

2
(1− z)(1 + z)

and note that q ∈ b(H∞) and is outer. A computation shows that

1− |q(eit)|2 = 1

4
e−2it +

1

4
e2it +

1

2
.

Define

w(z) =
z−2

4
+
z2

4
+

1

2

and

s(z) = z2w(z) =
z4

4
+
z2

2
+

1

4
.

The polynomial s factors as

s(z) =
1

4
(z − i)2(z + i)2.

Notice how the zeros occur in pairs i = 1/i and −i = 1/−i as guaran-
teed by the above proof of the Fejer-Riesz theorem. Thus the Pythagorean
mate a for q is of the form

a(z) = c(z − i)(z + i)

for some c adjusted so that a(0) > 0 and 1 − |q(eiθ)|2 = |a(eiθ)|2. One
can check by direct calculation that c = 1/2 works and so

a(z) =
1

2
(z − i)(z + i).

Of course the exact value of c is not important for our calculations
since we only need to identify the zeros of a.

The zeros of a are at z = i and z = −i and have order one and so

H (q) = (z − i)(z + i)H2 ⊕
∨

{v01,i, v01,−i},

where the kernels can be computed directly as

v01,i(z) =
1

2i
(z + i), v01,−i(z) =

1

2i
(z − i).

Again, as in the previous example, H (qr) = H (q) and so

H (qr) = (z − i)(z + i)H2 ∔
∨

{z + i, z − i}.
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Example 5.3. Consider the function

q(z) =
1

4
(z + 1)2

and note that q is outer and belongs to b(H∞). Following our Fejer-
Riesz computations as in the previous example, note that

1− |q(eit)|2 = −e
−it

4
− eit

4
− 1

16
e−2it − 1

16
e2it +

5

8
.

Define

w(z) = − z
2

16
− 1

16z2
− z

4
− 1

4z
+

5

8

and

s(z) = z2w(z)

= − z
4

16
− z3

4
+

5z2

8
− z

4
− 1

16

= − 1

16
(−1 + z)2(1 + 6z + z2).

The zeros of s are at z = −1, z = −1, z = −3 − 2
√
2 ≈ −5.82843, z =

−3 + 2
√
2 ≈ −0.171573. Notice how these roots occur in the pairs

α, 1/α. The function a is then

a(z) = c(z − 1)(z + 3 + 2
√
2)

for some appropriate constant c. There is one zero of a at z = 1 of
multiplicity one and so

H (q) = (z − 1)H2 ⊕ Cv01,1(z),

where the kernel can be computed to be

v01,1(z) =
z + 3

4
.

As in our previous examples, note that

H (qr) = (z − 1)H2 ∔ C(z + 3).

Notice that the q from this example is the square of the q from our
first example and thus the corresponding spaces should be the same.
Indeed a little algebra will show that

(z − 1)H2 ∔ C = (z − 1)H2 ∔ C(z + 3).
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Example 5.4. Reversing the roles of a and q in the preceding example:

a(z) =
1

4
(z + 1)2, q(z) = c(z − 1)(z + 3 + 2

√
2),

with suitable c so that ‖q‖∞ = 1 (the maximum modulus on D− being
attained in −1, one has c = (4(1 +

√
2))−1, and q(−1) = −1 corre-

sponding to the normalization q(0) > 0), we obtain a function a with
double zero, and so

H (q) = (z + 1)2H2 ⊕
∨

{v01,−1, v
1
1,−1}

where

v01,−1(z) =
1− q(−1)q(z)

1− (−1)z
=

1 + q(z)

1 + z
,

and using q(−1) = −1 as well as q′(z) = c(2 + 2
√
2) so that q′(−1) =

−1/2, we have

v11,−1(z) =
1
2
q(z)(1 + z) + z(1 + q(z))

(1 + z)2
=

1

2

q(z)(1 + 3z) + 2z

(1 + z)2
.

Example 5.5. Here is an example of a rational function:

q(z) =
3(z + 1)

2(z + 2)
.

Then, as it turns out,

a(z) = c
z − 1

z + 2
which has a zero of order one at z = 1. From here we get

H (q) = (z − 1)H2 ⊕ Cv01,1(z) = (z − 1)H2 ⊕ C
1

4 + 2z
.
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