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Abstract

A facial parity edge colouring of a connected bridgeless plane graph is such an edge colouring
in which no two face-adjacent edges receive the same colour and, in addition, for each face
f and each colour c, either no edge or an odd number of edges incident with f is coloured
with c. Let χ′

p(G) denote the minimum number of colours used in such a colouring of G. In
this paper we prove that χ′

p(G) ≤ 20 for any 2-edge-connected plane graph G. In the case
when G is a 3-edge-connected plane graph the upper bound for this parameter is 12. For G
being 4-edge-connected plane graph we have χ′

p(G) ≤ 9. On the other hand we prove that
some bridgeless plane graphs require at least 10 colours for such a colouring.
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1. Introduction

The famous Four Colour Problem has served as a motivation for many equivalent colour-
ing problems, see e.g. the book of Saaty and Kainen [15]. The Four Colour Problem was
solved in 1976 by Appel and Haken [1] (see also Robertson et al. [14] for another proof)
and the result is presently known as the Four Colour Theorem (4CT). From the 4CT the
following result follows, see [15].

Theorem 1. The edges of a plane triangulation can be coloured with 3 colours so that the
edges bounding every face are coloured distinctly.

In 1965, Vizing [17] proved that simple planar graphs with maximum degree at least
eight have the edge chromatic number equal to their maximum degree. He conjectured the
same if the maximum degree is either seven or six. The first part of this conjecture was
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proved by Sanders and Zhao in 2001, see [16]. Note that (also by Vizing) every graph with
maximum degree ∆ has the edge chromatic number equal to ∆ or ∆ + 1. These results of
Sanders and Zhao and of Vizing can be reformulated in a sense of Theorem 1 in the following
way:

Theorem 2. Let G be a 3-edge-connected plane graph with maximum face size ∆∗ ≥ 7.
Then the edges of G can be coloured with ∆∗ colours in such a way that the edges bounding

every face of G are coloured distinctly.

On the other hand, in 1997 Pyber [13] has shown that the edges of any simple graph can
be coloured with at most 4 colours so that all the edges from the same colour class induce
a graph with all vertices having odd degree. Mátrai [11] constructed an infinite sequence
of finite simple graphs which require 4 colours in any such colouring. Pyber’s result can be
stated as follows:

Theorem 3. Let G be a 3-edge-connected plane graph. Then the edges of G can be coloured
with at most 4 colours so that for any colour c and any face f of G either no edge or an
odd number of edges on the boundary of f is coloured with colour c.

Recently Bunde, Milans, West, and Wu [4, 5] introduced a strong parity edge colouring
of graphs. It is an edge colouring of a graph G such that each open walk in G uses at
least one colour an odd number of times. Let p(G) be the minimum number of colours in
a strong parity edge colouring of a graph G. The exact value of p(Kn) for complete graphs
is determined in [4]. They also mention that computing p(G) is NP-hard even when G is a
tree.
We say that an edge colouring of a plane graphG is facially proper if no two face-adjacent

edges of G receive the same colour. (Two edges are face-adjacent if they are consecutive
edges of a facial walk of some face f of G.) Note that colourings in Theorems 1 and 2 are
facially proper, but the colouring in Pyber’s Theorem 3 need not be facially proper.
Motivated by the parity edge colouring concept introduced by Bunde et al. [5] and the

above mentioned theorems we define a facial parity edge colouring of a plane graph G as a
facially proper edge colouring with the following property: for each colour c and each face
f of G either no edge or an odd number of edges incident with f is coloured with the colour
c. The problem is to determine for a given bridgeless plane graph G the minimum possible
number of colours, χ′

p(G), in such a colouring of G. The number χ′
p(G) is called the facial

parity chromatic index of G.
Note that the facial parity chromatic index depends on the embedding of the graph. For

example, the graph depicted in Figure 1 has different facial parity chromatic index depending
on its embedding. With the embedding on the left, its facial parity chromatic index is 5;
whereas with the embedding on the right, its parity chromatic index is 4.
The vertex version of this problem (parity vertex colouring) was introduced in [8]. The

authors proved that every 2-connected plane graph G admits a proper vertex coloring with
at most 118 colours such that for each face f and each colour c, either no vertex or an
odd number of vertices incident with f is coloured with c. The constant 118 was recently

2



1

2

3

4

5

4

5

1

2

4

1

4

3

3

Figure 1: Two embeddings of the same graph with different facial parity chromatic index.

improved to 97 by Kaiser et al. [10]. Czap [6] proved that every 2-connected outerplane
graph has a parity vertex colouring with at most 12 colours.
In this paper we prove that each connected bridgeless plane graph has a facial parity

edge colouring using at most 20 colours, which improves the bound 92 published in [7]. The
facial parity chromatic index is at most 12 for any 3-edge-connected plane graph. In the case
when a plane graph is 4-edge-connected the upper bound is at most 9 for this parameter.
We also present graphs which require 10 colours for such a colouring.
Throughout the paper, we mostly use the terminology from a recent book [2] of Bondy

and Murty. All graphs considered are allowed to contain loops and multiedges, unless stated
otherwise.

2. Results

2.1. 2-edge-connected plane graphs

Let ϕ be a facial parity edge colouring of a bridgeless plane graph G. Observe that in
the dual graph G∗, the edges of G in each colour class correspond to a factor of G∗ with
the degrees of all the vertices odd or zero, i.e. it is an odd subgraph. Moreover, since ϕ is a
facially proper edge colouring in G, it induces a facially proper edge colouring in G∗ as well.
We say that an edge colouring of a plane graph is odd, if each colour class induces an

odd subgraph.

Observation 1. Let G be a plane graph. Then χ′
p(G) ≤ k if and only if the dual graph G∗

has a facially proper odd edge colouring using at most k colours.

This observation will play a major role in proofs below. Instead of facial parity edge
colouring of G we shall investigate facially proper odd edge colouring of G∗.
Let us recall the result of Pyber in its original form.

Theorem 4 (Pyber [13]). The edge set of any simple graph H can be covered by at most 4
edge-disjoint odd subgraphs. Moreover, if H has an even number of vertices then it can be

covered by at most 3 edge-disjoint odd subgraphs.

We use this result to establish a general upper bound on facial parity chromatic index
for the class of bridgeless plane graphs.
For a face f of a (connected) plane graph G let E(f) denote the set of edges incident

with f . Let ϕ be an edge colouring of a graph G and let c be a colour. Then ϕ−1(c) = {e ∈
E(G) : ϕ(e) = c} denotes the set of edges coloured with c.
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Lemma 1. Let G be a connected plane graph. Then there is a facially proper edge colouring

ϕ of G using at most 5 colours such that for every two faces f1 and f2 of G and every colour

c

|ϕ−1(c) ∩ E(f1) ∩ E(f2)| = 0 or |ϕ−1(c) ∩ E(f1) ∩ E(f2)| ≡ 1 (mod 2).

Proof. Let G be a counterexample with minimum number of edges. It is easy to see that G
must be 2-connected.
Let M(G) be the medial graph of G: vertices of M(G) correspond to the edges of G; two

vertices of M(G) are adjacent if the corresponding edges of G are face-adjacent. Clearly,
M(G) is a plane graph, hence, it has a proper vertex colouring ψM using at most 4 colours.
If any two faces of G share at most one edge, then the colouring ψ of the edges of G,

given by the colouring ψM of the vertices of M(G), has the required property.
Assume that at least two faces, say f1 and f2, share at least two edges. Let e1, . . . , ek be

the common edges of f1 and f2 ordered according to their appearance on the facial walk of
f1 (and f2). Let G1, . . . , Gk be the components of G \ {e1, . . . , ek} such that Gi is incident
with ei and not incident with ei+1 in G (ek+1 = e1).
If all the graphs Gi are singletons (i = 1, 2, . . . , k), then G is a cycle on k vertices and

a required colouring can be found easily: Let k = 4ℓ + z, where ℓ is a non-negative integer
and z ∈ {2, 3, 4, 5}. We repeat ℓ times the pattern 1, 2, 1, 2 and then use colours 1, 2 . . . , z.
The colours 1 and 2 are thus used 2ℓ + 1 times, the remaining (at most three) colours are
used once.
Assume that Gi has more than one vertex for at least one i ∈ {1, . . . , k}. Suppose k ≥ 3.

Let H0 be a cycle of length k. Let Hi be a graph obtained from Gi by pasting a path of
length 2 to the endvertices of ei−1 and ei (e0 = ek). The graphs H0, H1, . . . , Hk have less
edges than G, hence, each of them has a required edge 5-colouring, say ϕi. The colouring ϕ0

of H0 can be extended to a colouring ϕ of G in the following way: For each i ∈ {1, . . . , k},
find a permutation of colours used in the colouring ϕi of Hi such that the colours on the
edges ei−1 and ei in H0 and on the corresponding edges in Hi coincide; use this colouring for
the graph Gi. It is easy to see that the colouring ϕ of G obtained this way has the desired
property.
Therefore, we may assume that whenever two faces of G share k ≥ 2 edges, then k must

be equal to 2. If for some faces f1 and f2 and their common edges e1 and e2 both the
components G1 and G2 of G \ {e1, e2} contain at least 2 vertices, we proceed in the same
way as in the previous paragraph. Hence, for each two faces f1 and f2 that share two edges,
the edges they share are adjacent. But then those two edges receive different colours in the
colouring ψ, which implies ψ has the desired property.

Theorem 5. Let G be a 2-edge-connected plane graph. Then

χ′
p(G) ≤ 20.

Proof. Let ϕ be a facially proper edge colouring of G given by Lemma 1. This colouring
induces an edge-decomposition of the dual graph G∗ into five graphs, say G∗

i , i = 1, 2, 3, 4, 5.
Observe that each edge has an odd multiplicity in every graph G∗

i , i = 1, 2, 3, 4, 5.
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Let H∗
i be a graph obtained from G∗

i by simplifying the multiple edges (if two vertices
are joined with more than one edge, then we remove all of them but one). The graph H∗

i

is simple, hence, it can be edge-decomposed into at most 4 odd subgraphs (see Theorem 4).
Colour each such subgraph of H∗

i with a distinct colour. To extend this colouring of H
∗
i

to a colouring of G∗
i , colour the multiedges with the same colour as has the corresponding

edge in H∗
i . This way we obtain an edge-decomposition of each G

∗
i into four odd subgraphs;

altogether at most 20 colours are used in G∗. This colouring of the dual graph G∗ induces
a required colouring of the original graph G, see Observation 1.

Note that there is a graph G such that χ′
p(G) = 10 and there is a 2-connected graph G′

such that χ′
p(G

′) = 9. It is sufficient to consider the graphs depicted in Figure 2.

Figure 2: Examples of graphs with no facial parity edge colouring using less than 10 and 9 colours, respec-
tively.

2.2. 3-edge-connected plane graphs

In the remaining parts of the paper we investigate facial parity edge colourings of 3-edge-
connected plane graphs. Observe that if G is a 3-edge-connected plane graph, then its dual
G∗ is a simple plane graph. Therefore, we may apply structural properties of planar graphs
on the dual graph; in particular, we will use the following one:

Theorem 6 (Gonçalves [9]). Let H = (V,E) be a simple planar graph. Then it has a
bipartition of its edge set E = E1 ∪E2 such that the graphs induced by these subsets, H[E1]
and H[E2], are outerplanar.

Recall that a (planar) graph is outerplanar if it can be embedded in the plane in such a
way that all the vertices are on the boundary of the outer face. Note that for a given plane
embedding of a planar graph H, the two outerplanar graphs given by Theorem 6 need not
be outerplanarly embedded.
In order to find bounds on the facial parity chromatic index of a 3-edge-connected plane

graph, we first decompose its dual into two outerplanar graphs, and then bound the number
of colors needed for a facially proper odd edge coloring of them. The structure of outerplanar
graphs is given in the following theorem.

Theorem 7 (Borodin, Woodall [3]). If H is a simple outerplanar graph, then at least one
of the following cases holds.

1. There exists an edge uv such that degH(u) = degH(v) = 2.

2. There exists a 3-face uvx such that degH(u) = 2 and degH(v) = 3.
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3. There exist two 3-faces xu1v1 and xu2v2 such that degH(u1) = degH(u2) = 2, degH(x) =
4, and these five vertices are all distinct.

4. δ(H) = 1, where δ(H) denotes the minimum vertex degree of H.

Lemma 2. Let H be an arbitrary plane embedding of a simple outerplanar graph. Then it

has a facially proper odd edge colouring using at most 6 colours.

Proof. Let H be a counterexample with minimum number of edges. Clearly, H is connected.
First, we prove several structural properties of H.

Claim 1. H is not a tree.

Proof. If H is a tree, we can find a facially proper odd edge colouring using at most 5
colours as follows: Pick any vertex of H to be the root. We colour the edges of H starting
from the root to the leaves. In each step it is sufficient to find a facially proper odd edge
colouring of a star with (at most) one precoloured edge. Let Sn be a star on n edges e1, . . . , en

in a cyclic order. Let {1, 2, 3, 4, 5} be a set of colours. We can assume that the edge e1 has
already been coloured with colour 1. Let n = 4ℓ+ z, where ℓ is a non-negative integer and
z ∈ {2, 3, 4, 5}. We repeat ℓ times the pattern 1, 2, 1, 2 and then use colours 1, 2, . . . , z. The
colours 1 and 2 are thus used 2ℓ + 1 times, the remaining (at most three) colours are used
once. �

We say that a subgraph H0 of a connected graph H is hanging on an edge uv if uv is a
bridge in H and H0 is a component of H \ uv.

Claim 2. No tree of order at least two is hanging on any edge of H.

Proof. Let T be a tree hanging on the edge uv, let v ∈ T . Let H ′ = H \ (T \ {v}) be
a graph obtained from H by deleting the edges and vertices of T , except for the vertex v.
Clearly, H ′ is outerplanar with less edges than H. Hence, it has a facially proper odd edge
colouring using at most 6 colours. We use the same argument as in the proof of the previous
claim to extend the colouring of H ′ to a required colouring of H. �

Claim 3. There is no edge uv in H such that degH(u) = 2 and 2 ≤ degH(v) ≤ 4.

Proof. Let H ′ = H \ uv be a graph obtained from H by deleting the edge uv. The graph
H ′ has a required colouring. We can easily extend this colouring to the colouring of H – it
suffices to use any colour which does not appear on the edges incident with u or v. �

Claim 4. The minimum degree of H is one.

Proof. It follows from Claim 3 and Theorem 7. �

Let H ′ be a graph obtained from H by removing all the vertices of degree one. Clearly,
H ′ is outerplanar and by Claim 2 the minimum vertex degree of H ′ is at least two. From
Theorem 7 it follows thatH ′ contains an edge uv such that degH′(u) = 2 and 2 ≤ degH′(v) ≤
4. There is no such edge in H (see Claim 3), hence, in H there are some vertices of degree
one adjacent to u or v.
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First assume that u is adjacent with some vertices of degree one in H.
If it is adjacent with at most three vertices of degree one, then the graph obtained by

removing all these vertices is not a counterexample, hence, it has a required colouring. To
extend it to a colouring of H, we colour the new edges with colours which do not appear on
the edges incident with u.
If u is adjacent with at least four vertices of degree one, then we can find three vertices

incident with u, say u1, u2, x, such that degH(u1) = degH(u2) = 1 and the edges uu1, ux

and uu2, ux are face-adjacent. Let us call this configuration a fork. By induction, the graph
H \ {uu1, uu2} has a facially proper odd edge colouring using at most 6 colours. If all the
edges incident with u in H \{uu1, uu2} are coloured with at most four colours then we colour
the edges uu1, uu2 with two new colours, else we use the colour which appears on an edge
incident with u not face-adjacent to uu1 nor uu2.
Now we assume that degH(u) = 2 and the vertex v is incident with some vertices of

degree one in H.
If degH′(v) ≤ 3, then we can use similar arguments as above. Assume that degH′(v) = 4.

If v is incident with one or two vertices of degree one in H, it suffices to delete these vertices,
apply induction, and use the colour(s) which does not appear on the edges incident with v.
If v is incident with at least five vertices of degree one in H, then we can always use the
reduction using forks described above.
Suppose that v is incident with precisely three vertices of degree one in H. Let v1 and

v2 be neighbours of v of degree one such that the edges vv1 and vv2 are not face-adjacent.
Then, by induction, we find a facially proper odd edge colouring of H \ {v1, v2} using at
most 6 colours. The degree of v in H \ {v1, v2} is five, therefore, on the five edges incident
with v five different colours appear. To extend this colouring to a required colouring of H,
we use the colour of the edge incident with v and not face-adjacent to vv1 nor vv2.
Finally, we can suppose that v is incident with precisely four vertices of degree one in H,

and that there is no fork incident with v. Let v1, . . . , v8 be the neighbours of v in the cyclic
order. Since there is no fork, we may assume that v1, v2, v5, and v6 are vertices of degree
one. Then, by induction, we find a facially proper odd edge colouring of H \ {v1, v2, v5, v6}
using at most 6 colours. The degree of v in H \ {v1, v2, v5, v6} is four, therefore, on the four
edges incident with v four different colours appear. To extend this colouring to a required
colouring of H, we use the colour of the edge vv3 to colour vv1 and vv6, and we use the
colour of the edge vv7 to colour vv2 and vv5.

Combining Theorem 6 and Lemma 2 we obtain

Theorem 8. Let G be a 3-edge-connected plane graph. Then

χ′
p(G) ≤ 12.

Proof. Let G∗ be the dual of G. 3-edge-connectedness of G implies that G∗ is a simple
(plane) graph. Let E1 ∪ E2 = E(G∗) be the bipartition of the edge set of G∗ such that the
graphs induced by these subsets are outerplanar (see Theorem 6).
Since the graph G∗[Ei] induced by the edges from Ei is outerplanar, i = 1, 2, it has a

facially proper odd edge coloring with at most six colours (see Lemma 2). In this way we
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obtain a facially proper odd edge colouring of G∗ with at most 12 colours, therefore the
claim follows from Observation 1.

However, this bound does not seem to be best possible.

Conjecture 1. If H is an arbitrary plane embedding of a simple outerplanar graph then it

has a facially proper odd edge colouring using at most 5 colours.

It is easy to see that if this conjecture is true, then χ′
p(G) ≤ 10 for every 3-edge-connected

plane graph G.

2.3. 4-edge-connected plane graphs

For the class of 4-edge-connected plane graphs we use a different approach. The arboricity
of a graph is the minimum number of forests into which its edges can be decomposed.

Theorem 9 (Nash-Williams [12]). Let G be a simple graph. Then the arboricity of G equals

max
H⊆G,|V (H)|≥2

⌈

|E(H)|

|V (H)| − 1

⌉

,

where the maximum is taken over all connected subgraphs H on at least two vertices.

Corollary 1. Let G = (V,E, F ) be a simple plane graph with girth at least 4. Then its
arboricity is at most two.

Proof. Observe that any connected subgraph H (on at least 3 vertices) of G also has girth at
least 4. From the Euler’s polyhedral formula |V (H)|−|E(H)|+|F (H)| = 2 and from the fact
2 · |E(H)| =

∑

f∈F (H)

degH(f) ≥ 4 · |F (H)| we can easily derive that |E(H)| ≤ 2 · |V (H)| − 4.

From this fact and from Theorem 9 it follows that the edges of G we can decomposed into
two forests.

Lemma 3. Let H be a simple plane graph. If its arboricity is 2, then there is a decomposition
of its edge set into two forests A and B such that each vertex of H is incident with an edge

from the forest B.

Proof. Let A0 and B0 be two forests such that they form a decomposition of H and the
number of vertices which are not incident with any edge of B0 is the smallest possible.
Assume there is a vertex v not incident with any edge of B0 (it is incident only with A0).
Let e be an edge of A0 incident with v. Let A1 = A0 \ {e}, B1 = B0 ∪ {e}. Clearly, A1 and
B1 are forests, A1 ∪ B1 = E(H), and the number of vertices not covered by B1 is smaller
than for B0, a contradiction.

Theorem 10. Let G be a 4-edge-connected plane graph. Then

χ′
p(G) ≤ 9.
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Proof. Let G∗ be the dual of G. The graph G is 4-edge-connected, hence, the girth of G∗ is
at least 4.
Let A, B be a decomposition of G∗ into two forests given by Lemma 3. First we find a

facially proper odd edge colouring of B which uses at most 5 colours (see the proof of Claim
1).
For each component C of A we find a facially proper odd edge colouring using at most

4 colours similarly: We root C at any vertex. We proceed from the root to the leaves. It
suffices to find facially proper odd edge colouring of stars with (at most) one precoloured
edge. Let Sn be a star on n edges e1, . . . , en in a cyclic order. Let {1, 2, 3, 4} be a set of
colours. We can assume that the edge e1 has already been coloured with colour 1. Let
n = 4ℓ+ z, where ℓ is a non-negative integer and z ∈ {2, 3, 4, 5}.
If z 6= 5, then we use the same colouring as in the proof of Claim 1.
If n = 4ℓ+ 5, ℓ ≥ 1, we repeat the pattern 1, 2, 3 three times and then repeat ℓ− 1 times

the pattern 1, 2, 1, 2.
Let n = 5. The central vertex of the star is incident with at least one edge from B, hence,

there are two edges ei, ei+1 that are not face-adjacent in G
∗. Colour the edges e1, . . . , e5 with

three different colours such that the edges ei, ei+1, ei+3 (indices modulo 5) receive the same
colour.
These colourings of A and B together induce a facially proper odd edge colouring of G∗

using together at most 9 colours, hence, the claim follows from Observation 1.
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