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Experimental Implementation of UFAD Regulation
based on Robust Controlled Invariance*

Pierre-Jean Meyer†‡, Hosein Nazarpour†, Antoine Girard† and Emmanuel Witrant‡

Abstract— In this paper, we implement a temperature regu-
lation strategy on a small-scale building equipped with Under-
Floor Air Distribution (UFAD). Using a 0-dimensional model of
the temperature variations in the building identified from ex-
perimental measurements, this strategy is based on the criteria
of Robust Controlled Invariance, which give a characterization
of the limits for a robust controller to keep the state of the
system in an interval. These criteria are defined for monotone
systems with bounded disturbances and thus are independent
of the chosen control strategy.

I. INTRODUCTION

Energy consumption in buildings (both commercial and
residential) has reached up to 40% of the total energy use
in developed countries and is rapidly increasing with the
growing demand in comfort [1]. This fact motivates many
countries to make energy savings in buildings a priority, as
mentioned by the European Energy Performance of Build-
ings Directives [2], [3]. As a result, a substantial amount
of work has been done in the past decades toward intelli-
gent buildings [4]. This has been particularly the case for
climate regulation in buildings, with research on modeling,
simulation [5] and control [6] of Heating, Ventilating and
Air Conditioning (HVAC) systems, to improve comfort and
energy efficiency. On these matters, the UnderFloor Air Dis-
tribution (UFAD) solution has shown some interesting results
compared to the more traditional ceiling ventilation [7].

Various paths have already been explored for the control
of HVAC systems in intelligent buildings. When the focus
is mainly on control, numerous feedback strategies have
been devised, based on simple PID or On/Off control, more
robust controllers with the H∞ approach [8], or non-linear
approaches [9]. For more energy-efficient controllers, we can
look for the optimal tradeoff between comfort and energy
saving [10], a model-predictive strategy [11], or a fuzzy logic
controller [12].

In this paper we consider the notion of Robust Controlled
Invariance which characterizes whether a controller can
maintain the state of the system in an interval for any value
of the disturbances. With the monotonicity property [13],
intuitive for thermal systems, we obtain simple new criteria
on Robust Controlled Invariance. The goal of this paper is
to use these criteria to implement a temperature regulation
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Fig. 1. 4-room flat with UFAD

on a small-scale UFAD flat. We should note that our focus is
not on the efficiency of a controller but simply on checking
if the invariance can be achieved in the chosen interval. For
a deeper discussion on the monotonicity of our system and
the results involving the Robust Controlled Invariance, the
reader is referred to the theoretical counterpart of this paper
in [14] 1.

The paper is organized as follows. In Section II, we
describe the 0-dimensional UFAD model from [8], which
is then identified with a small-scale experiment of a flat to
match its behavior. In Section III, the monotonicity property
is presented and analyzed for our 0D model, followed by
the introduction of the Robust Controlled Invariance. The
final Section IV gives an application of the obtained control
criteria on the experiment and a comparison between these
results and the identified model.

II. MODELING

The system considered is a small-scale flat equipped with
UnderFloor Air Distribution (UFAD), as sketched in Fig. 1
and pictured in Fig. 2. The cooling of the room temperatures
is done as follows. Peltier coolers are used to decrease the
temperature of the air in the underfloor plenum, which is
sent into each room of the building using the controlled
fans. The excess of air is pushed into the ceiling plenum
through exhausts in the fake ceiling and then sent back to
the underfloor through a return pipe outside of the flat.

There are two components in the control problem. At the
building level, we control the air recirculation with the speed
of the fan in the return pipe and the temperature in the
underfloor plenum by acting on the Peltier coolers. At the
room level, we use the fans in the underfloor separately to

1An extended version of this paper containing the proofs is available
at http://hal.archives-ouvertes.fr/docs/00/85/87/15/
PDF/Controllability.pdf
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Fig. 2. Small-scale experiment of a flat with UFAD regulation 2

obtain a decentralized control of each room temperature. In
this paper, the controls at the building level are assumed to be
set and our focus is on achieving separate climate regulation
using decentralized control.

A. Theoretical model

We consider the following 0-dimensional model:

∀i, dTi
dt

=
∑
j∈Ni

ai,j(Tj − Ti) + biui(Tu − Ti) (1)

+
∑
j∈Ni

δdijci,j ∗ h(Tj − Ti) + δsidi(T
4
si − T

4
i ),

with all constants a, b, c, d being positive. A detailed
description on establishing this model is given in [8] and
general information on the heat transfers involved in (1) can
be found in the following books on the design of HVAC
systems [15], [16]. This model is obtained by combining
energy conservation (the first law of thermodynamics) and
mass conservation in each room i of the building. It is
assumed that: the temperature of air is uniform in each room;
the air is incompressible; the potential and kinetic energies
of air can be neglected due to its reduced mass and speed.
Here, we review some of the hypotheses used to derive (1)
in [8] in order to capture the heat transfers observed in the
experiment.

The first heat transfer in (1) corresponds to the conduction
between the considered room i and the neighbor rooms (or
the outside) j ∈ Ni, through the PVC walls. The second term
is linked to the mass flow rate ui forced by the fan from the
underfloor (of temperature Tu) into room i. The command
over the fan speed, and by extension the induced air flows ui,
are the control inputs of our system. On the second line of
(1) are the disturbances: the flow going through open doors
and the radiation from heat sources (human body, computer,
. . . ). The booleans δdij and δsi describe the discrete state

2Built at the physics department (UFR PhITEM) of University Joseph
Fourier, Grenoble, France.

of these disturbances: they are equal to 1 when the door
between rooms i and j is open and when a heat source is
active in room i, respectively. The function h introduced in
the term for the doors is defined by:

h(x) =

{
0 if x ≤ 0

x3/2 if x > 0,

and it comes from the removal, using the mass conservation,
of the flow going into the ceiling. As a result, the door heat
transfer only appears in the equation of the coldest of the
rooms connected by the door. Finally, our experiment has
lamps in each room included as the radiating heat sources
of temperature Tsi .

In this paper, we write the system dynamics as

dT

dt
= f(T, u, w, δ), (2)

where the four-dimensional vector field f depends on
the state T = [T1, T2, T3, T4], the control input u =
[u1, u2, u3, u4], the boolean disturbances (doors and sources)
δ, and the exogenous input vector w corresponding to the
other temperatures (Tu for the underfloor, Tc for the ceiling,
To for the outside). Each component fi of f follows (1).

B. Process identification

The theoretical model (1) is adapted to the measured
behavior of our experiment with the following identification
strategy. We run several experiments on the flat to capture
the main behaviors modeled in (1). In these tests, the outside
temperature To is varying around 30 ◦C and the underfloor
temperature Tu is regulated at 17 ◦C using a PID controller.
Our experiments are quickly summarized as follows, with
the desired physical phenomena.
• To observe the heat radiation, in each room, we turn on

a lamp, wait for an equilibrium to be reached, then turn
the lamp off;

• for the air flow coming from the underfloor, in each
room, we turn on a fan, wait for an equilibrium to be
reached, then turn the fan off;

• for the air flow through a door, we heat one of the
neighbor room with a lamp to create a temperature
gradient, then open the door;

• similarly to the previous test, we create a temperature
gradient at the door by cooling down a neighbor room
using a fan, then opening the door. This test is also
added to check the influence of the fans on the direction
of the air flow through the door;

• in each room, we alternatively turn on and off both
fans and lamps to generate a data set that is sufficiently
representative of the different operating conditions.

All these tests aim to quantify heat transfers due to heat
radiation and the exchange of air flows, as well as the
conduction in the walls.

The control of the experiment (fans, lamps, doors) and
the measurements are done using LabVIEWTM. The data
are then processed in MATLABr. In our problem we have



Fig. 3. Comparison between the identified model (dashed, red) and the verification data set (noisy, blue), with the transitions (vertical lines: solid when
linked to the room, dashed otherwise)

40 unknown parameters, with 10 for each room: 5 for
the conduction (underfloor, ceiling, outside, and 2 neighbor
rooms), 1 for the fan, 1 for each door, and 2 for the heat
source (emissivity and temperature). We solve this optimiza-
tion problem with a least-squares algorithm initialized with
a set of values based on known physical parameters and
observations. We run this optimization on 45652 algebraic
relationships obtained from the discretized system, repre-
senting the 57079 data points from the above experiments.
The resulting values of the identified model (1) are given in
Table I in the appendix.

C. Model evaluation

The identified model is evaluated on experimental scenar-
ios not included in the identification data set. An example
of such scenario is described below, where we start with all
lamps and fans off and all doors closed:
t = 150s, lamp 1 and fan 3 on;
t = 570s, lamp 3 on, door 1− 4 open;
t = 810s, fan 4 on;
t = 930s, lamp 3 off, door 1− 2 open;
t = 1050s, door 1− 4 closed.

This data set gathers the main situations that can happen
in the building: conduction alone (rooms 2 and 4); a lamp
(room 1); a fan (room 3); an open door (rooms 2 and 4); a
lamp and a fan (room 3); a lamp and an open door (room
1); a fan and an open door (room 4).

The data measured during this experiment (noisy, blue) is
displayed and compared to the model (dashed, red) in Fig. 3.
The vertical lines correspond to the transitions described in
the previous paragraph: solid when the switched element has
a direct link to the corresponding room and dashed otherwise.
For the most part, we can see in Fig. 3 that the model fits
reasonably well the data. For this data set of 1211 points,
the mean squared error between the data and the model is
0.18 ◦C, with a standard deviation of 0.42.

Even though this data set is representative of the typical
phenomena observed in the building, it is only a sample of all
the possible combinations between doors, fans and lamps to
be verified. In a more thorough verification, we found several
limitations to our model, some of which are visible in Fig. 3.
First, if we look at the behavior in room 1 (top left of Fig. 3),
the temperature of the model keeps increasing without any
influence (i.e. cold air inflow) from the open doors with
rooms 2 or 4, since room 1 has the highest temperature (0D
hypothesis that the air flows from the hot volume toward
the cold one, due to pressure difference at constant density).
In reality, we can see on the measured data that the door
opening has some circulation effect on the hottest room.
This is particularly visible between 810 and 1050 seconds,
when the door between rooms 1 and 4 is open and the fan
is running in room 4. This fan generates an air flow going
in the opposite direction of the flow created by the pressure
difference at the door. This behavior is not modeled in (1),
and may become a problem when using the fans too fast. An
extra term representing the turbulent diffusive mixing could
be introduced if a refined model is required.

Another difference between the model and the data can
be seen on the graph for room 3 (bottom left of Fig. 3). In
this room, while the fan is running, the lamp is turned on at
570 seconds and turned off at 930 seconds. The difference
between the model and the data in that case can be explained
by the fact that the fan forces convection on the lamp. Indeed,
the moving air creates a new convective heat transfer between
the hot lamp (even when it has been turned off) and the air.

Also, the identified model is based on the ON/OFF use of
the fans. The air flow induced by the maximal fan voltage
is thus part of the parameters to identify and is included in
the obtained values for bi in (1). In the next sections, when
we apply a voltage between the extremal admissible values,
we consider in the model that the air flow is linear to the
voltage. To model the friction in the fans, we add a lower



saturation of the air flow (ui = 0) when the voltage is below
a threshold.

III. MONOTONICITY AND ROBUST CONTROLLED
INVARIANCE

For rigorous definitions and proofs of the notions pre-
sented in this section, see the extended version of [14]
available at the link given in page 1.

A. Monotonicity

To obtain the controlled invariance proposed in the next
section, the system needs to satisfy the monotonicity prop-
erty. In [13], Angeli and Sontag define a monotone system
as a system preserving partial orderings chosen for the state
and the inputs. The cooperative systems, a subclass of the
monotone systems but with a very similar definition, take
their names from an interpretation which gives a clearer
understanding of how such systems behave. A system is
called cooperative because its variables reinforce each other,
or more generally, “each pair of variables may affect each
other in either positive or negative forms” [17].

This property is particularly easy to observe on thermal
systems: if we take the example of the conduction ai,j(Tj −
Ti) (when considering room i), we naturally see that the
hotter the neighbor Tj , the bigger the heat transfer toward
room i. This comment can be reproduced for any of the
heat transfers modeled in (1), whether Tj represents a state
or a temperature from w. In a similar way, for the discrete
disturbances δ: if more δdij

and δsi are equal to 1, we have
more heat transfers going toward the considered room i,
reinforcing the state Ti. This is natural for heat sources,
since it is assumed that the source temperature is always
hotter than the room temperature. In the case of the doors,
remember that the heat transfer in (1) only appears in the
coldest room. So having δdij

= 1 with Tj > Ti indeed
reinforces Ti, while having no effect on Tj .

The variables T , w and δ thus all affect the state T in a
positive way. In the case of our flat, we aim to cool down
the four rooms, so the underfloor temperature is necessarily
set to a value below any room temperature: Tu < mini(Ti).
Then, the heat transfer in room i corresponding to the air flow
forced by the fan is always negative (biui(Tu − Ti) < 0),
resulting in a decrease of Ti. The control input u thus affects
the state T in a negative way: increasing the air flow ui would
decrease the room temperature Ti faster.

The fact that the variables affect the state in different ways
is not a problem: what matters is that each variable always
has the same effect, which is indeed our case. According to
the interpretation given in the first paragraph, our system is
cooperative, and therefore monotone.

We can now address the initial definition of a monotone
system, involving preservation of the partial orderings chosen
for the state and the inputs. Let’s consider two sets of
variables (T, u, w, δ) and (T ′, u′, w′, δ′) where T is an initial
state and u, w, δ are functions of time. We can choose partial

orderings consistent with the above observations:
T > T ′

∀t > 0, u(t) < u(t)′

∀t > 0, w(t) > w(t)′

∀t > 0, δ(t) > δ(t)′.

In that case, knowing that the system is monotone means that
the trajectory of the system with (T, u, w, δ) stays at all time
above the trajectory of the same system with (T ′, u′, w′, δ′).

B. Robust Controlled Invariance

The Robust Controlled Invariance is the main notion used
in the remaining of this paper. We aim to use the control
input u to keep the state in a chosen target interval [T , T ]
for any external conditions (w, δ).

We consider that all the inputs of our system are bounded:
either by physical constraints for the control inputs (ui ∈
[0, ui]) and the disturbances (δ ∈ [0, 1]); or by a range ob-
tained from observations: w ∈ [w,w]. With that assumption,
we can use the monotonicity to simplify the conditions for
Robust Controlled Invariance by considering the worst case
for the external conditions (w and δ) while taking the best
control input u to counteract the situation induced by the
disturbances. If we take the example of the upper bound T
of the interval, the worst situation of the disturbances is the
hottest one (w = w and δ = 1) which tries to push the state
above the interval. To compensate this effect, we choose the
best ventilation u = u to cool down as much as possible.
If in that situation we are able to decrease the temperature,
it means that even in the hottest conditions, we can prevent
the state from going over the upper bound T .

We can now characterize the Robust Controlled Invariance
using componentwise inequalities on the vector field.

Theorem 1: The system is Robust Controlled Invariant in
[T , T ] if and only if{

f(T , u, w, 1) ≤ 0

f(T , 0, w, 0) ≥ 0.

To simplify the notations in what follows, we define the
subspaces C and W as the sets of admissible upper bound
T and lower bound T respectively, so that the conditions in
Theorem 1 can simply be written T ∈ C and T ∈ W .

IV. APPLICATION TO THE UFAD EXPERIMENT

A. Controller implementation

When the state space is of dimension 2, we can easily
obtain a graphical representation of the subspaces C and W ,
which facilitates the choice of the target interval [14]. In our
case, such a graphical representation is more complicated to
obtain due to the 4 dimensions. Instead, we simply compute
the extremal points of these subspaces (lower bound of C
and upper bound of W). These values would represent the
minimal allowed T (lower bound of C), and the maximal
allowed T (upper bound ofW) in order to obtain the Robust
Controlled Invariance.



The characterization of the subspaces C and W (and
therefore of the Robust Controlled Invariance) requires to
consider that all the inputs of the system are bounded. The
control input u is clearly bounded between 0 and the air
flow induced by the maximal voltage applied to the fans.
The discrete disturbances in δ can only take two values:
0 or 1. For the exogenous temperatures w, we take the
intervals corresponding to observations in similar situations:
both the ceiling and the outside temperatures are assumed
to be varying between 27 ◦C and 30 ◦C. For the underfloor
temperature, we use a PID controller to maintain it at 17 ◦C.
However, it has been observed that when all the fans are
active, the Peltier coolers are not powerful enough to cool
down the hot air coming from the ceiling. That is why
we consider the following boundaries for the underfloor
temperature: Tu ∈ [17, 21].

Knowing these boundaries, we can now obtain the lower
bound of C: min(T ) = [26.1, 26.2, 29.0, 28.1]; and the
upper bound of W: max(T ) = [26.2, 26.3, 26.4, 26.5]. The
smallest Robust Controlled Invariant interval is wider for
rooms 3 and 4 because room 3 is the smallest room and the
heat radiated by the lamp in room 4 is more important than
in other rooms. When we consider the hottest situation (C),
the heat radiation from the lamps thus has more impact on
rooms 3 and 4. For this control experiment, we choose a
3 ◦C-wide target interval for each room, apart from room 3
for which we take it 4 ◦C-wide:

T =


26
25
26
26

 T =


29
28
30
29

 . (3)

In Theorem 1, only one condition is implied on the
controller: to use the maximal ventilation ui when a room
temperature reaches its upper bound Ti and to stop the fan
when Ti = Ti. This leaves the choice of the control strategy
relatively free to meet some performance specifications. In
the scope of this paper, we do not aim to discuss the
efficiency of a controller but simply to check the Robust
Controlled Invariance with any controller. This is why we
choose a simple linear controller, with saturations to satisfy
the condition above. In the model described in (1), we
consider that the control input is the mass flow rate u sent
by the fans. In reality, we do not have a direct control on the
air flow, but only on the voltage V applied to the fans. We
consequently control the fan voltages in this Decentralized
Linear Saturated (DLS) strategy.

Definition 1 (Decentralized Linear Saturated Controller):

∀i,


Ti ≤ Ti ⇒ Vi = 0

Ti ∈ [Ti, Ti] ⇒ Vi(Ti) = Vi ∗
Ti−Ti

Ti−Ti

Ti ≥ Ti ⇒ Vi = Vi

As explained at the end of Section II-C, we only used
the control input in ON/OFF mode until now. Indeed, since
intuitively the air flow is monotone with respect to the
voltage applied to the fan, our only concerns to ensure the

invariance are the extremal values. However the controller
from Definition 1 can assign to the fan any value in the
voltage range [0, 6], so if we want to compare the measure-
ments from the controlled experiment with the corresponding
simulation we need to add to the model a function giving
the relation between voltage and air flow of the fan. First, to
model the frictions preventing the fan from working with
a voltage below a threshold, we add a lower saturation
(ui = 0) for these small voltages. The observed voltages
for the threshold in each room are: [2, 3.5, 2.5, 2.5]. To
keep the model as simple as possible for the remaining
voltage range, we consider that the air flow is linear in
the voltage, with the maximal air flow already obtained in
the identification. The reality is that these two variables are
not directly proportional, which can explain some of the
variations between the measurements and the simulation in
the results displayed in the next section (Fig. 4).

Using the DLS control strategy from Definition 1, we aim
to regulate each temperature of the experiment in its target
interval defined in (3). To ensure that the system encounters
several disturbances, including both extremal conditions, we
apply the following disturbance schedule, starting when all
doors are closed and all lamps are off:

t = 330s, lamps 2 and 3 on;
t = 930s, doors 1− 2 and 2− 3 open;
t = 1530s, lamp 4 on, door 3− 4 open;
t = 2010s, lamp 3 off, doors 2− 3 and 3− 4 closed;
t = 2500s, lamp 4 off, door 4− 1 open;
t = 2910s, lamp 1 on, door 4− 1 closed;
t = 3510s, all lamps on, all doors open;
t = 4350s, all lamps off, all doors closed.

B. Experimental results

The results from that scenario are displayed (in blue) in
Fig. 4. The horizontal black lines are the boundaries of
the target interval given in (3). As in Fig. 3, the vertical
lines represent the switching times in the schedule described
above: solid lines when the switched component (door or
lamp) is link to the room; dashed otherwise. In addition, the
red dashed curves in Fig. 4 correspond to the simulation of
this control using the identified model from Section II-B and
the same exogenous inputs w and disturbances δ.

In room 3 (bottom left of Fig. 4), when the temperature
increases the model is significantly higher than the measure-
ments. This can be explained by the observed limitation of
the model, described in Section II-C, when open doors and
fans are associated. In the experiment of Fig. 4, room 3 has
a higher temperature than its neighbors (2 and 4). With the
DLS controller from Definition 1, the fans are running most
of the time. When the doors in room 3 are open (between 930
and 2100 seconds and between 3510 and 4350 seconds), the
flows from the fans 2 and 4 will go in the opposite direction
of the flows at the doors (supposed to go from the hot room
3 to the colder 2 and 4). This phenomenon, which is not
modeled in (1), explains the differences between the model
and the data in room 3.



Fig. 4. Controlled state, using DLS controller, for the experiment (blue, noisy) and the simulation (red, dashed), with the transitions (vertical lines: solid
when linked to the room, dashed otherwise)

The last observation we can do on the results in Fig. 4
is that the system is indeed invariant in the target interval
chosen in (3). As previously listed in the disturbance sched-
ule, both the hottest and the coldest situations are met for
the discrete disturbances δ. However, we can neither ensure
that the extremal conditions of the exogenous inputs w were
met, nor that they were met at the same time as the extremal
values of δ. But we can note that these temperatures mostly
intervene in the conduction which has a reduced effect on the
system compared to the other heat transfers associated with
the heat radiation of the air flows. We can thus almost claim
(due to the model uncertainties) that the system is indeed
Robust Controlled Invariant in the chosen target interval.

V. CONCLUSION

In this paper, we use a 0-dimensional model to de-
scribe the temperature dynamics in a building equipped with
UnderFloor Air Distribution. Identification and verification
methods are then used to fit the behavior of a small-
scale experiment of an UFAD flat. The Robust Controlled
Invariance is presented as the ability to maintain the state in
a given target interval for any value of the disturbances and
this result is greatly simplified by the monotonicity property
satisfied by our model. Finally, the invariance criteria are
computed using the identified model and confirmed in a
control experiment on the small-scale UFAD flat.

The results on Robust Controlled Invariance presented
in this paper can be generalized to any system provided
it satisfies the monotonicity property and a local control
property (each controlled input only affects one state vari-
able). While we do not know a general category of systems
satisfying the latter, we can find the monotonicity property in
various fields such as molecular biology, chemical reactions,
vehicle platooning, . . . Furthermore, this approach does not
depend on the feedback control strategy used in the Robust
Controlled Invariant interval, which leaves a large degree of
freedom for the performance specifications.
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APPENDIX

i 1 2 3 4

ai,1 · 106 76.0 109
ai,2 · 106 285 179
ai,3 · 106 189 107
ai,4 · 106 247 381
ai,u · 106 73.6 70.2 34.5 32.6
ai,c · 106 92.7 242 0.0321 173
ai,o · 106 578 621 564 599
bi · 103 2.12 1.88 3.05 1.40
ci,1 · 106 926 272
ci,2 · 106 186 257
ci,3 · 106 811 686
ci,4 · 106 755 0.0198
di · 1015 0.0312 0.255 857 0.0357
Tsi · 10−2 37.3 17.8 3.80 39.3

TABLE I
PARAMETER IDENTIFICATION OF MODEL (1).
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