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Résumé

Cet article présente une nouvelle approche pour l’analyse

de séries d’images satellite InSAR (Interferometric Syn-

thetic Aperture Radar) et son application au monitoring de

fluage le long d’une faille sismique active majeure. Les

données InSAR permettent de mesurer les déformations du

sol entre deux dates sur de grandes zones géographiques,

mais la précision des mesures reste limitée par le bruit dû

aux variations en temps et en espace des conditions atmo-

sphériques. L’approche proposée combine des techniques

d’analyse d’images satellite et des techniques de fouille

de données. Elle permet de traiter des séries d’images

satellite InSAR de façon non supervisée, même avec des

conditions atmosphériques variables, et fournit aux experts

des cartes décrivant les évolutions des déformations du sol.

Des résultats expérimentaux sur une série d’images EN-

VISAT de la faille de Haiyuan (zone Nord-Est du plateau

tibétain) sont présentés. Les cartes obtenues montrent un

glissement asismique continu superficiel le long d’une por-

tion de la faille, ce qui est consistant avec les modèles

géophysiques actuels.

Mots-clefs

Télédétection, Déformation tectonique, Série temporelle
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Abstract

In this paper, an original approach for analyzing Interfer-

ometric Synthetic Aperture Radar (InSAR) time series is

presented and applied to the monitoring of creep along a

major active fault. InSAR data are computed from satel-

lite acquisitions and allow ground deformations occurring

between different dates to be measured with high preci-

sion over large areas. However, measurement precision re-

mains limited by the atmospheric noise, due to variations

in space and time of atmospheric conditions. The proposed

approach is designed to process InSAR data in an unsu-

pervised way. It handles varying atmospheric conditions

and provides end-users with spatiotemporal maps describ-

ing ground deformation evolutions. Experimental results

on an ENVISAT InSAR time series covering the Haiyuan

fault in the north-eastern boundary of the Tibetan plateau

are presented. The maps obtained reveal continuous, aseis-

mic shallow slip along a section of the fault, which is con-

sistent with geophysical models. These results illustrate

the potential of the proposed approach which combines ad-

vanced InSAR processings and data mining techniques.

Keywords

Remote sensing, Tectonic deformation, Satellite image

time series, InSAR, Spatiotemporal pattern

1 Introduction

Satellite Image Time Series (SITS) are now widely avail-

able and represent huge amount of data that need to be an-

alyzed to understand/monitor geophysical phenomena. A

SITS is simply a series of images of the same area, but at

different dates, obtained by optical or radar sensors. A very

interesting kind of SITS are the time series obtained by

Synthetic Aperture Radar Interferometry (InSAR) that de-

pict ground deformations over large areas (tens of kilome-

ters) with high precision of measurement of deformation

amplitude (a few centimeters). In such an InSAR SITS, a

pixel, at location (x, y) in an image, has a value that corre-



sponds to the deformation. The value indicates if the sur-

face at this location (x, y) is moving toward the satellite or

is moving away from the satellite. For the same location,

the value of the pixel can be different over time and thus

changes over the series.

The two main limitations of interferometry come from lo-

cal changes of the nature of the surfaces, which reduce

the coherence of measurements between images, and from

variations in atmospheric conditions between the different

acquisitions. The loss of coherence is easy to detect, while

the atmospheric perturbations are difficult to discriminate

from the displacement signal. The systemic uncertainty

due to the contribution of the stratified atmosphere can be

reduced by using Digital Elevation Models (DEM) and me-

teorological data, but random errors due to the turbulent

atmosphere still degrade interferograms. In this paper, we

compute the InSAR SITS using a dedicated tool (the NS-

BAS package [1]) that removes the contribution of the vari-

ations of the stratified atmosphere. Then, to overcome the

problem of the presence of turbulent atmosphere, we ex-

tracted from this InSAR SITS the GFS-patterns (Grouped

Frequent Sequential Patterns) of [2] (designed to find spa-

tiotemporal regularities in SITS). Finally, we present how

these patterns can be used to draw maps depicting ground

deformations over space and time.

This paper is organized as follows. The next section briefly

reviews methods for the analysis of SITS. The approach

proposed here to find evolutions of ground deformations in

SITS is presented in Section 3. Then, using data acquired

by the ENVISAT satellite, experimental results on an In-

SAR time series covering the Haiyuan fault in the north-

eastern boundary of the Tibetan plateau are presented in

Section 4.

2 Satellite image time series analysis

SITS can be processed in an unsupervised way at a higher

level than the pixel one, after having identified objects or

groups of pixels forming regions of interest. For example,

in [3], textural, spatial and spectral features are extracted

using stochastic models to further cluster data using ap-

propriate representation spaces. Using the clusters that are

obtained, spatiotemporal graphs are inferred and proposed

to end-users. Several assumptions must be made: statisti-

cal image models such as Gibbs-Markov random fields are

introduced, clusters are meant to follow Gaussian shapes

and graphs are built taking into account additional spatial

constraints. Spatiotemporal patterns can also be extracted

from SITS at the image level by mining a sequence of sig-

natures as proposed in [4]. In this case, self-organizing

maps are used to extract signatures of each image. A SITS

is then encoded as a sequence of image signatures. This

sequence is further searched under temporal and frequency

constraints to find serial episode-based rules [5] such as

A ⇒ B which can be read as if signature A is observed

once or more, then, sometime later, signature B is observed

once or more. This technique requires end-users to define

the scale of the observed phenomena. This family of un-

supervised approaches still needs, as input, assumptions

about features/objects/regions that have to be identified and

studied. This is not a trivial task since groups of pixels do

not always form objects in a single image1 (e.g., because

of atmospheric perturbations, shading phenomena).

Per-pixel SITS analysis techniques have also gained atten-

tion as they do not require prior object identification. These

are essentially clustering techniques. The feature vector

associated with each pixel, and used to compare them,

can contain aggregated values over time (e.g., average or

min/max of the values associated to the pixel) as in [6],

if the user has some insight about the kind of aggregates

that are appropriate. The feature vector can also be the

whole vector of values associated with the pixel over time,

leading to a clustering which must be performed in a high

dimensional space. Such a clustering can be difficult to in-

terpret and requires careful parameter setting [7] as well as

sophisticated distances such as the adaptation of the Leven-

shtein edit distance proposed in [8] to measure the distance

between the sequences of values associated with pixels.

These approaches perform per-pixel analysis without prior

knowledge of the objects (or identified regions) to mon-

itor. However, they require the incorporation of domain

knowledge in the form of feature/aggregation/distance def-

initions, and they do not find overlapping areas or areas that

refine other areas.

Other approaches based on change detection generate a sin-

gle image in which changes are plotted, i.e., a change map.

Change detection techniques generally require prior infor-

mation about the type of changes that must be taken into

account, and are targeted to a specific phenomenon. For

example, some may want to look for abrupt changes such

as floods, earthquakes or anthropic disasters (e.g., [9]),

while others may be interested in gradual changes such as

biomass accumulation (e.g., [10]).

3 Finding evolutions of ground de-

formations

For the preprocessing of raw satellite data, we use the NS-

BAS package [1] to handle atmospheric perturbations due

to the stratified atmosphere, and to produce an InSAR SITS

in which remaining noise is mostly due to the turbulent

atmosphere. Then in order to avoid making assumptions

about objects and value evolutions, and also to avoid the

need for user supply domain knowledge, we make use of

the GFS-patterns introduced in [2]. The GFS-patterns min-

ing belongs to the family of per-pixel SITS analysis tech-

niques, and offers several advantages: it does not required

prior knowledge and can find spatiotemporal regularities in

large and noisy datasets.

1This cannot be easily overcome, for instance, by averaging pixel val-

ues over consecutive images, since the aspect of an object is likely to

change from one image to the next.



3.1 Pattern definition

GFS-patterns denote evolutions of discrete states at the

pixel level. First, the SITS needs to be discretized, and

each pixel value is encoded by a label representing a dis-

crete pixel state. The discretization intervals are deter-

mined by using for instance equal interval bucketing or

equal frequency bucketing (percentiles). A pixel evolu-

tion is then described using an sequential pattern, denoted

A1 → A2 → . . . → An, where A1, A2, . . . , An are sym-

bols representing discrete pixel states at n different dates

which are not necessarily consecutive (when clear from

the context, the arrow could be omitted). A pixel at lo-

cation (x, y) is said to satisfy to an evolution α = A1 →
A2 → . . . → An if at this location we encounter in the

SITS these discrete values in the same order, but not nec-

essarily in strictly consecutive images.

The pixels satisfying to α are said to be covered by α and

the set of these pixels is denoted cov(α). The size |cov(α)|
is called the support of α. The pixels covered by a pattern

are also required to exceed a minimum connectivity thresh-

old κ. The connectivity measure used is called the average

connectivity. It gives, for the pixels satisfying to α, the

average number of pixels in their neighborhood also satis-

fying to α. The 8 nearest neighbors (8-NN) are taken into

consideration. Let us consider a local connectivity function

LC((x, y), α) that returns, for a pixel (x, y), the number of

neighbors covered by α. The average connectivity of α is

then defined as AC(α) =
∑

(x,y)∈cov(α) LC((x,y),α)

|cov(α)| . For

two given thresholds σ and κ, an evolution α is called an

GFS pattern if |cov(α)| ≥ σ and if AC(α) ≥ κ (for a

more detailed presentation, the reader is referred to [2]). In

a SITS, a GFS-pattern is an evolution that covered a suf-

ficiently large surface (at least σ pixels) formed by pixels

that tend to be grouped in space.

It is worth noting that:

• to satisfied to a pattern, the dates of occurrences of the

states are not required to be strictly consecutive;

• sequences of states for pixels sharing a same pattern

do not need to be synchronized in time;

• no time constraint is set;

• the shape of the observed phenomena is not set be-

forehand;

• a wide range of scales can be taken into account (all

surfaces greater or equal to σ pixels).

In addition, the more a pattern contains pixel states, the

more the surface constraint and the connectivity constraint

ensure that it relates to a less-random phenomenon. Indeed,

long patterns that could be built from noisy acquisitions

are not likely to be satisfied over a large connected surface

as random phenomena such as noise or atmospheric turbu-

lences are dispersed over time and space.

3.2 Pattern usage

To give a general view of the spatiotemporal evolutions of

ground deformations, we first cluster the GFS-patterns ac-

cording to the sets of pixels they cover. If two patterns

cover similar sets of pixels they are considered to be close

to each other in the clustering space. More precisely, for

a pattern α and a pattern β, the distance d between them

is expressed as follows: d(α, β) = 1 − |cov(α)∩cov(β)|
|cov(α)∪cov(β)| .

We use a bottom-up hierarchical algorithm with a complete

link distance (see [11]) to perform the clustering. A color is

then associated to each cluster, and the clusters are visual-

ized on a map of the same size as the images of the SITS. In

this map, the black color is assigned to pixels that are not

covered by any GSF-pattern. The white color is used for

pixels covered by GFS-patterns of different clusters. Each

remaining pixel is covered by one or more patterns all be-

longing to the same cluster, and then is associated to the

color of this cluster.

Then, to provide a more detailed view of the spatiotem-

poral evolutions of the ground deformations, we build one

map per pattern as follows. For a GFS-pattern α, we draw

a map (again of the same size as the images of the SITS)

where pixels that are not covered by α are set to the black

color. For the other pixels, we use in this map a color

scale to represent the temporal dimension, and the color

of a pixel at location (x, y) is set to a value that reflects the

date at which the evolution α has been found at this loca-

tion (more precisely the earliest ending date of occurrence

of α at location (x, y)). Such a map gives at a glance the

spatiotemporal localization of a ground deformation evolu-

tion over the whole SITS, and as reported in Section 4, it

captures useful information to monitor seismic faults.

4 Experiments on Haiyuan EN-

VISAT InSAR time series

Experiments have been run on an ENVISAT InSAR time

series covering the Haiyuan fault at the north-eastern

boundary of the Tibetan plateau. This fault is at the origin

of two major earthquakes (magnitude M ∼ 8) in the early

20th century and a seismic gap with a high seismic hazard

has been identified in between both rupture areas [12].

4.1 Data preparation

The raw data are acquisitions (ENVISAT ascending track)

made over the 2003-2009 period. The InSAR SITS has

been prepared using the NSBAS processing chain [1],

based on the ROI PAC software [13]. Snapshots for three

acquisition dates are shown in Figure 1 (North at the top

and West on the right).

4.2 Deformation evolution mining

We obtained a SITS of 24 cumulated displacement images

(701 × 701 pixels) covering an area of about 50 km × 50

km. In these images, positive (resp. negative) values cor-

respond to motion away from (resp. towards) the satellite,



(a) 2004/01/15 - 2006/09/2 (b) 2004/01/15 - 2008/02/28

(c) 2004/01/15 - 2009/08/06

Figure 1: Snapshots of displacement at 3 acquisition dates,

in satellite geometry. A white (reps. black) color denotes a

motion away from (reps. towards) the satellite.

along the line of sight. It is important to notice that be-

cause of the geometric configuration, these displacements

contain both vertical and lateral components of the ground

motion. The whole SITS was discretized using 3 symbols

(’1’, ’2’ and ’3’) by using the 33rd and the 66th centiles.

Symbol ’1’ represents large negative values, symbol ’2’

corresponds to low negative values and symbol ’3’ denotes

positive values. The GFS-pattern extraction was run on a

standard laptop (Intel Core i5 @ 2.5 GHz, 8 GB of RAM,

Linux 3.1.0 kernel) by setting the minimum surface thresh-

old σ to 100000 pixels (i.e., about 20% of the surface of an

image) and the average connectivity threshold κ to 6. This

minimum surface setting ensures that wide zones/large sur-

faces are considered. The minimum connectivity is set to

a high value so as to discard isolated deformations. Within

less than 35 minutes, 3398 GFS-patterns were extracted

along with their respective surfaces and average connectiv-

ity, using the technique presented in [2]. In order to focus

on the most specific patterns and to discard atmospheric

perturbations (see Section 3.1), the longest GFS-patterns

were selected, which amounts to a total of 20 patterns: 19

patterns with 10 symbols and one pattern having 11 sym-

bols (the other patterns have at most 9 symbols).

GFS-pattern clustering. First, the 20 patterns were clus-

tered as presented in Section 3.2. The best clustering result

was obtained for two clusters. The composition of these

clusters is given Table 1. It is important to notice that the

distance used for the clustering is not based directly on the

symbols appearing in the patterns, but that two patterns are

put in the same cluster if they tend to cover the same pixels.

Table 1 shows that the patterns covering the same areas are

patterns having similar syntactic forms, and advocates for

Table 1: Composition of the two clusters

Cluster #1 Cluster #2

1,1,1,1,1,1,1,1,1,1 2,3,3,3,3,3,3,2,3,3

1,1,1,1,1,1,1,1,2,1 2,3,3,3,3,3,3,3,2,3

1,1,1,1,1,1,1,2,1,1 2,3,3,3,3,3,3,3,3,3

1,1,1,1,1,1,2,1,1,1 3,2,3,3,3,3,3,3,2,3

1,1,1,1,1,2,1,1,1,1 3,2,3,3,3,3,3,3,3,3

1,1,1,1,2,1,1,1,1,1 3,3,3,3,2,3,3,3,3,3

1,1,1,1,2,2,1,1,1,1 3,3,3,3,3,2,3,3,3,3

2,1,1,1,1,1,1,1,1,1 3,3,3,3,3,3,3,2,3,3

3,3,3,3,3,3,3,3,2,3

3,3,3,3,3,3,3,3,3,2

3,3,3,3,3,3,3,3,3,3,3

3,3,3,3,3,3,3,3,3,3

the coherence of the spatiotemporal information retrieved

by mean of the patterns.

The two clusters were then visualized on an image (see

Section 3.2) using yellow and red respectively for cluster

#1 and cluster #2. The resulting image is given Figure 2a.

(a) Localization of the two clus-

ters.

(b) Shaded relief showing main

active fault in red, minor ones in

black and known horizontal mo-

tions shown by green arrows.

Figure 2: Clustering results, study site topography and

known horizontal motions on both sides of the fault.

The known faults and horizontal motions in the area are

depicted Figure 2b. The main fault (in red) delimits two

blocks moving in opposite directions, as the result of shal-

low, left-lateral creep along a 30 km long segment of the

fault: a northwestward lateral movement north of the fault,

and a southeastward movement south of the fault. The

main fault corresponds to the diagonal border between the

yellow and the red clusters at the center of the image Fig-

ure 2a. During the acquisition, the satellite was located

on the left of the image. All patterns of the yellow clus-

ter are essentially made of symbol 1 (meaning that the area

moves closer to the satellite). The part of the yellow clus-

ter located immediately north of the fault thus corresponds

to a motion which is coherent with the tectonic creep mo-

tion to the northwest Figure 2b. The same holds for the

red cluster, made of patterns containing mainly the symbol

3 (motion away from the satellite), and for which the part

immediately south of the main diagonal fault corresponds



to the motion towards the southeast Figure 2b. The other

parts of the two clusters depict other large areas in motion,

in particular a large yellow area along the left and bottom

border of the image, and a large red area along nearly all

the top border. These motions might be due to seasonal

water table fluctuations, in particular in areas of prominent

alluvial fans, or (more likely) to other vertical tectonic mo-

tions (uplift south of the fault and subsidence north of it)

not yet modeled by the experts.

GFS-pattern spatiotemporal visualization. While the

clustering of the patterns and the visualization of the clus-

ters depict global motions, the visualization of each pat-

tern separately reveals more detailed phenomena. To this

aim, each pattern was visualized as an image (see Sec-

tion 3.2). The colors used range from red (early dates in

the series) to violet (late dates in the series) according to

the color scale given in Figure 3d. The results obtained

for two different GFS-patterns, “1,1,1,1,1,1,1,1,2,1” and

“3,3,3,3,3,3,3,3,3,2”, are shown on figures 3a and 3b re-

spectively. These patterns are associated with one of each

cluster presented in Figure 2a, and, as the two respective

clusters they belong to, they capture, in the central part of

the image, the motions toward the northwest and southeast

for the areas close to the main fault. Furthermore, the color

map used to encode the ending date of the occurrences of

these patterns reveals additional spatiotemporal informa-

tion. On both images along the main fault, two smooth

gradients of ending dates can be observed (white arrows),

from light blue to violet. These variations may indicate a

creep migration and/or creep rate changes along strike, at

shallow depth or at deeper levels.

Some patterns can also reveal more specific behavior. This

is illustrated Figure 3c. The area in the white circle could

be expected to move horizontally towards the left, when we

refer to the motions along the main fault in Figure 2b. On

the contrary, the pattern “3,2,3,3,3,3,3,3,3,3” of Figure 3c

indicates that this area is moving away from the satellite

(symbol 3). This is because the fault is not a straight

line, but has some geometrical irregularities. The area in

the white circle corresponds here to a major left step-over

along the fault, marked by a pull-apart basin that subsides.

All the patterns presented in the previous figures have been

extracted with a minimum surface threshold σ of 100000

pixels (about 20% of the surface of an image). Of course,

patterns can be extracted for smaller thresholds to attempt

to focus on more specific areas. For instance the pattern

“3,3,3,3,3,1,1,3,2,3,3,2,1” of Figure 3e has been obtained

with σ = 20000 pixels (about 4% of the surface of an im-

age). Its covered area corresponds mostly to an area con-

taining alluvial fans located in the white circle Figure 3f.

The sequence of symbols in the pattern indicates alternate

motions (toward and away from the satellite) that could be

due to seasonal water table fluctuations.

(a) pattern 1,1,1,1,1,1,1,1,2,1 (b) pattern 3,3,3,3,3,3,3,3,3,2

(c) pattern 3,2,3,3,3,3,3,3,3,3 (d) Color palette

(e) pattern

3,3,3,3,3,1,1,3,2,3,3,2,1

(f) Alluvial fans circled in white.

Figure 3: Color palette and spatiotemporal localization of

patterns.

5 Conclusions

The results presented in this paper illustrate the potential

of a combined use of advanced InSAR multitemporal pro-

cessing for deriving displacement time series and of data

mining techniques to analyze SITS. We shown that such

an approach is effective to find in an unsupervised way

spatiotemporal features corresponding to ground deforma-

tions, even in the presence of atmospheric perturbations

leading to systematic uncertainty (atmosphere stratifica-

tion) and random uncertainty (atmosphere turbulence). Us-

ing GFS-patterns, known (tectonic) and unknown (likely

hydrological or anthropic) phenomena have been indeed

found without introducing any refined knowledge about

them. More precisely, an initial clustering of the GFS-

patterns was shown to be relevant to highlight the main

tectonic phenomena and an increased knowledge on the

geophysical behavior has been obtained from GFS-pattern

spatiotemporal visualizations.
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