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Résumé

Cet article présente une technique qui peut de manière fiable

aligner une représentation non photo-réaliste d’un site ar-

chitectural, tel un dessin ou une peinture, avec un model 3D

du site. Pour ce faire, nous représentons le model 3D par un

ensemble d’éléments discriminatifs qui sont automatique-

ment découverts dans des vues du modèle. Nous montrons

que les éléments trouvés sont reliés de manière robuste aux

changements de style (aquarelle, croquis, photographies

anciennes) et aux différences structurelles. D’avantage de

détails sur notre méthode et une évaluation plus détaillée

est disponible [1].

Mots Clef

Reconaissance, analyse 3D , localisation.

Abstract

This paper describes a technique that can reliably align

non-photorealistic depictions of an architectural site, such

as drawings and paintings, with a 3D model of the site.

To achieve this, we represent the 3D model by a set of

discriminative visual elements that are automatically learnt

from rendered views. We show that the learnt visual elements

are reliably matched in 2D depictions of the scene despite

large variations in rendering style (e.g. watercolor, sketch,

historical photograph) and structural changes of the scene.

More details and results are available in [1].
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1 Introduction

In this work we seek to automatically align historical photo-

graphs and non-photographic renderings, such as paintings

and line drawings, to a 3D model of an architectural site,

as illustrated in figure 1. Specifically, we wish to establish

a set of point correspondences between local structures on

the 3D model and their respective 2D depictions. The es-

tablished correspondences will in turn allow us to find an

approximate viewpoint of the 2D depiction with respect

to the 3D model. We focus on depictions that are, at least
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FIGURE 1 – Our system automatically recovers the view-

point of paintings, drawings, and historical photographs by

aligning the input painting (left) with the 3D model (right).

approximately, perspective renderings of the 3D scene. We

consider complex textured 3D models obtained by recent

multi-view stereo reconstruction systems [14] as well as

simplified models obtained from 3D modeling tools such as

Trimble 3D Warehouse.

This task is extremely challenging. As discussed in prior

work [27, 31], local feature matching based on interest

points (e.g. SIFT [23]) often fails to find correspondences

across paintings and photographs. First, the rendering styles

across the two domains can vary considerably. The scene

appearance and geometry depicted by the artist can be very

different from the rendering of the 3D model, e.g. due to

the depiction style or drawing error. Second, we face a hard

search problem. The number of possible alignments of the

painting to a large 3D model, such as a partial reconstruc-

tion of a city, is huge. Which parts of the painting should

be aligned to which parts of the 3D model ? How to search

over the possible alignments ?

To address these issues we introduce the idea of automati-

cally discovering discriminative visual elements for a 3D

scene. We define a discriminative visual element to be a

mid-level patch that is rendered with respect to a given

viewpoint from a 3D model with the following properties :

(i) it is visually discriminative with respect to the rest of

the “visual world" represented here by a generic set of ran-

domly sampled patches, (ii) it is distinctive with respect

to other patches in nearby views, and (iii) it can be relia-

bly matched across nearby viewpoints. We employ modern

representations and recent methods for discriminative lear-



ning of visual appearance, which have been successfully

used in recent object recognition systems. Our method can

be viewed as “multi-view geometry [18] meets part-based

object recognition [11]”.

We discover discriminative visual elements by first sampling

candidate mid-level patches across different rendered views

of the 3D model. We cast the image matching problem

as a classification task over appearance features with the

candidate mid-level patch as a single positive example and

a negative set consisting of a large set of “background"

patches. Note that a similar idea has been used in learning

per-exemplar distances [13] or per-exemplar support vector

machine (SVM) classifiers [25] for object recognition and

cross-domain image retrieval [31].

For a candidate mid-level patch to be considered a discri-

minative visual element, we require that (i) it has a low

training error when learning the matching classifier, and (ii)

it is reliably detectable in nearby views via cross-validation.

Critical to the success of operationalizing the above proce-

dure is the ability to efficiently train linear classifiers over

Histogram of Oriented Gradients (HOG) features [7] for

each candidate mid-level patch, which has potentially mil-

lions of negative training examples. In contrast to training a

separate SVM classifier for each mid-level patch, we change

the loss to a square loss, similar to [4, 16], and show that

the solution can be computed in closed-form, which is com-

putationally more efficient as it does not require expensive

iterative training. In turn, we show that efficient training

opens-up the possibility to evaluate the discriminability of

millions of candidate visual elements densely sampled over

all the rendered views. We show that our approach is able to

scale to a number of different 3D sites and handles different

input rendering styles. Moreover, we are able to handle dif-

ferent types of 3D models, such as 3D CAD models and

models constructed using multi-view stereo [15]. To eva-

luate our alignment procedure, we introduce a database of

paintings and sketches spanning several sites and perform

a user study where human subjects are asked to judge the

goodness of the output alignments. Moreover, we evaluate

our matching step on the benchmark dataset of [19] and

show improvement over local symmetry features [19] and

several alternative matching criteria for our system.

2 Prior work

Alignment. Local invariant features and descriptors such

as SIFT [23] represent a powerful tool for matching pho-

tographs of the same at least lightly textured scene despite

changes in viewpoint, scale, illumination, and partial occlu-

sion. Large 3D scenes, such as a portion of a city [22], can

be represented as a 3D point cloud with associated local

feature descriptors extracted from the corresponding pho-

tographs [28]. Camera pose of a given query photograph

can be recovered from 2D to 3D correspondences obtai-

ned by matching appearance of local features verified using

geometric constraints [18]. However, appearance changes

beyond the modeled invariance, such as significant perspec-

FIGURE 2 – Approach overview. In the offline stage (left)

we summarize a given 3D model as a collection of discrimi-

native visual elements. In the online stage (right) we match

the learnt visual elements to the input painting and use the

obtained correspondences to recover the camera viewpoint

with respect to the 3D model.

tive distortions, non-rigid deformations, non-linear illumina-

tion changes (e.g. shadows), weathering, change of seasons,

structural variations or a different depiction style (photo-

graph, painting, sketch, drawing) cause local feature-based

methods to fail [19, 27, 31]. Greater insensitivity to appea-

rance variation can be achieved by matching the geometric

or symmetry pattern of local image features [6, 19, 30],

rather than the local features themselves. However, such

patterns have to be detectable and consistent between the

matched views. An alternative to feature-based alignment

is contour based alignment [20, 24]. Recent work [2, 3] has

shown that it is a powerful tool when contours as skyline

can be accurately extracted. However, that is rarely the case,

especially for paintings and real world 3D meshes.

Discriminative learning. Modern image representations

developed for visual recognition, such as HOG descrip-

tors [7], represent 2D views of objects or object parts [11]

by a weighted spatial distribution of image gradient orien-

tations. The weights are learnt in a discriminative fashion

to emphasize object contours and de-emphasize non-object,

background contours and clutter. Such a representation can

capture complex object boundaries in a soft manner, avoi-

ding hard decisions about the presence and connectivity of

imaged object edges. Learnt weights have also been shown

to emphasize visually salient image structures matchable

across different image domains, such as sketches and photo-

graphs [31]. Similar representation has been used to learn

architectural elements that summarize a certain geo-spatial

area by analyzing (approximately rectified) 2D street-view

photographs from multiple cities [9].

3 Approach overview
The proposed method has two stages : first, in an offline

stage we learn a set of discriminative visual elements repre-

senting the architectural site ; second, in an online stage a

given unseen query painting is aligned with the 3D model

by matching with the learnt visual elements. The proposed



algorithm is summarized in figure 2.

3.1 Rendering representative views

We sample possible views of the 3D model in a similar

manner to [2, 21, 27]. First, we identify the ground plane

and corresponding vertical direction. The camera positions

are then sampled on the ground plane on a regular grid.

For each camera position we sample 12 possible horizon-

tal camera rotations assuming no in-plane rotation of the

camera. For each horizontal rotation we sample 2 vertical

rotations (pitch angles). Views where less than 5% of the

pixels are occupied by the 3D model are discarded. This

procedure results in 7,000-45,000 views depending on the

size of the 3D site. Note that the rendered views form only

an intermediate representation and can be discarded after

visual element detectors are extracted.

3.2 Discriminative visual elements

Matching as classification. The aim is to match a given

rectangular image patch q (represented by a HOG descrip-

tor [7]) in a rendered view to its corresponding image patch

in the painting, as illustrated in figure 3. Instead of finding

the best match measured by the Euclidean distance between

the descriptors, we train a linear classifier with q as a single

positive example (with label yq = +1) and a large num-

ber of negative examples xi for i =1 to N (with labels

yi = −1). The matching is then performed by finding the

patch x∗ in the painting with the highest classification score

s(x) = w⊤x+ b, (1)

where w and b are the parameters of the linear classifier.

Parameters w and b can be obtained by minimizing a cost

function of the following form

E (w, b) = L
(

1, wT q + b
)

+
1

N

N
∑

i=1

L
(

−1, wTxi + b
)

,

(2)

where the first term measures the loss L on the positive

example q (also called “exemplar") and the second term

measures the loss on the negative data. A particular case of

the exemplar based classifier is the exemplar-SVM [25, 31],

where the loss L(y, s(x)) between the label y and predic-

ted score s(x) is the hinge-loss L(y, s(x)) = max{0, 1 −
ys(x)} [5]. For exemplar-SVM cost (2) is convex and can

be minimized using iterative algorithms [10, 29], but this

remains computationally expensive.

Selection of discriminative visual elements via least

squares regression. Using instead a square loss

L(y, s(x)) = (y − s(x))2, similarly to [4, 16], wLS and

bLS minimizing (2) and the optimal cost E∗

LS can be

obtained in closed form as

wLS =
2

2 + ‖Φ(q)‖2
Σ−1(q − µ), (3)

bLS = −
1

2
(q + µ)TwLS , (4)

FIGURE 3 – Matching as classification. Given a region and

its HOG descriptor q in a rendered view (top left) the aim

is to find the corresponding region in a painting (top right).

This is achieved by training a linear HOG-based sliding

window classifier using q as a single positive example and a

large number of negative data. The classifier weight vector

w is visualized by separately showing the positive (+) and

negative (-) weights at different orientations and spatial

locations. The best match x in the painting is found as the

maximum of the classification score.

E∗

LS =
4

2 + ‖Φ(q)‖2
, (5)

where µ = 1

N

∑N

i=1
xi denotes the mean of the negative

examples, Σ = 1

N

∑N

i=1
(xi−µ)(xi−µ)⊤ their covariance

and Φ is the “whitening" transformation :

‖Φ(x)‖2 = (x− µ)⊤Σ−1(x− µ), (6)

We can use the value of the optimal cost (5) as a measure

of the discriminability of a specific q. If the training cost

(error) for a specific candidate visual element q is small the

element is discriminative. This observation can be translated

into a simple and efficient algorithm for ranking candidate

element detectors based on their discriminability. Given a

rendered view, we consider as candidates visual element all

patches that are local minima (in scale and space) of the

training cost 5.

Relation to linear discriminant analysis (LDA). An al-

ternative way to compute w and b is to use LDA, similarly

to [16, 17]. It results in the parameters :

wLDA = Σ−1(q − µn), (7)

and

bLDA =
1

2

(

µTΣ−1µ− qTΣ−1q
)

. (8)

Nothe that wLDA is proportional to wLS . It implies that

both method lead to the same matches.



FIGURE 4 – Examples of selected visual elements for a

3D site. Left : Selection of top ranked 50 visual elements

visible from this specific view of the site. Each element is

depicted as a planar patch with an orientation of the plane

parallel to the camera plane of its corresponding source

view. Right : Subset of 8 elements shown from their origi-

nal viewpoints. Note that the proposed algorithm prefers

visually salient scene structures such as the two towers in

the top-right or the building in the left part of the view.

Calibrated discriminative matching. We have found

that calibration of matching scores across different visual

elements is important for the quality of the final matching re-

sults. Below we describe a procedure to calibrate matching

scores without the need of any labelled data. First, we found

(section 4) that the matching score obtained from LDA pro-

duces significantly better matching results than matching

via least squares regression. Nevertheless, we found that

the raw uncalibrated LDA score favors low-contrast image

regions, which have an almost zero HOG descriptor. To

avoid this problem, we further calibrate the LDA score by

subtracting a term that measures the score of the visual ele-

ment q matched to a low-contrast region, represented by

zero (empty) HOG vector

scalib(x) = sLDA(x)− sLDA(0) (9)

= (q − µ)TΣ−1x. (10)

This calibrated score gives much better results on the dataset

of [19] as shown in section 4 and significantly improves

matching results.

Filtering elements unstable across viewpoint. To avoid

ambiguous elements, we perform two additional tests on

the visual elements. First, to suppress potential repeated

structures, we require that the ratio between the score of

the first and second highest scoring detection in the image

is larger than a threshold of 1.04, similar to [23]. Second,

we run the discriminative elements in the views near the

one where they were defined and keep visual elements that

are successfully detected in more than 80% of the nearby

views. This procedure typically results in several thousand

selected elements for each architectural site. Examples of

the final visual elements obtained by the proposed approach

are shown in figure 4.

3.3 Recovering viewpoint

Following the matching procedure described in section 3.2,

we form a set of matches using the following procedure.

FIGURE 5 – Illustration of alignment. We use the re-

covered discriminative visual elements to find correspon-

dences between the input scene depiction (left) and 3D

model (right). Shown is the recovered viewpoint and inlier

visual elements found via RANSAC.

First, we apply all visual element detectors on the depic-

tion and take the top 200 detections sorted according to

the first to second nearest neighbor ratio [23], using the

calibrated similarity score (9). This selects the most non-

ambiguous matches. Second, we sort the 200 matches di-

rectly by score (9) and consider the top 25 matches. From

each putative visual element match we obtain 5 putative

point correspondences by taking the 2D/3D locations of

the patch center and its four corners. The patch corners

provide information about the patch scale and the planar

location on the 3D model, and has been shown to work well

for structure-from-motion with planar constraints [32]. We

use RANSAC [12] to find the set of inlier correspondences

to a restricted camera model where the camera intrinsics

are fixed, with the focal length set to the image diagonal

length and the principal point set to the center of the image.

The recovered viewpoint provides an alignment of the input

depiction to the 3D model, which is shown in figure 5.

4 Results and validation

To evaluate our method, we have collected a set of human-

generated 3D models from Trimble 3D Warehouse for the

following architectural landmarks : Notre Dame of Paris,

Trevi Fountain, and San Marco’s Basilica. The Trimble 3D

Warehouse models for these sites consist of basic primitive

shapes and have a composite texture from a set of images.

We also consider a 3D models of San Marco’s Square that

was reconstructed from a set of photographs using dense

multi-view stereo [14]. Note that while the latter 3D model

has more accurate geometry than the Trimble 3D Warehouse

models, it is also much noisier.

We have also collected from the Internet 85 historical pho-

tographs and 252 non-photographic depictions of the sites.

Figures 6 shows examples of alignment results. Notice that

the depictions are reasonably well-aligned, with regions on

the 3D model rendered onto the corresponding location for

a given depiction. We are able to cope with a variety of

viewpoints with respect to the 3D model as well as different

depiction styles, challenging appearance changes and the

varying quality of the 3D models.

Quantitative evaluation. To quantitatively evaluate the

goodness of our alignments, we have conducted a user study

via Amazon Mechanical Turk. The workers were asked to

judge the viewpoint similarity of the resulting alignments

to their corresponding input depictions by categorizing the



FIGURE 6 – Example alignments of non-photographic depictions to 3D models. Notice that we are able to align depictions

rendered in different styles and having a variety of viewpoints with respect to the 3D models. More results are available at

the project website http://www.di.ens.fr/willow/research/painting_to_3d/

TABLE 1 – Viewpoint similarity user study of our algorithm

across different depiction styles.

Good Coarse No

match match match

Historical photographs 59% 20% 21%

Paintings 53% 30% 18%

Drawings 52% 29% 19%

Engravings 57% 26% 17%

Average 55% 27% 18%

TABLE 2 – Evaluation of visual element matching. We

report the mean average precision on the “desceval" task

from the benchmark dataset of [19].
Matching method mAP (“desceval")

Local symmetry [19] 0.58

Least squares regression (Sec. 3.2) 0.52

LDA (Sec. 3.2) 0.60

Ours (Sec. 3.2) 0.77

viewpoint similarity as either a (a) Good match, (b) Coarse

match, or (c) No match. We report the majority opinion.

Table 1 shows the performance of our algorithm for different

depiction styles averaged across the 3D sites. Interestingly,

the results are fairly consistent across different depiction

styles and the failure rate (no match) remains consistently

below 25%.

Visual element matching. We evaluate the proposed mat-

ching procedure on the ‘desceval’ task from the benchmark

dataset collected in [19]. Challenging pairs of images in the

dataset depicting a similar viewpoint of the same landmark

have been manually registered using a homography. The

task is to find corresponding patches in each image pair.

Following [19] we perform matching over a grid of points

in the two views, with the grid having 25 pixel spacing.

Since the ground truth correspondence between points is

known, a precision-recall curve can be computed for each

image pair. We report the mean average precision (mAP)

measured over all image pairs in the dataset in table 2. Our

full system using the calibrated matching score (section 3.2)

achieves a mAP of 0.77, which significantly outperforms

both the alternative visual element matching scores obtained

by least squares regression (section 3.2) and linear discri-

minant analysis (LDA, section 3.2), as well as the local

symmetry feature baseline.

5 Conclusion

We have demonstrated that automatic image to 3D model

alignment is possible for a range of non-photographic depic-

tions and historical photographs, which represent extremely

challenging cases for current local feature matching me-

thods. To achieve this we have developed an approach to

compactly represent a 3D model of an architectural site by

a set of visually distinct mid-level scene elements extracted

from rendered views. This work is just a step towards com-

putational reasoning about the content of non-photographic

depictions.
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