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Two self-consistent schemes involving Hedin’s GW approximation are studied for a set of six-
teen different atoms and small molecules. We compare results from the fully self-consistent GW
approximation (SCGW ) and the quasi-particle self-consistent GW approximation (QSGW ) within
the same numerical framework. Core and valence electrons are treated on an equal footing in all
the steps of the calculation. We use basis sets of localized functions to handle the space depen-
dence of quantities and spectral functions to deal with their frequency dependence. We compare
SCGW and QSGW on a qualitative level by comparing the computed densities of states (DOS).
To judge their relative merit on a quantitative level, we compare their vertical ionization potentials
(IPs) with those obtained from coupled-cluster calculations CCSD(T). Our results are futher com-
pared with “one-shot” G0W0 calculations starting from Hartree-Fock solutions (G0W0-HF). Both
self-consistent GW approaches behave quite similarly. Averaging over all the studied molecules,
both methods show only a small improvement (somewhat larger for SCGW ) of the calculated IPs
with respect to G0W0-HF results. Interestingly, SCGW and QSGW calculations tend to deviate
in opposite directions with respect to CCSD(T) results. SCGW systematically underestimates the
IPs, while QSGW tends to overestimate them. G0W0-HF produces results which are surprisingly
close to QSGW calculations both for the DOS and for the numerical values of the IPs.

PACS numbers: 31.15.-p, 71.10.-w, 71.15Qe
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I. INTRODUCTION

Self-consistent methods are commonly used to solve the non-linear equations appearing in electronic structure
theory. For instance, in the Hartree-Fock (HF) method,1,2 one iteratively determines the best single-determinant
wave function, starting from a reasonable initial guess, until the energy is minimized. In the Kohn-Sham framework
of density-functional theory (DFT) one uses self-consistency to find, for a given exchange-correlation functional, a
set of single-particle orbitals that are used to determine the electron density2–4. Self-consistency is, in principle,
also an essential ingredient to solve Hedin’s coupled equations to compute the interacting single-particle Green’s
function5,6. Unfortunately, the full system of Hedin’s equations contains unknown functional derivatives that prevent
an exact solution. However, Hedin also proposed a simpler approximation, the so-called GW approximation, which
is numerically tractable and has proven to be a useful tool to study the electronic properties of real materials5–14.

In the GW approximation, the self energy Σ is obtained from the product of the electron Green’s functions (G)
and the screened interaction (W ) as Σ = iGW . However, in spite of their apparent simplicity, GW calculations can
be numerically quite involved and demanding for real materials. For this reason, a popular approach has been the so-
called “one-shot” GW ,7,8,15 where one computes the electron self energy directly from the Green’s function G obtained
from DFT or HF results and the corresponding screened interaction W . As an alternative, one can iterate the process
and feed back the electron self energy into the computation of G and try to achieve self consistency in the relation
Σ = iGW . This seems a good idea for several reasons. For example, it eliminates the undesired dependence of the
results on the arbitrary starting point that is inherent in the one-shot GW scheme and is often quite large16–19. Even
more importantly, it has been shown that self-consistent GW (SCGW ) is a conserving approximation, respecting the
conservation of the number of particles, momentum and energy, among others.20 Unfortunately, it was demonstrated
for the homogeneous electron gas21 that SCGW tends to worsen the agreement of the band structure with respect to
experimental results for nearly-free-electron metals, as compared to the simpler one-shot GW scheme. This has been
a widely accepted conclusion for years. However, recent work on small molecules and atoms19,22–26 has reported some
improvements, although moderate, with the use of SCGW .

There is an alternative self-consistent GW procedure, the so-called “quasi-particle self-consistent approximation”
(QSGW ), that has been shown to be more accurate than the one-shot GW approximation for several solids and
molecules.12,27 Surprisingly, in spite of the conflicting claims of accuracy for the self-consistent SCGW and QSGW ,
there are few direct comparisons of their respective performances. Indeed, to the best of our knowledge, a comparison
in which these two approaches are treated using the same numerical approach and where their comparative merits can
be compared unambiguously, is still lacking. The purpose of this article is to provide such a consistent comparison
between SCGW and QSGW using the same numerical implementation.

Our results do not indicate that any of the two self-consistent GW approaches is clearly superior to the other, at
least for the description of the small molecules considered here. Indeed, averaging over the set of studied molecules,
they give results quite close and only slightly better than those of one-shot G0W0 calculations using HF as a starting
point, and SCGW gives results only marginally closer to our reference CCSD(T) calculations than QSGW . During the
self-consistent iteration QSGW only requires the evaluation of the self energy at the quasiparticle energies obtained
in the previous step. This is computationally much less demanding than SCGW , which needs the self energy at all
frequencies. For this reason, QSGW could be a more suitable method for calculations in large systems.

The rest of the article is organized as follows. We briefly describe Hedin’s GW approximation in Section II. In
Section III, the two self-consistent GW approaches are presented. In Section IV and V, we elaborate our numerical
methods and their particular usage for the present all-electron SCGW and QSGW calculations. Section VI contains
our results and discussion. We present our main conclusions in Section VII.

II. HEDIN’S GW APPROXIMATION

Green’s functions have been a method of choice in solid state physics where electron correlations play an important
role. In particular the interacting single-particle Green’s function G(r, r′, ω) depends only on two spatial variables and
frequency, but it directly accounts for the electron density, electron removal and addition energies, and it also allows
the computation of the total energy.28,29 The interacting single-particle Green’s function can be found by solving
Dyson’s equation28

G(r, r′, ω) = G0(r, r′, ω) +G0(r, r′′, ω)∆Σ(r′′, r′′′, ω)G(r′′′, r′, ω). (1)

Please, notice that here we adopt the convention that an integral over spatial variables is implied in any equation
unless these variables appear on its left-hand side. In Eq. (1), G0(r, r′, ω) is the single-particle Green’s function of a
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reference, artificial, system of non-interacting electrons

G0(r, r′, ω) = [ωδ(r − r′)−Heff(r, r′)]
−1
, (2)

described by an effective one-electron Hamiltonian

Ĥeff = T̂ + V̂ext + V̂H + V̂xc ≡ Ĥ0 + V̂H + V̂xc. (3)

Here, Ĥ0 includes the one-electron terms, i.e., the kinetic energy operator T̂ and the external potential V̂ext (electro-

static field of the nuclei). The Hartree term (electrostatic field of the electron density) is V̂H , and the exchange and

correlation operator is denoted by V̂xc. Finally,

∆Σ(r, r′, ω) = Σ(r, r′, ω)− V̂xc(r, r′), (4)

where Σ(r, r′, ω) is the self energy that describes the effects of electron correlations. In order to avoid double counting,
it is necessary to subtract the approximate description of those effects already included in the effective one-electron
Hamiltonian (V̂xc). Standard choices for the reference non-interacting system are given by the Kohn-Sham and HF
methods. The interacting Green’s function is then obtained by solving Dyson’s equation

G(r, r′, ω) = [ωδ(r − r′)−Heff(r, r′)−∆Σ(r, r′, ω)]
−1

= [(ω − VH(r))δ(r − r′)−H0(r, r′)− Σ(r, r′, ω)]
−1
. (5)

A closed set of exact equations for the Green’s functions, the self energy (and a vertex) was written down by Hedin.5

However, these equations have been solved so far only for model systems30,31. Fortunately, Hedin5 also proposed an
expansion of the self energy in powers of the screened interaction W (r, r′, ω). To the lowest order he obtained a
simple expression for the self energy, the so-called GW approximation, where the self energy is given by the product
of the Green’s function and the screened Coulomb interaction5

Σ(r, r′, ω) =
i

2π

∫
dω′G(r, r′, ω + ω′)W (r, r′, ω′)eiηω

′
, (6)

with η being a positive infinitesimal. The screened Coulomb interaction W (r, r′, ω) takes into account that an electron
repels other electrons and thereby effectively creates a cloud of positive charge around it that weakens or screens the
bare Coulomb potential. The screened interaction can be found as a solution of an integral equation

W (r, r′, ω) = v(r, r′) + v(r, r′′)χ(r′′, r′′′, ω)W (r′′′, r′, ω), (7)

where, to the lowest order in the electron-electron interaction, the polarization operator can be evaluated as5

χ(r, r′, ω) = − i

2π

∫
dω′G(r, r′, ω + ω′)G(r′, r, ω′)eiηω

′
. (8)

Equations (1), (6), (7) and (8) constitute a closed set of equations that can be iteratively solved in order to find an
approximation to the interacting one-electron Green’s function G(r, r′, ω). This is usually known as the self-consistent
GW approximation (SCGW ). The corresponding cycle is schematically depicted in Fig. 1. It is important to stress
that, as already noted above, SCGW is just an approximation to the exact set of Hedin’s equations. The exact set
of equations involves the vertex function Γ(r, r′, ω; r′′, ω′), which requires computing the functional derivative of the
exact self energy. The GW approximation replaces the vertex function by δ(r − r′)δ(r − r′′), which is the zeroth
order expression for the expansion of the vertex function in terms of the screened interaction W . Thus, the GW
approximation transforms Hedin’s equations into a numerically tractable set of equations.

In spite of their apparent simplicity, GW calculations are still numerically demanding. This is one of the reasons
why most studies of real materials to date do not use the SCGW approach, i.e. do not iterate GW equations until
self-consistency, but rather use the so-called G0W0 approximation. In this “one-shot” calculation, the non-interacting
Green’s function G0(r, r′, ω) is used instead of the interacting one in Eqs. (6), (7) and (8). The screened Coulomb
interaction obtained in this way is referred to as W0 in the following. A clear drawback of the G0W0 calculation is the
dependence of the results on the approximation used to compute the non-interacting Green’s function G0.16–19,32,33

This dependence gives rise to sizable differences, for example, starting from HF or DFT effective Hamiltonians. The
SCGW scheme can correct this undesired feature of G0W0. Furthermore, it can be shown20 that the self-consistent
version of GW is a conserving approximation, i.e., respects electron number, momentum and energy conservation.
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FIG. 1. Schematic representation of the cycle in the self-consistent GW (SCGW ) approach versus exact Hedin’s equations.
Exact equations involve the vertex function Γ for which, unfortunately, there is not an explicit formula available. Instead, the
SCGW method approximates Γ by its zeroth order term in an expansion as function of W , Γ(r, r′, ω; r′′, ω′) ≈ δ(r−r′)δ(r−r′′),
giving rise to equations (6), (7) and (8) in the text. These equations, together with Dyson’s equation (1) define a self-consistent
procedure to compute the interacting Green’s function G.

III. SELF-CONSISTENT APPROACHES INVOLVING HEDIN’S GW

The formally simplest self-consistent GW approximation is illustrated in Fig. 1. In this procedure, the self energy
at a given iteration is computed with the Green’s function from the previous iteration using the equations (6), (7)
and (8) presented above. This new self energy is then used to calculate a new Green’s function, and the process is
iterated until a stable solution is found.

In the first iteration, to start the self-consistent loop, we need an initial approximation to the Green’s function.
This is typically obtained from the non-interacting Green’s function G0(r, r′, ω) according to equation (2) using some
suitable one-electron effective theory. The non-interacting electron density response χ0(r, r′, ω) and the screened
interaction W0(r, r′, ω) are then obtained using equations (8) and (7). With the screened interaction, we can already
calculate the self energy Σ(r, r′, ω) according to equation (6). So far the calculation is equivalent to a “one-shot” G0W0

calculation. However, inserting the calculated self energy into equation (5) we can obtain our first approximation to
the interacting Green’s function G(r, r′, ω).

We can now start the GW calculation again, using the obtained interacting Green’s function G(r, r′, ω) (instead
of the non-interacting one G0(r, r′, ω)), to compute χ(r, r′, ω) and repeat the cycle until reaching self-consistency.
In such cycle, the Green’s function in step n, G(n), is computed from the self energy Σ(n−1) obtained using the
information from the previous step

G(n)(r, r′, ω) =
[
(ω − V (n−1)

H (r))δ(r − r′)−H0(r, r′)− Σ(n−1)(r, r′, ω)
]−1

. (9)

The electron density n(r) has to be recalculated at the end of each iteration according to the relation

n(r) = − 1

π
Im

[∫ EF

−∞
G(r, r, ω)dω

]
(10)

and, therefore, the Hartree potential VH(r) must be also updated after each iteration. EF in Eq. 10 is the Fermi
energy of the system, which is determined by the number of electrons.

The most detailed studies on the performance of the SCGW scheme have been carried out for the homogeneous
electron gas.9,21,34,35 For this system it has been shown that SCGW does not improve or even worsens the description
of the band structure, overestimating the bandwidth.9 Furthermore, the weight of the plasmon satellite is reduced
with respect to G0W0 and it almost disappears in some cases. Part of these deficiencies seem to be related to the use of
the interacting Green’s function in the definition of the polarizability function χ (Eq. 8). Due to the renormalization
of the quasiparticle weight and the transfer of spectral weight to higher energies (plasmon satellite), χ looses its clear
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physical meaning as a response function and it no longer satisfies the f -sum rule.9 As a consequence, the description
of the screened interaction W is also affected and the plasmon resonance becomes very broad and ill-defined. For
systems other than the homogeneous electron gas, the situation is not so clear. Recent studies for atoms and small
molecules seem to reach conflicting conclusions about whether SCGW improves the ionization energies given by
G0W0 with suitable starting points, and whether these improvements are sufficiently systematic to justify the use
of the computationally more demanding SCGW .19,22–26,32,33 In general, the improvements, when present, seem to
be small. In spite of these deficiencies, the total energies obtained from SCGW Green’s functions, using either the
Galitskii-Migdal formula29 or the Luttiger-Ward functional36, are quite accurate.9,21–23,25,26 The good behavior of the
total energy is probably related to the energy conserving character of the SCGW approximation.9,20 Furthermore,
the conserving character of SCGW is an interesting property that becomes useful in transport calculations.37

An alternative to this straightforward, self-consistent GW approach is given by the so-called “quasi-particle self-
consistent GW” (QSGW ) approximation recently proposed by Kotani, Schilfgaarde and Faleev.12,38 The rationale
behind this approach is based on the perturbative character of the GW approximation, where the electron self energy
is treated as a small perturbation. Therefore, GW should become a more accurate approximation if applied in
conjunction with a suitable effective one-electron Hamiltonian Ĥeff that already provides a fair description of the
one-electron-like excitations of the many-electron system or quasiparticles (QP). The quasiparticles can be obtained
as solutions of the equation

{Ĥ0 + V̂H + Re
[
Σ̂(εi)

]
− εi}|ψi〉 = 0, (11)

where Re extracts the Hermitian part of the self-energy operator. In QSGW , Ĥeff is optimized such that its eigen-
functions (Ψi) and eigenvalues (Ei) are good approximations to the QP wavefunctions (ψi) and energies (εi) obtained

using Eq. 11 and a G0W0 self energy. This is done by defining a suitable mapping ΣG0W0(ω) → Ĥeff . Of course, as
already described above, in order to compute the self energy ΣG0W0 it is necessary to use a one-electron Hamiltonian

as a starting point. Thus, in each iteration n we obtain a new self energy Σ
(n)
G0W0

, and a new effective Hamiltonian

from it Ĥ
(n)
eff , that is then used to start the next iteration. The procedure finishes when Ψi(r) and Ei do not change

anymore and, therefore, we have reached a self-consistent result for the “optimum” Ĥeff (of course, the quality of these

results is determined by the quality of the ΣG0W0
(ω) → Ĥeff mapping). Self-consistency in QSGW is therefore not

sought within the GW calculation, but rather generating an optimal (in the sense that minimizes the ∆ΣG0W0
(εi)=

ΣG0W0
(εi)− Vxc evaluated at the quasiparticle energies εi

38) non-interacting Green’s function G0 to perform a G0W0

calculation. The principle of this QSGW approach is illustrated in Fig. 2.

WΣ

G

H χ

FIG. 2. Principle of the quasi-particle self-consistent GW approximation (QSGW ). The calculated self energy at the G0W0

level in one iteration is used to define a new one-electron effective Hamiltonian. This new Ĥeff provides the starting point for
the next G0W0-like iteration. The procedure is repeated until we get a stable Ĥeff . The method is based on a heuristic mapping
ΣG0W0(ω)→ Ĥeff as defined in Eq. 12.

So far we have not specified the procedure to perform the mapping ΣG0W0
→ Ĥeff . This mapping is not unique

and Kotani et al. have actually proposed several ways to perform it. Here we have adopted the procedures called
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“mode A” and “mode B” in Ref. 38, which we recast in a single expression:

V̂xc =
1

2
(V̂ †sfe + V̂sfe), (12)

where the operator V̂sfe is given by

V̂sfe =
∑
ij

|Ψi〉Re[Σij(ωij)]〈Ψj |. (13)

The frequency ωij is different for “mode A” and “mode B”. For “mode A” ωij = Ej , while for “mode B” ωij =
Ej , if i = j, and ωij = EF otherwise. For the closed-shell molecules considered here we take EF in the middle of the
gap between the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals.

Here Re[Σij(ω)] denotes the Hermitian part of the matrix elements of the self energy between the QP wavefunctions
Ψi(r), and they are evaluated at the QP energies Ei. These QP wavefunctions Ψi(r) and energies Ei correspond to
the solutions of the QSGW effective Hamiltonian at a given iteration and must be updated during the self-consistent
loop. Equation (12) is derived from the fact that {Ψi} forms a complete set and the requirement of having an

Hermitian V̂xc operator.38 In Ref 38 it was also shown that Eq. (12) can be obtained from minimizing the norm of∑
ij |〈Ψi|Σ̂(εj)− V̂xc|Ψj〉|2. However, the ultimate justification of the use of expression (12) comes from the fact that

it has been shown to provide accurate results for the band structure of a large variety of semiconductors and transition
metal oxides.12,38

It is worth noting that in the present calculations we do not observe any evidence of a starting-point dependence of
the QSGW results, as recently suggested by calculations in oxides.39,40 In the case of the small molecules studied here,
HF and local density approximation DFT starting points converged always to the same IPs and the same density of
states.

IV. IMPLEMENTATION OF SCGW AND QSGW SCHEMES

In the present work we compare the results of G0W0, SCGW and QSGW calculations performed using the same
numerical framework. Our numerical procedure is based on the use of a basis set of atomic orbitals and a basis set of
dominant products to express the products among those orbitals, as well as the use of spectral functions to treat the
frequency dependence of the functions involved in GW calculations.41 In this Section, we focus on the main technical
differences and describe the additional procedures necessary to perform the present all-electron self-consistent GW
calculations.

First, in our previous work41 we presented G0W0 results for several aromatic molecules starting from DFT pseu-
dopotential2 calculations. In contrast, here we perform all-electron calculations. This eliminates the important
uncertainties associated with the use of pseudopotentials, as discussed by several authors.24–26,42–44 The basis of dom-
inant products had to be improved to adapt the basis for core-valence orbital products. The construction of the basis
and the necessary improvements are described in subsection IV A.

Second, in previous works we have used numerical orbitals with a finite spatial support.45 However, here we use
Gaussian basis sets to be able to carry out consistent comparisons with coupled-cluster calculations performed using
the NWChem package.46

Third, for small molecules, HF solutions seem to be a better starting point for GW calculations than local or
semilocal DFT functionals.33 For this reason, most of our calculations were initiated from a HF solution of the system.
The final results in the self-consistent schemes are independent of the starting point as we will show explicitly. For
our HF calculations we have used a modified version of a code originally due to James Talman.47 In the present work,
the Hartree and exchange operators are computed using the dominant products basis.

Fourth, some modifications are necessary in our non-local compression scheme41 of the dominant product basis to
perform SCGW calculations as explained in some detail in the subsection IV D.

Fifth, both self-consistent methods, SCGW and QSGW , need some mixing procedure to achive convergence. The
mixing procedures are explained in the subsection IV F.

Finally, we use spectral functions to deal with the frequency dependence of Green’s function, response function,
screened interaction and self energy. Although the method had not changed substantially since our publication41, we
briefly describe our method in subsection IV B for the sake of the readability of the manuscript.
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A. Expansions using orbital and dominant-products basis sets

We use linear combination of atomic orbitals (LCAO) approach48 and expand the eigenfunctions ΨE(r) of the
one-electron Hamiltonian in terms of atom-centered localized functions fa(r)

ΨE(r) =
∑
a

XE
a f

a(r). (14)

The atomic orbitals fa(r) have a predefined angular momentum and radial shape, while the coefficients XE
a must be

determined by solving the corresponding eigenvalue equation. In this work we have used a basis set of atomic orbitals
expanded in terms of Gaussian functions.49,50 These basis sets are the same used by most of the Quantum Chemistry
codes. We have used NWChem code46 to perform the ∆SCF coupled-cluster calculations that will be compared with
our GW results. In particular, for most calculations we have used two different sets of basis for all our calculations: a
correlation-consistent double-ζ (cc-pVDZ) and a triple-ζ (cc-pVTZ) basis. This choice represents a trade off between
the computational cost of our all-electron GW calculations, their accuracy and our intent to perform calculations for
a relatively large set of molecules. Having results with two different basis sets allows estimating the dependence of the
observed behaviors on the size of the basis set. Furthermore, the smaller cc-pVDZ basis also allowed us to perform
calculations with a higher frequency resolution, which is instrumental to study the convergence with respect to this
computational parameter. As commented in more detail in Section VI B, several recent studies of the convergence of
GW calculations with respect to the size of the basis set indicate that, for several small molecules and atoms, the
cc-pVTZ basis provides results for the IPs within few tenths of eV of the converged values.18,27,33 This is further
confirmed by a systematic convergence study as a function of the basis set size that we have performed for two small
systems, He and H2. For these two species we could explore the convergence of the results using basis sets up to
cc-pV5Z. As described in detail in Subsection V E and Section VI B, these highly converged results seem to confirm
that the main conclusions of our comparison among different self-consistent GW schemes remain valid in the limit of
saturated basis sets.

In the case of the initial HF calculations, we must self-consistently solve the equation(
−1

2
∇2 + Vext(r) + VH(r)

)
ΨE(r) +

∫
Σx(r, r′)ΨE(r′)d3r′ = EΨE(r), (15)

where Hartree and exchange operators depend on the eigenfunctions ΨE(r), with

VH(r) = 2
∑
E<EF

∫
Ψ∗E(r′)ΨE(r′)

|r − r′|
d3r′ (16)

(we assume here a closed-shell system and the factor of two stands for the two orientations of the spin), and

Σx(r, r′) =
∑
E<EF

ΨE(r)Ψ∗E(r′)

|r − r′|
. (17)

Introducing (14) in equations (15) and (17), we obtain the Hartree-Fock equations in a basis of atomic orbitals

HabXE
b = ESabXE

b , (18)

with Hab ≡ T ab + V abext + V abH + Σabx and Sab, respectively, the matrix elements of the Fock operator and the overlap.
The exchange operator Σabx is given by

Σabx =
∑
E<EF

XE
a′X

E
b′

∫∫
fa(r)fa

′
(r)f b

′
(r′)f b(r′)

|r − r′|
d3rd3r′. (19)

The appearance of products of atomic orbitals fa(r)fa
′
(r) in this expression gives rise, in principle, to the need

of computing cumbersome four-center integrals. In practice, this can be avoided using an auxiliary basis set that
spans the space of orbital products and largely simplifies the calculations.51,52. Furthermore, the set of products of
atomic orbitals usually comprise strong collinearities. Therefore, if properly defined, the number of elements in this
auxiliary basis can be much smaller than the total number of orbital products, making the calculations more efficient.
In Ref. 53, one of us presented a well-defined method to obtain such an auxiliary basis for an arbitrary set of atomic
orbitals. In this work we use this set of dominant products in all the operations involving products of atomic orbitals.
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The dominant products Fµ(r) are independently defined for each atom pair and provide an optimal, orthogonal (with
respect to the Coulomb metric) basis to expand the products of orbitals within that pair of atoms, i.e.,

fa(r)f b(r) =
∑
µ

V abµ Fµ(r). (20)

Therefore, the dominant products preserve the local character of the original atomic orbitals and V abµ is a sparse table
by construction.

The dominant products Fµ(r) are expanded in terms of spherical harmonics about a center. In the case of valence–
valence and core–core bilocal products (i.e., involving two atoms at different locations and valence or core orbitals
in both atoms), the midpoint along the vector that joins both nuclei is chosen as the expansion center. However,
for pairs of orbitals involving core orbitals in one atom and valence orbitals in the other atom, we use an expansion
center that is much closer to the nucleus of the first atom. The center of expansion for such core–valence products is
determined using information about the spatial extension of the core and valence shells. As a measure of the spatial
extension of a given shell, we take an average of the square-root of the expectation values of r2 among all the radial

orbitals belonging to that shell, R =
∑

s(2ls+1)
√∫

fs(r)r4dr∑
s(2ls+1) , where 2ls + 1 is the multiplicity of a given orbital with

angular momentum ls. The coordinate of this core-valence bilocal dominant product is then calculated as a weighted
sum of the positions of the two shells (atoms) involved, Ccore and Cval, Cexpand = CvalRcore+CcoreRval

Rval+Rcore
. This adjustment

of the expansion center significantly increased the accuracy of the expansion (Eq. 20). For instance, the precision of
the computed overlaps and dipoles improved by an order of magnitude.

The product expansion in Eq. (20) allows reducing substantially the dimension of the space of orbital products. For
example, using a cc-pVDZ basis we have 38 orbitals to describe acetylene (C2H2), leading to 703 products. However,
they can be expressed in terms of 491 dominant products with high precision (throwing away eigenfunctions of the
local Coulomb metric with eigenvalues lower than 10−6).53 In general, we typically found a reduction in the number
of products by at least 30% with this local compression scheme in these accurate calculations. Still, as we will see
in subsection IV D it is generally possible to reduce further the dimension of the product basis using a non-local
compression scheme. We can now rewrite the exchange operator (19) as

Σabx = V aa
′

µ Da′b′v
µνV b

′b
ν , (21)

where Dab =
∑
E<EF

XE
a X

E
b is a density matrix, and vµν are matrix elements

vµν =

∫∫
Fµ(r)F ν(r′)

|r − r′|
d3rd3r′. (22)

Therefore, the exchange operator (21) is efficiently calculated in terms of two-center integrals (22). The matrix

elements of Hartree potential VH(r) are also calculated in this basis of dominant products V abH = 2V abµ vµνDa′b′V
a′b′

ν .
As shown in Ref. 41, the GW equations (5), (6), (7) and (8) can also be conveniently rewritten within the basis

sets of atomic orbitals {fa(r)} and dominant products {Fµ(r)}. We state these equations without derivation for the
sake of completeness

Gab(ω) =
[
ωSab − V abH −Hab

0 − Σab(ω)
]−1

, (23)

Σab(ω) =
i

2π

∫
dω′V aa

′

µ Ga′b′(ω + ω′)Wµν(ω′)V b
′b

ν eiηω
′
, (24)

Wµν(ω) =
[
δµν′ − vµµ

′
χµ′ν′(ω)

]−1

vν
′ν , (25)

χµν(ω) = − i

2π

∫
dω′V adµ Gab(ω + ω′)Gcd(ω

′)V bcν eiηω
′
. (26)

The treatment of convolutions in the latter equations is done with spectral function technique as explained below.

B. Spectral functions technique

As customary, the screened interaction W (r, r′, ω) in our calculation is separated into the bare Coulomb interaction
v(r, r′) and a frequency-dependent component Wc(r, r′, ω) = W (r, r′, ω) − v(r, r′). The bare Coulomb interaction
v(r, r′) gives rise to the HF exchange operator.13 It can be computed with the space of dominant products without
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much computational effort according to Eq. (21). The GW correlation operator Σc = iGWc is more demanding due
to the frequency dependence combined with the rather large dimension of the space of products.

Because of the discontinuities of the electronic Green’s functions, a straightforward convolution to obtain either
response function (26) or the self-energy operator (24) is practically impossible both in the time domain and in the
frequency domain. However, one can use an imaginary time technique54 or spectral function representations41,55,56

to recover a computationally feasible approach. In this work, we continue to use the spectral function technique and
rewrite the time-ordered operators as follows

Gab(t) = −iθ(t)

∫ ∞
0

ds ρ+
ab(s)e

−ist + iθ(−t)
∫ 0

−∞
ds ρ−ab(s)e

−ist;

χµν(t) = −iθ(t)

∫ ∞
0

ds a+
µν(s)e−ist + iθ(−t)

∫ 0

−∞
ds a−µν(s)e−ist;

Wµν
c (t) = −iθ(t)

∫ ∞
0

ds γµν+ (s)e−ist + iθ(−t)
∫ 0

−∞
ds γµν− (s)e−ist;

Σabc (t) = −iθ(t)

∫ ∞
0

ds σab+ (s)e−ist + iθ(−t)
∫ 0

−∞
ds σab− (s)e−ist,

(27)

where “positive” and “negative” spectral functions define the whole spectral function by means of Heaviside functions
θ(t). For instance, the spectral function of the electronic Green’s function reads ρab(s) = θ(s)ρ+

ab(s) + θ(−s)ρ−ab(s).
Transforming the first of equations (27) to the frequency domain, we obtain the familiar expression for the spectral
representation of a Green’s function

Gab(ω) =

∫ ∞
−∞

ρab(s) ds

ω − s+ i sgn(s)ε
. (28)

Here ε is a small line-broadening constant. In practice, the choice of ε is related to the spectral resolution ∆ω of the
numerical treatment and will be discussed below in section V.

One can derive expression for spectral function of response aµν(s) using equations (26) and (27)

a+
µν(s) =

∫∫
V adµ ρ+

ab(s1)ρ−cd(−s2)V bcν δ(s1 + s2 − s)ds1ds2. (29)

Here, the convolution can be computed with fast Fourier methods and the (time-ordered) response function χµν(ω)
can be obtained with a Kramers-Kronig transformation

χµν(ω) = χ+
µν(−ω) + χ+

µν(ω), where χ+
µν(ω) =

∫ ∞
0

ds
a+
µν(s)

ω + iε− s
. (30)

The calculation of the screened interaction Wµν
c (ω) must be done with the response function, rather than with its

spectral representation, because of the inversion in equation (25). The spectral function of the screened interaction
γµν(ω) can be easily recovered from the screened interaction itself13. Deriving the spectral function σ(ω) of the self
energy, we arrive at

σab+ (s) =

∫ ∞
0

∫ ∞
0

δ(s1 + s2 − s)V aa
′

µ ρ+
a′b′(s1)V b

′b
ν γµν+ (s2)ds1ds2, (31)

σab− (s) = −
∫ 0

−∞

∫ 0

−∞
δ(s1 + s2 − s)V aa

′

µ ρ−a′b′(s1)V b
′b

ν γµν− (s2)ds1ds2.

These expressions show that the spectral function of a convolution is given by a convolution of the corresponding
spectral functions. As in the response functions, we compute these convolutions employing fast Fourier transforms.

C. Frequency-dependent functions on the equidistant grid

The spectral functions of the non-interacting Green’s function (2) are merely a set of poles at the eigenenergies E

ρ+
ab(ω) =

∑
E>EF

δ(ω − E)XE
a X

E
b , ρ

−
ab(ω) =

∑
E<EF

δ(ω − E)XE
a X

E
b . (32)
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The use of fast Fourier techniques for convolution, for instance in equation (29), requires that the spectral functions
ρ+
bc(ω), ρ−da(ω) be known at equidistant grid points ωj = j∆ω, j = −Nω . . . Nω, rather than at a set of energies resulting

from a diagonalization procedure. The solution to this problem (discretization of spike-like functions) is known and
well tested.41,55,56 We define a grid of points that covers the whole range of eigenenergies E. Going through the poles
E, we assign their spectral weight XE

a X
E
b to the neighboring grid points n and n + 1 such that ωn ≤ E < ωn+1

according to the distance between the pole and the grid points pn, ab =
ωn+1 − E

∆ω
XE
a X

E
b , pn+1, ab = 1 − pn, ab.

Such a discretization keeps both the spectral weight and the center of mass of a pole. Convergence of discretization
parameters is discussed below, in section V.

As a result of our calculation, we obtain the density of states (DOS) directly from the imaginary part of the
converged Green’s function

DOS(ω) = − 1

π
Im
[
Gab(ω)Sab

]
, (33)

where Gab(ω) is obtained by solving Dyson’s equation (23). In our approach, the ionization potential IP is found
directly from the density of states DOS(ω) on a uniform frequency grid. We find the IP by fitting the density of states
locally by a third order polynomial and by finding the maximum of this fit.

The convergence of both SCGW and QSGW loops is determined by the DOS(ω)

Conv =
1

Norbs

∫
|DOSi(ω)−DOSi−1(ω)| dω, (34)

where Norbs is total number of orbitals in the molecule — the DOSi(ω) is normalized to this number and i is the
iteration number. We have chosen a small threshold on this convergence parameter Conv < 10−5 in order to stop
GW the iteration of both self-consistency schemes. In general we observe that this criterium translates to an even
larger accuracy in the convergence of IP (better than 10−5 relative error).

D. Non-local compression of the dominant-products basis

The calculation of screened interaction Wc(r, r′, ω) should have been performed in the space of orbital products,
thus requiring the inversion of matrices of large dimensions. The basis of dominant products partially alleviates
this problem by eliminating the collinearities between products of orbitals corresponding to the same pair of atoms.
However, there are still strong linear dependencies between products of orbitals corresponding to neighboring pairs
of atoms. Thus, the number of elements in the auxiliary basis set for the orbital product expansion can be further
reduced with important savings in the required memory and run time. In order to address this problem, we perform
an additional non-local compression: the new product basis is formed by linear combinations of the dominant products
of all the pairs of atoms in the molecule. As described in detail in Ref 41, these linear combinations are obtained
by first constructing the Coulomb metric projected into a relevant function manifold, and second keeping only the
eigenfunctions of this projected metric with eigenvalues larger than a threshold value λthrs. Thus, the elements of
this new basis are orthogonal to each other with respect to Coulomb metric. The relevant manifold is determined by
low-energy electron-hole pair excitations according to: {V EFµ ≡ XE

a V
ab
µ XF

b }, where XE
a are the eigenvectors of the

effective Hamiltonian (18), and V abµ is the product “vertex” (20). In the construction of the metric only low-energy
excitations are included according to the criterium:

|E − F | < Ethrs andE − EF < 0, F − EF > 0. (35)

Using Eq. (35) to select the relevant electron-hole pair excitations to describe the dynamics provides good results for
one-shot G0W0 calculations if Ethrs is sufficiently large. However, for SCGW one has to reconsider this point more
carefully. During the iteration process, the restriction that the relevant subspace to represent the polarization function
χµν(ω) necessarily corresponds to pairs of occupied–unoccupied eigenstates of the initial one-electron Hamiltonian

Ĥeff is relaxed. With each iteration we are loosing the information about the initial Ĥeff and its sharp division of the
Hilbert space into one occupied and one unoccupied manifolds. Therefore, we have used a more general subset of
vectors V EFµ = XE

a V
ab
µ XF

b in which more general low-energy pairs EF were included according to

|E − F | < Ethrs. (36)

So we consider products of occupied/occupied, unoccupied/unoccupied and occupied/unoccupied pairs of eigenfunc-

tions of Ĥeff , provided that their energies are sufficiently close.
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In our calculations Ethrs and λthrs are treated as convergence parameters, which are refined until convergence is
reached in the self energy for the range of frequencies under exploration. Here we consider small molecules with
a relatively small basis set. Therefore it was actually possible to include all possible pairs of eigenvectors in the
compression procedure, while λthrs was taken 10−3 for all molecules. With this choice, we could get a significant
reduction in the size of the product basis. For example, for the acetylene molecule with a cc-pVDZ basis, from the
703 initial products of orbitals, we made a first local compression to 491 dominant products and, with the non-local
compression, this was reduced to 128 basis elements.

E. Σ(ω)→ V̂xc mapping in a basis of atomic orbitals

The map of the self energy to an exchange-correlation operator (12) is made separately for the frequency-independent
(exchange) self energy Σx = iGv = ΣHF

x , and for the frequency-dependent correlation self energy Σc(ω) = iGWc.

Obviously, the exchange operator V̂x is identical to the exchange part of the self energy V abx = Σabx (i.e. to the HF
exchange operator 21).

The correlation operator V̂c is found by using equation (12) and inserting the LCAO expansion (14) into equation
(13)

V absfe,c =
∑
ij

Saa
′
Xi
a′X

i
a′′Re[Σa

′′b′′

c (ωij)]X
j
b′′X

j
b′S

b′b. (37)

Because we use real-valued basis functions fa(r), the Hermitian part of operator reduces to the real part. In our ap-
proach, we obtain the self energy Σabc (ω) on an equidistant frequency grid, which allows the calculation of convolutions
by means of fast Fourier transforms. The eigenvalues E of the QP equation do not necessarily fit with any equidistant
grid, but we have found that a linear interpolation procedure provides a reliably converging approximation to the self
energy in an arbitrary energy Σabc (E).

F. Mixing schemes for SCGW and QSGW

Mixing of successive iterations is often necessary to achieve convergence in iterative approaches to nonlinear equa-
tions. Mixing is needed to solve the Hartree-Fock equations and the same is true for the self-consistent equations of
SCGW and QSGW .

In the SCGW scheme (Fig. 1) we have to mix frequency-dependent operators, which unfortunately leads to large
memory requirements. Therefore, we resorted to the simplest linear mixing scheme. Initially, we tried to mix the
Green’s functions calculated in sucessive steps as suggested in Ref. 37. However, we found examples where the
convergence was unstable and the results unreliable. By contrast, a linear mixing of the self energy

Σi(ω) = (1− α)Σi−1
in (ω) + αΣi−1

out (ω) (38)

always worked in the case of SCGW and it was possible to use a mixing weight as large as α = 0.35.
In the case of QSGW calculations (Fig. 2) the self energy mixing sometimes failed to achieve convergence. A

convenient solution was to mix the correlation operator (37) rather than the self energy. This mixing of correlation
operator has been also used in the MOLGW code by Bruneval.18 For the molecules considered here, the linear mixing
of the correlation operator has been used with α = 0.25.

G. Independence of SCGW and QSGW on their starting points

In both methods, SCGW and QSGW , the Hartree potential VH, as well as the exchange Σx and correlation Σc(ω)

components of the self energy are recomputed in every iteration. Only the matrix elements of the kinetic energy T̂
and the nuclear attraction Vext are kept fixed. In such self-consistent loop, we expect that any reasonable starting
Green’s function will converge to the same interacting Green’s function, but this expectation has to be confirmed by
actual calculations25. Such a test also provides a measure of the achievable accuracy in the numerical procedure. We
present such test in Fig. 3 for the methane molecule, where the convergence of the IP is accomplished using HF and
the local density approximation (LDA) to DFT as starting points. For these calculations we have used a frequency
resolution ∆ω = 0.05 eV and a broadening constant ε = 0.1 eV for both SCGW and QSGW . This choice of frequency
resolution and broadening constant will be justified in section V. The frequency grid covers a range of [−1228.8 eV,
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1228.8 eV] for both starting points: HF and LDA, which is sufficient to obtain converged SCGW calculations. The
non-local compression was done with all possible pairs of molecular orbitals (i.e. Ethrs is chosen higher than maximal
difference of eigenvalues) and threshold for eigenvalues λthrs is set to λthrs = 10−5.
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FIG. 3. Evolution with the iteration number of the ionization potential of methane CH4 during SCGW and QSGW calculations.
A Hartree-Fock calculation and a density functional theory calculation using the local density approximation were used as
starting points. The first iteration corresponds to a G0W0 calculation.

We can see that the convergence behavior of SCGW is monotonic and, in this case, almost symmetric with respect
to the LDA/HF starting points. After 25 iterations, both starting points converge to the same IP within 3 meV for
the SCGW calculation, which is well within the used frequency resolution of 50 meV.

QSGW converges rather fast at the beginning of the self-consistent loop, but the convergence behavior is not
monotonic in general. However, the “mode B” converges somewhat more reliably because a monotonic convergence
sets in earlier than for the “mode A”, as shown in Fig. 3 Moreover, QSGW “mode B” can achieve a better and faster
convergence of the DOS (Eq. 34) than with “mode A”. For instance, in the present case, we reached Conv ∼ 2 · 10−3

for “mode A” after 150 iterations both with HF and LDA starting points, while for “mode B” we found Conv ∼ 10−6

after 31 iterations for HF and 40 iterations for LDA starting points. In both cases we used mixing parameter α = 0.25.
These indications of better convergence properties of “mode B” comparing to “mode A” will be further discussed
below, in subsection V E, in relation to the convergence with respect to the basis set size.

The negligible starting point dependence of the IP seems to indicate that we are indeed reaching the same self-
consistent solution either starting from HF or LDA, both for SCGW and QSGW self-consistent schemes. This is
further confirmed by the direct comparison of the iterated DOSs. For all the cases examined we have found that LDA
and HF starting points always arrive to indistinguishable DOSs.

V. CONVERGENCE STUDIES

Here we discuss the dependence of our results on different technical parameters. The set of convergence parameters
is rather large. Namely, we should explore the convergence with respect to the extension of the frequency grid
[ωmin, ωmax], the frequency resolution of the grid ∆ω, the broadening constant ε and the parameters defining the non-
local compression (Ethrs, λthrs), for the three self-consistent schemes SCGW , QSGW “mode A” and QSGW “mode
B”. We have chosen to study these parameters for two systems: helium and methane with cc-pVDZ basis set. A full
range-covering convergence study is practically impossible with such a large set of convergence parameters. However,
it is possible to show the convergence with respect to each parameter separately, keeping the other parameters fixed.
Additionally we explore the convergence with respect to the basis set size for two small systems, He and H2, using
basis sets up to cc-pV5Z basis. As we will see, this study will unveil the poor convergence properties of QSGW “mode
A” with respect to the size of the basis.

Notice that in our previous publication,41 we proposed the use of two grids with different resolution: a finer grid
covering the low energies of interest, and a coarser grid with larger extension. However, here we do not use this
so-called second window technique. We prefer to converge the results with respect to a single frequency grid and,
thus, eliminate this additional source of uncertainties.
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A. Frequency grid extension

Here we consider the convergence with respect to frequency grid extension. Analyzing the changes in the DOS as a
function of the self-consistency iteration, we have clearly seen the appearance of satellite structures besides the main
peaks. The satellites at the G0W0 level can reach approximately twice ∆E, where ∆E = |E1 − EN | and E1 and
EN are, respectively, the lowest and highest eigenvalues of the starting point Hamiltonian. The subsequent iterations
in the SCGW loop lead to the appearance of even larger frequencies in the self energy and, consequently, in the
DOS. However, the higher-order satellites are weak and do not significantly contribute to the numerical value of the
ionization potential. We discuss the satellite structure of SCGW in more detail in the Supplementary Material.57

We take into account the above mentioned facts and parametrize the range of the frequency grid as a function of
∆E, defining a new parameter fω, [−fω∆E, fω∆E]. The other parameters were chosen as following: ε = 0.2 eV,
∆ω = 0.1 eV, Ethrs = ∆E, λthrs = 10−3; this choice will be justified later in this section.

Table I shows the IPs for several extensions of the frequency grid for helium and methane. The inspection of the

Helium Methane
Prefactor fω QSGW A QSGW B SCGW QSGW A QSGW B SCGW

1.0 24.852 24.852 24.738 14.379 14.420 13.742
1.5 23.689 23.683 23.685 14.379 14.420 13.736
2.0 24.349 24.345 24.140 14.380 14.420 13.735
2.5 24.350 24.346 24.120 14.380 14.420 13.735
3.0 24.350 24.346 24.116 14.380 14.420 13.735

TABLE I. Ionization potential of helium and methane as a function of the frequency grid extension. One can see that results
converge after fω = 2.0 both for SCGW and QSGW self-consistency schemes. The values of ∆E using a cc-pVDZ basis for He
and CH4 are, respectively, 93.6 and 381.5 eV.

data shows that results converge for large enough grid extensions. Incidentally, the convergence is much faster for
CH4 than for He. According to these data, fω = 2 seems to set the smallest frequency grid extension after which
the results become reliable. In the rest of the calculations presented here, we will use fω = 2.5 to ensure a good
convergence of the obtained IP (now within a few meV).

B. Frequency grid resolution

We turn now to the role of the frequency resolution. In this study, we fixed the extension of the grid to
[−2.5∆E, 2.5∆E] as discussed above, varied the frequency resolution ∆ω, and compared the calculated IPs. The
broadening constant is ε = 2∆ω. The parameters of non-local compression are chosen as in the previous subsection.
The results for helium and methane are presented in Fig. 4.

Both QSGW “modes” give results largely independent on the frequency resolution ∆ω. This is a welcome feature
because a relatively coarse frequency grid can be used with QSGW . It is interesting to note that a similar behavior is
generally found for one-shot G0W0 calculations. In contrast, the SCGW procedure exhibits a stronger dependence on
the frequency resolution. We observe an almost linear dependence of the calculated IP on ∆ω. This (less welcome)
feature has its roots in the computation of the density matrix from the Green’s function (Eq. 10). The spectral function
treatment using a coarse grid results in rather broad resonances of Lorentzian shape, and their width deteriorates
the quality of the density matrix. This convergence behavior can be seen already in a self-consistent loop without
any correlation self energy Σc(ω), i. e. performing the Hartree-Fock calculation with Green’s functions. Regarding
this point it is interesting to note that, although the deviations of the electron number are usually rather small in
the present GW calculations, typically not larger than 1%, we renormalize the density matrix to right number of
electrons after each iteration to avoid uncontrolled variations of the Hartree potential. Notice that this consequence
of the spectral function representation does not affect the QSGW calculations, because the density matrix in QSGW
is obtained directly from the eigenvectors of the QSGW effective Hamiltonian Ĥeff .

The approximate linear dependence of the SCGW IP (Fig. 4) for small values of ∆ω is seen in all the examples we
have considered. For most atoms and molecules the calculated IP increases as ∆ω decreases, with the sole exception
of LiF that shows the opposite behavior. Therefore, we will estimate the results in the limit of infinite resolution
(∆ω → 0) from two calculations with different frequency resolutions. The SCGW results presented in subsection VI B
have been obtained using this linear extrapolation to infinite resolution.
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FIG. 4. Ionization potential of helium (panel a) and methane (panel b) as functions of the frequency grid resolution. The IPs
are essentially independent on frequency resolution in the QSGW procedures. The SCGW procedure shows an almost linear
dependence of the IP on ∆ω. The linear extrapolation for SCGW (dotted line) is computed from two IPs calculated using
frequency resolutions 0.1 and 0.05 eV.

C. Broadening constant

The choice of broadening constant ε in our calculations with equidistant frequency grid is rather intuitive. If the
broadening constant is smaller than frequency resolution ∆ω, then a resonance may “squeeze” unnoticed between two
neighboring frequency points and become missed. Therefore, the broadening constant ε must be necessarily larger
than the frequency spacing ∆ω.

In this work, we will parametrize the broadening constant as ε = fε∆ω, where fε > 1 is a new parameter. We
are interested to keep the number of frequencies in the grid as small as possible to minimize the computational cost
connected to the size of the frequency grid. Here the frequency grid extension is set using fω = 2.5. The frequency
resolution is chosen to be ∆ω = 0.1 eV for QSGW , while for SCGW the data presented correspond to a linear
extrapolation of the IPs from the data computed for ∆ω = 0.1 and ∆ω = 0.05 eV as described in subsection V B.
The parameters of non-local compression are chosen as in subsection V A. In Table II we show the IPs computed
with different broadening constants fε∆ω. One can see that the IPs change steadily with decreasing of parameter fε
from 3.0 to 2.0 in all calculations, while between fε = 2.0 to fε = 1.0 there is no clear trend. Moreover, the SCGW
calculation for methane failed to converge to our target Conv accuracy with fε = 1.0. Therefore, we regard fε = 2.0
as an optimal parametrization for broadening constant ε.

Helium Methane
Prefactor fε QSGW A QSGW B SCGW QSGW A QSGW B SCGW

1.0 24.370 24.366 24.274 14.385 14.431 14.093
1.5 24.355 24.351 24.286 14.383 14.425 14.103
2.0 24.350 24.346 24.273 14.380 14.420 14.090
2.5 24.347 24.343 24.274 14.376 14.416 14.081
3.0 24.344 24.340 24.279 14.372 14.413 14.073

TABLE II. Ionization potential of helium and methane as function of the broadening parameter ε=fε∆ω.

D. Non-local compression

The choice of non-local compression parameters was studied in Ref. 41 for pseudo-potential based, LDA-G0W0

calculations. In the present work, we found the behavior of non-local compression to be similar to that found in our
previous study. However, here we prefer not to limit the number of molecular orbitals by the energy criterium Ethrs

(see section IV D). This decision does not significantly contributes to the runtime of any of our examples, while it
removes one technical parameter to converge our calculations with respect to. Table III shows the dependence of the
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IPs on the threshold eigenvalue λthrs of the Coulomb metric. The other calculation parameters has been chosen as in
the previous subsection.

Helium Methane
λthrs QSGW A QSGW B SCGW QSGW A QSGW B SCGW
0.1 23.404 23.403 23.456 13.776 13.821 13.667

10−2 24.350 24.346 24.273 14.350 14.386 14.065
10−3 24.350 24.346 24.273 14.380 14.420 14.090
10−4 24.350 24.346 24.273 14.385 14.425 14.093
10−5 24.350 24.346 24.273 14.385 14.425 14.093

TABLE III. Ionization potential of helium and methane as function of non-local compression threshold λthrs.

From the table one can see that a large threshold for the eigenvalues of the Coulomb metric λthrs = 0.1 leads to sizable
changes of the computed IPs. However, the non-local compression becomes reliable with thresholds λthrs < 10−3.
The values of the IP with λthrs = 10−3 and λthrs = 10−4 vary less than 6 meV. Because a stronger reduction of the
number of products positively impacts the computational performance, we have chosen λthrs = 10−3 for the main
calculations in section VI.

E. Size of the cc-pVζZ basis sets and failure of QSGW “mode A” to converge

The correlation consistent basis sets cc-pVζZ are supposed to provide increasingly better results in terms of the
convergence to the complete basis set (CBS) limit as the cardinal number ζ of the basis set is increased. We intent
to study this convergence for SCGW and QSGW schemes. The computational cost of using high-ζ basis grows very
steeply. Therefore, we are limited in this test to small systems and, as already mentioned, for larger molecules we
restrict to cc-pVDZ and cc-pVTZ basis. The covergence test as a function of the size of the basis is important to
determine whether a meaningful comparison between SCGW and QSGW can be done using those smaller basis set.
The results presented here seem to indicate that this is the case because, although the convergence of the IPs is quite
slow with the size of the basis set, both GW schemes show a rather similar convergence behavior.

We focus in the helium atom and the hydrogen dimer. The frequency grid extension is fixed by fω = 2.5. The
frequency resolution is ∆ω = 0.1 eV for both QSGW “modes”. For SCGW , we report linearly extrapolated IPs
from data calculated using ∆ω = 0.1 and ∆ω = 0.05 eV, following our discussion in subsection V B. The broadening
constant is set to ε = 2∆ω, and the non-local compression is performed with λthrs = 10−3. These choices are justified
by the tests presented in the subsections V A, V B, V C and V D. The data for the IPs as a function of the basis
size are collected in the Table IV. We present results obtained with our code for “mode A” and“mode B” of QSGW
(henceforth QSGW A and QSGW B), and SCGW . Table IV also presents the data computed with the MOLGW
code developed by F. Bruneval58 as well as our reference ionization energies from the CCSD calculations with the
NWChem code46. Notice that for systems containing two electrons CCSD and CCSD(T) are identical, due to the
absence of triple excitations, and become equivalent to full-CI.59 MOLGW implements (among other methods) the
QSGW A algorithm.18 It is important to stress here that the MOLGW code employs other algorithms than used in
this work and its implementation is independent on our implementation. Therefore, the close agreement (maximal
deviation of 0.03 eV) between the QSGW IPs computed with our code and MOLGW is an important cross-check.

Helium Hydrogen dimer
Basis set QSGW A QSGW A? QSGW B SCGW CCSD QSGW A QSGW A? QSGW B SCGW CCSD
cc-pVDZ 24.350 24.359 24.346 24.273 24.326 16.148 16.141 16.232 16.000 16.257
cc-pVTZ 24.340 24.320 24.554 24.409 24.528 16.378 16.357 16.455 16.171 16.394
cc-pVQZ 24.751 24.766 24.668 24.490 24.564 16.569 16.562 16.526 16.216 16.422
cc-pV5Z 24.799 24.825 24.705 24.522 24.580 16.538 16.519 16.553 16.232 16.430

CBS - - 24.744 24.555 24.597 - - 16.581 16.250 16.438

TABLE IV. Ionization potential of helium atom and hydrogen dimer as function of basis set size for different methods. Columns
marked with ? indicate results obtained with the MOLGW code18 for QSGW A. CBS stands for the complete basis set
extrapolation (see the text).

In agreement with previous studies,18,27 the data in Table IV illustrate the very slow convergence of the GW results
with the basis set size. A more noticeable and unexpected finding is the non-monotonous convergence of the QSGW A
method for the two systems considered here. This is in clear contrast with the behavior observed for both SCGW



16

and QSGW B and, to the best of our knowledge, it had not been reported previously. Notice that the same irregular
behavior is produced by our code and by MOLGW. According to our analysis, this poor convergence can be traced
back to the combination of two issues, one inherent to the QSGW A scheme, and the other related to the use of atomic
orbitals as a basis set. The difficulties arise from the fact that in QSGW A the non-diagonal elements (in the basis
set of QP wavefunctions) of the correlation operator (Eq. 12) contain contributions from the self energy evaluated at
two different QP energies. Therefore, e.g., the calculation of the HOMO is influenced by the self energy calculated at
all other energies, including energies corresponding to the highest molecular states. In spite of the lack of justification
for having this mixing of information evaluated at different energies (other than defining an Hermitian operator in
Eq. 12), this should not necessarily cause difficulties for the convergence if those self-energy cross-terms would be small
or would have a smooth dependence on frequency. Unfortunately this is not always the case. In particular, using
a basis set of atomic orbitals (even a quite complete one), the self energy is very spiky even at high energies. This
reflects the fact that the continuum of states, that one should find above the vacuum level, is replaced by a discrete
collection of states. Therefore, when one of the eigenvalues of the QSGW QP equation lies in a region where the self
energy is large, this might have a large influence on the results at low energies through the self-energy cross-terms. In
this situation, self-consistency might be difficult to achieve (due to changes in the sign of the self-energy contribution
during the self-consistent process), and even if self-consistency is reached the results do not show a steady trend with
the basis set size (since increasing the basis set modifies strongly the structure of the self energy at high energies).

The bad convergence properties of QSGW A in combination with basis set of atomic orbitals is a serious draw back
for the applicability of this scheme in our case. Fortunately, this property is not shared by QSGW B, that shows a
slow but steady convergence with the basis set size for both He and H2. The reason is that, in “mode B”, all the
non-diagonal components of the correlation operator are computed at the Fermi energy, and the difficulties described
above disappear. Therefore, in the rest of the paper we will concentrate in the QSGW B method.

The steady convergence of the QSGW B and SCGW methods with respect to the basis set allows extrapolating
to the CBS limit. This extrapolation is performed using an inverse cubic function on the cardinal number ζ of the
cc-pVζZ basis, IP=IPCBS + Aζ−3, with ζ = 4 and 5. This formula is frequently used to extrapolate the correlation
energy60,61 and we have found that perfectly fits the dependence of our IPs calculated with ζ ≥ 3. It is interesting to
note that our CBS-limit IPs using SCGW 24.56 and 16.25 eV, respectively for He and H2, are in excellent agreement
with the values, 24.56 and 16.22, given by Stan et al. using large bases of Slater orbitals.22,23 Interestingly, if we use
our CCSD results as a reference in the CBS limit, in the case of He we find that the SCGW IP is much closer to the
reference value than the QSGW B one, while for H2 we have the opposite behavior and QSGW B performs somewhat
better than SCGW .

The slow convergence of the self-consistent GW schemes with the basis set is certainly an undesirable feature. The
IPs calculated with a cc-pVTZ basis are still 0.1–0.2 eV from the CBS limit. However, a very interesting feature is that
the covergence behavior is very similar for both methods, and the differences between the calculated IPs converges
much faster with the basis set size. In particular, we observed that the IPs obtained with the QSGW scheme are
always higher than those obtained with SCGW . For example, the IPs calculated with QSGW and SCGW for He
(H2) using a TZ basis differ by 0.15 (0.29) eV, while the CBS-limit difference is 0.19 (0.33) eV. So, at least for these
two systems, the qualitative differences between QSGW and SCGW IPs obtained with a cc-pVTZ basis seem to be
maintained all the way to the CBS limit.

Table IV also shows that CCSD results converge somewhat faster with the basis set than the GW ones. The IPs of
He and H2 calculated with a cc-pVTZ basis are within 0.07 eV of our CBS limits. This different rate of convergence
makes difficult the comparison of the performance of the self-consistent GW schemes against CCSD results using non-
saturated basis sets. Still for basis sets larger than DZ we see than the CCSD IPs always lie somewhere in between the
SCGW lower bound and the QSGW upper bound. One should keep in mind the different rate of convergence between
the GW schemes and the CCSD when examining the results in Table V. In particular, since the IPs tend to increase
with the quality of the basis set, using basis sets which are not fully converged QSGW could tend to outperform
SCGW . However, as we will see below, we find the opposite trend and SCGW is, on the average, marginally better
than QSGW B at the cc-pVTZ level. This is probably a robust result which holds for larger basis sets.

VI. RESULTS

The methods presented above allow realizing both SCGW and QSGW calculations within the same numerical
framework. In subsection VI A we present the densities of states (DOS) obtained with different GW schemes. The
quantitative merit of the GW methods is studied in subsection VI B, using the calculated IPs as a measure of such
performance.
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A. Densities of states for CH4 and N2

Information about the effect of different self-consistent procedures can be obtained from the DOS they provide.
Figure 5 compares the DOS of the methane molecule and the nitrogen dimer using different schemes. Panels (a) and
(b) demonstrate that SCGW and QSGW B behave quite similarly although the positions of the peaks are slightly
shifted.
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FIG. 5. Densities of states of methane CH4 [panels (a), (c) and (e)] and nitrogen N2 [panels (b), (d), (f)] molecules calculated
using different approximations. The frequency resolution in these calculations is ∆ω = 0.1 eV, and the broadening parameter
ε = 0.2 eV.

Panels (c), (d), (e) and (f) illustrate the dependence of one-shot G0W0 on the starting point and its comparison with
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QSGW And SCGW B results. The Hartree-Fock starting point (G0W0-HF) produces a DOS very close to that of the
self-consistent QSGW solution (panels (e) and (f)). In contrast, calculations using the Perdew-Zunger62 local density
exchange-correlation functional as a starting point (G0W0-LDA) produce DOSs that depart more from those of both
(SCGW and QSGW ) self-consistent approaches. In particular, several satellite peaks can be seen in the frequency
range below −20 eV for both, CH4 and N2. Self-consistency tends to eliminate these features (see panels (c) and (d)).
However, weak satellite peaks also appear in both SCGW and QSGW approaches. For example, for methane we can
find satellite peaks around ±35 eV, although they are barely visible in Fig. 5. To clearly visualize these structures it is
necessary to plot the DOS in logarithmic scale. This kind of analysis is presented in the Supplementary information.57

In agreement with previous observations,63 we find that the Hartree-Fock starting point in combination with the
one-shot G0W0 approach tends to provide excellent estimations of one-electron excitation energies in small molecules,
see the example of methane in Fig. 5 (e) and Table V. For this reason we use HF as a starting point in our calculations
of ionization potentials in the next subsection.

B. Ionization potential of atoms and small molecules

In order to assess the quality of the self-consistent GW method for atoms and small molecules at a quantitative level,
we compare the performance of SCGW and QSGW “mode B” with that of quantum chemistry methods, in particular
with coupled-cluster (CC) calculations. Here we focus in the first vertical IP. Although we further compare our results
against experimental data, a reliable study would require considering effects due to structural relaxations in the final
state and corrections related to the finite nuclear masses for light elements, among others. These effects are not taken
into account in the present GW calculations. Moreover, a comparison with other well-established theoretical methods
using the same basis set also eliminates, at least partially, the ambiguities related to the use of a finite, necessarily
incomplete, basis set of atomic orbitals (see the comments Sec. V E). This is an important point since, due to the
use of all-electron calculations in the self-consistent GW calculations (therefore requiring the evaluation of the self
energy in a very extended frequency grid), even with the small molecules considered here, we are limited to relatively
modest basis sets that might not provide fully converged results.

We have chosen the coupled-cluster method with single, double and perturbative triple excitations (CCSD(T)) as
a reference theory to compare our GW results with. This choice is motivated by the usefulness of CCSD(T) in many
other applications requiring to estimate the contribution of electron correlations in quantum chemical calculations.64

We performed our CC calculations using the open-source NWChem package,46 and two different Gaussian basis
sets49,50 that we also adopted in our GW calculations for consistency. We have used both, correlation-consistent
double-ζ polarized (cc-pVDZ), and triple-ζ polarized (cc-pVTZ) basis sets for all of our calculations. Comparison
of these two sets of results provides a rough estimation of the effect of the basis set incompleteness. A systematic
study of the convergence with respect to the basis set size was presented in Sec. V E for two small systems, He and
H2. The basic conclusions obtained from these two systems are: i) The convergence of the GW results is rather slow;
ii) Fortunately the convergence of SCGW B and QSGW is very similar and differences between IPs calculated with
these two schemes are converged within 0.05 eV already for cc-pVTZ basis sets; iii) The convergence of CCSD(T) is
somewhat faster than that of GW , which should be taken into account when analyzing the data presented here.

The molecular geometries were optimized at the level of CCSD(T) using the cc-pVTZ basis set57. These geometries
were later used in all the other calculations, including the self-consistentGW . In addition to the CCSD(T) calculations,
we have also performed calculations without perturbative triples (CCSD) with the cc-pVTZ basis as a way to estimate
the convergence of the description of correlations as provided by CCSD(T). Due to the use of relatively small basis
sets in our calculations, we limit our study to the IPs. An accurate calculation of electron affinities would require
more complete augmented basis sets.

At the level of CC calculations, the vertical IPs were obtained from ∆SCF-CC calculations, i.e., the IP is taken as
the difference between the total energy calculated for the neutral molecule and a singly-charged positive ion keeping
the ground-state CCSD(T)/cc-pVTZ geometry. For the positive ions, unrestricted Hartree-Fock was used to produce
the starting point for the CC calculations.65 Our calculations compare well with the literature. We checked our
CCSD(T)/cc-pVTZ calculations against the data from NIST database CCCBDB.66 Ionization potential of atoms is
the same as provided by NIST. Unfortunately, there are only adiabatic IPs available from NIST for the small molecules
we consider. However, we compared the total energies of neutral molecules with the corresponding NIST values and
found a good agreement within a few meV. Moreover, our ionization energies of N2, CO, F2 C2H2 and H2CO agree
well with some recent quantum chemical calculations.67–70

In the GW calculations, the IPs were obtained from the position of the first peak below Fermi level in the DOS
of each molecule. The frequency grid resolution ∆ω used with the QSGW approach was 0.05 eV for cc-pVDZ and
0.1 eV for cc-pVTZ basis sets. In the case of SCGW , a linear extrapolation to the limit of infinite frequency resolution
was applied as discussed in subsection V B. Therefore, ∆ω = 0.05 and 0.025 eV were used in the calculations with
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cc-pVDZ basis set, and ∆ω = 0.1 and 0.05 eV for those using a cc-pVTZ basis set.
The convergence with the number of dominant products, used here to express the products of basis functions,

was monitored comparing the energies of the HOMO of the different molecules calculated at the Hartree-Fock level
with our code and with NWChem. Our code uses the basis of dominant products to compute Hartree and exchange
contributions to the energy and Hamiltonian. We found maximal differences of at most 6 meV (for nitrogen containing
molecules), while the mean absolute error (MAE) of the HF-HOMO position is only 1.6 meV for our set of sixteen
atoms and molecules.

IP (eV)
Method G0W0-HF SCGW QSGW B CCSD(T) CCSD Exp.

Basis cc-pVDZ cc-pVTZ cc-pVDZ cc-pVTZ cc-pVDZ cc-pVTZ cc-pVDZ cc-pVTZ cc-pVTZ
He 24.36 24.57 24.28 24.41 24.35 24.55 24.33 24.53 24.53 24.59
Be 8.98 9.05 8.46 8.53 8.95 9.03 9.29 9.29 9.28 9.32
Ne 20.87 21.40 20.98 21.38 21.00 21.50 20.89 21.31 21.26 21.56
H2 16.23 16.46 16.00 16.17 16.24 16.45 16.26 16.39 16.39 15.43∗

CH4 14.43 14.74 14.09 14.26 14.43 14.65 14.21 14.38 14.34 13.60
H2CO 10.74 11.25 10.44 10.78 10.84 11.24 10.46 10.82 10.76 10.89
C2H2 11.23 11.54 10.67 10.85 11.21 11.43 11.22 11.42 11.26 11.49
HCN 13.48 13.81 12.89 13.08 13.48 13.73 13.48 13.70 13.55 13.61

CO 14.39 14.74 13.53 13.81 14.03 14.34 13.62 13.93 13.93 14.01
N2 15.84 16.30 15.05 15.38 15.57 15.95 15.10 15.46 15.59 15.58
Li2 5.23 5.34 4.88 4.98 5.28 5.35 5.19 5.23 5.22 5.11∗

LiH 7.96 8.15 7.74 7.84 7.97 8.15 7.85 7.98 7.98 7.90∗

LiF 10.72 11.32 10.85 11.13 11.27 11.77 10.90 11.34 11.24 11.30∗

HF 15.55 16.17 15.54 16.05 15.89 16.43 15.44 15.97 15.90 16.12
F2 15.93 16.30 15.46 15.74 16.06 16.36 15.38 15.69 15.91 15.70

H2O 12.17 12.80 12.03 12.52 12.34 12.88 11.96 12.50 12.42 12.62∗

MAE 0.22 0.28 0.21 0.22 0.25 0.27 0.00 0.00 0.069 0.19

TABLE V. Vertical ionization potentials (in electon-volts) of the sixteen species studied in this work calculated using different
computational methods (see the text for more details) and two different basis sets, a correlation-consistent double-ζ polarized
(cc-pVDZ) and a triple-ζ polarized (cc-pVTZ) basis.49,50 The mean absolute error (MAE) is calculated with respect to the
CCSD(T) results for each basis separately. Experimental data are taken from the NIST CCCBDB database.66 The numbers
marked with asterisks ∗ are experimental adiabatic IPs.
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FIG. 6. Differences between vertical IPs calculated at the G0W0-HF, SCGW and QSGW levels, and those obtained from
coupled-cluster calculations. Panels (a) and (b) show calculations performed using cc-pVDZ and cc-pVTZ basis sets respctively.
The data for the IPs can be found in Table V.

The results for the IPs of all the studied systems are presented in Table V. Before analyzing the GW results, it
will be instructive to make some comments about our CC reference calculations. Comparison between CCSD(T) and
CCSD results (both using the cc-pVTZ basis) indicates that the inclusion of triple excitations does not substantially
modify the calculated IPs on the average: 69 meV MAE and a maximal difference of 0.22 eV for the F2 molecule.
These differences are significantly smaller than those obtained when comparing the CCSD(T) results with those of
the different GW methods. This confirms that, at least for the systems considered here, CCSD(T) is a reasonable
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choice as a reference theory.

The convergence of the results with respect to the basis set is slower as we could anticipate from our systematic
study for He and H2. Comparing CCSD(T) results calculated with cc-pVDZ and cc-pVTZ bases, we find a MAE of
0.27 eV and a maximal difference of 0.54 eV for the IP of the water molecule. These larger variations are a clear
indication of the rather slow convergence of correlation effects with respect to the basis size. The present results also
confirm the observation, made in Sec. V E for He and H2, that the IPs increase with the use of the more complete
basis, with the exception of beryllium atom whose IP is unchanged when moving from a cc-pVDZ basis to a cc-pVTZ
basis.

The observed dependence of the IP on the basis set size also agrees with the results of two recent convergence
studies of G0W0-HF IPs for light atoms as a function of the basis set size.18,27 According to these studies, G0W0-HF
calculations using a cc-pVTZ basis set already produce IPs converged within ∼0.15 eV for He and Be as compared
with calculations using much larger bases. This agrees well with our observation for He and H2 IPs of a convergence
with respect to the CBS limit within ∼0.2 eV using the TZ basis. However, for Ne, Bruneval18 has shown that this
error can grow considerably (∼0.4 eV) and it is necessary to use a much larger basis, up to cc-pV5Z, in order to
converge the results within a range of ∼0.1 eV. Another convergence study at the G0W0 level was performed by
Ren et al.71. It also shows the increase and slow convergence of the IPs of atomic and molecular systems with the
basis set size. Unfortunately, the use of aug-cc-pV6Z bases, proposed in Ref. 71 as an appropriate reference basis
set, is prohibitively expensive for the molecular study of self-consistent GW schemes presented here. Thus, following
Ke27, we use cc-pVTZ basis in our calculations. We stress here that the main purpose of the present paper is not to
provide fully converged IPs, but to study how different self-consistent GW schemes perform for several representative
molecules while keeping all other technical details identical. As shown in detail below, the cc-pVTZ basis seems to
be sufficient for this purpose. This is indicated by the fact that the qualitative and quantitative deviations of the
different GW IPs with respect to the CCSD(T) results, and among them, are rather similar with the two basis sets
used in this study (cc-pVDZ and cc-pVTZ). In any case, Table V provides a consistent comparison, using the same
basis sets and the same numerical implementation, between different schemes to include correlation.

Comparing our CCSD(T)/cc-pVTZ results with the experimental data in Table V we can find some significant
deviations. The larger deviation (0.96 eV) takes place for H2. This is probably related to the lack of corrections due
to the finite mass of nuclei and the structural relaxations in the final state in our calculations. The second largest
difference (0.78 eV) happens for CH4. Relaxations in the final state are known to play a crucial role for methane72 (the
adiabatic IP is 12.61 eV66), and this might be behind the poor comparison with the nominal experimental vertical
IP (13.60 eV66). In spite of the uncertainties about the comparison of our calculated vertical IPs with available
experimental data, the overall agreement is good and the MAE of the CCSD(T)/cc-pVTZ calculations with respect
to the experimental results in Table V is 0.19 eV, smaller than those of most of the self-consistent GW methods.

We now turn to the analysis of our GW results. Both self-consistent GW approaches, SCGW and QSGW B, give
results that are relatively close to the CC numbers obtained using the same basis. Figure 6 depicts the differences
between GW and CC IPs. We can see that the overall behavior of SCGW and QSGW IPs is quite similar. However,
QSGW tends to overestimate the IPs as compared to CC results, whereas SCGW underestimates the IP in most
cases. In the case of He and H2 such behavior is also observed for IPs calculated using more complete basis sets. The
G0W0 results starting from HF solutions are closer to those of QSGW B. Indeed the MAE with respect to CCSD(T)
results using the cc-pVTZ basis is very similar for both methods.

QSGW and SCGW deviate from CC results in different directions. However, the mean absolute value of such
deviation is quite similar in both cases. The MAEs with respect to the CCSD reference can be found in Table V:
0.21 and 0.25 eV, respectively for SCGW and QSGW B calculations using the cc-pVDZ basis, which increase to 0.22
and 0.27 eV when the larger cc-pVTZ basis is used. It is interesting to note, following our discussion Sec. V E, that
the MAE of QSGW B IPs with respect to the CCSD(T) data is slightly larger than that of SCGW . If the observed
differences were solely determined by the faster convergence of CCSD(T) results with respect to the basis set size,
we would expect the opposite behavior. Therefore, we can speculate that, for the set of sixteen molecules considered
here, it is likely that SCGW will provide better IPs (in average) than those given by QSGW B. However, coming
back to Table V, we can say that using cc-pVTZ basis sets on average QSGW and SCGW perform very similarly.
The maximal discrepancies are somewhat larger for SCGW : 0.76 eV for the Be atom using the cc-pVTZ basis, to be
compared with the 0.67 eV deviation for F2 in the case of QSGW . The G0W0-HF is on average only slightly worse
than SCGW and quite comparable to QSGW B, with a MAE of 0.28 (0.22) eV and a maximal error of 0.86 (0.77) eV
for the N2 (CO) molecule using the cc-pVTZ (cc-pVDZ) basis.

We can now compare our results with previously published data for the IPs of small molecules computed with
self-consistent GW schemes. For this purpose we will use the results obtained with the more complete cc-pVTZ
basis. Most of the existing data for molecules correspond to the SCGW method.19,22–26,43 We are only aware of three
very recent studies using the QSGW method for small molecules: one dealing with small sodium clusters up to five
atoms73, one studying small conjugated molecules27 and one for first row atoms.18
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We start with the SCGW results. Stan et al.22,23 performed all-electron SCGW calculations using large bases of
Slater orbitals. They presented results for the IPs of the same atoms that we have considered (He, Be and Ne), as
well as for H2 and LiH. In general we find good agreement with their data. Our IPs are always somewhat smaller,
although differences stay within 0.15 eV, except for Ne, for which the difference grows up to 0.39 eV. Most of the
differences are probably due to the basis set. As mentioned above, in the cases of He and H2 in which we could use
larger basis sets, our IPs extrapolated to the complete basis set limit and those reported by Stan et al. agree within
0.03 eV. The large deviation for Ne seems to indicate some particular difficulty of the cc-pVTZ basis set to describe
the IP of this element.18 The MAE, over the five species mentioned above, of our SCGW IPs with respect to those of
Stan et al. is 0.15 eV (which grows up to 0.19 eV when we compare the G0W0-HF results). Delaney et al.43 reported
an all-electron SCGW IP for Be of 8.47 eV. Our SCGW/cc-pVTZ IP for Be (8.53 eV) lies in between this value and
that given by Stan et al. (8.66 eV).

More extensive sets of molecules have been studied by Rostgaard et al.24 and Caruso et al.25. Rostgard et al.
presented data for the all-electron SCGW IPs of 34 different molecules, including all the molecules considered here
except H2. Their calculations used a double-ζ polarized basis set of augmented Wannier functions (Wannier functions
obtained from projector augmented wave calculations of the molecules, supplemented with suitably chosen numerical
atomic orbitals). Core states were taken into account in the calculation of the matrix elements of the exchange self
energy. However, the contribution of core states to the correlation self energy of valence electrons was disregarded,
since it was assumed to be small due to the large energy difference and small spatial overlap between valence and core
states. We find that the SCGW IPs in Table V are larger (except for LiF and LiH) than those reported by Rostgard
et al.. The maximal differences take place for F2 and LiF, where our calculated IPs are 0.54 eV larger and 0.67 eV
smaller, respectively. The average deviation between our SCGW results and those of Rostgard et al. (MAE=0.32 eV,
which grows up to 0.57 eV for the G0W0-HF results) is somewhat larger, although comparable, to that between
our SCGW and CCSD(T) results. This seems to indicate that numerical and methodological aspects behind each
implementation still hinder the comparison of results obtained with different codes using, formally, the same self-
consistent GW scheme. The use of different basis is probably one of the most important causes of discrepancies, as
recently pointed out by Bruneval and Marques for G0W0 calculations.33 However, part of the discrepancies might be
related to two factors: i) the use of MP2/6-31G(d) geometries by Rostgard et al., while we use CCSD(T)/cc-pVTZ
relaxed geometries and, ii) the lack of core-valence correlations in their calculations. The better agreement of our
results with the full all-electron SCGW calculations in Ref. 25 could support this last conclusion on the influence of
core-valence correlations.

Caruso et al.25 report the values of the SCGW IPs for the same set of molecules used by Rostgard et al.. Their
all-electron calculations use a basis set of numerical atomic orbitals and the resolution of the identity technique to
express the products of those orbitals. Their IPs are systematically larger than those reported here, although the
differences are relatively small, lower than 0.19 eV for all the molecules except for LiF, for which the difference grows
up to 0.46 eV. The MAE over the 12 molecules is only 0.14 eV for SCGW and 0.15 eV for G0W0-HF calculations.
Therefore, the overall agreement between our SCGW/cc-pVTZ results and those of Caruso et al. is rather good.

Now we compare our QSGW with the very scarce data available in the literature. Ke has recently studied the IPs
and electron affinities of a number of conjugated molecules using the QSGW “mode A” method.27 Ke uses a cc-pVTZ
basis, similar to that utilized here, and reports 11.31 eV and 11.44 eV for the IP of C2H2 calculated at the level of
QSGW A and G0W0-HF, respectively. This is in excellent agreement with our corresponding results of 11.43 eV and
11.54 eV and indicates that, at least for this molecule and the cc-pVTZ basis set, the calculated IP is rather stable
against the use either QSGW A or B schemes. Bruneval18 reported 24.46 (24.72), 9.11 (9.16) and 21.62 (21.79) eV,
respectively, for the IPs of He, Be and Ne calculated using the QSGW A (G0W0-HF) approach and a very complete
cc-pV5Z basis (of Cartesian kind). These values are in good agreement with our results although they are always
somewhat larger. This is due to the use of a smaller cc-pVTZ basis set in our case, as clearly demonstrated by the
excellent agreement between data calculated using the MOLGW program18 and our code when the same basis set are
used (Table IV). Furthermore, focusing on the results published by Bruneval in Ref. 18, comparing our G0W0-HF
with those reported in Figure 1 of that paper, we find that the results reported there for the cc-pVTZ basis are almost
identical to those presented here. This again indicates a very welcome consistency between both sets of calculations.

Finally, we can compare our GW vertical IPs with the experimental data in Table V. This comparison should be
taken with some caution: as commented above, the comparison might be affected by other factors different from the
ability of the GW schemes to capture electron correlations. In any case, it is interesting to obtain a quantitative
measure of the deviation. The MAE with respect to the experimental data are similar for the SCGW and QSGW B
results obtained using the cc-pVTZ basis, 0.26 and 0.35 eV, respectively. It increases to 0.5 eV for the G0W0-HF
approach. These deviations of the GW results with respect to the experiments are somewhat larger than those with
respect to the CCSD(T)/cc-pVTZ theoretical reference. They seem to confirm a very similar degree of accuracy for
the QSGW and SCGW methods, as well as their moderate improvement as compared to the G0W0-HF approach.
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VII. CONCLUSIONS AND OUTLOOK

In this article we studied two self-consistent GW approaches, the self-consistent GW (SCGW ) and the quasi-
particle self-consistent GW (QSGW ), within a single numerical framework. We explored two possible realizations of
the QSGW algorithm, the so-called “mode A” and “mode B”. A systematic study for He and H2 indicated that, for
QSGW A, the IPs do not show a monotonic convergence as a function of the basis set size. This unexpected results
was traced back to the peculiar dependence on two different reference energies of the cross-terms of the correlation
operator in QSGW A, in combination with the use of basis sets of atomic orbitals that confers the self energy a
complex and abrupt frequency dependence in the high frequency limit. Motivated by this observation, we concentrate
our study of different molecules in a comparison between standard self-consistent SCGW and QSGW “mode B” .

We focused on light atoms and small molecules as examples of finite electronic systems and performed all-electron
GW calculations for them. We have studied the density of states (or spectral function) given by both approaches and,
from a qualitative point of view and at low and moderate energies, we did not find significant differences between
both approaches. In both cases the number and intensity of satellite structures is reduced with respect to one-shot
G0W0 calculations. This is in agreement with previous observations, for example, for the homogeneous electron gas.21

We have also compared both approaches quantitatively by calculating the ionization potentials and comparing them
against coupled-cluster calculations. The comparison shows similar qualities for both self-consistent GW approaches,
which are only slightly better that one-shot G0W0 calculations starting from Hartree-Fock. Interestingly, SCGW and
QSGW calculations tend to deviate in opposite directions with respect to CCSD(T) results. SCGW systematically
produces too low IPs, while QSGW tends to overestimate the IPs. We do not have a clear explanation for this
different behavior of SCGW and QSGW . It is interesting to note, however, that the behavior observed for QSGW
here seems to be consistent with the known tendency of QSGW to overestimate the band gaps of solids.38,74 For the
small molecules considered here, G0W0-HF produces results which are surprisingly close to QSGW calculations both
for the DOS and for the numerical values of the IPs. In spite of the similarities, SCGW produces results somewhat
closer to the CCSD(T) reference.

We chose to compare our results against CCSD(T) calculations, rather than against experimental results for several
reasons. One of them is the difficulty to converge the self-consistent GW results with respect to the basis set in our
all-electron calculations. Performing converged calculations with respect to the frequency grid and size of the auxiliary
basis of dominant products proved to be computationally intensive and, therefore, we are limited to cc-pVTZ basis
sets in most cases. However, comparison between CCSD(T) and GW results obtained with both the cc-pVDZ or
cc-pVTZ bases, leads to very similar observations. Furthermore, a systematic convergence test as a function of the
basis set size performed for He and H2 indicates that our observation that QSGW tends to overestimate, while SCGW
tends to underestimate, the ionization potential of CCSD(T) is very likely to remain valid using more complete basis
sets. Regarding the observation that SCGW is marginally closer to the CCSD(T) results than QSGW , we also believe
that it will remain valid with more complete basis sets. The reason for this suspicion is the steeper increase of the
GW IPs with the basis size as compared to those calculated using CCSD(T) (that show a faster convergence). We
argue that this will tend to improve the agreement between SCGW and CCSD(T), and degrade that of QSGW , as
the basis set size increases. Another interesting point is that the exclusion of triple excitations in the CC calculations,
i. e. performing CCSD calculation, produced only minor differences for most systems. With all these ingredients, we
expect that the comparison presented here among different self-consistent GW methods, and of those with CCSD(T),
reflects the ability of these schemes to deal with the effects of correlations in small molecules.

Regarding the applicability of self-consistent GW methods: On the one hand, our results could not prove that any
of the explored self-consistent GW approaches is clearly superior to one-shot G0W0 calculations using an appropriate
starting point (e.g., Hartree-Fock and certain hybrid functionals have been shown to provide an excellent starting
point for one-shot GW calculations17,19,32,33,75,76); On the other hand, at least for the IPs of the set of atoms and
molecules considered here, the self-consistent results seems to improve, although slightly, the G0W0-HF and we did
not observe any clear signature that the self-consistent GW results were pathological. This is interesting because
there are situation where one would like to improve the one-particle DFT spectra using a charge or energy conserving
scheme. Transport calculations in molecular junctions are a clear example.37 In this context, it is also worth noting
that our calculations indicate that SCGW shows a more stable convergence pattern of the self-consistent loop. The
QSGW method can be advantageous in many applications because it generates an effective one-electron Hamiltonian
with an improved spectrum.
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