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Abstract

In this paper, we study the existence and regularity of the quasilinear parabolic

equations:
uy — div(A(z, t, Vu)) = B(u, Vu) + p

in three domains RV RY x (0,00) and a bounded domain © x (0,7) c RY*!
Here N > 2, the nonlinearity A fulfills standard growth conditions and B term is a
continuous function and p is a radon measure. Our first task is to establish the existence
results with B(u, Vu) = 4|u|?" u, for ¢ > 1. We next obtain global weighted-Lorentz,
Lorentz-Morrey and Capacitary estimates on gradient of solutions with B = 0, under
minimal conditions on the boundary of domain and on nonlinearity A. Finally, due to
these estimates, we solve the existence problems with B(u, Vu) = |Vu|? for ¢ > 1.
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1 Introduction
In this article, we study a class of quasilinear parabolic equations:
uy — div(A(z, t, Vu)) = B(z,t,u, Vu) + i (1.1)

in R¥*! or RY x (0,00) or a bounded domain Q7 := Q x (0,7) C RN *1. Where N > 2,
A:RN xR x RN — RY is a Carathéodory function which satisfies standard monotonicity
and growth conditions, B : R¥*! x R x RN — R is also a Carathéodory function and p is
a Radon measure.

The existence and regularity theory, the Wiener criterion and Harnack inequalities, Blow-
up at a finite time associated with above parabolic quasilinear operator was studied and
developed intensely over the past 50 years, one can found in [55, 42, 28, 46, 47, 23, 48,
57, 81, 73, 71]. Moreover, we also refer to [17]-[20] for LP—gradient estimates theory in
nonsmooth domains and [60] the wiener criteria for existence of large solutions in time
dependent domains.

First, we are specially interested in the existence of solutions to quasilinear parabolic
equations with absorption, source terms and data measure:

uy — div(A(z, t, Vu)) + |u|? u = p,

ug — div(A(z, t, Vu)) = |u|?'u + p (1.3)
in RN+ and
ug — div(A(z, t, Vu)) + |ul? 'y = p, uw0) =0 (1.4)
ug — div(A(z, t, Vu)) = |u| 'u 4+ p, uw(0) =0

in RY x (0, 00) or a bounded domain Q7 € RN+ where ¢ > 1 and u, o are Radon measures.

The linear case A(z,t, Vu) = Vu was studied in detail by Fujita, Brezis and Friedman,
Baras and Pierre.

For 4 = 0 and ¢ is a Dirac mass in €, the problem (1.4) in Qr (with Dirichlet boundary
condition) with admits a (unique) solution if and only if ¢ < (INV + 2)/N, see [16]. Then,
optimal results are stated in [5], for any p € My(Q2r) and o € M(£2): there exists a (unique)
solution of (1.4) in Q if and only if u,o are absolutely continuous with respect to the
capacity Cap, q o, CapGQ/q’q, (in Q7, Q) respectively, for simplicity we write u << Capy q
and o << CapGZ/qﬁq,, with ¢’ is the conjugate exponent of ¢, i.e ¢ = #. Where these two
capacities will be defined in section 2.

For source case, in [6], showed that for any u € M; (Qr) and o € M; (), the problem
(1.5) in bounded domain Qr has a (unique) nonnegative solution if

W(E) < CCapy,y o (E) and o(0) < CCapg, ,(0)

hold for every compact sets £ C RN*1 O c RN here C = C(N,diam(f2),T) is small
enough. Conversely, the existence holds then for compact subset K CC €, one find Cx > 0
such that

p(EN (K x[0,T])) < CxCapy o (E) and o(ONK) < CxCapg, (0)
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hold for every compact sets E C RV *1 O c RY. In unbounded domain RY x (0, o), Fujita
(see [28]) asserted that an inequality

up — Au > ul u >0 in RY x (0, 00), (1.6)

i. if ¢ < (N +2)/N then the only nonnegative global (in time) solution of above inequality
isu=0.

ii. if ¢ > (N + 2)/N then there exists global positive solution of above inequality.

More general, see [6], for u € M*(RY x (0,00)) and ¢ € MT(RY), (1.5) has a nonnegative
solution in RY x (0,00) (with A(z,t, Vu) = Vu) if and only if

p(E) < CCapy, o(E) and o(O) < CCapy, ,(0) (1.7)

hold for every compact sets £ C RN+, O ¢ RV, here C = C(N,q) is small enough, two
capacities Capy, ., Capy, , will be defined in section 2. Note that necessary and sufficient
a

condition for (1.7) holding with u € M* (RN x (0,00))\{0} or 0 € MT(RN)\{0} is ¢ >
(N +2)/N. In particular, (1.6) has a (global) positive solution if and only if ¢ > (N +2)/N.
It is known that conditions for data u, o in problems with absorption are softer than source.
Recently, in exponential case, i.e |u|9"1u is replaced by P(u) ~ exp(alu|?), for a > 0 and
g > 1 also established in [58].

We consider (1.4) and (1.5) in Q7 with Dirichlet boundary conditions when div(A(x, t, Vu))
is replaced by A,u := div(|Vu[P~2Vu) for p € (2 —1/N,N). In [64], showed that for any
q > p—1, (1.4) admits a (unique renormalized) solution provided o € L' () and u € M;(Q7)
is diffuse measure i.e absolutely continuous with respect to C,—capacity in {21 defined on a
compact set K C Qrp:

Co(K. Qr) = i {llgllx : ¢ > vic 0 € C2(Qr)}

where X = {¢ : ¢ € LP(0,T; Wy (Q)),0: € L (0,T; W17 (Q))} endowed with norm
llellx = |\<p||Lp(O’T;W01,p(Q)) +|eell Lo (0,7;w -1 ()) and Xk is the characteristic function of
K. An improving result is presented in [13] for measures that have good behavior in time,
it is based on results of [14] relative to the elliptic case. That is, (1.4) has a (renormalized)
solution if ¢ € L'(Q) and |u| < f+w ® F, where f € Li(Qr),F € LL((0,T)) and
w € M (Q) is absolutely continuous with respect to Capg,, ¢ in Q. Also, (1.5) has a
(renormalized) nonnegative solution if o € L (), 0 < p < w ® x(o.1) with w € M (Q)
and

w(F) < C’lCapGp,q_Z+1 (E) V compact E CRY, ||o]|p=(q) < Cs
for some C7,Cy small enough. Another improving results are also stated in [61], especially
ifg>p—14+%,p>2 p=0and o € My(Q) is absolutely continuous with respect to
Capg, o in 2 for some 0 < s < =L then (1.4) has a distribution solution.

In [61], we also obtain the existence of solution for Porous Medium equation with ab-
sorption and data measure: for ¢ > m > 1, a sufficient condition for existence solution to
the problem

wg — A(ju™ ) + [u|T'u=p in Qp, u=00on 9Qx (0,T), and u(0)=oc in Q.

is p << Capyy _a_ and o << Casz/q o+ A necessary condition is u << Capy; , and
1 ; .1,
o << Capg,,, , 2. Moreover, if i = p1 @ x[o,r] With pu € Mp(Q) and ¢ = 0 then a
m/qrg—m ’
condition p; << Capg, s is not only a sufficient but also a necessary for existence of
‘g—m

solution to above problem.
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We would like to make a brief survey of quasilinear elliptic equations with absorption,
source terms and data measure:

— Apu+ |u|T = w, (1.8)
—Apu=ul +w,u>0 (1.9)
in © with Dirichlet boundary conditions where 1 < p < N, ¢ > p — 1. In [14], we proved

that the existence solution of equation (1.8) holds if w € M;(Q) is absolutely continuous
a - Moreover, a necessary condition for existence was also showed

n [10, 11]. For problem with source term, it was solved in [66] (also see [67]). Exactly, a
sufficient condition for the equation (1.9) with w € M;" () having a (renormalized) solution
is

w(F) < CCapG ( ) V compact E ¢ RY

for some C' small enough and a necessary condltlon is: for compact subset K C 2, there is
Ck > 0 such that

wENK) <

- (E) ¥ compact E C RV,
Their construction is based upon sharp estimates of solutions of the problem
—-Apu=w inQ, u=0 ondN

for Radon measures w in ) and profound estimates on Wolff potentials.
Corresponding results in case that u9 term is changed by P(u) =~ exp(au?) for a > 0,\ > 0,
was given in [14] and [59].

In [25], Duzaar and Mingione gave a local pointwise estimate from above of solutions to
equation

—div(A(x,t, Vu)) = u (1.10)

in Qr involving the Wolff parabolic potential I5[|u|] defined by

> ul(Q,(z,1)) d

Bl = [ QDD oy (1) e RV,
0 p p

here Q,(x,t) := B,(x) x (t — p?/2,t + p?/2). Specifically if u € L2(0,T; H*(Q)) N C(Qr) is

a weak solution to above equation with data g € L?(Qr), then

2 |M| Qp(m t)) dP

(1.11)
pN p’

lu(z, )| < C 1 |u|dyds + C/
Qr(z;t)

for any Q2r(z,t) := Bagr(x) x (t — (2R)?,t) C Qr, where a constant C only depends on N
and the structure of operator A. Moreover, in this paper we also show that if u > 0,z >0
we also have local pointwise estimate from below:

o0 35 2))

Z Qrk/S y’ — 128 (112)

k

for any Q,.(y,s) C Qr, see section 5, where 7, = 47 %r

From preceding two inequalities, we obtain global pointwise estimates of solution to
(1.10). For example, if p € M(RN*Y) with Iy[|u|](zo,t0) < oo for some (zq,to) € RV F!
then there exists a distribution solution to (1.10) in RN¥+! such that

~KTy[p™](z,t) < u(x,t) < KI[uT](z,t) for ae (x,t) € RVH (1.13)
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and we emphasize that if u > 0, 4 > 0 then

u(x Z Qo x2 SN ) for a.e (x,t) € RVH!

and we also have a sharp estimate: for ¢ > 1

[ull a@n+1y = [[Te[p]]| Lo+

Where a constant K only depends on N and the structure of operator A.

Our first aim is to verify that
i. the equations (1.2) and (1.4) have solutions if i, o are absolutely continuous with respect

to the capacity Capy 1 o/, CapGQ/qu, respectively,

ii. the equations (1.3) in R¥*! and (1.5) in RY x (0,00) with data signed measure p,o
admit a solution if

|‘UJ‘(E) S C’Casz’q/(E) and |U‘(O) S CCapIg,qz(O) (114)

hold for every compact sets £ C R¥*1 O < RN. Also, the equation (1.5) in a
bounded domain Q7 has a solution if (1.14) holds where capacities Capy ; o, Capg, o

are exploited instead of Capy, ., Capy, -
It is worth mention that solutions obtained of (1.3) in R¥*! and (1.5) in RY x (0, 00) obey
/ |u|!dzdt < CCapy, ,(E) for all compact E C RN+
B
and we also have an analogous estimate for a solution of (1.5) in Qp;
/E lu|!dzdt < CCap,; ,(FE) for all compact £ C RN+

for some a constant C' > 0.
In case pu = 0, solutions (1.5) in RY x (0,00) and Qr are accepted the deday estimate

—Ct™TT < irmlfu(x,t) <supu(z,t) < Ct™ 77 for any t> 0.
x

The strategy we utilize to establish above results relies on on the combination some tech-
niques of quasilinear elliptic equations in two articles [14], [66] with the global pointwise
estimate (1.13), delicate estimates on Wolff parabolic potential and the stability theorem
see [13], Proposition 3.17 of this paper. They will be demonstrated in section 6.

We next are interested in global regularity of solution to quasilinear parabolic equations

—div(A(z,t,Vu)) =p in Qp, u=00n 902 x (0,7) and u(0)=0 in Q. (1.15)

where domain 7 and nonlinearity A are as mentioned at the beginning.
Our aim is to achieve minimal conditions on the boundary of € and on nonlinearity A
so that the following statement holds

IVullle < C[IM: [w]]]xc-

Here w = || + |o| ® dg4—0y and M} is the first order fractional Maximal parabolic potential
defined by

W(Qp(£7t)) %% (l‘,t) c RN+17

M [w](x,t) = sup VAT

p>0
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, a constant C' does not depend on u and p € My(Qr),0 € Mp(2) and K is a function
space. The same question is as above for the elliptic framework studied by N. C. Phuc in
[68],[70] and [69].

First result, K = LP*(Qr) for 1 < p < # and 0 < s < oo is obtained under a capacity
density condition on the domain Q where LP*({)r) is the Lorentz space and a constant
6 > 2 depends on the structure of this condition and of nonlinearity A. It follows the
recent result in [7], see remark 2.18. The capacity density condition is that, the complement
of Q) satisfies uniformly 2—thick, see section 2. We remark that under this condition, the
Sobolev embedding H} () C L%(Q) for N > 2 is valid and it is fulfilled by any domain
with Lipschitz boundary, or even of corkscrew type. This condition was used in two papers
[68],[70]. Also, it is essentially sharp for higher integrability results, presented in [39, Remark
3.3]. Furthermore, we also assert that if ﬁ <p<0,2<y<N+2,0<s<ocando =0
then

s(y=1)p

IVl psser-1) < Ollpll a=ve (-s
Lf: Y P(QT) L*’Y‘Y :D_’ ’Y’y (QT)

p,si(v=1)p Goe, OG22 (y-1)p
for some a constant C' where Ly~ (Qr), L. ™ v (Qr) are the Lorentz-

Morrey spaces involving ”calorie” introduced in section 2.

Next, in order to verify better result, L = L%*(Qr, dw), the Lorentz spaces with weighted
w € Ay for ¢ > 1, 0 < s < s (no restriction of power ¢), we need stricter conditions on the
domain € and nonlinearity A. A condition on {2 is flat enough in the sense of Reifenberg,
essentially, that at boundary point and every scale the boundary of domain is between two
hyperplanes at both sides (inside and outside) of domain by a distance which depends on
the scale. A condition on A is that BMO type of A with respect to the x—variable is small
enough and the derivative of A(x,t, () with respect to ¢ is uniformly bounded. By choosing
an appropriate weight we can establish the following important estimates:

a. The Lorentz-Morrey estimates involving ”calorie” for 0 < k < N + 2 is obtained
IVulllpg-==(9p) < ClMu[lwl]|

b. Another Lorentz-Morrey estimates is also obtained for 0 < 9 < N
IM(IVul)ll a0 0y < CHMa[|w[]|] o0

LZ’S':N(QT).

(Qr (Qr)’

where L% (Qr) is introduced in section 2. This estimate implies global Holder-estimate in
space variable and L?—estimate in time, that is for all ball B, C RN

T q
(/ |oschﬂQu(t)th> < C’pl_%|\M1[|w|]||Lz;:9(QT) provided 0 < ¥ < min{gq, N}.
0

In particular, there hold

1
T q
(/ |oscBmu<t>|th) < Clloll gy + CllAL o
0

727" (Q L@FEFon -2’ (191 ((0,T)))
provided

1<‘]1§Q<27

2 — 1 2
max{q7<2+q—q)}<19§N.
g—1q—-1 «

Where L7¥5=7 (Q) is the standard Morrey space and

== a2

9 —N T a1
il oo ozo oy = SUp o / (/ u(y,t)‘“dt> dy
p>0,2€Q B,(z)NQ 0
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with go = Besides, we also find

Yqq1
(9+2+9)q1—2q "

T 7
osc, ~su(t)|4dt <C ag
</0 055, ct(t) > - HM”mHﬂﬂwﬂm,m((o,T)>>

provided

0=0, ¢>22,1<q <gq,

1 2
(2+q—q> <9 <N.
q—1

c. A global capacitary estimate is also given

sup (fK quda:dt) <c sup ( |W|(K)K))q-

compact KCRNT1 Capgl .q’ (K) compact KCRV*? Capgl ,q (
Capg, o (K)>0 Capg, 4 (K)>0

To obtain this estimate we employ profound techniques in nonlinear potential theory, see
section 4 and Theorem 2.22.

We utilize some ideas (in the quasilinear elliptic framework) in articles of N.C. Phuc [68],
[70] and [69] during we establish above estimates.

We would like to emphasize that above estimates is also true for solutions to equation
(1.15) in R¥*! with data p (of course still true for (1.15) in RY x (0,00)) with data u
provided Iy |u|] (2o, to) < oo for some (zq,ts) € RVF! see Theorem 2.25 and 2.27. Moreover,
a global pointwise estimates of gradient of solutions is obtained when A is independent of
space variable x, that is

\Vau(z,t)| < CTi[|p|](z,t)  ae (z,t) € RVNTL

see Theorem 2.5.

Our final aim is to obtain existence results for the quasilinear Riccati type parabolic
problems (1.1) where B(x,t,u, Vu) = |Vul? for ¢ > 1. The strategy we use in order to
prove these existence results is that using Schauder Fixed Point Theorem and all above
estimates and the stability theorem see [13], Proposition 3.17 in section 3. They will be
implemented in section 9. By our methods in the paper, we can treat general equations
(1.1), where

|B(z,t,u, Vu)| < Chlu|®™ + Ca|Vul®, q1,¢2 > 1,

with constant coefficients Cy,Cy > 0.
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2 Main Results

Throughout the paper, we assume that  is a bounded open subset of RN, N > 2 and
T > 0. Besides, we always denote Q7 = Q x (0,7), Tp = diam(Q) + 7%/? and Q,(z,t) =
B,(z) x (t — p*,t) Qu(z,t) = By(x) x (t — p?/2,t + p?/2) for (z,t) € R¥F! and p > 0.
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This article is divided into three parts. First part, we study the existence problems for the
quasilinear parabolic equations with absorption and source terms

uy — div(A(z, t, Vu)) + [u|? " u = p in Qr,

u=0 on 90 x (0,7), (2.1)
u(0) =0 in Q,

and
up — div(A(z,t, Vu)) = |u|9 v + p in Qr,
u=0 on 90 x (0,T), (2.2)
u(0) =0 in Q,

Where ¢ > 1, A: RN x R x RY — RY is a Caratheodory vector valued function, i.e. A is
measurable in (z,t) and continuous with respect to Vu for each fixed (z,t) and satisfies

[ Az, 2, O) < As[¢| and (23)
(A(z,1,0) = A, 1), = A) = Aal¢ — AJ?

for every (\,¢) € RY x RY and a.e. (x,t) € RN x R, here A; and A, are positive constants.
Throughout this article, we always assume that A satisfies (2.3) and (2.4).

In order to state our results, let us introduce some definitions and notations. If D is
either a bounded domain or whole R for I € N, we denote by M(D) (resp My(D)) the set
of Radon measure (resp. bounded Radon measures) in D. Their positive cones are M™(D)
and M; (D) respectively. For R € (0,0c], we define the R—truncated Riesz parabolic
potential I, and Fractional Maximal parabolic potential M, 0 < av < N + 2, on RN+ of a
measure p € RVF! by

R ) €T ) T
R = e = Y

for all (z,t) in R¥+1. If R = oo, we drop it in expressions of (2.5).
We denote by H,, the Heat kernel of order a € (0, N + 2):

_ o~ X000 (®) Eds N
Ha(x,t)—camexp —? for (.’I}Jf) in R 5

and G, the parabolic Bessel kernel of order o > 0:

L X(0,00) (1) L, =P N+
Go(z,t) = Cyq T(N+2-a)/2 &P t ym for (x,t) in R,

see [4], where C,, = ((47T)N/2F(a/2))71. It is known that F(H,)(z,t) = (Jz|?> +it)~*/? and
F(Go)(z,t) = (14 |z|> +it)~*/2. We define the parabolic Riesz potential H,, of a measure
p € MH(RNT) by

Ha[,u](x,t) = HOt * ,LL(J?,t) = HCX(‘T - yat - S)dp’(ya S) for (xat) in RN+13

RN+1

the parabolic Bessel potential G, of a measure u € M*(RN*1) by

Galt](x,t) = Go * pu(z,t) = / Go(x —y,t — s)du(y,s) for (z,t) in RVTL

RN+1

We also define I, G,,0 < a < N the Riesz, Bessel potential of a measure y € MT(RY) by

Lo [u](x) = /000 ;L(/)B]\;,_((:z))cll;) and Gg[u)(z) = o Go(z —y)du(y) for all z in RY.
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where G,, is the Bessel kernel of order «, see [2].
Several different capacities will be used over the paper. For 1 < p < oo, the (H4, p)-capacity,
(Ga, p)-capacity of Borel set E C RN+ are defined by

Capr, o) =int{ [ 117 € LRV, Half] > x5} and
Capg, p(E) =int{ [ 11+ € LERY*),Galf] > e}
The Wg’l—capacity of compact set £ C RV is defined by
Capg’l,p(E) = inf{||g0\|€v§,1(RN+l) tp € S(RNH), © > 1 in a neighborhood of E},

where

dyp

0%
lellwzi@niny = o7 lee@yeny + VOl o@ny + D 5 lr@y+1y-
' ot i,j=1,2,....N 9z;0x;

We would like to remark that thanks to Richard J. Bagby’s result (see [4]) we obtain the
equivalent of capacities Cap, ; , and Capg, ,, i.e for any compact set K C RN+ there holds

Cilcapzl,p(K) S Capgz,p(K) S CC&pQ,l,p(K)

for some C = C(N,p), see Corollary (4.18) in section 4.
The (I, p)-capacity, (G, p)-capacity of Borel set O C RY are defined by

Capy, ,(0) = inf{ | |gP g€ LL(R).Llg] = xo} and
RN

Capa, ,(0) =inf{ [ 1ol +9 € LE(RY). Gals] = xo).

In our first three Theorems, we present global point wise potential estimates on solutions to
quasilinear parabolic problems

uy — div (A(z, t, Vu)) = p in Qr,

u=0 on 00 x (0,T), (2.6)
u(0) =0 in Q,
and
ug — div (A(x,t, Vu)) = pin RY x (0, 00), 2.7)
u(0) =0 in RY, '
and
uy — div (A(z,t,Vu)) = p in RVHL (2.8)

Theorem 2.1 There exists a constant K depending N, A1, Ay such that for any p € My(Qr),0 €
My(Q) there is a distribution solution u of (2.6) satisfying for a.e (x,t) € Qp

~KI° 1™ + 0~ @ dmoy) (2, ) < u(z,t) < KU + 0 @ dp—oy] (2, t). (2.9)

Remark 2.2 Since sup,cpn Lo[oF @ §—0y](2,t) < Ui(Q)NM,Q for any t # 0 with
(N+2-a)(2t) 2
0<a< N—+2. Thus, if u =0, then we obtain the decay estimate:

Ko~ (Q Kot (Q
—07(1\]) < inf u(x,t) < supu(z,t) < 07(1\,) forany 0<t<T.
N(2t)z — =€Q e N(2t)=z
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Theorem 2.3 There exists a constant C' depending N, A1, Ao such that for any p € M;(QT), o€
M (), there is a distribution solution u of (2.6) satisfying for a.e (y,s) € Qp and
By (y) c Q

oo 35 .2 00 35 ,.2
T 39 T 198 ®(5 = r »2 T 128
uly,s) > CZ wQ k/S(yT; 128Tk)) —i—C}: (o {t 0})(@:}(78((@ S 128Tk)> (2.10)
k=0 k k=0 k

where r, = 4 Fr.

Remark 2.4 The Theorem 2.3 is also true when we replace the assumption 2.4 by a weaker
one

(A(x,t,(),() > A2|C|27 <A(x,t,§) - A(x7tv)‘)vc - )‘> >0
for every (A, () € RN x RN, A # ¢ and a.e. (z,t) € RN x R.

Theorem 2.5 Let K be the constant in Theorem 2.1. Letw € M(RNT1) such that Iz[|w|](xo, to) <
oo for some (zo,tp) € RNFL. Then, there is a distribution solution u to (2.8) with data = w
satisfying

—KLw™] < u < Klp[w"] in RVNF! (2.11)

such that the following statements hold.
a. Ifw >0, there exists C; = C1(N, Ay, As) such that for a.e (x,t) € RN*!

= w(Q272k73 (.73, t— 35 X 2_4k_7))
u(a,t) >Cr S aNE (2.12)
k=—o00
In particular, for any q > %
Cy MWl Lo@n 1y < [ull Loen 1) < Col[Ha[w]l| Loy (2.13)

with CQ = CQ(N,Al,AQ).

b. If A is independent of space variable x and satisfies (2.29), then there exists Cy =
Co(N, A1, As) such that

|Vu| < Coly[jw]] in RN T, (2.14)

c. Ifw = p+0®u—gy with p € MR x (0,00)) and ¢ € M(RY), then u = 0 in
RN x (—00,0) and Ulgn [0,00) 15 @ distribution solution to (2.7).

Remark 2.6 For q > %, we alway have the following claim:
1Mol +w @ dp—oplllLe@r+ry = [[Halpll[ L@y + T2/qlo]ll Lo @)
for every p € MH(RY x (0,00)) and o0 € MF(RY).

Remark 2.7 For w € MT(RV*1Y) 0 < a < N + 2 if [,[w](z0,t0) < o0 for some (xo,t0) €

RNFL then for any 0 < B < a, Iglw] € L3, (RN for any 0 < s < NJX;EW However, for

0< B <a<N+2, one can find w € MH(RNT1) such that 1,[w] = 0o and Ig[w] < oo in
RN*L see Appendiz section.

The next four theorems provide the existence of solutions to quasilinear parabolic equations

with absorption and source terms. For convenience, we always denote by ¢’ the conjugate
exponent of ¢ € (1,00) i.e ¢ = ﬁ.

10
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Theorem 2.8 Let ¢ > 1, u € My(Qr) and 0 € Mp(2). Suppose that p,o are absolutely
continuous with respect to the capacities Capy; o, Capg, o tn S, respectively. Then

there exists a distribution solution u of (2.1) satisfying
—KHQ[M_ +o0o ® (5{,5:0}] <u< K]Ig[/f_ +oT® 5{t:0}} in Qr.
Here the constant K is in Theorem 2.1.

Theorem 2.9 Let K be the constant in Theorem 2.1. Let ¢ > 1, p € Myp(Qr) and o €
My(Q). There exists a constant Cy = C1(N, q, A1, Ag, diam(Q),T) such that if

lul(E) < C1Capy y o (E) and |o](0) < CyCapg, ,(0). (2.15)
hold for every compact sets E C RNTL O C RN, then the problem (2.2) has a distribution
solution u satisfying

Kq
qg—1

K
Iofpu™ + 0~ @dp=0y] <u< ﬁk Wt +o0T ®dp—gy] in Qr. (2.16)

Besides, for every compact set E C RN*! there holds
/ lu|dxdt < CyCapy 4 o (E) (2.17)
E
where 02 = CQ(N,q,Al,AQ,T()),

Remark 2.10 From (2.17) we get if ¢ > %,
/ |u|9dadt < CpNt220 for any Qp(y,s) c RN+
Qp(y:s)
if g =2%2,
/Q ) |u|?dzdt < C (log(l/p))qull for any Qp(y, s)CRNTL 0 < p<1/2
p(y,s

for some C = C(N,q,A1,A2,T0), see Remark 4.14.

Remark 2.11 In the sub-critical case 1 < q < %, since the capacity Capy 1 o, Capg , o

q
of a single are positive thus the condition (2.15) holds for some constant C; > 0 provided
1€ My(Qr),0 € My(Q). Moreover, in the super-critical case ¢ > 2, we have

C’apz’l’q,(E) > cﬂE\lﬂ%ﬂ and Caszyq/(O) > 02|O\17(7—21)N
q

N+2 (a—1H)N

for every Borel sets E C RN*1 O c RN, thus if u € L2 "°(Qp) and 0 € L™ 2 °(Q)
then (2.15) holds for some constant Cy > 0. In addition, if u = 0, then (2.16) implies for
any 0 <t < T,

—c;;(TO)t_q%l < inf u(z,t) < supu(z,t) < 03(T0)t_qf11,
z€Q zeQ

since |o|(B,(z)) < C4(T0)pN7‘12j for all 0 < p < 2T5.

11
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Theorem 2.12 Let K be the constant in Theorem 2.1 and ¢ > 1. If w € M(RN*1) is
absolutely continuous with respect to the capacities Capy o in RN+ then there exists a

distribution solution u € L7 (R; WLT(RN)) for any 1 <~ < qi_—ql to problem

loc loc
uy — div (A(z,t, Vu)) + |u|? u = w in RN (2.18)
which satisfies
~KTh[w™] <u < KI[w*] in RN L (2.19)

Furthermore, when w = p+ 0 @ dyy—gy with p € M(RY x (0,00)), 0 € M(RY) then u =0
in RN x (—00,0) and Ulgn [0,00) 18 @ distribution solution to problem

T q—1, ; N
{ut div (A(z,t, Vu)) + [ul*™ u = pin RY x (0, 00) (2.20)

uw(0) =0 in RN,

Remark 2.13 The measure w = p+ 0 ® dy4—0y s absolutely continuous with respect to the
capacities Capy 1 o in RNFL if and only if i, 0 are absolutely continuous with respect to the
capacities Capy 1 4, Capg, o N RN+L RN respectively.

q

Existence result on R¥*! or on RY x (0,00) is similar to Theorem 2.9 presented in the
following Theorem, where the capacities Cap,,, ./, Capy, . are used in place of respectively
a
Cap2717q/ y CapGLq/.
q

Theorem 2.14 Let K be the constant in Theorem 2.1 and ¢ > 22, w € M(RNT1). There
exists a constant C; = C1(N, q, A1, A2) such that if

lw|(E) < CyCapy,, ,(E) (2.21)
for every compact set E C RN+ then the problem
uy — div (A(z, t, V) = |u|T u +w in RN (2.22)

has a distribution solution u € L;’OC

(R; W2V (RN)Y) for any 1 < < % satisfying

loc

Kq
q—1

Kq
q—1

Iyjwt] in RNFL (2.23)

Lw ] <u<

Moreover, when w = p+ 0 ® dg—gy with € M(RYN x (0,00)), 0 € M(RYN) then u =0 in
RY x (—00,0) and Ulgn 0,00y 5 @ distribution solution to problem

ug — div (A(x,t, Vu)) = [ul7Tu + p in RY x (0, 00), (2.24)
u(0) =0 in RV, '
In addition, for any compact set E C RN+ there holds
/ |u|dxdt < CyCapy,, ,(E) (2.25)
E

for some Cy = Co(N,q, A1, As).
Remark 2.15 The measure w = pi + 0 ® 04—y satisfies (2.21) if and only if

\u|(E) < CCapy, (E) and |o|(0) < CCapy, ,(0).

for every compact sets E C RN+ and O C RY, where C = C3Cy, C3 = C3(N, q).

12
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Remark 2.16 Ifw € L%’W(RN‘H) then (2.21) holds for some constant C1 > 0. More-
over, if w =0 ® dyy—gy with o € My(RYN), then from (2.23) we get the decay estimate:

—eitTTT < inf u(z,t) < sup u(x,t) < ct™TT for any t> 0,
z€RN zERN

since |o|(B,(z)) < CQpN_q%l for any B,(z) C RV,

Second part, we establish global regularity in weighted-Lorentz and Lorentz-Morrey on
gradient of solutions to problem (2.6). For this purpose, an additional condition need to be
imposed on the domain 2. We say that the complement of () satisfies uniformly p—thick
with constants co, o if for all 0 < t < ry and all z € RV\Q there holds

Capp(m N (RNV\Q), By (x)) > coCapp(m, By (x)) (2.26)

where the involved capacity of a compact set K C Bo;(z) is given as follows

Cap, (K, Bat(z)) = inf{ o VolPdy : ¢ € O (Bar()), ¢ > Xk }- (2.27)
Bgt xT

In order to obtain better regularity we need a stricter condition on 2 which is expressed
in the following way. Given § € (0,1) and Ry > 0, we say that Q is a (J, Ryp)— Reifenberg
flat domain if for every z € 9Q and every r € (0, Ry], there exists a system of coordinates
{y1,Y2, .-, Yn}, which may depend on r and z, so that in this coordinate system z = 0 and

that
B,.(0) Nn{y, > dr} € B.(0)NQ C B-(0) N {y, > —dr}. (2.28)

We remark that Reifenberg the class of flat domains is rather wide since this class in-
cludes C!, Lipschitz domains with sufficiently small Lipschitz constants and fractal domains.
Besides, Reifenberg flat domains have many important roles in the theory of minimal sur-
faces and free boundary problems, this class was first appeared in a work of Reifenberg (
see [72]) in the context of a Plateau problem. Their properties can be found in [35, 36, 76].

On the other hand, it is well known that in general, conditions (2.3) and (2.4) on the
nonlinearity A(z,t,() are not enough to ensure higher integral of gradient of solutions to
problem (2.6), we need to assume that A satisfies

(Ac(z, t, ONA) > Ao A%, [Ac(2,t, Q)| < Ay (2.29)

for every (\,¢) € RY x RVM\{(0,0)} and a.e (z,t) € RY x R, where Aj, Ay are constants
in (2.3) and (2.4). We also require that the nonlinearity A satisfies a smallness condition
of BMO type in the z-variable. We say that A(x,t,() satisfies a (4, Ry)-BMO condition for
some 6, Ry > 0 with exponent s > 0 if

[A]f = sup (]{2 ( )(@(AvBr(y))(I,t))sdIdt> <9

(y,8)ERN XR,0<r<Rgo

where

@(A7 Br(y))(x,t) — sup ‘A(I7t7 C) - AB,(y) (t7 <)|
CERN\{0} 1q

with Ap_(y)(t,¢) denoting the average of A(t,.,¢) over the cylinder B, (y), i.e,

_ 1
Ap, ()&, C) = ][ Az, t,()de = ——— A(z, t, ¢)dz.
v B, (v) 1Br W)l /5, )
The above condition was appeared in [19]. Tt is easily seen that the (§, Ro)—BMO
condition on A is satisfied when A is continuous or has small jump discontinuities with
respect to (x,t).

13
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In this paper, we denote M the Hardy-Littlewood maximal function defined for each
locally integrable f in RN+! by

M) =sup f (g o)ldyds Viat) € RV

p>0JQ,(z,t)

We verify that M is bounded operator from L*(RN*!) to L1>°(RN+1) and L*(RV*1)
(L (RN*1)) to itself, see [74, 75)].

We recall that a positive function w € LL _(RV*1) is called an Ao, if there are two
positive constants C' and v such that

|E]
Q|

for every cylinder ) = Qp(x, t) and every measurable subsets E of ). The pair (C,v) is
called the A, constant of w and is denoted by [w]a_, .

For a weight function w € A, the weighted Lorentz spaces L?*(D, dw) with 0 < ¢ < o0,
0 < s < oo and a Borel set D C RV*1 is the set of measurable functions g on D such that

wp <o (1) we

o . 1/s
19l]z02 (D) = (q/O (p'w ({(z,t) € D : |g(z, B)] > p}))i d;) <o

if s < o0

1/q

||g||Lq*°°(D,dw) ‘= sup pw ({(xat) eD: |g(Ivt)| > p}) < o0

p>0

if s = co. Here we write w(E) = [, dw(z,t) = [, w(x,t)drdt for a measurable set E C
RN*L Obviously, ||gza.a(p,aw) = ||9]|La(D,dw), thus we have L%9(D, dw) = L9(D, dw). As
usual, when w = 1 we simply write L?*(D) instead of L2*(D, dw).

We are now ready to state the next results of the paper.

Theorem 2.17 Let p € My(Qr), 0 € My(Q), set w = |u| + |o| ® dy4—oy. There exists
a distribution solution of (2.6) with data p and o such that if RN\Q satisfies uniformly
2—thick with constants cq, 1o then for any 1 < p <@ and 0 < s < o0,

IM(IVul)l|zes (@) < CrlMuw]][Lro2 (@) (2.30)
Here 6 = 0(N,A1,A17CO) > 2 and Cl = Cl(N, Al,AQ,p, S,Co,To/T’Q) andQ = Bdmm(g)(.’ﬂo)x
(O,T) which Q C Bdiam(ﬂ) (LL'())
Especially, if 1 <p < 2, then
MUYz < Co (G allzrnen + G2 lolllsmm) . (23D
where Cy = C3(N, A1, A2, p, co, To/70).

Remark 2.18 If %—ﬁ < p < 2, there hold

Ga ey < Callull gesgey  and |G 1 llolllney < Culloll, o

for some Cy = C1(N,p). From (2.31) we obtain

<p<2

N +2
< . ;
IVulllriar) < Callul ey +Cololl e - provided 55

We should mention that if o =0, then

|[Mi [w][o.s mr+1y < Col|pl] qviz
LNF270 " (Qr)

and we get [7, Theorem 1.2] from estimate (2.30).

14



NGUYEN QUOC HUNG

In order to state the next results, we need to introduce a Lorentz-Morrey spaces LZ’S;Q(D)
involving ”calorie”, with Borel set D C RV*1 is the set of measurable functions g on D
such that

K—N-—2

LL%%(D = sup P q Hg” e < 0,
@) 0<p<diam(D),(z,t)€D La#(Qp(z,t)ND)

gl

where 0 <k < N+2,0< g < 00,0 <s<oo. Clearly, LZ’S;NH(D) = L%%(D). Moreover,
when ¢ = s the space LY%’(D) will be denoted by L% (D).
The following theorem provides an estimate on gradient in Lorentz-Morrey spaces.

Theorem 2.19 Let p € My(Qr), 0 € My(Q), set w = |p| + |o| ® dy4—0y. There exists
a distribution solution of (2.6) with data p and o such that if RN\Q satisfies uniformly
2—thick with constants co,ro then for any 1 <p <@ and 0 <s<00,2—79 <7< N +2,
v < N+2 + 1

= p

||M (|VU|) HLQ*S?P("’*U(QT) S ClHM'y[W]HLOO(QT)

p(y=1)=N=-2
+C s (R MG el e @) (2:32)
0<R<To (yo,50)€r Qr(¥0,50) L?-(Qr(y0,50))

Here 0 is in Theorem 2.17, vo = vo(N, A1, A1, ¢0) € (0,1/2] and Cy = C1(N, A1, A2, p, 8,7, o, To/T0),
Cy = C5(N,A1,A2,p,8,7,¢0). Besides, if 2= <p<0,2—y%<y<N+2,0<s<00and

—1
(ﬂ/*l)p)(’vfl)s;(,yfl)p !
weL,” 7 (Qr), 0 =0, then u is a unique renormalized solution satisfied

M (|V si(y— < C. _ —1)s 2.33
IM(IVul) | o000 < 3||M||L*<w+w‘%:wnpmﬂ (2.33)

where Cg = C3(N, A1, Az, p, s,7,co,To/70)-

Theorem 2.20 Suppose that A satisfies (2.29). Let p € My(Qdr), 0 € Mp(Q2), set w = |u|+
lo| ® dg¢—oy. There exists a distribution solution of (2.6) with data p,o such that following
holds. For any w € A, 1 < g < 00, 0 < s <00 one findd =06(N,A1,Ao,q,8,[wja,) €
(0,1) and sg = so(N,A1,As) > 0 such that if Q is (6, Ro)-Reifenberg flat domain  and
[A]fo < § for some Ry then

[IM(IVul)||Las (@7,aw) < ClIM1[W]|[Las (07 dw) (2.34)
Here C depends on N, A1,Az,q,s,[w]a,, and To/Ro.

Next results are actually consequences of Theorem 2.20. For our purpose, we introduce
another Lorentz-Morrey spaces spaces LZf;G(Ol x O3), is the set of measurable functions g
on 07 x Oy such that

DN
1911220 0, x0,) = Sup p 7 [19llLas (B, (@)n01) x00)) < 00

0<p<diam(01),z€01

where O1, O are Borel sets in RV and R respectively, 0 < 9 < N, 0 < ¢ < 00, 0 < 5 < 00.
Obviously, LL5N (D) = L9%(D). For simplicity of notation, we write L%’ (D) instead of
LZf;ﬁ(D) when ¢ = s. Moreover,

9l Lo (0, x00) = IIGllLaw01)

where G(z) = ||g(,.)||ra(0,) and L%?(Oy) is the usual Morrey space, i.e the spaces of all
measurable functions f on O; with

Y—N
1 La 0y) = sup P fllLas, @noy) < o0
0<p<diam(O1),2€0,

15
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Theorem 2.21 Suppose that A satisfies (2.29). Let pn € Mp(Qr), 0 € Mp(Q), set w =
|| + |o] ® dgi—0y. Let so be in Theorem 2.20. There exists a distribution solution of (2.6)
with data p, o such that following holds.

a. Forany1<g<oo,0<s<o0and0<k<N+2onefindd=05§N,A1,Asq, s kK)E
(0,1) such that if Q is (6, Ro)-Reifenberg flat domain Q and [A]fe < § for some Rg
then

IIM(IVuDllpes= @) < Cil My [[w]]|[ 2= (o) (2.35)

Here Cy depend on N,A1,A2,q,s,k and Ty/Ry.

b. Forany1<¢<o0,0<s<o0 and 0 <9 <N one findd =06(N,A1,Aq,q,5,9) € (0,1)
such that if Q is (8, Ro)-Reifenberg flat domain Q and [A]fo < § for some Ry then

[IM([Vul)|

) < Cof My [jw]]] (2.36)

LL5(Qr LLS (Qr)

for some Cy = Co(N,A1,A2,q,5,9,Ty/Ro). FEspecially, when ¢ = s and 0 < 9 <
min{N, g}, there holds for any ball B, C RY

T q
_9
</Q |oschszthth> < Cop" H M)l v (2.37)

for some C3 = C5(N, A1, Ao, q,9,To/Ry).
The following global capacitary estimates on gradient.

Theorem 2.22 Suppose that A satisfies (2.29). Let pn € My(Qr), 0 € Mp(Q), set w =
|p|+|o|®@0gi—oy. Let sg be in Theorem 2.20. There exists a distribution solution of (2.6) with
data p, o such that following holds. For any 1 < ¢ < oo, we find § = §(N, A1, A2, q) € (0,1)
and so = So(N, A1, A2) > 0 such that if Q is a (J, Ro)- Reifenberg flat domain and [.A]?;U <9
for some Ry then

Vu|tdad . .
. <meT| | t>§01 . ((I()K)) (2.38)

compact KcRN+L Capghq/ (K) compact KCRN+! Capgl,q/(
Capg, o (K)>0 Capg, 4 (K)>0
and if ¢ > {43,
|Vu|tdzdt (K q
sup fKﬁQT < 02 sup <()) . (2.39)
compact KCRNT! Cale»Q' (K) compact KCRN 1 Cale,Q/(K)
Capyy, o (K)>0 Capyy, o (K)>0

Where Cy = C1(N, A1, A2,q,To/Ro, To) and Cy = C2(N, A1, A2, q,To/Ro).

Remark 2.23 We have if 1 < q < 2, then

s Cw®%4mm>< . ( () )

compact KCRN ! Capglyq/ (K) - compact OCRYN Casz/qflvq/ (0)
Capg, o (K)>0 Casz/q_1=‘1/(O)>O

<C sup <(|U|®5{t—o})(K))

B compact KCRN*?! Capghq/ (K)

Capg, o (K)>0

for C =C(N,q), if %—ﬁ < q <2, then above estimate is true when two capacities Capg, .,

’C“sz/q,l,q/ are replaced by Capy, ,C’aplz/qil,qz respectively, see remark 4.34.
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Remark 2.24 Above results also hold when [A]Fo is replaced by {A}Fo:

S

s

{A} o .= sup <]€2 ( )(@(A, Q- (y,9))(z,1))° d:z:dt) )

(y,5)ERN xR,0<r<Rq

where

O(4,Q,(y,5))(z,t) ;== sup |A(z,t,¢) — Ag, (4,5 (C)]
CERN\{0} I¢]

with ZQT(%S)(Q denoting the average of A(.,.,() over the cylinder Q,(y,s), i.e,

1
AQ,(y,5)(C) = ][ Az, t,Q)dadt = ———— Az, t, ) dadt.
) Q.09 OO

Next results are corresponding estimates of gradient for domain RY x (0, 00) or whole RV *1,

Theorem 2.25 Let 6 € (2, N + 2) be in Theorem 2.17 and w € M(RN*L). There exists a
distribution solution u of (2.8) with data p = w such that the following statements hold

a. Forany%—ﬁ<p<0and0<s§oo,

[VulllLo.s @n+1y < Crl[Ma[|w|]]|Lpos vy (2.40)
for some Cy = C1(N, A1, Aa,p, 8).

b. For(my%—ﬁ<p<9(md0<s§oo,2—’yo<7<N—|—2 andvg%—&—l

‘HVU‘ | ‘Liz,sm(wfﬂ(RNJrg < OQ' |M’Y[|w|]||L"°(RN+1)

p(y=1)—N-2
+C su (R » M x5 w (5 ) 241
? R0, s0)RN M DG wosso) o @nianson ) - (241

(y=p (v=1)s,

) (v =1)p .
Also, ifwe L, 7 (RNFYY with p > 17 then

IVl -mgvany < Collll o oo, (2.42)

(RN+1)
for some yo = v0(N, A1, As) € (0, 3] and C; = C;(N, Ay, Ay, p,5,7), i =2,3.
c. The statement ¢ in Theorem 2.5 is true.

Remark 2.26 Let s > 1. For w € MH (RN T [w] € LSRN+ implies Iy[|w|] < oo
a.e in RN*L if and only if s < N + 2.

Theorem 2.27 Suppose that A satisfies (2.29). Let sg be in Theorem 2.20. Let w €
MRV with Ta[|w|](z0,t0) < oo for some (xq,to) € RNFL. There exists a distribution
solution of (2.8) with data p = w such that following statements hold,

a. For any w € A, 1 < g <00, 0< s <00 one findd =086N,A,Aq,s,[wa.) € (0,1)
such that if [A]3S < § then

IVulllLas @yt awy < CrlMu[|wl]]|pas @N+1,duw) (2.43)

Here Cy depends on N, A1, Ao, q, s, [w]a,.

b. For any %—ﬁ <g<o00,0<s<o0and0 <k < N+2onefindd=0(N,A1,Ns2,q,8,K) €
(0,1) such that if [A]30 < 6 then

IVl g @very < Col M [Jwl]] g @1y (2.44)

Here Cy depends on N,A1,As,q, s, k.
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c. For any %12<q<oo 0<s<ooand0< ¥ <N one find 6 =§(N,A,A2,q,s,9) €
(0,1) such that if [A]30 < 6 then

Ny S C3HM1[|W|]||LQ S0 (RN+1Y (2.45)

Here C3 depends on N, A1, As,q,s,9. Especially, when ¢ = s and 0 < ¥ < min{N, ¢},
there holds for any ball B, C RV

1

</R|oschu(t)|th) < C4p1_%|\M1[|w|]||Lz:9(RN+1). (2.46)

for some Cy = C4(N, A1, Az, q,9).

d. For any %ﬁ < q < o0, one find d = (N, A1, Az, q) € (0,1) such that if [A]3S <& then

sup (WWW><C5 sup ('“'(K)K)) (2.47)

compact KRN T Cap?-h,q’ (K) compact KCRNT?! Cap?-lhq/(
Capyy, o (K)>0 Capyy, o (K)>0

for some Cs = C5(N, A1, A2, q).
e. The statement c in Theorem 2.5 is true.
The following some estimate for norms of M [w] in LI*(RN+1) and LEY (RN+1)

Proposition 2.28 Let 1 < k < N+2, 0 <9 < N and q,q1 > 1. Suppose that p €
MERNTY). Then My [u] < 2V 214 [u] and

a. If ¢ > =5 then

T [l s rvny < Chl|al| (2.48)

L‘””” (RN+1)'
Here Cy depends on N, q, k
b. If1<q <2 then
[Ty (] (z, )| Loy < Ig—l[ﬂl](ﬂf) (2.49)

where p11 s a nonnegative radon measure in RY defined by p1(A) = p(AxR) for every
Borel set A C RN. In particular,

B[l vy < 1Ty [ oy (2.50)

. 2
and if ¢ > qu’ there holds

[Talp]l] pao vy < CgllulllLHozqfq;ﬁ(RN) (2.51)
for some Cy = Co(N, q,0).
C. Ifq+2 < q1 < q then
1Lk (s M pagry < L2402 [u2](2) (2.52)
where du(z) = ||pu(z, .)||pa wydz. In particular,
Gl oveny < WMz 2 [l e (253)
and if 9 > (2 +q— —) there holds
bl sy < Collll om0 = Ol o
(2.54)

for some C3 = C5(N, q,9).
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The proof of Proposition 2.28 will performed at the end of section 8.

Remark 2.29 Let 1 < ¢ <2,0< 9 < N and 0 € MRY). From (2.50) and (2.51) in
Proposition 2.28 we assert that

M{lo| @ dge=oy]llLae @a+ry < [Tz flof]l] Lo mry

and

T [lo] @ dgi=o3]|

. 2—q
LZLﬁ(RN“) S Cl||o'||L19+02qfq;ﬁ(RN) Zf’lg > q—il

for some Cy = C1(N, q,9).
Furthermore, from preceding inequality and (2.54) in Proposition 2.28 we can state that

o] @ gemoy + |l a0 vssy < Collol] oy

LoF2=q" (RN)

+Collull oen
L @+2+a)a1 =24’ (RN, L 91 (R))

provided

1<QISq<2a

2 — 1 2
max{q,(2+qq>}<ﬂ§N
g—1¢-1 Q1

for some Cy = Co(N,q,¥). Where

a2 as
9—N q1
11l Lazo @y Loy = sup pe </ (/ |M(y7t)|mdt) dy)
p>0,0€RN B,(x) R

with qa = Wﬁ;ﬁ'
Final part, we prove the existence solutions for the quasilinear Riccati type parabolic
problems
up — div(A(z, t, Vu)) = |[Vul?+ p in Qr,
u=20 on 90 x (0,7T), (2.55)
w(0)=0 in Q,

and
uy — div (A(x,t,Vu)) = [Vul|? + pin RY x (0, 00), (2.56)
u(0)=0 in RV, ‘
and
uy — div (A(z,t, Vu)) = |Vau|? + g in RVTH (2.57)
where ¢ > 1.
The following result is considered in subcritical case this means 1 < ¢ < %—ﬁ, to obtain

existence solutions in this case we need data p, o to be finite measures and small enough.

Theorem 2.30 Let 1 < g < %—ﬁ and p € Myp(Qr), 0 € My(2). There exists g9 =

eo(N, A1, A2, q) > 0 such that if

Q7| 7N (|p|(Qr) + |w|() < e,

the problem (2.55) has a distribution solution u, satisfied

IVulll g2 ) = © (0l (@) +|w](62)

NI ’OO(QT

for some C = C(N,A1,As,q) > 0.
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In the next results are concerned in critical and supercritical case.

Theorem 2.31 Suppose that RN\Q satisfies uniformly 2—thick with constants co,ro. Let
0 be as in Theorem 2.17, q € (%—ﬁ, Njﬁ_‘ge), 1€ Mp(Qr) and o € My(Q2). Assume that

o =0 when g > %—ig. There exists g = £0(N, A1, Az, q,co, To/ro) > 0 such that if

||]11H:um|L(N+2>(<1*1)»°°(]RN+1) + ||I [|U|]||L(N+2)(q71)(]RN) <eo

2
e !

then the problem (2.55) has a distribution solution u satisfying

HUHHL(NJF?)((I*I)(RN)
(2.58)

Vulll La-nave2,00 @7y < ClI [l Lov+2)a-1),00 w41y +C| [T

D= !
for some C = C(N, A1, A2, q,co,To/r0)-

We can see that a necessary condition for existence o € My(Q)\{0} with M [|o|® dg—0y] €

LOVHDa=1).00(RNHL) jg T2 < g < L

Theorem 2.32 Suppose that A satisfies (2.29). Let sg be the constant in Theorem 2.20.

Let q > %—ﬁ and p € My(Qr),0 € My(Q), set w = |p| + |o| @ dy=0y. There exist
= 0(N,A1,Az,q) € (0,1) such that Q is (3, Ro)-Reifenberg flat domain Q and [A]f0 <6

for some Ry and the following holds. The problem (2.55) has a distribution solution u if one

of the following three cases is true:

Case a. A is a linear operator and
w(K) < CyCapg, ,(K)  for all compact subset K C RN+1 (2.59)

with a constant C7 small enough.

Case b. there holds
w(K) < CaCapg, (qiey (K)  for all compact subset K C RN+ (2.60)

where € > 0 and Cy is a constant small enough.
q> 53,

q> x5 if o=0,
||H1HM”||L(N+2)(qfl),oo(RN+1), HI

is small enough.

Case c.

ersgr ol possaa-n @y

A solution u corresponds to Case a, b and c satisfying

/ |Vu|dzdt < C3CY Capg, ,(K)  for all compact subset K C RNFL
K

/ |Vu|edadt < C,CITe Capg, (g+ey (K)  for all compact subset K C RN+
K
and

IVl Lov+2)a-1).00 ()

< Cs|[L[[wllll Lovea-1.00 mm+1y + Cs [T c—1llollllLove@-n @)

2
(N+2)(g—1

respectively. Where Cs,Cy,Cs are constants depended on N,A1, Ao, q,e,Ty/ Ry, besides
C3,Cy also depend on Tp.
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Since Capg, ((B,(0) x {t =0}) =0 for all » > 0 and 0 < s < 2, see Remark 4.13 thus if
there is o € M;(Q)\{0} satisfying (Jo| ® dg—0})(E) < Capg, ((E) for all compact subset
E C RV then we must have s > 2.

The above results are not sharp in the case A is a nonlinear operator. However, if A is
Holder continuous with respect to  we can prove that problem (2.55) has a distribution
solution with data having compact support in Q.

Theorem 2.33 Let Q be a bounded open subset in RN such that the boundary of Q is in
CY8 with B € (0,1). Suppose that A satisfies (2.29) and

|A(z,t,¢) — A(y,t,¢)| < Aslz — y|P[C] (2.61)

for every x,y € Q and t > 0, € RN, Let Q' CC Q and set d = dist (',Q) > 0. Then,
there exist C = C(N,q,A1,A2,A3,3,d,Q2,T) >0 and A = A(N,q,A1,A2,A3,68,d,Q2,T) >0
such that for any p € Myp(Qr), o € My(R) with supp (u) C ' x [0,T], supp (o) C ', the
problem (2.55) has a distribution solution u, satisfying

Vu(z, ] < ALy [J4] + 0] @ 6oy (2,8) a.e (2,) € Op (2.62)
provided that one of the following two cases is true:

Case a. 1 <q<2and

lul(E) < CCapg, ,(F) and |o](0) < C’C’asziqu,(O) (2.63)
for all compact subsets E C RN*! and O c RV,
Case b. ¢ > 2 and 0 =0,
WI(E) < C Capg, () (264
for all compact subset E C RN*1,
Remark 2.34 If ¢ > %—ﬁ, i = 0 and Case a. satisfies then (2.62) gives the decay

estimate:

sup |Vu(z,t)| < eit 5@ D V0 <t<T,
TEQ

since |o|(B,(x)) < @(T@pNﬁ% for any B,(z) C RV.
We have an important Proposition.

Proposition 2.35 All the existence results considered the bounded domain Q0 have re-
cently been presented in above Theorems, if o € LY(Q) then the solutions obtained in those
Theorems are renormalized solutions.

Theorem 2.36 Let 6 € (2, N + 2) be as in Theorem 2.17, q € (%ﬁ’ Ngﬁ;&) and w €
MRNFYY | There exists C1 = C1(N, A1, A2, q) > 0 such that if

H]Ilﬂw”||L(N+2)(Q—1),OO(RN+1) <Cy

then the problem (2.57) has a distribution solution u € L} (R; W21 (RN)) such that

loc loc

|Hvu”|L(q—1)(N+2),oo(RN+l) < CQHI[l [|w|]||L(N+2)(q—1),oc(RN+l) (2.65)

for some Co = C2(N, Ay, Ao, q). Furthermore, when w = pi+ 0 @ d—oy with p € MRN x
(0,00)) and 0 € M(RY) then u = 0 in RN x (—00,0) and Ul [0,00) 18 @ distribution
solution to problem (2.56).
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Theorem 2.37 Suppose that A satisfies (2.29). Let ¢ > %—ﬁ and w € M(RN*Y) such that

Iy [|w|](z0,to) < 0o for some (zo,ty) € RN, Let so be the constant in Theorem 2.20, & in
Theorem 2.32. There exists Cy = C1(N, A1, A2, q) > 0 such that if [A]3S < 6 and

(L[|l Lov+2rca-1),00 41y < C (2.66)

then the problem (2.57) has a distribution solution w satisfying (2.65). Furthermore, when
w=p+0®dy—gy with p € M(RYN x (0,00)) and o € M(RY) then u =0 in RN x (—o0,0)

and ulgn jo ) 18 @ distribution solution to problem (2.56).

From Remark 2.26, we see that if ¢ < 2 then (2.66) follows the assumption I[|w]|](x0,tp) < 00
for some (zg,t9) € RVFL

When A is independent of space variable, we can improve the result of Theorem 2.37 as
follows:

Theorem 2.38 Suppose that A is independent of space variable and satisfies (2.29). Let

q > %—ﬁ and w € M(RN*L). Assume that Iy[|w|](z0,t0) < oo for some (wg,ty) € RNFL

There exist constants A = A(N, A1, A2, q) and C = C(N, A1, As, q) such that the problem
uy — div (A(t, Vu)) = |Vu|? +w in RNT! (2.67)
has a distribution solution u, satisfying
|Vu| < Alj[w] in RNT! (2.68)
provided that for all compact subset E C RN*!
(WI(B) < CCapy, ,(E) (2.69)

Furthermore, when w = p+ o ® dgy—oy with p € M(RYN x (0,00)) and o € M(RY) then
u=0in RN x (—00,0) and Ul [0,00) 15 @ distribution solution to problem

ug — div (A(t, Vu)) = |Vul? + p in RN x (0, 00), (2.70)
u(0) =0 in RN, ’
Remark 2.39 If %—ﬁ <q<2,w=p+0® 0y satisfies (2.69) if and only if
[ul(E) < C"Capyy, o (E) and |0](0) < C"Capy,  4(O) (2.71)

for all compact subsets E C RN*! and O C RN, where C' = C'(N, q).

Remark 2.40 If w =0 ® dy4—g) then (2.68) gives the decay estimate:

sup |Vu(z,t)| < cit™ WO VO0<t< T,
z€RN

since |o|(B,(x)) < CQpNi% for any B,(z) C RV,

3 The notion of solutions and some properties

Although the notion of renormalized solutions becomes more and more familiar in the
theory of quasilinear parabolic equations with measure data, it is still necessary to present
below some main aspects concerning this notion. Let € be a bounded domain in RY,
(a,b) CC R. If p € My(Q2 x (a,b)), we denote by ™ and p~ respectively its positive and
negative part. We denote by Mo(Q x (a,b)) the space of measures in Q x (a,b) which are
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absolutely continuous with respect to the Ca-capacity defined on a compact set K C Q% (a,b)
by

Co(K, Q2 x (a,b)) = inf {||@llw : ¢ 2 xk, 0 € CZ(2 x (a,b))} . (3.1)

where W = {z : z € L*(a,b, H3(Q)),2 € L?(a,b, H"1(Q2))} endowed with norm ||p||w =
el L2 (a0, 12 () T 1t L2 (06,51 (0)) and Xk is the characteristic function of K.

We also denote M (2 x (a, b)) the space of measures in 2 x (a, b) with support on a set of
zero Cy-capacity. Classically, any p € My(2 x (a,b)) can be written in a unique way under
the form p = po + ps where pg € Mo(Q x (a,b)) N Mp(2 X (a,b)) and ps € Ms(Q % (a,b)).
We recall that any pg € Mo(2 % (a,b)) N Mp(22 % (a,b)) can be decomposed under the form
po = f —divg + hy where f € LY(Q x (a,b)), g € L*(Q x (a,b),RY) and h € L*(a, b, H}(Q))
and (f,g,h) is said to be decomposition of . Set fig = g — hy = f — divg. In the general
case Jip & M(Q x (a,b)), but we write, for convenience,

/ wdpy = / (fw + g.Vw)dzdt, Yw € L*(a,b, Hy (Q))NL>®(Q x (a,b)).
Qx(a,b) Qx(a,b)

However, for o € My(2) and tg € (a,b) then 0 ® dy—syy € Mo(2 x (a,b)) if and only if
o € L*(£), see [24]. We also have that for o € My(Q), 0 @ X[4,5) € Mo(Q X (a,b)) if and
only if o is absolutely continuous with respect to the Capg, 5-capacity, see [13].

For k > 0 and s € R we set Tj(s) = max{min{s, k},—k}. We recall that if u is a
measurable function defined and finite a.e. in Q% (a,b), such that T (u) € L?(a,b, H}(Q2)) for
any k > 0, there exists a measurable function v : % (a,b) — RY such that VT},(u) = X|u| <k
a.e. in Q x (a,b) and for all kK > 0. We define the gradient Vu of u by v = Vu.

We recall the definition of a renormalized solution given in [63].

Definition 3.1 Suppose that B € C(R x RN R). Let u = g + ps € Mp(Q2 x (a,b)) and
o € LY(Q). A measurable function u is a renormalized solution of

up — div(A(z, t, Vu)) = B(u, Vu) + p in Q x (a,b),
u=0 on 00 x (a,b), (3.2)

u(a) =0 in Q,

if there exists a decomposition (f,g,h) of po such that

v=u—he L(a,b,Wy*(Q)) N L>®(a,b, L*(Q)) Vs € {1 N+2)

"N +1
Tr(v) € L*(a,b, H3(Q)) Yk > 0, B(u, Vu) € L'(Q x (a,b)) (3.3)

and:
(i) for any S € W2°°(R) such that S’ has compact support on R, and S(0) =0,

—/ S’(U)Lp(a)dx—/ LptS(v)dxdt—i—/ S'(v)A(z, t, Vu)Vedzdt
Q Qx (a,b) Qx(a,b)

—|—/ S”(v)goA(%t,Vu).Vvdxdt:/ S'(v)pB(u, Vu)d;vdt—l—/ S’ (v)pdpg,
Qx(a,b) Q

% (a,b) Qx(a,b)
(3.4)

for any ¢ € L*(a,b, H}(Q))NL>® (2 x (a,b)) such that ¢y € L*(a,b, H~*(Q))+L'(Q x (a,b))
and o(.,b) = 0;

(ii) for any ¢ € C(2 x [a, b]),

1
lim — / qu(:v,t,Vu)Vvdmdt:/ pdut  and (3.5)

m=oo1m Qx(a,b)
{m,§v<2m}
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1
lim — / qSA(x,LVu)Vudxdt:/ odp . (3.6)
m=o0 1 Q% (a,b)

{—-m>v>—-2m}

Remark 3.2 If u € L*(2 x (a,b)), then we have the following estimates:
ol 54 e gy < € (Il + (@ % (@) and

Il 352 e g oy < O (ol + 1l x (a,))

where Cy = C1(N, A1, As), see [13, Remark 4.9].
In particular,
lull L1 @x (a,p)) < Caldiam(Q) + (b— a)'/*)? ([lo||L1(q) + l(Q x (a,b)))  and
IVulll L1 @x (ap)) < Co(diam(§2) + (b — a)'/?) (llollLr ) + 11l(2 x (a,b))),
where Co = C3(N, A1, As).

Remark 3.3 It is easy to see that u is a weak solution of problem (3.2) in Q x (a,b) with
pe L2(2x (a,b), 0 € Hy(Q) and B =0 then U = X[qju is a unique renormalized solution

of
Uy — div (A(x,t,VU)) = X(ap)t + (X[a,p)0)t 10 2 X (c,b),
U=0 on 9Q x (¢, b),
U(c)=0 in Q,

for any ¢ < a.

Remark 3.4 Let Q' CC Q and a < o’ < b < b. For a nonnegative function n € CZ(§) x
(a', b)), from (3.4) we have
(nS(v)), = mS(v) + 8" (v)A(z,t, Vu)Vn — div (S (v)nA(z, t, Vu))
+ 8" ()nA(z, t, Vu)Vo = S'(v)nf + V (S'(v)n) .g — div (S (v)ng)
in D'(Q x (a/,V)) Thus, (nS(v)), € L*(a/,t/, H-1(Y)) + LY(D) and we have the following
estimate
@S ) 2@ v, -1 20422 (0) < ClISI w2y ([Imev]21 (D)

HIIVullVall Ly + [InIVulxpi<allzz o) + [0IVul[Volx|e <l L2(p)

+nfllr oy +1nIVulxpoi<an |11 oy + nlg*llzr oy +Inlglllzz () (3.7)
with D = Q' x (a’,b") and supp(S’) C [-M, M].
We recall the following important results, see [13].

Proposition 3.5 Let {,} be a bounded in My(Q x (a,b)) and o, a bounded in L*(Q). Let
up, be a renormalized solution of (2.6) with data pin, = fin,o+ pin,s Telative to a decomposition
(frs Gn, hn) of pno and initial data on. If {fn} is bounded in L'(Qr), {gn} bounded in
L2(Q2 x (a,b), RN) and {h,} convergent in L?(a,b, H}(S2)), then, up to a subsequence, {u,}
converges to a function u in L'(Q x (a,b)). Moreover, if {un} is a bounded in L*(2 x (a,b))

then {u,} is convergent in L*(a,b, Wy *(Q)) for any s € [17 %—ﬁ)

We say that a sequence of bounded measures {y,} in 2 x (a,b) converges to some bounded
measure g in Q X (a,b) in the narrow topology of measures if

n—oo

lim edp, = / wdp for all ¢ € C(Q x (a,b)) N L (Q x (a,b))).
Qx(a,b) Qx(a,b)

We recall the following fundamental stability result of [13].
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Theorem 3.6 Suppose that B =0. Let o € L' () and
p=f—divg+he +pd —pg € My(Q x (a,b)),

with f € LY(Q x (a,b)),g9 € L*(Q x (a,b),RY), h € L?(a,b, H}()) and pf,p; € MF(Q x
(a,b)). Let o, € L'(2) and

Hn = fn - dngn + (hn)t + pPn — M € Mb(Q X (avb))

with  f, € LY(Q x (a,b)),9n € L*(Q x (a,b),RN), h,, € Lz(a,b,H(}(Q)), and pp,Mn €
M (2 x (a,b)), such that

Pn = Pyll —div Pi + Pn,ss T = Thlb —div 7772L + Nn,s)

with py,n;, € L' X (a,)), ph, 05, € L2(Q % (a,0),RY) and Prss s € ME(Q % (a,b)).
Assume that {un} is a bounded in My(Qx (a,b)), {on}, {fn}, {gn}, {hn} converge too, f,g,h
in LY (), weakly in L*(Q x (a,b)),in L2(Q x (a,b),RN),in L?(a,b, H} () respectively and
{pn},{nn} converge to pf,py in the narrow topology of measures; and {pL},{nL} are
bounded in L*(Q x (a,b)), and {p2},{n2} bounded in L*(Q x (a,b),R").

Let {un} be a sequence of renormalized solutions of

(upn)e — div(A(z, t, Vuy)) = ppn in Q X (a,b),
Up =0 on 0 x (a,b), (3.8)
up(a) = o, in Q,

relative to the decomposition (fn + py — Ny Gn + P2 — 02, hn) of pino. Let v, = uy — hy,.
Then up to a subsequence, {u,} converges a.e. in Q x (a,b) to a renormalized solution u
of (3.2), and {v,} converges a.e. in Q x (a,b) to v = u — h. Moreover, {Vu,},{Vv,}
converge respectively to Vu, Vv a.e in Q x (a,b), and {Ty(v,)} converges to Ty (v) strongly
in L?(a,b, H}(Q)) for any k > 0.

In order to apply above Theorem, we need some the following properties concerning approx-
imate measures of p € M; (2 x (a,b)), see [13].

Proposition 3.7 Let i1 = po + ps € M (Q x (a,b)) with pg € Mo(Q x (a,b)) N M (2 x
(a,b)) and ps € MF(Q x (a,b)). Let {¢n} be sequence of standard mollifiers in RN*1.
Then, there exist o decomposition (f,g,h) of po and fn,gn, hn € CZ°(Q X (a,b)), pns €
C>(Q x (a,b)) N M (Q x (a,b)) such that {fa},{gn},{hn} strongly converge to f,g,h in
LYQ x (a,b)), L2( x (a,b),RN) and L*(a,b, H} (), ptn = fn — divgn + (hn)i + fn.ss fins
converge to p, us in the narrow topology respectively, 0 < p, < @n * 1 and

1l 22 @to) + 1900 2oy ) + ol 2o a3y + fins(2 X (0B)) < 20(S2 X (a,B)).
Proposition 3.8 Let y = po + ps, i = tn,o + fn,s € MZ‘(Q x (a,b)) with po, no €
Mo(£2 % (a,b)) "M (2 x (a,b)) and p s, s € M (Q x (a,b)) such that {u,} nondecreas-
ingly converges to p in My(Q2 x (a,b)). Then, {un s} is nondecreasing and converging to ps
in My(2 % (a,b)) and there exist decompositions (f,g,h) of po, (frn,gnshn) of tino such
that {fu},{gn},{hn} strongly converge to f,g,h in L*(2 x (a,b)), L*(Q x (a,b),RY) and
L?(a,b, H}(S2)) respectively satisfying

[ fallzr@x (ab)) + 190l L2 (% (a,0) &Y) T nllL2 (00,53 (Q)) + Hn,s (2 X (a,b)) < 20(2 X (a,b)).
Remark 3.9 For 0 < p < £ min{sup,q, d(z, 8Q), (b — a)'/?}, set

W = {z € Q:d(@,00) > jp} x (a+ (jp)%a+ ((b—a)/> = jp)?) for j=0,...k,
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min{su T _a)l/2
where k, = {sup,cq d(z,09),(b—a) }]

2p
We can choose fpn, Gn, hyn in above two Propositions such that for any j =1,...,k,,

anHLl(Qg,) + ||gn||L2(Qf),RN) + [[|hn| + |th|||L2(Qg;) < QU(Qiil) Vn € N (3.9)
In fact, set p; = Xqke—i\qle =i+ 1 ifj =1k, =1, pj = XQx (a,0)\ Q1 1 if j =k, and
Ki = Xgrelt if j = 0. From the proof of above two Propositions in [13], for any € > 0 we
can assume supports of fn, gn,hn containing in supp(p) + Q<(0,0). Thus,lfor any [ = i
we have fl, gl hi correspondingly such that their supports contain in Q];f’;j_l/z\Q];f’;j+3/2
if =100 ky— 1 and Qp\QY7 if j = ky and Q2% if §= 0. By =00y, thus it is
allowed to choose f, = Z?io fosfn= 2520 gl and h,, = Z?;o hi and (3.9) satisfies since

1 fll ety + N9l 2 vy + Al + [Vhalll 2,

ko
<> (Willsgany + 19l oy movy + 1AL+ VRl 20
i=0

kp—j+1

= 3 (Il + 195 g vy + IR+ 19BN )
=0
kp—j+1 ‘
< 3 252 % (a,b) = 2p(Q07Y).
i=j—1

Definition 3.10 Let p € My(Q x (a,b)) and o € Mp(Q). A measurable function u is a
distribution solution to problem (3.2) if u € L*(a,b,Wy*(Q)) for any s € [1,%—1?) and
B(u,Vu) € LY(Q x (a,b)) such that

—/ ugptdxdt—k/ Az, t, Vu)Vdrdt
Qx(a,b) Qx(a,b)

:/ B(u, Vu)(pdxdt—i—/ godu—k/ o(a)do
Qx (a,b) Qx (a,b) Q

for every ¢ € CH(Q x [a,b)).

Remark 3.11 Let o’ € My(Q2) and a’ € (a,b), setw = pu+0'®@dp—qry. If u is a distribution
solution to problem (3.2) with data w and o = 0 such that supp (u) C Q x [a/,b], and
u=0,B(u,Vu) =0 in Q x (a,a’), then @ := ulg, ., is a distribution solution to problem
(3.2) in Q x (a’,b) with data p and o’'. Indeed, for any p € CH(Q x [a’, b)) we defined

~ | plz,t) if (z,t) € Q2 x [d,b),
plat) = { (1+ 20)(t — a')pe (') + (e, (1 + o)’ — eot) if (2,1) € 2 x [a,a),
b—a’

Clearly, ¢ € CX(Q x [a, b)), thus we have

where gg € (O,

—/ u@tdxdt—i—/ Az, t, Vu)Vodadt
Qx (a,b) 2x(a,b)

:/ B(u, Vu)cﬁdwdt+/ Pdw,
Qx(a,b) Qx(a,b)
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which implies

—/ ﬂ(ptdxdt+/ A(z,t,Va)Vedrdt
Qx(a’,b) Qx(a’,b)

:/ B(ﬂ,Vﬂ)gpdmdt—l—/ godu—i—/ o(a")do'.
Qx(a’,b) Qx (a’,b) Q

Definition 3.12 Let u € M(RY x [a,+c0)), for a € R and 0 € M(RY). A measurable
function u is a distribution solution to problem

{ up — div (A(z,t, Vu)) = B(u, Vu) + u in RN x (a,+00) (3.10)

ula) =0 in RN

if u € L, (a,00, W25 (RN)) for any s € {1, %—jﬁ) and B(u,Vu) € L} (RN x [a,00)) such
that

—/ ugatdxdt+/ Az, t, Vu)Vodrdt
RN X (a,00)

RN x (a,00)

:/ B(u,Vu)godacdtJr/ godqu/ p(a)do
RN X (a,00) RN X (a,00) RN

for every ¢ € CLRYN x [a, 0)).

Definition 3.13 Suppose that A satisfies (2.3), (2.4). Let w € M(RN*Y). A measurable
function u is a distribution solution to problem

uy — div (A(x,t, Vu)) = B(u, Vu) +w in RN ! (3.11)

ifu € Li (R; WL (RN)) for any s € [1, %—ﬁ) and B(u,Vu) € L}, (RN*1) such that

—/ uprdadt + / Az, t, Vu)Vedzdt = / B(u, Vu)pdzdt + / wdu
RN+1 RN+1 RN+1 RN+1
for every ¢ € CHRNT),

Remark 3.14 Let p € M(RY x [a,+00)), fora € R and o € M(RY). If u is a distribution
solution to problem (3.11) with data w = p + 0 @ dy4—qy such that u = 0, B(u,Vu) = 0
in RN x (—o0,a), then @ := Ul [a,00) B8 @ distribution solution to problem (3.10) in
RY x (a,00) with data p and o, see Remark 3.11.

To prove the existence distribution solution of problem (3.10) we need the following results.

First, we have local estimates of the renormalized solution which get from [13, Proposition
4.81].

Proposition 3.15 Let u,v be in Definition 3.1. There exists C = C(A1,A2) > 0 such that
fork>1and 0<ne C*(Qx (a,b))

/|<k77|Vu|2d:cdt+/|<k17|Vv2dacdt<CkA (3.12)

where
A = |lonellzr@x (@) + NVUIVI 2t @x (ap)) + MFl 1@ ap)) + 111912 21 % (b))

VAl 2 ey + IVl cxany + / ndjsal-

Qx(a,b)
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For our purpose, we recall a time-regularization of functions w belonging to L?(a, b, HZ (£2)),
introduced in [43], used in [22], [15], [8]. For v > 0 we define

min{¢,b}
(W), (x,t) = 1// w(z,s)e’"Vds for all (z,t) € Q x (a,b).

a

We have that (w), converges to w strongly in L*(a,b, Hj(Q)) and [[(w)u||raox(ap)) <
[[w|[La(ax (a,b)) for every q € [1,00]. Moreover,

((w),)s =v(w— (w),) in the sense of distributions
if we L*(Q x (a,b)) then
/ ({(w), ) spdadt = 1// (w — (w),) edxdt for all p € L*(a,b, H3(Q)).
Qx(a,b) Qx(a,b)

Proposition 3.16 Let o > 1 and 0 < o < 1/2 such that g9 > o+ 1. Let L: R — R be
continuous and nondecreasing such that L(0) = 0. If u is a solution of

ug — div(A(z,t,Vu)) + L(u) = p in Q X (a,b),
u=0 on 0 x (a,b), (3.13)
u(a) =0 in Q,

with p € C°(Q x (a,b)) there exists C1 > 0 depending on A1, As, «, qo such that for 0 <n €
C(D) where D = Q' x (a',V), ¥ CCQ anda < a' <b <, then

1
f/ |V T (u)|*ndzdt
kJp

|Vu|2
where q1 = a 240 17

B = |le(Jul + Dl (o) + / (Il + 1)®ndzdt + / V09 dadt + / ndlyl.
D D D

Furthermore, for Ty(w) € L?(a’,b', H}(Y')), the Landes-time approximation (Ty(w)), of the
truncate function Ti(w) in D then for any € € (0,1) and v >0

V/Dn (Th(w) = (Tie(w))v) T (T (u) = (Ti(w))y ) ddt
+/ nA(z, t, VT3 (u)) VT (Tho(u) — (Ti(w))y )dzdt < Coe(1+ k)B. (3.15)
D

for some Cy = Co(A1, A2, 0, qo)-

Proposition 3.17 Let qo > 1, pin = pino + tn,s € Mp(Bn(0) x (—n?,n?)). Let u, be a
renormalized solution of

(un)e — div(A(z,t, Vuy,)) = pin in B, (0) x (—=n?, n?),
Up, =0 on 0B, (0) x (—n?,n?), (3.16)
un(—n?) =0 in B,(0),

relative to the decomposition (fn, gn,hn) of tno satisfying (3.15) in Proposition 3.16 with
L =0. Assume that for any m € N and o € (0,1/2), Dy, := B, (0) x (—m?,m?)

1 —a—
E|||VTk(U)|2||L1(Dm) + [IVulP(lul + D= 21 p,y + VUl L1 (D, + 1] (D)
| fuller (o) + gnllz2 (o, my) + [Anl + VAl L2(D,) + [[UnllLoD,,) < C(m,a)
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for all n > m and h,, is convergent in L} (RNT1). Then, there exist subsequence of {uy},

loc
still denoted by {u,} such that u, converges to u a.e in RN+ and in L, (R; WL (RN)) for

N2 loc
any s € [1, 7))
Proofs of above two Propositions are given in the Appendix section. The following result is
as a consequence of Proposition 3.17.

Corollary 3.18 Let ju,, € L'(B,,(0) x (—n?,n?)). Let u,, be a unique renormalized solution
of problem 3.16. Assume that for any m € N,

sup |pn|(Bm(0) x (—m?,m?)) < oo and sup / [t |0 dadt < 0.
By, (0) X (—m?2,m?)

n>m n>m

then there exist subsequence of {uy}, still denoted by it such that u, converges to u a.e in

RN+ and in L3, (R; VVllocs (RN)) for any s € [1, %—ﬁ)

Finally, we would like to present a technical lemma which will be used several times in the
paper, specially in the proof of Theorem 2.17, 2.19 and 2.20. It is a consequence of Vitali
Covering Lemma, a proof of lemma can be seen in [20, 19, 52].

Lemma 3.19 Let Q be a (R, d)- Reifenberg flat domain with § < 1/4 and let w be an A
weight. Suppose that the sequence of balls {B,.(y;)}£_, with centers y; € Q and a common
radius v < Ro/4 covers Q. Set s; = T —ir?/2 for alli = 0,1,..., [E—Z] Let E C F C Qr
be measurable sets for which there exists 0 < & < 1 such that w(E) < ew(Q,(y;,s;)) for all
i=1,..,L, 7=0,1,.., [27—2}, and for all (z,t) € Qr, p € (0,2r], we have Q,(x,t) N Qr C F
if w(ENQ,(x,t) > ew(Q,(x,t)). Then w(E) < Bew(F) for a constant B depending only
on N and [w]a_, .

Clearly, the Lemma contains the following two Lemmas

Lemma 3.20 Let 0 < ¢ < 1,R > 0 and cylinder Qg := Qg(xo,to) for some (xq,ty) €
RN+ and w € Ay. let E C F C Qg be two measurable sets in RN+ with w(E) <
sw(QR) and satisfying the following property: for all (z,t) € Qr and r € (0, R], we have
Q. (z,t)NQr C F provided w(ENQ,(x,t)) > ew(Qy(x,t)). Then w(E) < Bew(F) for some
B = B(N, [w]1.).

Lemma 3.21 Let 0 < e <1 and R > R' > 0 and let E C F C Q = Bgr(%o) x (a,b) be
two measurable sets in RN with |E| < ¢|Qgr/| and satisfying the following property: for all
(x,t) € Q and r € (0,R'], we have Q,(z,t) N Q C F if |[ENQy(x,t)| > €|Qr(x,t)]. Then
|E| < Be|F| for a constant B depending only on N.

4 Estimates on Potential

In this section, we will develop nonlinear potential theory corresponding to Quasilinear
parabolic equations.

Now we introduction the Wolff parabolic potential of u € M*(RV*1) by

pN+2—ap

Wi [ (2, ) = /OR ('M(QP(W> " % for any (z,t) € RN*!

where a > 0,1 < p <o (N +2) and 0 < R < co. For convenience, W, ] := W, [u].

The following result is an extension of [34, Theorem 1.1], [14, Proposition 2.2] to Parabolic
potential.
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Theorem 4.1 Leta >0, 1 <p<a '(N+2) and w € Ay, pp € MFT(RNF). There exist
constants C1,Cy > 0 and €9 € (0,1) depending on N, a,p, [w]a.. such that for any X > 0
and € € (0,&)

oo

w({WE (1] > ad, (ME[u) 77 < eA}) < Crexp(~Cos™ Yuw({WE, [u] > A} (4.1)

ap

N+42—ap

where ¢ = 2+ 3 »-1

Proof of Theorem 4.1. We only consider case R < co. Let {Qr(x;,t;)} be a cover
of RN*! such that )=, Xon(esty) = M in RN+ for some constant M = M(N) > 0.
It is enough to show that there exist constants ¢i,co > 0 and g9 € (0,1) depending on
N,a,p, [w] 4. such that for any Q € {QR(xj,tj)}, A>0and e € (0,e9)

oo

w(Q N{WE, ) > A, (ME )77 < 2X) < cx exp(—cae™ (@0 {WE,fu] > A}). (4.2
Fix A >0 and 0 < e < 1/10. We set

E=Qn{WE,[u] > aX (M5, [u]) 75 <A} and F = Qn {WE, 1] > A},

ap

Thanks to Lemma 3.20 we will get (4.2) if we verify two the following claims:
w(E) < ez exp(—cae Hw(Q) (4.3)
and for any (z,t) € Q, 0 <r < R,
w(ENQ,(z,1)) < ¢sexp(—cee ™ w(Qr(x, 1)) (4.4)

provided that Q,(z,t) NQ N F¢ # 0 and E N Q,(x,t) # 0.
where constants cs, ¢4, ¢5 and ¢g depend on N, «, p and [w]a_
Claim (4.3): Set

1

2-FHIR e g
= [ (A )

kR P
We have for m € N and (z,t) € E

1

R R B u@pla,t) 7 dp
Wa,p[:u’](x7t> - k:%:—i_lgk(xﬂf) + /2me ( ) P

pN+27ap

< 3 gela,t) + m(ME [ul(w, )7
k=m+1

< Z gk (z,t) + me.
k=m-+1

We deduce that for 8 >0, m € N

B[ <1@N{ Y gr>(1—me)A}

k=m+1

=len{ i gk > i 27 Ak=m=D (1 —277) (1 — me)A}|

k=m+1 k=m+1
< Y @n{ge > 27— 27F) (1 — me) A}
k=m+1
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We can assume that (zg,t9) € Q, (M&[u})vlj(a:o,to) < eA. Thus, by computing see [14,
Proof of Proposition 2.2 | we have for any k € N

CT ok _
QN {or > s} < 52757 Qe

Consequently,

oo

r —ka 1
Fl < ) ) oy
|E| < k:ZmH (2-k=m=1)(1 — 2-6)(1 — mE))\)p—l Q[ ()

p—1 0o
< ¢,9-(m+Dap ( € ) QL—2%) " 3 gBr-b-anomen),
- 1—me

k=m+1

If we choose e™! —2 <m <e7! —1 and B = B(a, p) so that B(p — 1) — ap < 0, we obtain
|E| < cgexp(—apn(2)e™) Q| .

Thus, we get (4.3). }
Claim (4.4). Take (z,t) € Q and 0 < 7 < R. Now assume that Q,.(z,t) N QN F° # () and
ENQ,(z,t) # 0 ie, there exist (z1,t1), (T2,t2) € Qr(z,t) N Q such that Wip[u](xl,tl) <A

and (ME,[u] (z2, tg))ﬁ < eA. We need to prove that

w(EN Qr(x,t)) < ew(@r(x,t)).

To do this, for all (y,s) € ENQ.(x,t). Q,(y,8) C Qsp(1,t1) if p > 7.
If r < R/3,

1

R/3 A ﬁ R ~ p—1
R — W s M@Qply9)) \ " dp 1@y 5)) \ " dp
Wa,p[/’d(?/: 8) - Wa,p[ﬂ](ya ) + /T < pN+2,ap ) p + /R/3 ( pNJrQ,ap ) P)

R/3 ): x p%l 1
<o s [ (MGG T ot

N+42—ap
P

< Wil (y,s) 3771 A+ 22N,

which follows Wy, [u](y,s) > A.
Ifr > R/3

1

r f Qp S Pt d
o < + [ (SR

< We plul(y, s) + 2eA.

which follows Wy, [u](y,s) > A.
Thus,

w(ENQr(a,1)) < w(Q(z,t) N{WY 1] > A})
Since (z2,t2) € Q. (x,1), (ME, 1] (acg,tg))ﬁ < e, so as above we also obtain

w(Q(w,t) N {Wy (1] > A}) < g exp(—croe™ ) w(Qr(x, 1))

which implies (4.4). This completes the proof of the Theorem. ]
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Theorem 4.2 Leta>0,1<p<a }(N+2),p—1<g<ocand0 < s < oo andw € Ay
There holds

CHIME ) 7T | pos @+1,aw) < W (]l Las @41y < ClME, [1]) 7T [ ave (m341 aw)
(4.5)

for all p € MHT(RN*Y) and R € (0,00] where C is a positive constant depending only on
N7 a7p’ q7 S and [w]AOC

Proof. From (4.1) in Theorem (4.1), we have for 0 < s < o0
R s s e s R = dA
||Wa,p[u]”L‘1=S(RN+1,dw) =ayq 0 A w({Wa,p[M] > (J’)‘})q 7

<a exp(—cze_l)q/ooo )\Sw({Wg’p[u] > )\})E% + 033/000 )\Sw({(pr[N])ﬁ > 5)\})3%
(1]

_ _ 1
=C1 eXp(_CQE 1)||W(§,p[u‘}Hiq’s(]RN+1,dw) +c3e S||(M§p K )p71 ||i‘1=5(RN+1,dw)'

Choose 0 < € < g¢ such that ¢; exp(—coe™!) < 1/2 we get

S L S
HWS,;;[M]HMJ(RNH,W) < C4||(M§p[ﬂ])p‘l HquS(RN‘*'l,dw)'

Similarly, we also get above inequality in case s = oco. So, we proved the right-hand side
inequality of (4.5).

To complete the proof, we prove the left-hand side inequality of (4.5). Since for every
(z,t) € RN+L

RN+2—ap

(W2 (1), £)) 77 < c5 Ws,p[umm(m”w)p and

<’W> o<W, (),

thus it is enough to show that for any A > 0
1
1(Qar(x, ) \ 7 1(Qry2(z,t))
w (.T,t) : <}%N+2—ap > A S Crw (.’I],t) . RN-/FQ ap > Cg)\ .
(4.6)

Let {Q;} = {Qrya(x;.t;)} be a cover of RN+ such that YixXQ; <My in RV*!and for

- M
any Q; € {Q,}, there exist Q;1, ..., Q;m, € {Q;} with Q; + Q2r(0,0) C | Qjx for some
k=1
integer constants My = My (N), My = M3(N) > 0. Then,

1 1

w (z,t) : <W) ~ > A SZw (x,t) : (W) " > A NQ;

M,
<> w <{(x,t): % > Apl}mQj>

j k=1
L Q) \77
SZZW({(%’,t) : (;N+2j’kap) >M21/(p1))\}ﬂQj>
7 k=1
Mo
= Zzaj,kw(Qj)
J k=1
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where a;j =1 if ( 1(Qyk) ),)71 > M;l/(p_l))\ and a; = 0 if otherwise.

RN+2—ap

Using the strong doubling property of w, there is cg = co(N, [w]a,. ) such that w(Q;) <

. Il
cow(Qjx). On the other hand, if aj, = 1 then @, C {(x,t) : (%) s M21/(p1)/\}.
Therefore,

~ ﬁ Mo
w (x,t): (W) > A < Z Z o rw(Qj k)

J k=1

< - /) - 1(Qry2(z,t)) o u-ve-0y Lo
_ZZCQ’U} (.Z', ) W > 2 Qj7k

i k=1

. 1

w(@ x,t Pt 1 /(o

< ZMgng (z,t) : (W) > M, V= g Qj
J

which implies (4.6) since >, xq; < M) in RN+, |

Theorem 4.3 Let 0 < ap < N + 2 and w € Ay, There exist C1,C2 > 0 depending on
N,a,p and [w]a_. such that for any p € MFT(RNTY), any cylinder Q, C RNTL there holds

1 / R
- exp (olwa, [t ](:r,t)) dw(z,t) < Cs (4.7)
w(QQP) sz PR
. R ~ ~ _ ~
provided HMaP[“Qp] (0, <1, where g, = xg, K-
Proof. Assume that HMgp[M@,,]HLoo(Q,,) < 1. We apply (4.2) to ftg3,- Then, choose £ = A1
for all A > \g := max{e; ", N";2__1ap}, we obtain

w({We 1] > aA} N1 Qap) < Meyexp(—cae™ )w(Qzp) ¥ A2 Xo,
since {Wf’p lng,] > )\} C Q2,. This can be written under the form

w({WE 1] > aA} N Qa,) < (X(0,10) + Mer exp(—eae ™)) w(Q2y)
for all A > 0. Therefore, we get (4.7). |

In what follows, we need some estimates on Wolff parabolic potential:

Proposition 4.4 Let p > 1,0 < ap < N+ 2 and ¢ > 1,apq < N + 2. There exist C1,Co
such that

1
HWO"p[M]”L%W(RNH) < Cy(p(RYTI)NFT ¥ e MF(RNTL), (4.8)
HWQVP[M]HL%M(RNH) < Collullf ke vy ¥ € LYO@RNT) p>0  (4.9)
and
1
Weplilll szpoon < Collullfagansny ¥ p€ LIRY), 20 (410
In particular, for s > %; we define F(p) == (Waplp])® for all p € M (RVH).
Then,
F s—p <C e 1 d
| (M)HLW(RMI) S 3||N||L% RV an
F - < Gl |7 s
|| (/’L)HLW&O RN+1) - 3||MHL%»°"(RN+I)

for some constant C; = C;(N,p,a, s) fori=3,4.
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Proof. Let s > 1 such that asp < N + 2. It is known that if 4 € L*°°(RN*1) then

~ N4z
1l(Qp(z,1)) < crllpllLoo@unyp™s™ ¥ p>0.

s

52 vy (M) (,£)) ¥ we have

Thus for § = ||y

5 2,(z, T d > 2o(2, o d
o= [ (A [ (M0

1 _ N+42—asp

1 _ap —
< ey (M) (2, 1)) 77 6775 + callul|fu ke vy 01

asp
(p—1)(N+2)

N+2—asp
= c3 (M(p)(z,t)) P=DN+2) || Ls:oo (RN+1)

So, for any A >0

SEP (p—1D)(N+2)

{Waplul > A} < {M(k) > callpll ST 0an T A NF2=7 }].

Hence, since M is bounded from M; (RNV*+1) to L1o(RN+1) and LI(RVF1) (L4°°(RN+1) resp.)
to itself, we get the result. [

Remark 4.5 Assume that ap = N + 2 and R > 0. As above we also have for any e > 0

W, lul(z,t) < C1 e max {(IMI(RN“))PI% (M0G2) o, 0))7 (RN +1)) 775 oo ) 070 }

where Cy . = C1(N, o, p,€).
Therefore, for any A > CE(|M|(RN+1))ﬁ,

apte(p—1)

OWE 4] > X} < €, (W) g )

where Co . = Co(N,a,p,e). In particular, if p € M (RNTY) then WE [1] € L; (RN F)
for all s > 0.

Remark 4.6 Assume that p,q > 1,0 < apg < N +2. As in [56, Theorem 3], it is easy to
prove that if w € Agniz-a), i.e 0 <w € L} (RN*) and for any Q,(y,s) C RN+

N+2—apq loc

(@—1)(N+2)
N+2—apg

sup f wdxdt ][~ wiﬁ%dxdt =Ci <
Qp(y,s)CRN+1 Qp(y,s) Qp(y,9)

then

< (/ |f\qw17§iq2 da:dt)
RN+1
for some a constant Co = Co(N, ap, q,C1).

Therefore, from (4.5) in Theorem 4.2 we get a weighted version of (4.10)

N+4+2—apgq
> (N+2)q

</ (Mo [|f1]) F75255 wdadt
]RN+1

(N+2)(p—1)a Ree=ore o L
([ el S5 o) 7 <o ([ et Pear)
RN+1 RN+1

The following another version of (4.10) in the Lorentz-Morrey spaces involving calorie.
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Proposition 4.7 Let p,g > 1, and 0 < apg < 8 < N + 2. There exists a constant C' > 0
such that

(R 7

0 <
g—apq '’ (RN+1)

C||M||Lq;9(RN+1) Yu € Lq;e(RNJrl) (4.12)

Proof. As the proof of Proposition 4.4 we have
T f—apq
Wapllul] < (Me/q[|u|]) =0 (M]|p|]) @D .

Since My, q[|u|] < c2 (Mg[m\q])l/q, above inequality becomes

—apgq

Wapli] < 5 (M[|12]?)) 7D (Mu]) 75 . (4.13)

Take Q,(y,s) € R¥*! we have

fa(p—1) 9{;{1’7;}7?
~ (me[li]) 0—ara drdt < ¢y (Wa@[XQ%(yys)/J]) dxdt

Qp(yvs) Qp(yvs)

fa(p—1)
Qp@,s)( PIX(Gap(y.9)) )
=A+ B.

Using inequality (4.13) and boundless M from LI(RN*1) to itself, yield

aq

q
A<ecs /]RN+1 (Mg“u‘q])@—am (M[XQZ;)(%S)‘U']) dxdt

< eollull Tyt / |t
XQ2p(y,9)

9q
< crl|pl |£§;3’E§§N+1)PN+270~

On the other hand, since |p|(Q,(z,t)) < cs||u|\Lq;e(RN+1)7"N+27% for all Q,(x,t) C RNFL,

fq(p—1)

- P 0—apq
o (2t =1
B< / / (@ (. 1)) 'Sﬁfa) & dwdt
Qo(y:s) \ /o r r
fq(p—1)
o 1 d 6—apq
< CQ/ (/ <||U||Lq;e(RN+1)7‘7%+a> e T) dxdt
Qp(y,s) p r
6q
§ ClO||ﬂ||z;;g€ﬂq§N+1)pN+279'
Therefore,
fa(p—1) 797‘;1 _
/ (Waplp]) 7=ors dadt < ‘311||N||Zq;91(7]1qw+1)PN+2 ‘.
Qp(y’s)
which follows (4.12). ]

In the next result we state a series of equivalent norms concerning potentials L, [12], IZ 1], He 1], Galn]-

Proposition 4.8 Let ¢ > 1, 0 < a < N 4+ 2 and R > 0. There exist constants C; =
C1(N,«,q) and Cy = C2(N, e, q, R) such that the following statements hold
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a. for any p € MT(RNF)
Cr e[l Lo @ay < [ Halplllpa@y+1y < Cillla[p]l|La@a+1y and

Vv
071||Ha[ﬂ]||Lq(RN+1) <[ HalpllLa@y+1y < Cllla[p]]| La@y+1y.

b. for any p € M*T(RN)
Co M Il paea+1y < 1Galpll|pan+1y < Col L [p]||paen+1)y and

lorallisk <G < Co|[IE
o I [l agen+1y < NGl a@y+1y < Colllg (1]l Lay+1y-

where ’}\-/[a[u] 1s the backward parabolic Riesz potential, defined by

\

Hall(@,t) = Ho # pla,t) = | Halw -y, s — )duly, s),

RN+1

v
and Go[p] is the backward parabolic Bessel potential:

Vv

v
Galp.t) = G lrt) = [ Guly =5~ ().
Proof. a. We have:
—1

!
a < Ho(x,t) <
(g X1>0X|a| <2V = o) < max{|z|, \/2[¢t[} N2~

which implies

X 2 . (.’E,t)d * X6 z,t) d
- oxct ) O dr @00 (@ 1) dr
2 0 T T

TN+27a 0 TN+2704

Thus,

TN+270¢ r

cgl/w(B( e t_))drwH(ac,ws@]la[u](x,t)
0

Thanks to Theorem 4.2 we will finish the proof of (4.14) when we show that

/ /OM(B( L t))“ff" th>c//*°°< ﬁi:fi”)

Indeed, we have for ri = (%)_k,

(/ p (B, r) x (t —r2, t—r2/4))>q
0 rN“ o r

264(53 b D)

N+2 o
k=—o0 Tk
[eS) 2 1.2 a
1 (B(x,rk) X (t—ri,t— grk))
2 C4 Z ( rN+2—a :
k=—o0 k
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Thus,

< u(B(z,r t—r2t— 1r2)) dr !
/</ n(Blar)x (¢ rhi- ) >)T> "

o) q
w(B(z,ry) x (t —r2,t — 112
>y E /R< ( ( k)rN(Jerak 3 k)) dt
- k

k=—o00
> (B, r) % (t— 3r3,t+ Lrd)) !
s Tk k>
e S /( yos ) at
k=—oc /R Tk

oo )\ d
s | ( ZCECR) )) &y

Similarly, we also can prove (4.15).
b. Obviously

-1 2
cg  exp(—4R?)
e e prE=En Xo<t<aR2X|z|<2vi < Ya(@,1)

Cé

Cé
< max{ 2], V2l V2 XG5 /2(0,0) (z,1) + RNio—a P (‘ max{|z], v/ 2|t|}) :

Thus, we can assert that

2R X g 2 o (2,1) g R xa (z,t) d
»(0)X (- ,r?) T Qr(0,0)\* r

R 2 — < Gulz,t) < e ) 2
er( )/0 rNT2—a r = Ga(2,t) < CS/O FNt2—a

+ ¢co(R) /RN+1 exp (—max{|y|, \/2\8\}) XGry2(0,0) (x —y,t — s)dyds.

Immediately, we get

C7<R>/OQR“<B( Xt =) ar

e " < Galuw,1) < sl ), ) + ea(R)F(2,1),

(4.19)

where F(x,t) = [oni1 exp (— max{|yl, /2 }) (QR/Q T —y,t— s)) dyds.
As above, we can show that

[ e s (e

Thus, thank to Theorem 4.2 we get the left-hand side inequality of (4.16).
To show the right-hand side of (4.16), we use 4 (QR/2(:E —y,t— s)) < erpR™ VA2 ) (2 —
y,t — s) and Young inequality

Ga il Loen+1y < cs|lIE ]l arn+1y + co(R)||F| a1y
< CS||H§[N]||LQ(RN+1) + Cll(R)||H§[,u]||Lq(RN+1) /N+1 exp (— max{|z|, \/M}) dxdt
R
= cia (RIS (]| a1,

Similarly, we also can prove (4.17). This completes the proof of the Proposition. [
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Remark 4.9 Assume that0 < o < N+2. From (4.8) in Proposition 4.4 and ||Ga[p]|| L1 @n+1) <

c1 (RN we deduce that for 1 < s < N]X-;Ea

Galt|Ls my+1y < con(RNTY) Ve MF(RNTY)

In particular, p € (EZ/ (RN“)) and ||:“||(Lg’(RN+1))* = ||ga[u]||Ls(RN+1).
Next, we introduce the following kernel:

Eg(x,t) = max{fa], v/ 2[t[} " xg o0 (@)

where 0 < o < N+ 2 and 0 < R < co. We denote E, by ES°. It is easy to see that
Eo = (N+2—a)lyfp] and ||EE « p|| 1« my+1) is equivalent to [|IF[u]| s zn+1) for every
p € MFT(RN*L) where 1 < s < c0.

We obtain equivalences of capacities Capg,_ ,, Cap Eé},pCapHmp and Capg,_ -

Corollary 4.10 Let p > 1, 1 < o« < N +2 and R > 0. There exist constants C; =
C1(N,a,p) and Cy = C3(N,a,p, R) such that the following statements hold

a. for any compact E C RN+!

CflCapHmp(E) < Capp,, ,(E) < C1Capy, ,(E) (4.20)

b. for any compact E C RN*!

Cy ' Capg, ,(E) < Capgr ,(E) < CyCapg, ,(E) (4.21)

c. for any compact E C RVN*+1

N+42

Capy,, ,(E) < Capg, ,(E) < Cy (C’apywp(E) + (Capyy, ,(E)) N“‘”’) (4.22)
provided 1 < ap < N + 2.
Proof. By [2, Chapter 2], we have

Lo ()7 = sup{u(E) : g € MH(E)||Ea % pil| o vy < 13,
Capgr ,(E)/? = sup{u(E) : p € MT(E),||EF # | 1 anry < 13,

Capp,

\

Capy, ,(E)"? = sup{u(E) : p € MT(E), [[Halplll o gvi1y <1} and
Vv

Capg, ,(E)"/? = sup{u(E) : p € M*(E),||Galplll 1o n1y < 1}

Thanks to (4.15), (4.17) in Proposition 4.8 and I,[u] = E4 * p and ||EF ]
equivalent to |[IE[x]||s@v+1), we get (4.20) and (4.21).

Since Go < Ha, thus Capy ,(F) < Capg ,(F) for any compact E C RN+ Put
Capp,_ ,(E) = a > 0. We need to prove that

Ls (RN+1) is

Cappg: ,(E) <1 (a + aNiV?tZap) . (4.23)
We will follow a proof of Yu.V. Netrusov in [2, Chapter 5]. First, we can find f € L (RN*1)
such that || f|[zrrny+1) < 2a and Eq * f > xg. Set Fiy = Eq — El, we have coF, < E} x F,
for some ¢; > 0. Thus, E C {EL * f > 1/2} U{EL x (F, * f) > c2/2}.

Since ||Eé”L1(RN+1) < 00, for ¢z = C2(4||Eé||L1(]RN+1))_1

El s (Fyxf) <co/d+ EL+g with g = xp,uf>esFo * f
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which follows E C {El x f > 1/2} U{EL x g > co/4}.
Using the subadditivity of capacity, we have

Capp ,(E) < Cappy ,({Eg * [ > 1/2}) + Cappy ,({Eg % g > ¢1/4})
<2p|‘f||Lp RN+1) + (4/c2)? HgHLp (RN+1)

. ! , (N +2)p
2p|‘f||Lp RN+1) (4/02)1)0]; Pl|Eq * f||1£p*(]RN+1), with px = m-
On the other hand, from (4.10) in Proposition 4.4 we have
[|Eo * fllLes@v+1y < cal|flloe @1y
Hence, we get (4.23). |

Remark 4.11 Since G, € LY(RN*1),

/ (Go % £)P dwdt < ||Gall?, RN+1)/ fedzdt Vf € L (RNF)
RN+1 RN+1

Thus, for any Borel set E C RN*!
Capg, »(E) > C|E| with C = ||Qa||2f'(RN+1). (4.24)

Remark 4.12 It is well know that Ho is the fundamental solution of the heat operator
—A. In [29], R. Gariepy and W. P. Ziemer introduced the following capacity:

Oy, (K) = sup{u(K) : p € MT(K), Ho[u] < 1}
whenever K C RN+ is compact. Thanks to [2, Theorem 2.5.5], we obtain
Capy, 2(K) = Gy, (K).
Remark 4.13 For any Borel set E C RY, then we always have Capg, o(E x {t =0}) =0
In fact,
Cappy o(B1(0) x {t = 0}) = sup{w(B1(0)) : w € M* (B1(0)), [|E} % (w0 ® 89)| [ p2an ) < 1}.

Since ||Ef % (w ® 0o)||L2ra+1y = 00 if w # 0, thus Capg, o(B1(0) x {t =0}) = 0.

In particular, Capg, 5 is not absolutely continuous with respect to capacity Ci2(.,Q % (a,b)).
This capacity will be defined in next section.

Remark 4.14 Letp > 1 and a > 0. Case ap > p+1, we always have |[Ha[p]|| o gry = 00
for any p € MFTRN)\{0} which implies Caprmp(Ql(0,0)) =0. If0<ap < N+2,
CapHa,p(Qp(O,O)) = cpN*2=eP for some constant c. From (4.22) in Corollary 4.10 we get
Capg,, ,(Qp(0,0)) = pN T2 for 0 < p < 1if ap < N +2. Since [|Ga[d(0,0)l| 1o mv1y < 00
thus Capg_ ,((0,0)) >0 if ap > N + 2.

Ifap = N+2, C’apgmp(Qp(O, 0)) ~ (log(1/p))' ™7 for any 0 < p < 1/2. In fact, we can prove
that ||18/* (]| o eny < ex for any du(z,t) = (log(1/p)) ™" p~"2x5 (. odedt it follows
Capga,p(Qp(an)) 2 C2 (log(l/p))lip' MO’I‘GOU@T’, fOT’ M € MJr(QP)’ Zf ||]13[ ”‘Lp (RN+1) 1

/

3 ~ p
T 7t d
> / LRI
Q1(0,0)\Q,(0,0) 2max{|z|,|2t[1/2} T r

/

3 p
1 dr ~ /
> ~oa | dwdtu(Q,(0,0))”
Q1(0 0\Q, (0, o> </2max{z| jaeprrzy TNTEO > g

> ez log(1/p)u(
So Capg, ,(Q,(0,0)) < C4N(Qp(070))p < s (log(1/p)" "
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Definition 4.15 The parabolic Bessel potential L2 (RN*Y) a > 0 and p > 1 is defined by
LERYY) ={f: f=Gaxg,g€ LPRVT)} (4.25)

with the norm || f|

cr@v+1) = ||gl| L@y, We denote its dual space by (LB (RN+))™.

Definition 4.16 For k a positive integer, the Sobolev space Wp%’k(RN“) is defined by
Qitetintig

W2k7k RN+1 — . . i
v B = G e an

€ LP(RNTY) for any iy + ... + iy + 2i < 2k}

with the norm

8“*”*”“@

H<P||W2k=k(]RN+1) = Z ||ﬁ||LP(RN+1)~
P i 2i<2h O0z1 .0z Ot

We denote its dual space by (ng’k(RN“))*. We also define a corresponding capacity on
compact set E C RN*+1,

Capag kp(E) = inf{|‘9"||€v2k>k(Rw+1) s € S(RVNTY), o > 1 in a neighborhood of E}.

Let us recall Richard J. Bagby’s result, proved in [4].

Theorem 4.17 Let p > 1 and k be a positive integer. Then, there exists a constant C
depending on N, k,p such that for any u € L5, (RN*1),

C_lHu”ng«k(RNH) < ||u||.c§k(RN+1) < C||u|‘W§kvk(RN+1)-
Above Theorem gives the assertion of equivalence of capacity Capyy, . ,,, Capg,, .-

Corollary 4.18 Letp > 1 and k be a positive integer. There exists a constant C' depending
on N, k,p such that for any compact set E C RVN+1

C™1 Capyy 1, p(E) < Capg,, ,(E) < CCapyy, . ,(E). (4.26)

Next result provides some relations of Riesz, Bessel parabolic potential and Riesz, Bessel
potential.

Proposition 4.19 Let ¢ > 1 and % <a< N+ %. There exists a constant C' depending
on N,q,a such that for any w € M*T(RY)

C I, 2 (W] La ()

R
< [[Hales ® Sl a1 Halo ® Syl lzaenn) < O3 llliaey)  (4:27)
and
CHIGa- 2 Wl Lo
< ||Galw ® dgs=0y]||La@n+1), ||éa[w ® dpr=plllLaen+1) < CllGo 2 [W]l| Loy (4.28)

where dyy—qy is the Dirac mass in time at 0.
Proof. We have

) 7%(,53’,?)%, Ialw ® b0yl (z. ) =/ w(Blo,r)) dr

Ha[w®5{t:0}]($7t>:/ w1y Ve T

Ve
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By [14, Theorem 2.3 ] and Proposition 4.8, we only show that

o [ s [ ([ ) e [ ()
(4.29)

and

L (VP w(Blz,r) \*dr
G 0 rN+2—a—-2/q r

SA(ﬁn{l,m}WT>thgclﬁl <M>qf w0

Indeed, by changing of variables

[ ([ sy o [ ([

Using Hardy’s inequality, we have

e * w(B(z,r)) dr\? S w(B(z,r)\?
/0 t (/t —Nti-a dt < 62/0 r e dr
and using the fact that

/°° w(B(x,r)) dr . w(B(x,r))

rN+2—o¢ r - 3 TN+2—a ?

we get

Thus, we get (4.29). Likewise, we also obtain (4.29). |

We have comparisons of Capy,_ ,,,Capg_ ,,,Capr , ,, Capg .
a—g a—=

2

P

Corollary 4.20 Letp > 1 and % <a< N+ %. There exists a constant C' depending on
N, q,« such that for any compact K C RN

C™'Capy , ,(K) < Capy, (K x {0}) < CCap; , ,(K) (4.32)
and
C~'Capqg , p(K) < Capg, (K x {0}) < CCapg , ,(K) (4.33)

Proof. By [2, Chapter 2], we have

v
Capy, (K x {017 = sup{u(K x {0}) : p € M (K x {0}), [[Halulll Lo vy < 1}
v
= sup{w(K) : w € MT(K),||Halw ® Sqe=0l| Lo (mv41y < 1} and
Vv
Capg, , (K x {0})? = sup{w(K) : w € M¥(K), [|Galw @ 6o]l| Lo mrvsry < 13,

Capy _, ,(K)"" = sup{w(K) : w € M7 (K), [Toz ]|l rery < 13,

_2,p
P

Capg__, ,(F)"? = sup{w(K) : w € M*(K), |G,z [0l ey < 13-

P P

Therefore, thanks to Proposition (4.19) we get the result. ]
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Corollary 4.21 Letp > 1 and k be a positive integer such that 2k < N +2/p. There exists
a constant C' depending on N, k,p such that for any compact set K C RN

C™'Capg,, , p(K) < Capyy ., (K x {0}) < CCapg_, ,(K) (4.34)

_2,pP 2,p
P P

We also have comparisons of Capg_ ,,, Capg,, ,-

Proposition 4.22 Let 0 < a < N, p > 1. For a > 0 there ezists a constant C' depending
on N,a,p,a such that for any compact K C RN,

C’flC'amep(K) < Capg, ,(K x [~a,a]) < CCapg,, ,(K).
Proof. By [2], we have

Cap o (K) < ciCapg, ,(K),
1.2 p

a
for some ¢; = ¢1 (N, a,p,a) > 0. So, we can find f € L% (RY) such that I * f > xx and
/ |fIPdr < 2¢1Capg, p(K).

RN ’

~ NG -
Note that (E,;/E % f)(x,t) > ca(Ia2 * f)(x,t) for all (x,t) € RY x [—a,a] where f(z,t) =
J(%)X[=24,24)(t) and constant cz = ca(N, a, p). So,

CapEﬁp(K X [—a,a]) < c;p/ | f|Pdadt

RN+1
—1c;% [ |fpd.
RN
By Corollary 4.10, there is ¢; = ¢1(N, «r, p,a) > 0 such that
Capg, ,(K x [~a,a]) < c1Capyya (K x [~a,a])

Thus, we get
Capgmp(K X [—a,a]) < 03Camep(K)

for some c¢3 = c3(N, a, p, a).
Finally, we prove other one. It is easy to see that

Y% 0 @ Xl sy < allY [l gy ¥ @ € MHRY)
for some ¢4 = ¢4(N, a, p), which implies
Gl ® Xi—mallll o sty < 5l Galilllpprry ¥ € MF(RNH)

for some ¢y = c4(N, a,p,a).

It follows,

Capgmp(K X [—a,al) > CGCamep(K)
for some ¢ = (N, a, p, a). |
Let

V2l -
Ef"s(m,t) = max{]|z], 2\t|}_(N+2_°‘) min < 1, (max{|xR7 | |}>

where 0 < R < 00, 0 < § < a < N + 2. The (EE? p)-capacity of a measurable set
E c RN*! is defined by

Capyrs (E) = inf{/ |f|Pdxdt : f € L:i(]RNJrl),Eolf"s x> xg}-
o RN+1
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Remark 4.23 For 0 < ag < N + 2, the inequality (4.10) in Proposition 4.4 implies

a(N+2) -~ N
(/ (B0 f) NFEme dxdt) <C fidxdt YVf e LYRNTY), f>0. (4.35)
RN+1

RN+1
Hence, we get the isoperimetric inequality:

|E|'"%%2 < CCapyrs (E), (4.36)

Next, we recall that a positive function w € L}, (RN *1) is called an A; weight, if the quality

1
[w]a, := sup (f wdyds> esssup ——— | < oo,
Q (@neQ w(@,t)

where the supremum is taken over all cylinder Q = Qg(x,t) C RNT1. The constant [w] 4
is called the A; constant of w.

1

Proposition 4.24 Let0 < R< oo, 1 <p<a ' (N+2),0<d<aand f,g € L}, (RNV+1),
Suppose that

1. there exists a positive constant Cy such that

/K |fldadt < C4 CapEg,a)p(K) for any compact set K ¢ RN+L (4.37)

2. for all weights w € Ay,

/R . |lglwdzdt < Cy /R . | flwdzdt (4.38)

where the constant Cy depends only on N and [w] 4, .
Then,
/ lgldzdt < C3Capyr.s LK) for any compact set K C RN+L (4.39)
K «@ 9.
where the constant C3 depends only on N,a,p,d and Cq,Cs.

For our purpose, we need to introduce the (R, §)—Wolff parabolic potential,

_1
*p(@Qpa, )\ P\ dp
Wﬁ;ﬁ[u](az,t) = /0 <p]\zi2ap min< 1, (E> n for any (x,t) € RV *L.
where p > 1,0 <ap< N +2,0<6<ap and R € (0,00] and p € M+ (RN*1).

It is easy to see that

WE(z,t) <C sup  WEL[L](y, s). (4.40)
(y,s)€ESUPD 1

for some a constant C' = C(N, «, p,d) > 0.
Remark 4.25 We easily verify that the Theorem 4.1 also holds for Wf;gﬂl [p] and Mfﬁ,‘sﬂl [p]:

Ry A E%T —6) d
wig e = [ (M) i1, (4) 12 ana

_ 2,(x. 1) . p\—d(r—1)
MR’J/(Z; 1),R1 1) = M(Qp(xa 1 L t) e RN+1.
a,p [qua) 0;%5%1 pN42*ap min 7(12) jbrany(x,)
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where 0 < § < ap’, 1 <p < a '(N+2) and Ry > R > 0. This means, for w € Ao, p €
MFTRNFY) there exist constants C1,Co > 0 and €y € (0,1) depending on N,a,p,§, [w]a
such that for any A > 0 and € € (0, )

oo

w{WES 1] > aX, MELF=DF (1)) 577 < eX}) < Crexp(—Cor™Yw({WES ™ 1] > A})

(4.41)
N+2—ap+i(p—1)
where a =2+ 3 p—1
Therefore, for g >p—1
_ 1
IIWif:S’Rl [l Lo @N+1,dw) < 03||(M§;’76(p DB (1)) 7T | o v+t du) -
where C3 = C3(N, a,p,6,q). Letting Ry — oo, we get
_ 1
W 1] v+t dw)y < CllMESPD )5 | Lo @nv1 i) (4.42)

,0(p— ,0(p—1),00
where MV (1] = M@=

Lemma 4.26 Let 0 < f < %ﬁ%ll). There exists a constant ¢ depending on § such

that for each Q, = Q,(z,1)

F OV, 9) duds < cCWE R 2. 0)°. (4.43

Qr

Proof. We set

1

Ut ol (w:5) = / ) (W) i {L (1’%)_6} d?p e

ot = [ () )}

Thus,

F s dyds < e f (U7 i) duds + er (LGl 9) s

QT Qr Qr

Since for each (y, s) € Q, and p > r we have Qp(y7 s) C Qgp(a:,t), thus for each (y,s) € Q.,

T - H(sz(ﬂf,t)) o P\ dp
Ua,p[.u] (y,8) < /T <pN+2ap> (max{l, E}) ?
< WDl (x, 1),

which implies
(U090 dyds < ex(WIE (.0

Since for each (y,s) € @, and p < r we have Qp(y,s) C Qap(2,t) thus, Ly, oln] =

L ol1X6,, o)) < WE X6, (0.0)] I Q. (z,t). We now consider two cases.
Case 1: » < R. We have for a > 0

L ,8))Pdyds < W pllX 6, (2.0 (Y 8 Pdyds
é( T (s s)Pdy <]é< XG0 o) 5)) Py

r T

- 1
Q|
<P f oy N2 / XYW (X, ] > AHAA

8 / NUWE X, ] > A} 0 QyldA
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If ap = N + 2, we use (4.11) in Remark 4.5 with e = 9 and take a = (/,L(Qg,«(a:,t)))ﬁ

apte(p—1)

F (L gl 0. 5))Pdyds < o o car V2 /°°xﬁ—1<<“<@2"<§vtm“> vy

r

< ca(p(Qar(x, 1)) 77
< e (W2 1) (x, 1)) .

_NA2—ap

If ap < N + 2, we use (4.8) in Proposition 4.4 and take a = N(Qgr(x,t))r)%lr =1, we
get

f: (Laplul (v, s))Pdyds < cg (ﬂ(@w(w,t))ﬁf Ntiﬁ“‘py
o

T

< e (W[l (x, 1))
Case 2: r > R. As above case, we have

- 1 Nt2—ap+s(p—1)\ B
f;} (Wa—ﬁp[“xézr(az,t)](yv3))ded5 <cg (ﬂ(Q%(xvt))pil?” P=1 )

Since WIS [1xG,, (ro) < B Wa s, Xy (), thus

~ 1 _ N+42—apt+é(p—1) B
F (L0 0 5))dyds < o (@i (o, ) 7T 552 )

T

< cs(Werplul(z,1))”.
Therefore, we get (4.43). The proof completes. ]

Remark 4.27 It is easy to see that the inequality (4.43) does not true for W5 [6(0,0)] where
d(0,0) 8 Dirac mass at (x,t) = (0,0).

Remark 4.28 For p € M*(RNTY) if there exists (zo,t0) € RN T such that W9 [u] (0, t0) <

0o then WIS [] € LY, (RNH1) for any 0 < § < mg=2et) o

Lemma 4.29 Let R € (0,00], 1 < p < a”}(N +2) and 0 < § < ap’. Assume that
ap < N +2 if R = co. Then, for any compact set K there exists a p € M (K), called a
capacitary measure of K such that

CfICGPEg,é/p/ﬁp(K) < uK) < CrCapyrs (K)
and WEL[p](x,t) > Co a.e in K and WES (] < Cs a.e in RNTL for some constants C; =
Ci(N,a,p), i =1,2,3.
Proof. We consider a measure v on M = RN*! x 7 as follows
r=me Z On
where m is Lebesgue measure, and d,, denotes unit mass at n. Thus, f € L?(M, dv), means

f = {fn}(iooo’ with

oo

1A s aray = D Ifalls@s:

n=—oo
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Let ng € ZU {+0oc} such that 27"%# < R < 27"~+L if R < 400 and ng = +o00 if R = +cc.
We define a kernel P, in RN*! x M = RN+ x RVN+1 x Z by

Po(w,t,a',t,n) = min{1, 200 m/PonNE2m0)y o (g — ot — 1),

If f is v—measurable and nonnegative and u € M*(RV*1), the corresponding potentials

v
Pof, Pap and VP’; p are everywhere well defined and given by

(o]
Pof = Z min{1,2(n—"r)8/p yon(N+2- a)X G, * I, and
v : n—mn ! n -« >
Pap = {min{1, 2073 g2l ) ud
n SRR (n—np)sygnp(N+2-a) e
Ve, p = Pa(Pap) - Z min{1, 2 012 XQyn * (Xan * ,u) ’

We now define the LP—capacity with 1 < p < oo

Capp, p(E) = m{[|£1], 1.y © £ € L% (M, dv), Puf > X5},

for any Borel set £ C RV*1. By [2, Chapter 2], for any compact set K C RV+!

v
Capg, ,(K)"/? = sup{u(K) : p € M*(K), [[Papllpe nvr an) < 13-

By [2, Theorem 2.5.6], for any compact set K in RN*1 there exists u € M*(K), called a
capacitary measure for K, such that VP” > 1 Capp, ,—q.e. in K, VI‘D‘Q p < laeinsupp ()
and pu(K) = Capp_ ,(K). Since ¢ 1V]P,” 2 S < W& 5[ ] <V, for some a positive constant
c1 and (4.40), thus WES[u] > ¢! Capp, , — q.e. in K, W[4 < ¢3 ae in RM*! and
w(K) = Capp_,(K). We have

oo

\ ’ ) _ ’ _ ’
||'paM||12p,(RN+1’dy) = Z || min{1, 2(1—nr)8/p yon(N+2 a)Xan *M||ip'(RN+1)

n=-—oo
oo

= ) min{1, 2070 gnr (NF2e) / (Xg, , * ) dudt,

N+1 2=
n=—o00 RN+

this quantity is equivalent to

/

/RNH/ ( ?v'lzx i”) min{1, (g)é}cz"dm.

So, thanks to (4.42) in Remark 4.25, we obtain

o | B < o[BS

\% ’
Lr’ (RN+1 — HPQMHIL)/I)/(RJ\FFl’dV) Lp’(RNJrl)'

for ca = c2(N,p, a,0). It follows that two capacities Capp pand Cap pRa/e , are equivalent.
Therefore, we obtain the desired results. ]

Lemma 4.30 Let R € (0,00], 1 < p < a”}Y(N +2) and 0 < § < ap’. Assume that
ap < N+2 if R = co. Then there exists C = C(N, «a,p,d) such that for any p € M;(RN“)

Cap ,n.s/w p(wg;g (1] > \) < CAPFLLRNTY) v x> 0. (4.44)

In particular Wi’g (1] < oo Caprasw , e in RNFL
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Proof. By Lemma 4.29, there is the capacitary measure o for a compact subset K of
{WIoTu] > A} such that Wi [o](2,¢) < ¢1 on suppo and CapEg,g/pzyp(K) ~ o(K) where
C1 = Cl(N’aapa 6)

Set M[u, o](x,t) = sup % for any (z,t) € suppo. Then, for any (z,t) € supp o
g 3p

1

, [ (0(@sp(x, )\ O dp
A< WES (1) < (M[p, 0](2, 1)) / (pN> min1, (2) 2

1
< (M[/Jvo'](xat))ZHl :
1 p-1
Thus, for any A > 0, suppo C {ca M|y, o])?=T > A} = {My, 0] > (%) }. By Vitali

Covering Lemma one can cover supp o with a union of Qs,,, (@;,t;) for i =1, ..., L(K) so that
Q. (4, t;) arve disjoint and o(Qs,, (i, t:)) < (Mea) PP u(Q,, (4, ). Tt follows that

L(K)
CapEg ) <c3 Z Q3p1 i, 1))
L(K)
< A Z Qﬂ1 xl» 1

< 03012’ - pHu(RN“).
So, for all compact subset K of {W,, ,[u] > A} N Qd(xo,t0)7
CapER,S/p/ p(K) S ClcgflA—p'f‘l,u(RN-‘rl).

Therefore we obtain (4.44). ]
Remark 4.31 Let0<d <a < N+2and d < 1. From the following inequality

|max{|er — 2|, /2t — s[} 7N —max{|zy — 2|, V/2[t2 — 5[}V
< (max{|:lc1 — 2),1/2|t1 — s} V7270 L max{|ag — 2], m}_N—Q‘W—é)
5
X (|£L'1 - ZL’2| + |t1 — t2‘1/2)
for all (z1,t1), (z2,t2), (2,8) € RNTL where ¢1 is a constant depending on N, a, 4.

Thus, for
mu € M (RNT)

)
Talp)(z1, t1) =lalp] (2, t2)| < 2 (la—s[pl(w1,t1) + La—s[p](z2, t2)) (|$1 —@a| + [t — t2|1/2)

for all (z1,t1), (z2,t2) € RN*L and ¢y = cl%ﬁ.

Consequently, for any p € M; (RN*Y), 1,[u] is 6— Holder Capy, _ s quasicontinuous this

means, for any € > 0 there exists a Borel set O, C RN*! and c. > 0 such that
Talp] (21, t1) — Lalp] (22, t2)| < c. (|l’1 — @g| + [ty — f2\1/2)6 V(z1,t1), (22,t2) € O
and Capg_, o(RNTNO,) < e
2
Here we only prove Proposition 4.24.

Proof of Proposition 4.24. By Lemma 4.26, (4.29) and (4.30), there is the capaci-
tary measure p of a compact subset K C RNT! such that WEP [1])(z,t) > ¢; ae in K,
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Wg’gp/ [1](z,t) < ez a.e in RVFL and Cap r.s p(Wf”gp/ [u] >N < CQ)\_p+lcapE§,é (K for

all A >0, (WQR”SPI [u])? € A for any 0 < B < %. From second assumption we have

| lalwR ) dade < o [ 1AIOWESY ) dnt.
RN+1 ’ RN+1 ’
Thus

[ gldzar < ® [ gl W () e

K RN+1 ’

<oy / |FI(WERSP (1)t
RN+1

:c35/ / | fldzdt\P~1dA.
0 JWEI [u>A

By first assumption we get
,6p" -
/\;\‘/R’ép/[p]>)\ ‘f|d.’17dt < ClcapE§,57p({W5)pp [M] > /\}) < 04/\ P-‘rlcapE(}}J’p(K).
o,p
Therefore,

c1
/K lg|dzdt < 055/0 )\7P+1CapE§,57p(K))\§ild)\ = csCapyrs (K),

since one can choose § > p — 1. This completes the proof of the Proposition. ]

Definition 4.32 Let s > 1, a > 0. We define the space M7 3(RNF) (MYGars(RN+1)
resp.) to be the set of all measure p € M(RN*1) such that

|1l (K)

e t K c RN*ls.t C K)>0;p < oo,
Capy,,, <(K) compac s.t Capy,, (K) 00

[M]MHQ,S(RN+1) (= sup {

|1|(K) N+1
e = —_— t K CR .t C K)y>0; < .
([M]MQ (RN+1) 1= SUp { Capg, () compac s.t Capg, ((K) 00 TSP

For simplicity, we will write M3 M9 to denote MMas(RN+L) MIars (RN pesp.

We see that if as > N+2, MHas(RNFL) = () if as < N+2, MM as(RNHL) € MYars (RN FL),
On the other hand, MY%3(RN+1) 5 My (RVN*1) if as > N + 2.
We now have the following two remarks:

Remark 4.33 For s > 1, there is C = C(N, a, s) > 0 such that
[flmGar < C’[|f|5]%{;ap for all function f. (4.45)

Indeed, set a = [| f|*] poa.p(mv+1y, S0 for any compact set K in RN+

/K |f|°dxdt < aCapg_ ,(K)

This gives 2aCapg, ,(K) > [ (If|° + cra) dwdt > caa'=V/* [, | fldadt, here we used (4.24)
in Remark 4.11 at the first inequality and Holder’s inequality at the second one. It follows
(4.45).
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Remark 4.34 Assume that p > 1 and % <a< N+ %. Clearly, from Corollary 4.20 we
assert that for w € MT(RY)

Cl—l [w]MIQ_Q/p,p < [w ® 5{t:0}]M,{a3p < (C; [w}Mla_Q/p,p and

C2—1 [W]MG(y_Q/p,p < [w ® 5{t=0}] < Oy [W]MGQ_Q/p,p

M6Yap
for some C; = C;(N,p,a), i = 1,2. Where MIa—2/pP := Mla—2/pP(RN) | MGa-2/pP 1=
MGe—2/p:P(RN) and

- w(K) N
[W}Mlaiz/p,P(RN) = Sup{ Cam_.,_ () compact K C RY s.¢ C’apIMz/p’p(K) > 0}

and

w(K)

[w]Mca,Q/p,p(RN) 1= sup { Care compact K ¢ RN s.t CapGa72/p7p(K) > 0} .

072/p7p( )
Clearly, Theorem 4.2 and Proposition 4.24 lead to the following result.

Proposition 4.35 Letg>p—1,s>1 and0 < ap < N+2. Then the following quantities
are equivalent

(W2 ()]

for every p € MH(RN*1) and 0 < R < o0.

q

(Taplud) 7T

q

and [(pr[#]) ﬁ} MM

M’Ha,s ’ [ i|,/\/l’H0u5
In the next result, we present a characterization of the following trace inequality:

B2 % fllon+1,auy < 1|l fllo@n+y Vf € LP(RNT). (4.46)

Theorem 4.36 Let 0 < R < 00,1 <p<a }(N+2),0<d<aandp be a nonnegative
Radon measure on RN, Then the following statements are equivalent.

1. The trace inequality (4.46) holds.

2. There holds
IEE?  fllo@y+1,a0) < c2llfllzr@n+ry Vf € LP(RNTY). (4.47)

where dw = (179 1,)P" ddadt.

3. There holds

B 5 fllpooe @+t gy < csllfllzr@n+y Vf € LP(RNTD). (4.48)

4. For every compact set E C RNT!,

WE) < csCapyrs (E). (4.49)

5. [y < o0 a.e and )
IES (IR ] ] < esl0[u] ace. (4.50)

6. For every compact set E C RN+,

[ Q) o < coCap s, (P (451)
i ,
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7. For every compact set E C RN+,
/RN+1 (15 [uxp))? dwdt < crp(E). (4.52)
8. For every compact set E C RVN*T1

[E (L5 [y p))P dadt < csp(E). (4.53)

We can find a simple sufficient condition on p so that trace inequality (4.46) is satisfied from
the isoperimetric inequality (4.36).

Proof of Theorem 4.36. As in [78] we can show that 1 & 2 & 3 & 4 < 6 < 7 and
7= 8,5 = 2. Thus, it is enough to show that 8. = 5. First, we need to show that

. B B p'—1 -~ -1
([ om0 zor (i G)0) o

We have for any (y, s) € Qr(x,t)

-(x, , ) =0 d
ing el - [ HLEDN g ()%
r ) . —9.d
> [T QAR gy, (£)7) %
-5
> 027%1&2)) min{1, (%) 1.
In (4.53), we take E = Q,.(x,t)
Q Z x,t ,
cu(Qr(z, . (Talexo, o))"

> df (’W min{L, (;)‘3) @)
So u(Qr(x,t)) < carN+2—or (min{l, (%)_6}) " which implies (4.54).

Next we set N B
o ,t ) =44,
LT[M](x,t):/ /Wmm{l,(é) ?”,

U]z, £) = /O MQp(@:t) | ity (%)75 %,

and
dw = (Inp)? dadt, doy, = (Lyu))? dedt, dos, = (Un[p))” dadt.

We have dw < 2°'~1 (doy1, + dog,) . To prove (4.50) we need to show that

| i (5) ) <t amd @)
|2 D i, (1) 7YY < et e (4.56)
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Since, for all 7 > 0, 0 < p < r and (y, s) € Q,(z,t) we have Q,(y,s) C Qar(z,1t). So,

p/
Urltixo,, (@nl(:s))  dyds.
Q1) QTm)( TRy )

02 (Or(2,1)) = / (U [ul(y, 9))" dyds = /

Thus, from (4.53) we get

pl
UrlbX 3, (w0 (s 8) ) dyds
O () ( Qa2r(z,t) )

02 (Q(a,1)) < /

p/
= / ]1575 [,U,X 2 ](y» 3) dyds
Qa2r(w,t) ( Q2r(,t) )
< cop(Qar(2,1)).

Therefore, (4.56) follows. 3 3 3
Since, for all » > 0, p > r and (y,s) € Qr(x,t) we have Q,(y,s) C Qa,(x,t). So, for all
(y,8) € Qr(z,t) we have

Le[p)(y, s) < /:oo W min{l, (%)

< 7L [p)(z,t).

p

Hence,

010 (Qr () = /Q (el dys

Since 7~ ! min{1, (%)_5} <14 (r"‘ min{1, (%)_5}), we deduce that
* Ul,r(ér(xat)) . T\ 0 dr * a1 ro r\ 9
/o e min{L () ¥ ser [T Tl ) ming, (5) e

< acjé /OOo % (ra min{1, (;)5}) (L[, ) dr

<oes /OOO r (L[] (@, 1) % min{1, (%)_6}2%

Therefore, we get (4.55) from (4.54). This completes the proof of Theorem. ]
Remark 4.37 It is easy to assert that if 8. holds then for any 0 < 8 < N + 2

Iy [(I4]])" | < Clglu) (4.57)
for some C = C(N,a,f,d,p) > 0.

Corollary 4.38 Letp > 1,a > 0 such that 0 < ap < N + 2. There holds

/

O il < [Tl | < Ol (4.58)
for all p € MT (RN, Purthermore,
[SOTL * /J/]M’Ham S 02 [M]Mﬂa,p (459)

forn € N, p € MTRN*Y) where {¢,} is a sequence of mollifiers in RN*1. Here C; =
Ci(N7p7 O[), i = 1a2
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Proof. For R = oo we have I%9[u] = 1,[y] and EF° = E,. Thus, by (4.20) in Corollary
4.10 and Theorem 4.36 we get for every compact set £ C RNF!,

M(E) < clcapHmp(E)

if and only if for every compact set £ C RN+,

/E (Ta[u))"” dadt < exCapyy, ,(F).

It follows (4.58).
Since In[@n * 1] = @n * Lo [u] < M (I4[u]) and M is bounded in LP (RN dw) with w € A,
yield

[ Galon s dw < ealfols,) [ (Ll do

RN+1 RN+1

Thanks to Proposition 4.24 we have
|(Talpn * 1)*']

which implies (4.59). m

MHap T

Corollary 4.39 Letp > 1, a>0with0<ap < N+2,0<d < a and R,d > 0. There

holds ,
(IR )" ]

for all p € MT(RN*YY with diam(supp (1)) < d. Furthermore,

p/
Mbe o (RN+1) < (d/R, R) [:LI‘]MQ@‘IJ(RN#’l) (4~60)
[@n * /”L}MQOUIJ(RN‘Fl) < 02(d) [/’L]MQQ»P(RN+1) (4-61)

forn € N, p € MFTRN*L) with diam(supp (1)) < d where {p,} is a sequence of standard
mollifiers in RVN*TL,

Proof. It is easy to see that
(e1(d/R) Bl o zvany < B * pill ot evsny < e (d/ R)EG ]| o vy

for any y € M*(RN*1) with diam(supp (1)) < d, thus two quantities Capyrs (E) and
Cap E§7P(E) are equivalent for every compact set £ C RV*! diam(F) < d where equiv-
alent constants depend only on N,p,«a and d/R. Therefore, by Corollary 4.10 we get
Capyrs (E) = Capg, ,(E) for every compact set E C RN+ diam(E) < d where equiva-
lent constants depend on d/R and R. Thus, by Theorem 4.36 and diam(supp (p)) < d we
get, if for every compact set £ C RV*L,

1(E) < c2(d/R, R)Capg, ,(E)
then for every compact set £ C RNV*1,
/ (]Igﬁ[lu])p, dzdt < c3(d/R, R)Capgrs ,(E)
5 ;
< cu(d/R, R)Capg,_ ,(E).
It follows (4.60). As in the Proof of Corollary 4.38 we also have for w € A,

/ (1w # )" do < e (fwla,) / (I 0])” dw
RN+1 RN+1

Thanks to Proposition 4.24 and Theorem 4.36 we obtain (4.61). |
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Remark 4.40 Likewise (see [69, Lemma 5.7]), we can verify that if% <a <N+ %,

(1,1 * WﬂMIafz/pvp <G [wl]MIa,Q/p,p and
[901,71 * wQ}MGa72/p’p < CQ(d) [wQ]MGOLfZ/p’p s
forn € N and wy,ws € MT(RN) with diam(supp (w2)) < d where C; = C1(N, a,p), Cz(d) =

Cao(N,a,p,d), {¢1.n} is sequence of standard mollifiers in RY and |.]
was defined in Remark 4.34. Hence, we obtain

Mra—2/pP> [']MGQ72/p>p

(P10 % w1) @ 5g=01] \prewr < O3 [W1 ® Fpi=0}] pgran »
[(@l,n * W) ® 5{t:0}}Mga,p < Cy(d) [OJQ ® 5{t:0}]Mga,p )

forn € N and wy,wy € MT(RNFY), diam(supp (1)) < d where C3 = C3(N, a, p), Cy(d) =
Cy4(N, a,p,d).

Proposition 4.41 Let g >1,0<ag < N+2, 0< R<00,0<d < aand K > 0. Let
0< feLl (RNTY). Let Cy,Cs be constants in inequalities (4.49) and (4.50) in Theorem
4.86 with p = ¢'. Suppose that {u,} is a sequence of nonnegative measurable functions in
RN+ satisfying

U1 < KIR?ul] + f VneN
uy < f (4.62)

Then, if for every compact set E C RN*T1,

/Efqudt < CCapyrs ,(E). (4.63)
with )
27q+1 q-— 1 q\ 49—
< .
C_C4<C5(q—1) <qK2q‘1> > (464
then Kogi1
U < %Hf"s[ f+f vneN. (4.65)

Proof. From (4.49) and (4.50) in Theorem 4.36, we see that (4.63) implies

e < (g) " et (466)

Now we prove (4.65) by induction. Clearly, (4.65) holds with n = 0. Next we assume that
(4.65) holds with n» = m. Then, by (4.64), (4.66) and (4.62) we have

U1 < KIR[ul] + f
Kq29—1
q—1
Kq2e7!
q—1

< fe ( ) TRI[IRA[fo))e) + K20 TR0 7] 1 f

)q ( g ) I+ K 4

< K941 -
<xrt z

Kq27—1
< qilﬂg’é[fq] + f.
q—

Therefore (4.65) also holds true with n = m + 1. This completes the proof of the Theorem.
]
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Corollary 4.42 Let ¢ > NJJ\SEQ, a >0 and f € LLRNTY). There ezists a constant

C > 0 depending on N,«,q such that if for every compact set E C RN+ fE fldxdt <
CCapyy, o (E), then u = Ho[u] + f admits a positive solution u € L (RN*!).

loc

Proof. Consider the sequence {u, } of nonnegative functions defined by ug = f and w, 1 =
Holud] + f ¥V n > 01t is easy to see that u,y1 < c1lz[ud] + f Vn > 0 By Proposition
4.41 and Corollary 4.38, there exists a constant ca = ¢3(V, «,q) > 0 such that if for every
compact set E C RN*L, [ fidzdt < c;Capy,, ,(E) then uy, is well defined and
31
w < T L[f + f V>0,
q-—

Since {uy} is nondecreasing, thus thanks to the dominated convergence theorem we obtain

u(z,t) = nlgrolo uy (2,t) is a solution of u = Hy[ud]+ f which u € L] (RVT!). This completes

the proof of the Corollary. ]

Corollary 4.43 Let ¢ > 1, a >0, 0 < R < 00,0 < § < a and p € MHT(RN*Y). The
following two statements are equivalent.

a. for every compact set E C RN*L fE f1< C’CapEg,s,q, (E) for some a constant C' >0

b. There exists a function u € L} (RN*Y) such that u = 1%[ul] + e f for some ¢ > 0.

Proof. We will prove b. = a. Set dw(z,t) = ((I%%[u9))? 4 9f9) dzdt, thus we have
dw(z,t) > (15° [w])q dzdt. Let M, denote the centered Hardy-littlewoood maximal function
which is defined for g € L} (RN, dw),

1
My g(z,t) = sup — |gldw(z,1).

>0 w(Q,(,1)) /@pm)

For E ¢ RV*1 is a compact set, we have

/ (Moxp)? (1)) dedt < / (Moxs)? do(z, £).
RN+1

RN+1

Since M,, is bounded on L*(RN*! dw) for s > 1 and (M, xg)* (Hg"s[w])q > (]If‘;[wXE])q,
thus

/ (]If"s[wxE])q dxdt < cyw(E).
RN+1
By Theorem 4.36, we get for any compact set £ C RV+!

w(E) < c2Capyrs , (E).

It follows the results. |

5 Global point wise estimates of solutions to the parabolic
equations

First, we recall Duzzar and Mingione’s result which involves local pointwise estimates for
solution of equations (2.6).

Theorem 5.1 ([25]) Suppose that A satisfies (2.3) and (2.4). Then, there exists a constant
C depending only N, A1, Ay such that if u € L*(0,T, H(Q)) N C(Qr) is a weak solution to
(2.6) with p € L*(Qr) and u(0) =0

w0 <CF Juldyds + CBR ]l 1 (5.1)
Qr(z,t)
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for all Qap(x,t) C Q x (—o0,T).
Furthermore, if A is independent of space variable x, (2.29) satisfies and Vu € C(Qr) then

Valw ) <Cf  |Vuldyds + OBz, ) (52)
Qr(z,t)

for all Qap(x,t) C Q x (—o0,T).

Proof of Theorem 2.1. Let = pg + ps € Mp(Qr), with pg € Mo(2r), ps € Ms(27).
By Proposition 3.7, there exist sequences of nonnegative measures fin.0; = (fn,is Gn,i> Pn,i)
and p, s, such that f,;, g0, hn € C2°(Qr) and strongly converge to some f;,g;, h; in
LY (Qr), L2(Qp,RY) and L2(0, T, H} () respectively and pin, 1, fin.2, fn.s.1; Hn.s.2 € C°(Qr)
converge to u™, u~, ut, u7 resp. in the narrow topology with Hni = Pn,0,itMn,s,i, fori=1,2
and satisfying puf = (f1, 91, 1), g = (f2,92,h2) and 0 < pin 1 < @p#p™,0 < po < @™
, where {¢,,} is a sequence of standard mollifiers in RV+1,

Let 01 5, 09,n, € C°(Q) be convergent to o and o~ in the narrow topology and in L'(Q)
in o € L'(Q) resp. such that 0 < Oin < @inxot,0<o0y, <@i,*x0 where {¢1,} is a
sequence of standard mollifiers in RY. Set p,, = tni — fn2 and o, = 01,5 — 02 p.
Let wup, un,1, un,2 be solutions of equations

(un)t — div(A(x,t,Vuy)) = pn, in Qp,
u, =0 on 0Q x (0,7), (5.3)
u,(0) =0, on Q,

and
(un1)e — div(A(z,t, Vun 1)) = Xazfn,1 0 Bar,(x0) x (0,275),
Up,1 = 0 on 8BQTO (1’0) X (O, 2T02), (54)
’U/n’l(o) =01,n, O BQT() (xo)v

and

(un2)t + div(A(x,t, —Vun2)) = Xappnz in Bar,(zo) x (0,2T3),
Un,2 = 0 on aBgTO (.’170) X (0, 2T02)7 (55)
Un2(0) = 02, on Bor, (20),
where ) C Br,(x¢) for z € .
We see that w1, un2 > 0 in Bag, (z0) % (0,277) and —up, 0 < 4y < Uy in Qr.
Now, we estimate u,, 1. By Remark 3.3 and Theorem 3.6, a sequence {uy 1,m} of solutions
to equations

(un,l,m)t - d’L’U(A({IL ta vun,l,m)) = (gn,m)t + XQr Hn,1 in B2To (1’0) X (_2T027 2T02)7

Unp,1,m = 0 on 8BQTO (.’170) X (—2T027 21—‘02)7

unalym(_ZTOQ) =0 on BQTo(mO)a

(5.6)
converges t0 un,1 in Bar, (20) X (0,21¢), where gy m(2,t) = o1,,(2) fszz ©2,m(s)ds and
0

{¢2.m} is a sequence of mollifiers in R.
By Remark 3.2, we have

||un,1,m||L1(QQT0 (20,0)) < 1 Tg Apom. (5.7)

where A, = pn1(Qr) + fQ2TO (20,0) 01,0(2)2,m (t)dxdt.
Hence, thanks to Theorem 5.1 we have for (x,t) € Qp

Un 1 (2,1) < CSTO_N_2||u”’1’m||Ll(Q2TO (z0,0)) T €8l [tn1](z, 1) + csla[or nom](x, t)
< colly[pin 1] (x, t) + cola[o1 nom](2, t).

Since 0 < pin1 < @ xpt, o1 <@rpxot,

Un,1m (2,1) < copn * L[] (2, 1) + co(@1npam) * I2[0" @ Sg—oy] (2,1) ¥ (2,t) € Q.
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Letting m — oo, we get

Un,1(2,1) < coon * L[] (2,8) + coprn * (I2[07 ® dpu=y](-,1)) () ¥ (2,¢) € Q.
Similarly, we also get

Un 2 (2, t) < copn * Do (2, 1) + copr,m * (I2lo™ @ dp—oy] (1)) (2) V (z,t) € Qp

Consequently, by Proposition 3.5 and Theorem 3.6 , up to a subsequence, {u,} converges
to a distribution solution ( a renormalized solution if o € L1(2) ) u of (2.6) and satisfied
(2.9). |

Remark 5.2 Obviously, if o =0 and supp (1) C Q x [a,T], a > 0 then u =0 in Q x (0, a).
Remark 5.3 If A is independent of space variable x, (2.29) satisfies then

|VU($7t)| < C(NvAlvAQaTO/d)H?TOHIU’| + ‘O’| ® 5{t:0}}(x,t) (58)

for any (z,t) € Q4 x (0,T) and 0 < d < 3 min{sup,¢q, d(z, 89),T01/2} where Q4 = {x € Q :
d(z,0Q) > d}. Indeed, by Remark 3.3 and Theorem 5.6, a sequence {v, m} of solutions to
equations

(Vn,m)e — div(A(t, Vun,m)) = (Gnm); + XQrfn i1 QX (=212,7),
Vpom =0 on 0Q x (=213, T), (5.9)
Vnm(—2T8) =0 on L,

converges to u, in L*(0,T, Wol’l(Q)), where Gnm(x,t) = on(x) ijTZ w2,m(s)ds and {p2.m}
0

is a sequence of mollifiers in R.

By Theorem 5.1, we have for any (z,t) € Q% x (0,T)

|an,m|dyd5 + Cl]I(liHMn‘ + low| ® @2,771](1'70-

Quay2(z,t)

|VUn,m(x,t)| < clf

On the other hand, by remark 3.2,
11V nmlll L @x (12 ) < 2To(lin] + [on] @ 02,m)(Q x (=15, T)).
Therefore, for any (z,t) € Q4 x (0,T)
[Vonm (2, 0)] < csla[lpn] + [on] © ©2.m] (2, 1)

where c3 depends on Ty/d.
Finally, letting m — oo and n — oo we get for any (z,t) € Q¢ x (0,7)

[Vu(z, t)] < eslu[|p] + o] @ 0oyl (2, 1)
We concludes (5.8) since I1[|u| + || @ dg—03] < eI |p] + |o| ® dri=0y] i Qr.
Next, we will establish pointwise estimates from below.

Theorem 5.4 Ifu € C(Q,(y,s)) N L%(s —r% s, H'(B,(y))) is a nonnegative weak solution
of (2.6) with data p € M (Q,(y,s)) and u(s — r?) > 0, then there exists a constant C
depending on N, A1, Ay such that

o) _ 35 .2
u(y, s) > OZ M(Q”/S(y’f] i25"%)) (5.10)
r
k=0 k

where 1, = 47 Fr.
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Proof. It is enough to show that for p € (0,r)

pQuys(w.s — f550%)) _

= u—
N

) (5.11)

inf inf wu
Qp/a(y,s) Qp(y,8)

By [48, Theorem 6.18, p. 122 ], we have for any 6 € (0,1 + 2/N),

1/6
<][ (u— a)9> < co(b—a) (5.12)
Qp/4(yvs_p2/4)

where b = ianpM(y,s) u, a = infq (, ¢ v and a constant c; depends on N, Ay, A, 6.
Let 1 € C°(Q,(y,s)) such that 0 < n < 1, suppy C Q,a(y,s — p°), n = 1 in
Quys(y,s — 22p?) and |Vn| < ¢3/p?, |m| < c3/p? where ¢z = c3(N). We have

35
Qpys(y: s = 1550°) < / n*du(z,t)
Qp(y,s)
= / g’ dadt + 2/ nA(x,t, Vu)Vndxdt
Qp(y,s) Qp(y,9)
= —2/ (u — a)nendadt + 2/ nA(z,t, Vu)Vndzdt
Qp(y:9) Qp(y,s)
< 03r_2/ (u — a)dzdt + 2A4 / n|Vu||Vn|dzdt
Qp/4(y1‘ —11’2) Qp(yvs)
<eyrN(b—a)+ C4/ n|Vul|Vn|dzdt

Qp(y,s)

Here we have used (5.12) with # = 1 and (2.3) in the last inequality. It remains to show
that

/ n|Vul|Vnldedt < csr™ (b — a). (5.13)
Qr(y,s)

First, we verify that for € € (0, 1)
/ |Vul?(u — a) " ndedt < CG/ (u—a)' == (nlne| + [Vn|?) dadt. (5.14)
Qp(yvs) Qp(yvs)
Indeed, for § € (0,1) we choose ¢ = (u — a + &) ~°n? as test function in (2.6),
0< / u(u — a+ 6) " n?dadt + / Az, t,Vu)V ((u — a+6)"n?) dzdt
Qp(y,5) Qp(y,s)

<2(1 —5)/ (u—a—|—5)1_5|nt\nd$dt—5/\2/ |Vul*(u —a+ 6) " tn*dedt
Qp(y,s) Qp(y:s)

+2A1/ n|Vul(u —a+ §)~°|Vn|dzdt.
Qp(yvs)
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So, we deduce (5.14) from using the Holder inequality and letting 6 — 0.
Therefore, for € € (0,2/N) using the Holder inequality and we get

/ n|Vu||Vn|dxdt
Qr(y,8)

1/2 1/2
< (/ |Vul|?(u — a)_f_lngd:tdt> (/ (uw— a)8+1|V17|2dxdt>
Qp(yvs) Qp(y7s)
1/2 1/2
<ecr (/ (u—a)t=¢ (77|77t| + |V77|2) dxdt) (/ (u— a)5+1|V77|2dmdt>
Qp(y,5) Qp(y,s)

1/2 1/2
<cgp? (/ (u— a)lgdxdt> (/ (u— a)5+1dxdt> .
Qp/a(y,s—5%p%) Qp/a(y,s—%p%)

Consequently, we get (5.11) from (5.12). |

Proof of Theorem 2.3. Let pu, € (C*(Qr))", 0, € (C(Q))' be as in Theorem 2.1.
Let u, be a weak solution of equation

(un)e — div(A(z,t,Vuy)) = py in Qp,
u, =0 on 0Q x (0,7),
U, (0) =0, on Q.

By Remark 3.3 and Theorem 3.6, a sequence {u,, ., } of solutions to equations

(tUn,m)e — div(A(z, t, Vi m)) = (Gn,m); + XQptn in Q x (=diam(Q2), T,
Un,m =0 on dQ x (—diam(2),T),
Upm (—diam(2)) =0 on Q,

converges to u, in Qp, where g, (z,t) = o,(2) fidiam(ﬂ) Y2,m(s)ds and {@2,} is a se-
quence of mollifiers in R.
Thus, by Theorem 5.4 we have for any Q,(y,s) C Q x (—diam(Q),T) and r, = 4~ *r

n r )2 T o T Un &® ©Om r 3 S — 35 T
Unm (Y, 8) > €1 Z fin (Q A/S(iiN 128 i) T Z m)(Q ;/Js(?; 198 k))
k=0 k k=0 k

Letting m — oo, we get

(y7 > e Z Hn QTk/S(y7 - 128Tk)) te Z (Un (9 5{1‘, 0})(Qr,€/8(y: - 128Tk))

iy = Y
Finally, by Proposition 3.5 and Theorem 3.6 we get the results. ]

Remark 5.5 If u € LI(Qr) satisfies (2.10) then Go[xpu] € LYRN*) and G:[xro] €

LA(RN) for every E CC Q x [0,T) and F CC Q. Indeed, for E CC Q x [0,T), ¢ =
dist (B, (2 x (0,T))U(Q x {t =T})) > 0, we can see that for any (y,s) € Qr, r, = 47%¢ /4

Z (EOQW/S(IQZ\/[, _1258 k)) (5.15)

Tk

u(y,s) >
k=0
where fi = j1 + 0 ® f4—0} -
Moreover, for any (y,s) ¢ Qr

ﬁ(E N Qrk/S(yv s — 13258TI%))

N
Tk

=0
k=0
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Thus,

_ 35,2 4
OO>/RN+1Z< EQO/Sjga 128rk))> dyds
B0 Qr sy s — )\
/RNZ/ < T;ZCV dsdy
q
/ /< EmQrk/8<ya ))> dey
RN
e/64
>CZ/ / ( Eme(y, ))) /38
]RN+1

> (o) [ | (Galie])” dsdy

Thus, from Proposition 4.19, we get the results.

Proof of Theorem 2.5. Set D,, = B,,(0) x (—n?,n?). For n > 4, by Theorem 2.1, there
exists a renormalized solution u,, to problem

(un)r — div(A(x,t,Vuy)) = xp, _,w in Dy,
up =0 on 0B, (0) x (—n?,n?),
un(—n?) =0 on B,(0).

relative to a decomposition (fy, gn, hn) of xp, _,wo satisfying
~Kly[w (z,t) < up(x,t) < Klp[wt](z,t) V (2,t) € D,. (5.16)

From the proof of Theorem 2.1 and Remark 3.9, we can assume that u, satisfies (3.14) and
(3.15) in Proposition 3.16 with 1 < g < 2F2, L = 0 and

fnllzr iy +1lgnll2) + nl + VAl L2(D,) < 2|w](Diga) (5.17)

for any i = 1,...,n — 1 and h,, is convergent in L{ (RN*1).

On the other hand, by Proposition 4.26 we have for any s € (1, %)

/ Iunlsd:fdtSKs/ (Iy[|w|])*dadt

m m

< K/ (Ls[|w]])*dzdt
Qam(zo,to)

< ey MmN +2 (5.18)

for n > m > |zo| + |to|'/?. Consequently, we can apply Proposition 3.17 and obtain that ,,
converges to some u in L}, (R; VVlicl(]RN))
Since for any « € (0,1/2)

2
/ %dmdt < Cla) ¥ =m,
Unp

N+2

thus using (5.18) and Holder inequality, we get for any 1 < s1 < $75

/ [Vu,|*tdedt < Cp,(s1) for all n>m > |xg| + \to\l/z.
Dy,
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This yields u, — u in L (R; W21 (RN)).

loc loc

Take p € C°(RV*T1) and mo € N with supp () C D,,,, we have for n > mq + 1

*/ Un@tdzdtJr/ A(x,t,Vun)Vgod:cdt:/ wdw
RN+1 RN+1 RN+1

Letting n — oo, we conclude that u is a distribution solution to problem (2.8) with data
p = w which satisfies (2.11).
Claim 1. If w > 0. By Theorem 2.3, we have for n > 4F0F1 (y, s) € By, x (0,n?)

> Q S(y, ) N Dn 1)
n(y,s) > c Z e/ -
T
where 7, = 47 5+k0 This gives
= w(Qa2k-s(y,s — 35 x 27Ty B, _1(0) x (0, (n — 1)2))
(y,8) > c2 k;:ko 9—2Nk :

Letting n — oo and kg — oo we have (2.12). Finally, thanks to Proposition 4.8 and Theorem
4.2, we will assert (2.13) if we show that for ¢ > &2

2\ w(Qo-ne—s(, t — 35 x 27T\ oo (o0, (x,1)) \ " dp
/R< Z 9—2Nk ) dxdt > Cs/R/O (;N> ?dxdt‘

k=—o00

Indeed,

o Cok_3 _ 2—4k—7 q
/(Z (@q-an-s(art = 35 x ))) it
7\, 4 2
2%k — t 274]677 a
Z /( (@20 x2 2N?;5>< ))> dtdz

k=—o00

Q ak—s(x,t !
z/( el ”) @
k=—o00

>c4/RNH/+OO< ”) dppd dt.

Claim 2. If A is independent of space variable x and (2.29) is satisfied. By Remark 5.3 we
get for any (z,t) € Dy, /4

|V, (z,t)] < sy [Jw|](z,t).

Letting n — oo, we get (2.14).

Claim 3. If w = p+ 0 ® 04—y with p € M(RY x (0,00)) and o € M(RY), then by
Remark (5.2) we can assume that u,, = 0 in B, (0) x (—n2,0). So, u =0 in RY x (—c0,0).
Therefore, clearly ulgn (g ) is a distribution solution to (2.7). The proof is complete. m

Remark 5.6 If w € M,(RNTY) then u satisfies

< C(N, Aq, o) |w|(RNT).

(]RN+1

Moreover, I[|w|] € L™~ (RN} and Iy[jw|] < co a.e in RN+,
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6 Quasilinear Lane-Emden Type Parabolic Equations

6.1 Quasilinear Lane-Emden Parabolic Equations in ()
To prove Theorem 2.8 we need the following proposition which was proved in [6].

Proposition 6.1 Assume O is an open subset of RN, Let p > 1 and p € M*(0). If p
is absolutely continuous with respect to Capy ; ,, in O, there exists a nondecreasing sequence
{pn} C MF(O)N (Wg’l(RNH))*, with compact support in O which converges to p weakly
in M(O). Moreover, if p € M;(O) then ||, — pil|pm,0) = 0 as n — occ.

Remark 6.2 By Theorem 4.17, W2H(RNTY) = LERNTY), it follows {pn} € M (0O)N

* v v ’
(LE(RNT1))". Note that HunII(ﬁg(Rwﬂ))* = ||Galknlll Lo g1y S0 Gaolun] € LP (RN+1),
Consequently, from (4.17) in Proposition 4.8, we obtain 15|u,] € L (RN*L) for any n € N
and R > 0. In particular, Iz[u,] € L?. (RYN) for any n € N.

loc

Remark 6.3 As in the proof of Theorem 2.5 in [14], we can prove a general version of
Proposition 6.1, that is: for p > 1, if p is absolutely continuous with respect to Capg_ ,

in O, there exists a nondecreasing sequence {u,} C M; (O) N (LE, (RN+1))*, with compact
support in O which converges to p weakly in M(O). Furthermore, I, [uy] € v (RN+1) for

loc

all n € N. Besides, we also obtain that for p € My(O) is absolutely continuous with respect
to Capg,_ ,, in O if and only if p = f + v where f € LY(O) and v € (ﬁg(RNH))*

Proof of Theorem 2.8. First, assume that o € L*(£). Because y is absolutely contin-
uous with respect to the capacity Capy; ./, so are pT and p~. Applying Proposition 6.1
there exist two nondecreasing sequences {1, } and {u2 ,} of positive bounded measures
with compact support in Q7 which converge to u* and p~ in M,(€2r) respectively and
such that Io[uq p], Ia[pe,n] € LI9(Qr).

Fori=1,2,set fi;1 = 3,10 and fi; j = ps j — phsj—1 = 0,80 g n = Z;;l fti, ;. We write p; , =
Win,0 + Win,ss flij = fij,0 + fij,s With fin.0, fin,o € Mo(Q7), tin,s, fin,s € Ms(2r).

As in the proof of Theorem 2.1, for any j € N and ¢ = 1,2, there exist sequences of nonneg-
ative measures ﬂm,i,j,O = (fm,i,jygm,i,jahm,i,j) and ﬂm7i7j7s such that fm%j,gm,m,hm,,;’j S
C2°(Q7) and strongly converge to some f; j, gi j, hi j in L' (Q7), L2(Qr,RY) and L*(0, T, H{ (2))
respectively and fim,i j, fim,i,j,s € C° (1) converge to fi; ;, fli ;s resp. in the narrow topol-
ogy with ﬂmﬂ}j = ﬂm,z}j,o + ﬂm7i,j7s which satisfy ,a@j)o = (fi,jygi,j,hi,j) and 0 S ﬂm,i,j S
©m * [i;,j and

‘|fm7i7j||Ll(QT)+||gm7i7jHL2(QT’]RN)+||hm7i7j |L2(07T,W01=2(Q))+l‘m,i,j78(QT) < Qﬁi,j(QT)- (6~1)

Here {¢,,} is a sequence of mollifiers in RV*+1,
For any n, k,m € N, let wp, g, U1 nkms U2n km € W with W = {z: 2 € L2(0, T, H}()), 2 €
L2(0,T,H=(Q))} be solutions of problems

(un,k,m)t - div(A(ac,t, vun,k,m)) + Tk(|un,k’,m|q71un,k,m) = Z_?Zl(,am,l,j - ,[Lm,,2,j) in QT;
Up oom =0 on 990 x (0,7,
un,k,m(o) = Tn(JJr) - Tn(ai) on (),
(6.2)
(ul,n,k,m)t - dZ’U(A(J}, t7 vul,n,k:,m)) + Tk:(u(ll’n’k}m) = Z?:l /]m,l,j n QT;
Ul ,m,kym =0 on 90 x (0,7T), (6.3)
1 km(0) =Ty(c) in Q,

and

(U2,n,k,m)t - d“)(/i(xa t, qu,n,k,m)) + Tk(ug7n7k)m) = Z?:l ﬂm,?,j in Qp
U2,n,k,m = 0 on 9Q x (0,T), (6.4)
u2,n,k,m(0) = Tn(O'i) in Q
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where A(x,t,&) = —A(x, t, —£).
By Comparison Principle Theorem and Theorem 2.1, there holds, for any m, k the sequences
{u1 nk,m tn and {ug n k,m}n are increasing and

_K]IZ[Tn(U_) X 6{1&:0}] - K]I2[,U/2,n * (pm] < —U2,n.k,m < Un,k,m < U1,,n,k,m
S KHQ [Hl,n * @m] + KHQ[Tn(O-+) & 6{t:0}]7

where a constant K is in Theorem 2.1. Thus,

*K]I2[Tn(0—7) ® 6{t=0}] - K]IQ[NZ,n] * POm S *u2,n,k,m S un,k,m S ul,,n,k,m
< Klo[p ] * om + KIo[Th(0F) @ dgi—0y)-

Moreover,

/ Ty (uf ) g )ddt < / Om * Wi pdzdt + |o|(2)
QT QT

< |pl(Qr) + |o| ().

As in [13, Proof of Lemma 6.4], thanks to Proposition 3.5 and Theorem 3.6, there exist subse-
quences of {Un k.m }tm {U1.nk.m}tm, {U2.nkm}m, still denoted them, converging to renormal-
ized solutions uy, k U1, k, U2,k Of equations (6.2) with data p1 , — o n, Uun £(0) = T (o) —
Tw(0™) and the decomposition (327, f1,j = 2252y f2,, D=1 91, — 2ojm 92,55 Dy P —
Z?Zl ha,;) of 11,00 — f12,n,0, (6.3) with data 1, w1 nk(0) = T,,(cF) and the decomposition
(X frgs 2o5=1 915y 25—y haj) of pi1n 0, (6.4) with data i, u2,5,x(0) = T, (07) and the
decomposition (3°7_; foj, 27— 92,45 2 j—y h2,j) of p2.n o respectively, which satisfy

—KI[T(07) ® 0gp—0y] — Kla[pon] < —uzmp < Unk < Uik
< K[y ] + KIo[To (o) ® 10y

Next, as in [13, Proof of Lemma 6.5] since Is[y; ,,] € L(2r) for any n, thanks to Proposition
3.5 and Theorem 3.6, there exist subsequences of {u, i tr {1 nk}k, {820k} k, still denoted
them, converging to renormalized solutions w,, 1, U2, of equations

(un)t - dZU(A(Jj, t7 vun)) + \un\q_lun = Hin — H2,n in QT,
Up =0 on 02 x (0,7, (6.5)
un(o) = Tn(0+) - Tn(ai) in €,

(u1,n)e — div(A(z,t,Vur ) +ui ,, = p1n in Qr,
Uiy, =0 on 90 x (0,7, (6.6)
ul,n(o) = Tn(0+) in €,

and

)
Uy =0 on 90 x (0,T
u2.,(0)=T,(c7) in Q,

(6.7)

b

{ (u2,n)t - d’L"U(A(:E,t, VuQ,n) + Ugm = M2.n in QT,
)

which satisfy

—KI [T’ﬂ(ua) ® 6{15:0}] - K]I2[M2,n] < —U2n <u, < Ul,n
< K[ ] + KL [T (ug ) ® dgi=oy]-

and the sequences {u1,,}, and {ug ,}, are increasing and

[ utdode < (@) + lol(9).

Qr

62



NGUYEN QUOC HUNG

Note that from (6.1) we have

I fi.j

which implies

L @r) + 1905l 2 mevy + il 20,7, wi 2 () < 2045 (Qr)

1Y~ Ffisllei@n + 11D gisllz@e ) + 11D bl a0 rwizy < 2050 (Qr) < 2lp|(Qr).
j=1

Jj=1 Jj=1

Finally, as in [13, Proof of Theorem 6.3] thanks to Proposition 3.5, Theorem 3.6 and Mono-
tone Convergence Theorem there exist subsequences of {wy, }n, {110 }n, {t2,n }n, still denoted
them, converging to renormalized solutions w, u1, ug of equations (6.5) with data p, u(0) = o
and the decomposition (3771 f1,j =370 fa.js Dgo1 91,5 = Dy 92,45 2ger M — 2oy 2 j)
of o, (6.6) with data u*, ui(0) = o and the decomposition (372, f1,5, 5=, 91,5

>52y b j) of pg s (6.7) with data i, ug(0) = o~ and the decomposition (372, fa ;, 3277, 92,5,
> i1 ha ) of py , respectively and

—Klplo™ @ 0p—oy] — Klp[p7] < —up < u <uy < Kp[p'] + Kl [0 ® 6—0y]-

We now have remark: if o = 0 and supp () C Q x [a,T], a > 0, then u = u; = ug = 0 in

Q x (0,a) since Up, = Ut pk = U2 nk = 0 in Q x (0,a).

Next, we will consider o € My(Q2) such that o is absolutely continuous with respect to the

capacity Capg, ” in 2. So, xarp + 0 ® dg4—g) is absolutely continuous with respect to
2,

the capacity Capy ; o in §2 X (=T,T). As above, we verify that there exists a renormalized
solution u of

up — div(A(z, t, Vu)) + [u]"'u = xo pu+ 0 Q@ dp—gy in Qx (=T,T)

u=0 on 9Q x (=T,T), (6.8)
u(-T)=0 on Q,

satisfying u = 0 in Q x (=7, 0) and
—K]IQ[O'_ ® 6{t:0}] — K]IQ[/,L_] S u S KI[Q[/JJ'_] + K]IQ[O‘+ X 6{t:0}]~

Finally, from remark 3.11 we get the result. This completes the proof of the theorem. ]

Proof of Theorem 2.9. Let {u,;} C CX(Qr),0,n € CX(Q) for i = 1,2 be as in
the proof of Theorem 2.1. We have 0 < pp,1 < @p * p,0 < pino < @ p=,0 < o1 <
01 x0T,0 < 02, < @1, %0 for any n € N where {¢,} and {1} are sequences of
standard mollifiers in R¥ 1 RN respectively.

We prove that the problem (2.2) has a solution with data p = pn, = fing1 — tng,2,0 =
Ony = 01,y — O2,ny f0r ng € N. Put

K

E = {u € LQr):ut < qq_ilﬂgﬂ”é[uno,l + 01,n0 ® Og1=0}]
K

and u~ < qq, T }IgTo,é['unm2 + 02,n0 ® Sf1—0}] } .

where max{—% +2,0} <d<2

Clearly, E is closed under the strong topology of L?(Qr) and convex.

We consider a map S : E — E defined for each v € Ej by S(v) = u, where u € L'(Qr) is
the unique renormalized solution of

Ut — dZU(A(Z‘,t, VU)) = |U|q_1v + Hng,1 = Hng,2 in Qr,
u=0 on 902 x (0,T), (6.9)

w(0) =01,y — T2, In Q.
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By Theorem 2.1, we have

ut < K3 (o)) + KI3™ [y 1 + 01,mp ® Sge—0y]  and
u” < KI3P[(07)) + KI3™ [1tng 2 + 02,00 ® =03,

where K is the constant in Theorem 2.1. Thus,

K \1 q
ek (ql) B | (B ang + 010 © Sge=y]) | + KT [ty 1 + 01y @ Spaoy);

K

a q
. 1> H;TO"S {(HgTo’s[Mno,Q + 02,0y @ 5{,5:0}}) :| + KI[;TO’&[/LnO’Q + 02,0y @ 5{75:0}}.

u < K <
Thus, thanks to Theorem 4.36 there exists ¢; = ¢1 (N, K, 8, q) such that if for every compact
sets £ C RN+,

[noil () + (|05, | © Og1=0y)(E) < e1Cap poms , (E). (6.10)

then ]IgTO"S[uno,i + Oing ® Og1=0}] € LI(RN*1) and

q —1)a1 )
HgTo’é [(HgTo’é[Mno,i + Ting ® 5{t:0}]) } < (q(Kq))q]IgToya[Mno,z’ + Oing ® dpp—0y] i =1,2.

which implies u € L(Qr) and

qK
u < B fng1 + 01, @ Opu=y] and
qK

u <
S y—1

157 [ting2 + 02,n0 © 810}

Now we assume that (6.10) is satisfied, so S is well defined. Therefore, if we can show that
the map S : F — FE is continuous and S(E) is pre-compact under the strong topology of
L(Qr) then by Schauder Fixed Point Theorem, S has a fixed point on Ej. Hence the
problem (2.2) has a solution with data pu = iy, 0 = op,.

Now we show that S is continuous. Let {v,} be a sequence in E such that v, converges
strongly in L?(Q) to a function v € E. Set u,, = S(v,,). We need to show that u, — S(v)
in LY(Qr).

By Proposition 3.5, there exists a subsequence of {u,}, still denoted by it, converging to u
a.e in Q. Since

K
|un| < Z qq_ill[gTo’é[Mno,i + Ting @ dpi—0y] € L1(Qr) VneN
i=1,2

Applying Dominated Convergence Theorem, we have u,, — u in L?(Q27). Hence, thanks to
Theorem 3.6 we get u = S(v).

Next we show that S is pre-compact. Indeed if {u,} = {S(v,)} is a sequence in S(FE).
By Proposition 3.5, there exists a subsequence of {uy}, still denoted by it, converging to u
a.e in Qp. Again, using get Dominated Convergence Theorem we get w,, — u in LI(Qr).
So S is pre-compact.

Next, thanks to Corollary 4.39 and Remark 4.40 we have

(i + i @ Spp—0}) panar < Collpt] + |0 @ Opi—0y pgonr VR EN,i=1,2,

for some ¢ = c2(N, q).
In addition, by the proof of Corollary 4.39 we get

(c3(Tp)) ~*Capg, 4 (E) < Cap arys  (E) < e3(To)Capg, o (E)
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for every compact set K with diam(E) < 2Ty. Thus, there is ¢4 = c4(N, K, 9, q,Tp) such
that if

(1] + |o| @ 6q=0}] ppoanar < ca, (6.11)

then (6.10) holds for any ng € N.
Now we suppose that (6.11) holds, it is equivalent to (2.15) holding for some constant
C1 = C1(Tp) by Remark 4.34. Therefore, for any n € N there exists a renormalized solution
Uy, of
(un)e — div(A(z,t, Vu,)) = [un|" Yy + fn1 — pin2 in Qp,
Up =0 on 90 x (0,7, (6.12)
un(0) =01, — 02, in Q,

which satisfies

qK 270,68

. qK H2Tg,6
q-17

12 [fn,2 + 02,0 @ Sgi=0y] < un < [tn1 + 01,0 @ di=0y]-

Thus, for every (z,t) € Qr,

K _ K _
— e BN ) - e s (Bl @ 5mg) ] 0)(@) < (e )

K
< T+ ([0 )) (@, t) +

qK 2T, 7 —
p - PLn* (157%™ @ dge=0y (-, 1)) ().

Since o 137 (1], £), 91,0137 [0% @6 4oy (- 1)) () converge to B2 ¥, 1), TP [
dpi=0y](w,t) in LA(RN*+1) as n — oo, respectively, so |u,|? is equi-integrable.

By Proposition 3.5, there exists a subsequence of {u, }, still denoted by its, converging to u

a.e in Qp. It follows |u, |9 u, — |ul? " u in LY(Q7).

Consequently, by Proposition 3.5 and Theorem 3.6, we obtain that « is a distribution ( a
renormalized solution if o € L(Q)) of (2.2) with data u, o, and satisfies (2.16). Further-
more, by Corollary 4.39 we have

(es(To)) " [lul + o] © 5{t:0}]3\492,¢

q
< [(B™ 0l + 1ol @ 8u=oy)) ] ., < es(To) Il + 101 @ 54—y ).

MG2.4’

which implies [|u|?], 0, < c4(To) and we get (2.17). This completes the proof of the
Theorem. [ ]

Remark 6.4 In view of above proof, we can see that

i. The Theorem 2.9 also holds when we replace assumption (2.15) by

HI(E) < CCapy, ,(E) and |o|(F) < CCapy, ,(F).

for every compact sets E C RN*1 F c RN where C = C(NAy,As,q) is some a
constant.

ii. Ifo =0 andsupp (u) C Qx[a,T], a > 0, then we can show that a solution u in Theorem
2.9 satisfies u =0 in Q x (0,a) since we can replace the set E by E’:

K
E = {u € LQr):u=0inQ x (0,a) and ut < %H%T“"s[uno,l + 01,0 ® d1—0}]

_ K
and u- < %Hngé[uan + 02,0y @ 5{75:0}} } .
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6.2 Quasilinear Lane-Emden Parabolic Equations in RY x (0, 00) and
RN—H

This section is devoted to proofs of Theorem 2.12 and 2.14.

Proof of the Theorem 2.12. Since w is absolutely continuous with respect to the
capacity Capy, , in RV |w| is too. Set D, = B,(0) x (—n*n?). From the proof of
Theorem 2.8, there exist renormalized solutions u,,, v,, of

(un)e — div(A(x, t, Vuy)) + [un|? tu, = xp,w in D,
Up, =0 on 0B, (0) x (—n?,n?),
up(—n?) =0 in B,(0),

and
(vn)r — div(A(z,t, Vu,)) + v = xp,,
vy, =0 on 8B, (0) x (—n? n?),
vo(—n?) =0 in B,(0),

w| in D,

relative to decompositions (fn, gn,hn) of Xp,wo and (f,, G, hn) of X B, (0)x(0,n2)|wol, satis-
fied (3.14), (3.15) in Proposition 3.16 with 1 < qo < ¢, L(uy) = |un|? tuy, L(v,) = v and
u is replaced by xp,w and xp, |w| respectively. Moreover, there hold

~KLw ]| <u, < KLw'], 0<v, < KL[w|] in D, (6.13)

and V41 > Un, |un| <o, in D,
By Remark 3.9, we can assume that
[fallzrpsy + 19nllz2 (s mn)y + Ihal + [Vhn|l[L2(D,) < 2|w|(Dit1) and
[ nller sy + 1Gnllrzp myy + [[An] + [Vhn][|L2(p;) < 2[w[(Dis1)
for any i = 1,...,n — 1 and hy,, h,, are convergent in L{ (RN*1). On the other hand, since

Un, Uy, satisfy (3.14) in Proposition 3.16 with 1 < g9 < ¢, L(uy) = |un|?  up, L(v,) = vl
and thanks to Holder inequality: for any ¢ € (0, 1)

(lun| +1)* <elun|? +c1(e) and  (Jon| +1)* <elvn|? +ci(e)
Thus we get
/ |un|qdmdt—|—/ \un|q°dxdt+/ vgdxdt—i—/ vlodrdt < C(i) + co|lw|(Djit1). (6.14)
D; D; i D;

fori=1,...,n — 1, where the constant C(i) depends on N, A1, As, qo, ¢ and 4.
Consequently, we can apply Proposition 3.17 with ,, = —|u,|9 " u, + xp, w, —v% + xp, |w]
and obtain that there are subsequences of u,, v,, still denoted by them, converging to some

. , Vul?
u,v in L (R; W2 (RY)). So, W € L}, (RN*1) for all @ > 0 and u € L (RN*1)
satisfies (2.19). In addition, using Holder inequality we get u € L] (R; Wﬁ)’g(RN )) for any

1<vy< %.

Thanks to (6.14) and Monotone Convergence Theorem we get v, — v in L{, (RN*1) (2.23).
After, we also have u,, — u in L?OC(]RN 1) by |un| < v, and Dominated Convergence Theo-
rem. Consequently, u is a distribution solution of problem (2.18) which satisfies (2.19).

If w=p+0® Iy with g € MRY x (0,00)) and o € M(R"), then by the proof of
Theorem 2.8 we can assume that u, = 0 in B,(0) x (—n2,0). So, u =0 in RY x (—c0,0).
Therefore, clearly ulgn (g ) is a distribution solution to (2.20).

This completes the proot of the theorem. [

Proof of the Theorem 2.14. By the proof of Theorem 2.9 and Remark 6.4, 4.34,
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there exists a constant ¢; = ¢1(N,q, A1, A2) such that if u,o satisfy for every compact
sets £ C RN+
lw|(E) < c1Capy, o (E) (6.15)

then there is a nonnegative renormalized solution wu,, of

(un)¢ — div(A(x,t, Vuy)) = |up|? tu, + xp,w in D,
up, =0  on dB,(0) x (—n?,n?),
up(—n?) =0 in B,(0),

relative to a decomposition (fp,gn,hn) of Xp,wo, satisfying (3.14), (3.15) in Proposition
3.16 with ¢y = ¢, L = 0 and p is replaced by |u,|9" u, + xp, w and

B 1, t) < un < B L (@) (6.16)
q—1 q—1

for a.e (z,t) in D,, and Lw*] € L} (RN*1).

Besides, thanks to Remark 3.9, we can assume that f,,gn, h, satisfies (5.17) in proof of

Theorem (2.5) and h,, is convergent in L, (RN F1).

Consequently, we can apply Proposition 3.17 and obtain that there exist a subsequence of

Up,, still denoted by it, converging to some  a.e in RN*! and in L1 _(R; W2 (RN)). Also,

loc loc

u, — u in LL (RN*1) by Dominated Convergence Theorem, % € L (RN for
all @ > 0. Using Holder inequality we get v € L] (R; Wli)g (RM)) for any 1 <y < %.

Thus we obtain that v is a distribution solution of (2.22) which satisfies (2.23). Since (6.15)
holds, thus by Theorem 4.36 we get

ey [l gregar < [Tllwl) D pgreaar < 2 (Wl 4ot 00 »
so we have [[u]] 13,0 < c3. It follows (2.25).
If w=p+0®dy—oy with p € M(RY x (0,00)) and o € M(R"), then by Remark 6.4 we
can assume that u,, = 0 in B, (0) x (—n2,0). So, u = 0 in R x (—oc,0). Therefore, clearly
Ul 0,00y 18 & distribution solution to (2.24).
This completes the proof of the theorem. [

7 Interior Estimates and Boundary Estimates for Parabolic
Equations
In this section we always assume that u € C'(=T,T; L*(Q)) N L2(=T,T; H(£2)) is a solution

to equation (2.6) in Q x (=T, T) with u € L?(Q x (—=T,T)) and u(—T) = 0. We extend u
by zero to Q x (—oo, =T, clearly u is a solution to equation

uy — div (A(z,t, Vu)) = x—rr) () in Q x (—o0,T), (7.1)
u=0 on 90 x (—o0,T). '
7.1 Interior Estimates
For each ball Bop = Bag(xo) CC Q and ¢y € (—T,T), we consider the unique solution
w € C(to — 4R? to; L*(Bar)) N L (to — 4R?, to; H' (Bag)) (7.2)
to the following Cauchy-Dirichlet problem
wy — div (A(z,t, Vw)) = 0in Q2r (7.3)
w=u on 0pQar ’

where QQR = BzRX(tO_4R2,tO) and 8pQ2R = (BB2R X (to — 4R2,t0))U(BQR X {t =1y — 4R2})

67



NGUYEN QUOC HUNG

Theorem 7.1 There exist constant 61 > 2, f1 € (0, %] and Cy,Co, C3 depending on N, A1, Ay
such that the following estimates are true

1 (Q2r

]é |Vu — Vw|dzdt < Cl|]|%]\]7+1), (7.4)
2R
oy
(7[ Vweldxdt> < 02][ \Vw|dzdt, (7.5)
Qp/2(y7s) Qp(yvs)
1/2 6 1/2
<][ |w - EQ” (y,5)|2d.rdt> < 03 <p1> (][ |w - EQPQ (?J;S)|2dxdt> )

Qﬁl (y,s) p2 Qp2 (yws)

(7.6)

and

1/2 51 1/2
(7[ |Vw|2dxdt> <0y (”1) (7[ |Vw|2da:dt> (7.7)
Qpy (4:9) p2 Qps (4:5)

fO’I" any Qp(ya S) - Q2R; and QPI (y7 S) - sz (y7 5) C QQR-

Proof. Inequalities (7.4), (7.5) and (7.6) were proved by F. Duzaar and G. Mingione in
[25]. So, it remains to prove (7.7) in case p; < p/2. By interior Caccioppoli inequality we

have
1/2 1/2
<][ |Vw|2dxdt> <2 (7[ lw —wQ2p1(yys)|2dxdt> :
Qpq (y,9) P Q2py (y,s)

On the other hand, by a Sobolev inequality there holds

1/2 1/2
<][ lw —Wq,, (y.5) 2dmdt> < cap2 (][ Vw|2dxdt> .
ng (y,s) ng (y,s)

Therefore, (7.7) follows from (7.6). |

Corollary 7.2 Let 31 be the constant in Theorem 7.1. For2— 31 < 0 < N + 2, there exists
a constant C' = C(N, A1, As,0) > 0 such that for any B,(y) C By, (y) CC Q, s € (-T,T)

N+3-0
o T
[ iSuldaa < 0pN0 (0) 1) Mol oy (78)
Qp(yvs) Po

Proof. Take B,,(y) CC Q and s € (=T, T). For any Q,, (y,s) C Qp,(y,s) with p1 < pa/2,
we take w as in Theorem 3.4 with Q2r = Q,,(y, s). Thus,

p N+B1+1
/ [Vw|dzdt < ¢ <1> / |Vw|dxdt,
Qpl (y,8) P2 sz (y,9)

/ IV — Veoldzdt < epalpl(Qpa (v, 9)),
sz (y,8)

and we also have

cgl/ |Vu|dxdt§/ |Vw|dzdt < cg/ |Vu|dzdt.
sz(yvs) QpQ(y’S) sz(y7s)
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They follow that

/ |Vu|dzdt < / |Vw|dzdt + / |Vu — Vw|dzdt
Qﬁl (y,8) Qm (y,9) Qm (y,9)

p N+B1+1
< (1) / |Vw|dzdt +/ |Vu — Vw|dzdt
P2 Qp2(yxs) Q,J2(y,s)

o1 N+B1+1
ceo(Z) [ Vuldedt+ apulul @),
P2 sz(y,s)

Which implies

o1 N+B1+1
/ |Vu|dxdt < cs () / |Vu|da:dt + C5pév+3_9||M9[IU/]HLOO(QX(,T’T)).
Qo1 (4:9) P2 Qs (4:9)

Since N +3 — 8 < N + 81 + 1, applying [48, Lemma 4.6, page 54] we obtain

N+3-6
[ wuldsat <o (£) 7 I0ullrasonay + o™ Mol e iy
Qp(yas) PO

for any B,(y) C B,,(y) CC 2, s € (=T,T). On the other hand, by Remark 3.2
IVull s @x (—rry) < erTolpl(Q x (=T, T)) < esTg'*>=°|[Mg[u]l| Low (¢ (~1,1))-
Hence, we get the desired result. [

To continue, we consider the unique solution
v € C(to — R?, to; L*(BR)) N L*(to — R?, to; H' (BR)) (7.9)
to the following Cauchy-Dirichlet problem

vy — div (ZBR(IO)(t, Vv)) =0in Qg
{ v=w on 0p,Qr (7.10)

where QR = BR(I‘o)X(tQ—RZ,to) and 8pQR = (OBR X (to — Rz,to))U(BR X {t =1 — RQ})

Lemma 7.3 Let 0 be the constant in Theorem 7.1. There exist constants C1 = C1(N, A1, Ag),
Cy = Co(A1, A2) such that

1/2
(7[ |Vw — Vv|2dxdt> < Cl[A]fl][ |Vw|dxdt (7.11)
Qr Q2r
with s1 = 9?0_12 and
cyt |Vv|2dxdt§/ |Vw|2da:dt§02/ |Vo|2dzdt (7.12)
Qr Qr Qr

Proof. We can choose ¢ = w — v as a test function for equations (7.3), (7.10) and since

1
/ wy(w — v)dzdt — / ve(w — v)dxdt = = / (w —v)(tg)dx > 0,
Qr Qr 2 /g
we find

—/ Ap g (zo) (t, VO)V (0 — v)dzdt < —/ A(z,t, Vw)V(w — v)dadt.
Qr Qr
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By using inequalities (2.3) and (2.4) together with Holder’s inequality we get
0;1/ |Vol2dzdt < / |Vw|2dzdt < cl/ |Vo|2dadt (7.13)
Qr Qr Qr

and we also have

Ag/ |Vw — Vo|2dzdt < / (ABp(zo) (t: VW) = AB (a0 (£, VV)) (Vw — V) dzdt
Qr Qr

< / (ABp(zo) (t, VW) = A(z,t, Vw)) (Vw — Vo) dzdt

Qr

< O(A, Br(zo))(z,t)|Vw||Vw — Vu|dzdt.
Qr

Here we used the definition of ©(A, Br(xo)) in the last inequality. Using Holder’s inequality
with exponents s; = %, 6, and 2 gives

1/81 1/91
AQ][ |Vw — Vo|? < ( @(A,BR(xO))(m,t)sldxdt> (][ |Vw|91dxdt)
Qr Qr Qr

1/2
X <][ [Vw — Vv|2d:cdt) .
Qr
In other words,

1/2 1/6,
<][ IV — Vv|2dxdt> < ASAR (][ |Vw|91dmdt) .
R Qr

After using the inequality (7.5) in Theorem 7.1 we get (7.11). |

Lemma 7.4 Let 01 be the constant in Theorem 7.1. There exists a functions v € C(tg —
R2,to; L*(Bgr)) N L?(to — R?,to; HY(Br)) N L™ (tg — 1 R?, to; Wh*°(Bpr/2)) such that

pl(Q2r)
2R

and

][ Vu— Vodrdr < LI L o (][ |Vl dzdt + W)
@r R Q2r R

where s1 = Gf(ilQ and C' = C(N, A1, As).

Proof. Let w and v be as in (7.3) and (7.10). By standard interior regularity and inequality
(7.5) in Theorem 7.1 and (7.12) in Lemma 7.3 we have

1/2
||VUHL°°(QR/2) < <][ |Vv|2da:dt>
Qr

1/2
<c <f |Vw|2dxdt)
R
< 03][ |Vw|dzdt.
QZR

Thus, we get (7.14) from (7.4) in Theorem 7.1.
On the other hand, by (7.11) in Lemma 7.3 and Holder’s inequality yield

][ [Vw — Voldadt < cy[A]F ][ |Vw|dzdt.
Qr

Q2R
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Leads to

][ |Vu — Vo|dedt < ][ \Vu — Vwl|dzdt + c4[A)F ][ |Vw|dxdt.
Qr Qr Q2r
Consequently, we get (7.15) from (7.4) in Theorem 7.1. The proof is complete. ]

7.2 Boundary Estimates

In this subsection, we focus the corresponding estimates near the boundary. R
Let g € 99 be a boundary point and for R > 0 and ty € (=7,T), we set Qsp =

Qor(z0,t0) = (2N Bsr(xo)) X (to — (6R)?,t9) and Qer = Qsr(zo, to).
We consider the unique solution w to the equation

w=u on 0p,Q%6r

In what follows we extend p and u by zero to (2 X (—oc0,T))“ and then extend w by u to
RN\ Qg g.

In order to obtain estimates for w as in Theorem 7.1 we need the domain 2 satisfied
2—Capacity uniform thickness condition.
7.2.1 2-Capacity uniform thickness domain

It is well known that if RV\Q satisfies uniformly 2—thick with constants cy,79 > 0, there

exist pg € (1\2,—52,2) and C = C(N, ¢p) > 0 such that

Cap,, (By(z) N (RM\Q), By, (2)) > Cr¥N 70 (7.16)
for all 0 < 7 < 7y and all z € RN\Q, see [45, 54].

Theorem 7.5 Suppose that RN\Q satisfies uniformly 2—thick with constants co,ro. Let w
be in (7.15) with 0 < 6R < ro. There exist constants 0 > 2, B2 € (0, %], Cs, C3 depending
on N, A1, Ao, co and Cy depending on N, A1, Ay such that

|1(Qr)
][ |Vu — Vw|dzdt < clRle, (7.17)
6R
02
(f vwezdxdt> < Cy ][ |Vwl|dzdt, (7.18)
Qp/2(z,8) Q3p(2,5)

1/2 55 1/2
][ wl2dedt | < Cy <”1) ][ wo2dedt | (7.19)
Qpy (y:9) P2 Qps (y:5)
1/2 o1 1/2
<][ |Vw|2dxdt> <0 (‘”) <][ Vw“‘da:dt> (7.20)
Qpy (2,8) p2 Qpy(2,8)

fOT any Q3p(zas) C QGR} RS aQ) Qm (y,S) - sz (yas) C QGR and Qpl (278) C sz (Z,S) C
Qer

and
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Proof. 1. For n € C=([to — (6R)?,t9)) , 0 <n < 1,7 <0 and n(tg — (6R)?) = 1. Using
¢ = Ti(u — w)n, for any k > 0, as a test function for (7.1) and (7.15), we get

/~ (u — w) Tk (v — w)ndadt
Q6r

+ /~ (A(z,t,Vu) — A(z,t, Vw)) VI (u — w)ndxdt = / Tk (v — w)ndp.
Qer Q

6R

Thanks to (2.4), gives

- / T (u — w)edadt + A / VT4 (v — w) Pndadt < k|u|(Qen),
Qsr

Q6r

where T(s) = [; Ti(7)dr. As in [13, Proposition 4.8], we also verify that

IV (u = w) L < alul(Qsr)

H|L N " (Qer)

Immediately, it follows (7.17).

2. We need to prove that

2

PO
1
][ |Vw|?dzdt < 7][ |Vw|2dadt + c; f |Vw|P° ddt (7.21)
Qrjaz.9) 2JQas,(z) Q25,(2,9)

for all Q%gr(z, 8) C Qsr = Qsr(xo,to). Here the constant py is in inequality (7.16).
Suppose that B,(z) C Q. Take p € (0,7]. Let ¢ € C°(B,(2)), n € C=((s — p?, s]) be such
that 0 < ¢,n <1, ¢ = 1in B,js(2), n = Lin [s — p*/4,5] and [V| < e1/p, | < e1/p.

We denote .
i, o)1) = ( / w(aﬁ)2dw> | ey
Bp(z) BP(Z)

Using ¢ = (w — g, ())e°n* as a test function for the equation (7.15) we have for all
s’ € [s—p*/4,s]

/ (w— tDBp(z))t(w — @Bp(z))<p2n2dxdt
By (z)x(s—p?,s")
+ / Az, t, Vw)V ((w — pr(z))ganQ) dzdt = 0.
B, (z)x(s—p?,s")

Here we used an equality [, () (5—p.5") (@Bp(z))t (w — W, (z))e*n?dedt = 0.
Thus, we can write

1
5/ (w(s') —Wp,(2)(s) @ dx +/ Az, t, Vw)Vwe?n*dedt
B,(2) B, ()% (s—p%,5")

= —2/ Az, t, Vw)Voen*(w — Wp,(z))dxdt
B, (2)x(s—p2,")

+ / (w— @Bp(z))2g0277ntdxdt.
Bp(2)x(s=p?s")

From conditions (2.3) and (2.4), yield
1

f/ (w(s") —@Bp(z)(s'))2g02dx+/\2/ |Vw|2<p2772dxdt
2 JB,(») By (2)x (s—p?.8")

< 2A4 / |Vw||V|en*|w — Wp, () |drdt + C% / (w— LDBP(Z))Zdzdt.
B,(z)x(s—p23,s") P~ JaQ

P(ZTS)
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Using Holder’s inequality we can verify that

sup / (w(s") — ﬁ)Bp(z)(s/))chde
s'€[s—p2/4,s] J B,(z)

+/ |Vw|*dzdt < C—g/ lw — g, (2| dudt. (7.22)
Qp/2(2:5) P7 JQo(2,5)

On the other hand, for any s’ € [s — p?/4, s]

/ (w(s) =g, () (s") de < 2(1 + 2N+2)/ (w(s') —Wp,:)(s")*p°dx  (7.23)
BP/Q(Z) B,(z)

where ¢1(z) = ¢(z +2(z — 2)) for all v € B,5(2) and

WB, () = / o1 () da / w(z, t)pr () da.
' B/a() Bo/a()

In fact, since 0 < ¢ < 1and ¢ =1in B,/5(2) thus
| ) =, ()
Bp/Z(z)
< 2/3 ( )(w(s/) — W, (=) (s) de + 28T (g, ) (s) — W, (2)(s))?| By/a(2)]
p/2\2
< 2/ (w(s') — QI)BP(Z)(S/))2<,D2d£L‘ + 2N+2/ (w(s') — uN)Bp/z(z)(s’))ng%dac
By (2) By /2(2)
F2V [ (wl) < i ()R
Bp/?(z)

which yields (7.23) from the following inequality

/ (') — W, ()22 < / (w(s') — 1)>2%dz Vi € R,
Bp/2(z)

Bp/Z(Z)
Therefore,
sup / (w(s') — u?BP/Q(Z)(s’))Zda:
srels—p2/4,5) B, 2(2)
+/ |Vw|?dxdt < CL;/ lw —dp, (| dadt. (7.24)
Qpy2(z,5) 1Y Qp(z,s)

Now we use estimate (7.24) for p = r/2, we have

/ |Vw|2dzdt < C% (w— @Br/z(z))Zdzdt
Qr/a(2,8) r Qr/2(2,8)
2

N+2
C10 / ~ "N\2
< = sup / (w(s') —wp, ,,)(s))"dx
r2 <5,6[8T2/4¢S] B, /2(2) 2(2)

N

s g
X / </ (w—ﬂ}BTﬂ(Z))Qd.’L‘) dt.
s—r2/4 \J B, /2(2)
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After we again use estimate (7.24) for p = r we get

1 N+2
/ |Vw|2dzdt < % ﬁ/ |w — @B,r(z)|2dxdt>
Qr/a(z,s) Qr(2,9)

N

s N2
X / (/ (w— wBT/Q(Z))Qd.I?) dt.
s—r2/4 B,/2(2)

Thanks to a Sobolev-Poincare inequality, leads to

2

N+2
/ Vel dedt < 2 / |Vw|2dacdt> / V| ¥z dedt.
Qr/a(z,8) r Qr(z,8) Qr/2(2,8)

Since pg € (%, 2), thanks to Holder’s inequality we get (7.21).

Finally, we consider the case B,(z) N # (. In this case we choose zy € 9 such that
|z — 20| = dist(z,8Q). Then |z — 2| < r and thus 3r < p; < 2r,

B%r(z) C B%T(Zo) C Bp1+r(ZO) C Bpl+%r(20) C B%T(Z()) C B%T(z) C BﬁR(xo). (7.25)

Let ¢ € C°(B,, +11,(20)) be such that 0 < ¢ <1, ¢ = 1 in By, 4,(20) and [Vy| < C/r.
For 1r < po <, let n € C°((s — p3, s]) be such that 0 <n < 1,p=11in [s — p3/4,s] and
In:| < ¢/r?. Using ¢ = wy?n? as a test function for (7.15) we have for any s’ € (s — p3, s)

/ wwen?dedt
(B

pl+%r(zo)ﬂﬂ) X (s—p2,s’)

+ / A(z,t, Vw)V (wp®n?) dzdt = 0.
(Bpl_*_%r(zo)ﬁﬂ)x(sfpg,s’)

As above we also get

sup / w?(s")dx
s'€[s—p3/4,8] Y Bpy 4r(20)

+ / Vwl?dedt < 2 w2dadt.
B‘,1+7\(z0)x(s—p§/4,s) r BP1+%T(2’O)X(S_P375)

In particular, for p; = ir, p2 = %r and using (7.25) yield

(z0) % (s—7r2/4,s)

/ |Vw|?dzdt < C;—;/ widxdt (7.26)
er(zvs) B

%7‘
and p; = (1 + &) =
P1 = 1 10 r,p2 =T,

sup / w?(s')dx < CL; w?dxdt.
s’ €[s—r2/4,s] B%MW, r B%r(zo)x(s—TQ,S)
Set K1 = {w = 0} OE%T(Z()) and Ks = {w =0} NB

rt11,(20), Since RN\ satisfies an
uniformly 2—thick,we have the following estimates

Bl

Capy (K7, B%T(Zo)) > c16rV 2 and Cap,, (K2, B%M%T(zo)) > cqgr?V PO,

So, by Sobolev-Poincare’s inequality we get

][ w?dr < 0177"2][ |Vwl|?dz, (7.27)
B%T(ZO) B%T(Z)
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and
2 2
Pro ro
][ w?drdt < cigr? ][ |[Vw|Podx < c1or? ][ [Vw[Podaz
Bi,, 11,(20) Bi1,, 11, (20) Bs, . (z0)
4 10 4 10 2
Leads to
sup / w?(s")dx < 620/ |Vw|>dxdt (7.28)
s'€ls—r2/4,s] B%H_%T(zo) Q%T(z,s)
and
2
Po
/ w?(t)de < cgrN T2 ][ [Vw|Po(t)dz . (7.29)
Bi,;11,(20) Bs, (20)

From (7.26), we have

][ |Vw|?dzdt < ]CVQ_?A/ wrdzdt
Qir(zvs) r B 1 (20)%X(s—r2/4,s)

1‘+%—07‘(

N

_Po Po
2 2

C22 20 ° 2
< sup / w”(s")dx / / w=(t)dz dt
NN elsmr2/a8 /By 11 (20) s—r2/4 \JB1 11 (z0)

rt1o”

Using (7.29), (7.28) and Holder’s inequality we get

-
][ |Vw|?dzdt < JC\?_?_4 / \Vw|?dadt erﬂpofN/ |Vwl[Pe dadt
Q1,(z,) r Qs,(2,9) Qs ,.(z,5)
4 2 2
-
= Co4 ][ |Vw|*dzdt ][ |Vwl|Podxdt
Qs5,.(2,9) Qs5,.(2,9)
2 2
2
1 PO
<

7][ |Vw|*dzdt + cos ][ |Vw|Podadt
2JQas,(z9) Q30 ()

So we proved (7.21).

Therefore, By Gehring’s Lemma (see [57]) we get (7.18).

3. Now we prove (7.19). Let y € 99, Q,, (y,5) C Qp,(y,5) C Qsr with p; < pa/4. First,
we will show that there exists a constant 32 = B2(N, A1, Ao, o) € (0,1/2] such that

B2
osc(w, Qp (4,5)) < 2o (2) osc(w, @y, (1. ) (7.30)

where osc(w, A) = sup 4, w — inf 4 w.
Indeed, since

L Cap, »(2¢N B,.(2), Bar(2)) dr
/0 o = +oo Vz € 0N

thus by the Wiener criterion (see [81]), we have w is continuous up to 8p(~26 Rr- S0, we can
choose ¢ = (V — My,,)n* € L*(—oco, T; H} (2N Bsr(z0))) as test function in (7.15), where
a. n € C®(Qup,(y,5)), 0 < n < 1such that n = 1 in Qp, )2y, s — 4 p?), supp (n) CC
Qp: (y, s — 4p7) and V| < cor/p1, [me| < cas/p7.
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b. My,, = SUDQ,, (y.5) W and V = inf{My,, —w, My, } in Qer, V = M,,, outside Qon.
We have

/ wy (V — My, ) n*dxdt
Q6r

+ / 2nA(x,t, Vw)Vn (V — My,,) drdt + / Az, t, Vw)VVdrdt =0
QGR Q(:‘»R
which implies

/ Az, t, —VV)(=VV)dzdt = / 2nA(z,t, —=VV)Vn (V — My,,) dzdt

Q6r Qor

- / (V - M4P1)t (V - M4p1) 772df)3dlf
Q6r
Using (2.3) and (2.4) we get
Az/ | VV |2dxdt
QGR

<2ny [ VIV - My ldede — 1/2 [ (V= M) < M, ) () e
QGR QGR

§2A1M4p1[ 77|VVHV7)|dxdt—|—2M4p1/~ NV |ne|dzdt

QGR QGR

Since supp(|VV]) N supp(n) C Qgpr, thus

/ |V (nV)|?dadt < ca9 My, (/ n|VV||Vn|dzdt —|—/ \% (77|7]t\ + |V77|2) dxdt)
RN+1 RN+1 1

RN+

1
< e30Map, / 77|VV\|V77|dmdt+—2/ Vdzdt ). (7.31)
RN+1 1 Qp1(yvsf4P%)

By [48, Theorem 6.31, p. 132], for any o € (0,1 + 2/N) there holds

1/o
][ Vodxdt < C31 inf V= C31(M4p1 — Sup w) = 031(M4;01 — Mpl)'
Qpy (y,5—4p3) Qe (v:9) Qo1 (4:5)
(7.32)

In particular,
1
= / Vdrdt < czopty (Myy, — M,,). (7.33)
P1 Qpy (y,S*4P§)

We need to estimate fQGRn\VVHVdedt. Using Holder inequality and (7.32), for ¢ €
(0, min{2/N, 1}) we have

1/2 1/2
/ n|VV||Vn|dzdt < (/ PV —1+e) VV|2d:cdt> (/ V1+E|Vn|2d:cdt)
Qer Qer Q6r

1/2 1/2
< ca8 (/ 772V_(1+6)VV|2d$dt> / Vitedzdt
Q6r Qp, (y,5—4p?)

1/2
< ¢33 (/ 772V_(1+5)VV|2dxdt) in/Q(M4pl — M, )1+e)/2,
Q6r
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1/2
To estimate (fflaR n?V—(+e) |VV|2dxdt) , we can choose p = ((V48) ¢ —(Ma,, +6))n?,
for § > 0, as test function in (7.15), we will get

[ P (V + 6)~ 04| TV 2 dadt

Q6 r

< c34[ n(V+6)‘5\VV|\Vn|dxdt+C34[ n(V + 8)1|m|ddt.

QR Q6r

Thanks to Holder’s inequality, yields

(V40" (nlme| + |Vn|?) dwdt

/ PV +8) "9V V 2dadt < ess
O Q6r

Q6r

S~

< c36 (V + 6)17€d1’dt.

S—

Qpq (y,5—4p7)
Letting § — 0 and using (7.32),
/ PV~ |V 2 dzdt < 036/ (V +0)t=dadt
Q6r Qpl (y73_4p%)

< C37P{V (Map, — Mpl)l_e .

Thus,
| aVVIValdndt < st (M, — M),
Q6r
Combining this with (7.31) and (7.33),
[ Vet < conpl My, (M, = M)

Note that nV = My, in (Q°N B, /2(y)) x (s — 2p3,s — LLp?) thus
it
ST P

/ Y (V) [2dadt > / YV (V) [2dadt
RN+1 sfgp% RN

17 2

ST P 5 .

> [ M}, Cap, (08 0 By alu): B ()

STaP1
> cao M3, py-

Here we used Cap; o(2°N By, /2(y), By, (v)) = cp¥ 72 in the last inequality. It follows

M4P1 < C41(M4P1 - Mm)'

So c
4.

sup w < Y o sup w where Y=
Qp1 (y75) Q4p1 (y,s) C41 + 1

Of course, above estimate is also true when we replace w by —w. These give,
OSC(’[U, Qm (ya 5)) S ")/OSC(U), Q4p1 (ya 5))

It follows (7.30).
We come back the proof of (7.19).
Since w = 0 outside 1 this leads to

1/2
(f |w2d;z:dt> < cazosc(w, Qpy/2(y, 9))-
Qp1 (y,9)
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On the other hand, By [48, Theorem 6.30, p. 132] we have

1/2
sup  w < ¢y3 <][ (w+)2dxdt> and
Qps/2(Y,s) Qpy (y,9)

1/2
sup  (—w) < caq <][ (w)zda@dt> .
Qpy/2(ys8) Qpy (¥55)
Thus, we get (7.19).

Next, we have (7.20) for case z = y € 99 since from Caccippoli’s inequality,
2 C45 2
/ |Vw|“dzdt < — |w|*dzdt
QP1 (2,8) pl Q2P1 (zas)
and using Sobolev-Poincare’s inequality as in (7.27),
/ |w|?dzdt < 046;)%/ |Vw|?dxdt.
sz (2,8) sz (2,8)

We now prove (7.20). Take Qp,(z,5) C Qp,(2,5) C Qgr, is enough to consider the case
p1 < p2/20. Clearly, B,,/4(z) C Q then (7.20) is followed from (7.7) in Theorem 7.1. We
consider B,, /4(z) N0Q # 0, let zg € B, ,4(2) N OS2 such that [z — 2| = dist(z,00Q) < pa/4.
Obviously, if p1 < |z — 20|/4 and z ¢ Q, then (7.20) is trivial. If p; < |z — 20|/4 and z € Q,
then (7.20) is followed from (7.7) in Theorem 7.1.

Now assume p1 > |z — z|/4 then since Q, (z,5) C Qsp, (20, 5)

1/2 1/2
<][ |Vw|2dxdt> < c¢y7 <][ Vw%ia:dt)
QP1 (Z,S) Q5pl (2015)
B2—1 1/2
< g <p1> ][ \Vw|*dadt
P2 QP2/4(z0’S)
Bae1 1/2
< a9 (pl> (][ Vw|2da:dt> ,
P2 Qpy/2(2,9)

which implies (7.20). |

Corollary 7.6 Suppose that RV\Q satisfies uniformly 2—thick with constants co,ro. Let
Bo be the constant in Theorem 7.5. For 2 — s < 6 < N + 2, there exists a constant
C = C(N,A1,A2,0) > 0 such that for any B,(y) NOQ #0, s e (=T,T), 0 < p <y

B o\ N30
/Q ( )|Vu|dxdt < OpNF3-o ((7"(())) + 1 [[Mo[pdl| Lo (@x (~7,1)) (7.34)
p\Y,$

where Ty = diam(Q) + T"/2.

Proof. Take B,,,4(y)N0Q #  and s € (=T, T), p2 < 2r0. Let yo € B, /4(y) N2 such that

|y - yO‘ = dZSt(yv 89) S p2/4a thUS Qp2/4(y7 8) C sz/Z(y()v 8) FOI‘ any Qpl (yv 8) C ng (yv S)
with p1 < pa/4, we take w as in Theorem 7.5 with Qsr = Q,,/2(%0, ). Thus,

p N+B1+1
/ WMmagq<1> /1 \Vwl|dzdt
Qpq (Y58) P2 Qﬂ2/4(y,s)

/ IV — Vuldzdt < capalil @y (y0r 5)).
Qps/2(Y0,8)

and

As in the proof of Corollary 7.2, we get the result. ]
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7.2.2 Reifenberg flat domain

In this subsection, we alway assume that A satisfies (2.29). Also, we assume that  is a
(0, Rp)- Reifenberg flat domain with 0 < § < 1/2 . Fix 29 € 0Q and 0 < R < Ry/6. We
have a density estimate

|Bi(z) N (RN\Q)| > ¢|By(z)| Vo € 99,0 < t < Ry (7.35)

with ¢ = ((1 —4)/2)N >4V,

In particular, RV\Q satisfies uniformly 2—thick with constants ¢,y = Ry.

Next we set p = R(1 — J) so that 0 < p/(1 —0) < Ry/6. From the definition of Reifenberg
flat domains we deduce that there exists a coordinate system {z1, 22, ..., zy } with the origin
0 € Q such that in this coordinate system xo = (0,...,0 — pd/(1 — §)) and

B (0) c 2N B,(0) € By(0) N {z = (21,22, ..., 2n) s 2n > —2pd/(1 — )}
Since § < 1/2 we have
BF(0) c QN B,(0) € B,(0) N {z = (21,22, ..., 2n) : 25 > —4pd}
where B (0) := B,(0) N{z = (21,22, ..., 2n5) : 25 > 0}.
We further consider the unique solution
v € C(to — p°,to; L* (2N B,(0))) N L2 (to — p°, to; H (2N B,(0))) (7.36)
to the following Cauchy-Dirichlet problem

{ vy — div (Ap, () (t, Vv)) = 0 in Q,(0),

v=w  on 9pQ,(0), (7.37)

where Q,(0) = (2N B,(0)) x (to — p*,to) (=T < to < T).
We set v to be equal to w outside §2,(0). As Lemma 7.3 we have the following Lemma.

Lemma 7.7 Let 0y be the constant in Theorem 7.5. There exists constants C1 = C1(N, A1, Ag),
Cy = Co(A1, Aa) such that

1/2
(7[ IV — w|2> < A" ][ Vow|dadt (7.38)
Qp(o,to) Qp(o’to)
with sg = 93932 and
oyt |Vo|2dxdt g/ |Vw|*dzdt < 02/ |Vo|*dxdt. (7.39)
Q,(0,to) Q,(0,to0) Q,(0,to0)

We can see that if the boundary of Q is bad enough, then the L*°-norm of Vv up to
o0 N B,(0) x (to — p*,to) could be unbounded. For our purpose, we will consider another
Cauchy-Dirichlet problem:

V; — div (Ap,(0)(t,VV)) =0 in QF(0,t) (7.40)
V=0 on T,(0,t) '

where Q;(O,to) = B:(O) X (to — p27t0) and Tp(o,to) = Qp(O, to) n {IN = O}

A weak solution V' of above problem is understood in the following sense: the zero extension
of V to Q,(0,tp) is in V € C(to — p, to; L*(B,(0))) N L2 .(to — p?, to; H*(B,(0))) and for
every o € CH(Q}(0,19)) there holds

7/ Vrdadt + / ZBP(O)(t, VV)Vedxdt = 0.
Q}(0,t0) QF (0,t0)

We have the following gradient L°° estimate up to the boundary for V.
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Lemma 7.8 (see [46, 47]) For any weak solution V € C(to—p?,to; L*(B}(0)))N L, (to—
p*,to; H (B} (0))) of (7.40), we have

IVV] oo o+ < c][ |VV 2 dzdt Y 0<p <p (7.41)
L (Qp//z(o’tl))) Qj/ (0,¢0)
Moreover, VV is continuous up to T,(0,t).

Lemma 7.9 IfV € C(to—p?, to; L*(B; (0)))NL*(to — p°, to; H' (B (0))) is a weak solution
of (7.40), then its zero extension from QF(0,t0) to Q,(0,to) solves

.= oF

weakly in Q,(0,1t0), for (z,t) = (2',zn,t) € Q,(0,t0),
— —1 —2 —N —N
AB,)(O) = (ABP(O)7AB;,(O)7 ceey ABP(O)), and F(l’,t) = X$N<0ABp(O) (t, VV(IZ?/, O,t))

Proof. Let h € C*°(R) with h = 0 on (—00,1/2) and h = 1 on (1,00). Then, for
any ¢ € C(Q,(0,t0)) and n € N. We have ¢, (z,t) = ¢n(2',2n,t) = h(nzy)p(z,t) €
C(QF(0,tg). Thus, we get

/ Vigndadi + / As, (o) (L, V)V (h(nzy)p(z, 1)) dedt = 0
Q7 (0,t0) Q4 (0,0
which implies

/ Vipndzdt + / Ap,0)(t, VV)V(x,t)h(nz y)dzdt
QF(0,t0) Q7 (0,t0)

- —/Op G(xn)h (nzy)ndzy.

where

to _N
Glan) = / / AN IVl 2, )z dt € ([0, 00)).
to—p? J o' |<\/p?—a3 B0

Letting n — oo we get

/ Vipdxdt + / ZBP(O) (t, VV)Vo(z,t)dzdt = —G(0)
Qi (0,t0) Qi (0,t0)
=- / 722 guar.
Qu(0,t0)  OTN
Since VV =0,V = 0 outside Qj, therefore we get the result. [

We now consider a scaled version of equation (7.37)

vy — div (Ap,0)(t, Vv)) =0 in Q4(0)
{ v=0 on %;81(0)\(9 x (=T,T)) (7.43)
under assumption
B (0) c QN By(0) € B1(0) N {xn > —46}. (7.44)

Lemma 7.10 For any € > 0 there exists a small 6 = 6(N,A1,A2,e) > 0 such that if
v € C(tg — 1,t0; L2(Q N B1(0))) N L2(tg — 1,t0; HX(Q2 N B1(0))) is a solution of (7.43) and
(7.44) is satisfied and the bounded

][ \Vo2dedt < 1, (7.45)
Q1(0,t0)
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then there exist a weak solution V € C(tg — 1,t0; L?(B{ (0))) N L%(to — 1,to; H* (B (0))) of
(7.40) with p = 1, whose zero extension to Q1(0,to) satisfies

][ |v — V|2 dzdt < 2, (7.46)
Q1(0,to)

Proof. We argue be contradiction. Suppose that the conclusion were false. Then, there
exist a constant g9 > 0, tg € R and a sequence of nonlinearities { Ay} satisfying (2.3) and
(2.29), a sequence of domains {Q2*}, and a sequence of functions {vx} C C(tg—1,t0; L2(Q2FN
B1(0))) N L2(ty — 1,t0; H(QF N B1(0))) such that

B (0) € Q* N B,(0) € B1(0) N {xy > —1/2k}, (7.47)
(Uk;)t — div (Zk’gl((]) (t, V’Uk)) =0 in Q]f(O), (7 48)
v, =0 on 00\ (QF x (-T,T)) '
and the zero extension of each v;, to Q1(0,to) satisfies

][ |Vor|?dedt <1 but (7.49)

Q1(0,to)
][ log — Vi|2dadt > &3 (7.50)

Q1(0,t0)

for any weak solution Vj of

(Vk)t — di'U (Zk,Bl(O)(tv VVk)) = 0, n Qf(o,to) (7 51)
Vie=0 on T1(0,tp). '

By (7.47) and (7.49) and Poincare’s inequality it following that
okllL2(to—1,t0;1 (B1(0))) < €1l VOR]|L2(Q1 (0,00) < €25
and

||(U;9)t| |L2(f,0_1,t0;H*1(B1(0))) = ||Zk,Q1(0,to) (V'Uk)|‘Lz(to—l,tU;Hfl(Bl(O)))

< / |4y, By (0) (&, Vog) Pdzdt
Q1(0,t0)

< ecs / |V |?dzdt
Q1(0,t0)
S Cq.

Therefore, using Aubin—Lions Lemma, one can find vy and a subsequence, still denoted by
{vi} such that

v, — v weakly in L?(tg — 1,to, H(B1(0))) and strongly in L*(ty — 1,t9, L*(B1(0)))
and
(k)¢ — (vo)¢ weakly in L*(tg — 1,to, H *(B1(0))).

Moreover, vg = 0 in Q7 (0,t0) := (B1(0) N{znx < 0}) x (1 — tp, 1) since vy = 0 on outside
QF N Q1(0,t0) for all k.

To find a contradiction we take Vj, to be the unique solution of (V) —div (Zk,Bl(O) (¢, VVk)) =
0 in QY (0,t9) and Vi — vy € L*(to — 1, %0, Hy(BY (0))) and Vi (to — 1) = wo(to — 1). As above,
one can find Vj and a subsequence, still denoted by {V;} such that

Vi — Vo weakly in L?(tg — 1,t9, H*(B1(0))) and strongly in L*(to — 1,0, L*(B1(0)))
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and
(Vi)e = (Vo)e  weakly in L*(to — 1,0, H~'(B1))

for some Vo € vy + LQ(tQ — 1,t0,H3<B{r(O)) and ‘/O(to — 1) = Uo(to — 1).
Since (7.50), thus we will complete the proof if we show vy = V. In fact,
Let Ji : X — L2(Q7(0,t9), RY) determined by

Ji(d(x,t)) = Ay g, (0)(t, Vp(x,t)) for any ¢ € X,

where X C L%(tg—1,t9, H*(B1(0))) is closures (in the strong topology of L?(tqg—1,to, H*(B1(0))))
of convex combinations of {vk}r>1 U {Vi}r>1 U {0}.

Since vy, Vi converge weakly to vg, Vo in L2(tg — 1, to, H*(B1(0))) resp., thus by Mazur The-
orem, X is compact subset of L?(tg — 1,to, H'(B1(0))) and vg, Vp € X.

Thanks to (2.3) and (2.29), we get Ji(0) = 0 and

1k(61) = Tk(D2)l] 20+ (0,60) 17y < Malldr = d2llL2to—1.t0,1 (B (0)))

for every ¢1, o € X and k € N. Thus, by Ascoli Theorem, there exist J € C(X, L2(Q7 (0,t9), RY))
and a subsequence of {J;}, still denote by its, such that

sup [1J4(6) = JO)l|za @t a0 a5 ko0 (7.52)
S

and also for any ¢, ¢ € X,
/QT(OJD) (J(81) = J(¢2)) - (V1 — Vo) dwdt > No[[Vd1 = Valll o ior oy (7-53)
From (7.47), gives
/QT(Oyto)(Uk — Vi)t (vo — Vo)dadt

+ / N (Zk,Bl(O) (t, v’l}k) — Zk,Bl(O) (t, VVk;)) .V(Uo - Vo)dxdt =0.
Q1 (0,t0)

We have
/ Ay, 5y (0)(Vop)|Pdadt < 09/ |Vog|?dzdt < ¢yp and
QY (0,t0) QY (0,t0)
/ A5, (0) (VVi) Pdadt < co / YV Pdadt < ey,
QY (0,t0) QY (0,t0)
for every k.

Thus there exists a subsequence, still denoted by {A g, (0)(t, Vi), Ak, 5, (0)(t, VVi)} and a
vector field Ay, Ay belonging to L2(Q7 (0,t0), RY) such that

Zk,Bl(O)(tv V’Uk) — A1 and Zk,Bl(O) (t, VVk) — AQ

weakly in L2(Q7(0,t0),RN). It follows
1

/+ (’UO — VO)t(UO — Vb)dxdt + / +( )(Al - AQ).V(’UO - Vo)d.’tdt =0.
Q7 (0,t0) Q7 (0,to

Since

/ (v — Vi) (v — Vo)dadt — / (w0 — Vo)2(to)dar > 0,
Q7 (0,t0) B (0)
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we get
QT(O»tO)
For our purpose, we need show that
/ (A1 — J(00)).V (vo — Vo)dadt > 0 and (7.55)
Q1 (0,t0)
/ (As — J(Ve)).V (Vo — vo)dadt > 0. (7.56)
Q1 (0,t0)
To do this, we fix a function g € X and any ¢ € C}(Q7(0,t0)) such that ¢ > 0. We have
0 S / 2 (Zk731(0) (t, V’Uk) — Zk731(0) (t, Vg)) (V’l)k — Vg) dl’dt
QT(OvtO)
= / @Zk,Bl(o) (t, Vo) Vordzdt — / SDZk,Bl(O) (t, Vug)Vgdzdt
Q?— (O,to) QT (07t0)

— / @Zkal(o) (t,Vg) (Vur, — Vg) dzdt
QT(OJU)
= Il + IQ + Ig.

It is easy to see that

lim I = —/ pA1Vgdzdt and lim I3 = —/ wJ(g) (Vvg — Vg) dadt.
Qi (0,t0) Qi (0,t0)

k—o0 k—o0

Moreover, we have

I = —/ (vk)rpvrdxdt —/ Zk’Ql(O)to)(Vvk)Vgovkda:dt
Q1 (0,0) QT (0,t0)

1 _
= 5/ vigptdxdt—/ Ak)Q1(07t0)(V’L}k)vgpvkdxdt.
QY (0,t0) QT (0,t0)
Thus,
. 1 9
lim I; = 3 vy prdrdt — A1 Vvgdadt
k=00 QY (0,t0) Qf (0.t0)
= —/ (vo)rpvodadt —/ A1V(<pvo)d:1cdt+/ pA1Vugdadt
Q¥ (0,t0) Q¥ (0,t0) Q¥ (0,t0)
_ / oA Vugdadt,
QT(Oth)
Hence,

0< / ¢ (A1 — J(g)) (Vv — Vg) dzdt,
QT (0,t0)

holds for all p € C1(Q7(0,%y)), ¢ > 0 and g € X. Now we choose g = vg — &(vo — Vo) =
(1—=&wo+E&Vp e X for £ €(0,1), s0

0< / @ (A — J(vo — E(vg — Vo)) (Vg — V Vo) dadt
Q7 (0,t0)

83



NGUYEN QUOC HUNG

Letting ¢ — 07 and ¢ — Xt (0,t9)7 W get (7.55). Similarly, we also obtain (7.56).
Thus,

/ (A — A9)V (v — Vo)dadt > / (J(vo) — J(Vo)) V(w0 — Vo )dadt.
Q7 (0,t0) Q7 (0,t0)

Combining this with (7.53), (7.54) and vy — Vi € L?(tg — 1,to, H} (B (0))), yields vy = Vp.
This completes the proof of Lemma. [

Lemma 7.11 For any € > 0 there exists a small § = 6(N,A1,A2,e) > 0 such that if
v € Oty — 1,t0; L2(2N B1(0))) N L3(tg — 1,t0; H(Q2 N B1(0))) is a solution of (7.43) and
(7.44) is satisfied and the bounded

][ |Vo|?dzdt < 1, (7.57)
Q1(0,t0)

then there exist a weak solution V € C(to — 1,to; L*(Bf (0))) N L2(to — 1,to; H(B; (0))) of
(7.40) with p = 1, whose zero extension to Q1(0,t0) satisfies

||VV||L°O(Q1/4(O,t0)) <(C and (7.58)

][ Vo — VV|2dzdt < €2 (7.59)
Q1/58(0,t0)

for some C = C(N,A1,A2) > 0.

Proof. Given ¢; € (0,1) by applying Lemma 7.10. We find a small § = §(N, A1, Ag,e1) >0
and a weak solution V € C(to — 1,t0; L?(B (0))) N L2(to — 1,t0; HY (B (0))) of (7.40) with
p =1 such that

][ |v — V|*dzdt < €7, (7.60)
Q1(0,t0)

Using ¢V with ¢ € C°(B; x (to — 1,19]), 0 < ¢ < 1 and ¢ = 1 in Q1/2(0,t0) as test
function in (7.40), we can obtain

/ VV[2dzdt < o / WV dud.
Q1/2(0,t0) Q1(0,t0)

This implies

/ IV Rdedt < C2/ (Jo = V2 + [o]?) dodt
Q1/2(0,t0) Q1(0,t0)

§03/ (Jo = V> +|Vv|?) dzdt
Q1(0,t0)

S Cy4,

since (7.57), (7.60) and Poincare’s inequality. Thus, using Lemma 7.8 we get (7.58).
Next, we will prove(7.59). By Lemma 7.9, the zero extension of V' to Q1(0,to) satisfies

_ OF
Vi, — div (ABl(O)(t7 VV)) = pr. in weakly Q1(0,tp).

where F(z,t) = X$N<ozgp(0) (t,VV(2',0,t)). Thus, we can write

/ (V —v)rpdxdt
Ql(o,tg)

_ — 0
+/ (ABl(O) (t, VV) — ABl(O) (t, V’U)) V(pdl’dt = */ Fid.fdt,
Ql(o,to) Ql(o,to) 8$N
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for any o € L2(tg — 1,to, H}(Q2 N B1(0))).
We take ¢ = ¢*(V —v) where ¢ € C®(Byyq x (to — (1/4)%,t9]) ,0< ¢ <1l and ¢ =1 on
Ql/s(oato)a 50

/ & (Ap, (o) (£, VV) — Ap, (£, Vo)) (VV — Vo) dudt
Ql(O,to)
—2 o OV =) (A 05) =T, (4, 92) Vo
1(0,t0

- / &*(V —0)(V — v)dzdt
Q1(0,t0)

- / <¢2Fa(v_”) +20F(V — v)%) dxdt.
Q1(0,t0)

oz N ozrn

We can rewrite Iy = Iy + I3 + 4.
We see that

I > 05/ $*|VV — Vo|?dzdt
Ql(o,tg)
and using Holder’s inequality

Bl e [ 6V = ol(VVI+ Vo)) Vldude
1(0,t0

352/ ¢2(|VV\2+|VU|2)dxdt+C7(62)/ |V —v|?|Vo|?dxdt.
Q1(0,t0) Q1(0,t0)
Similarly, we also have
|14] < 62/ H*(|VV|? + |Vv|?)dzdt + 08(62)/ |V —v|?|V¢|*dxdt
€1(0,t0) 21(0,t0)
besled) [ |PPGdude
S:ll((),tg)
and
I3 < / e p(V — v)2dadt < CQ/ |V — v|?dzdt.
Q1(0,0) 1/4(0,t0)
Hence,
[ |VV — V|2
21 /8(0,t0)
Scoea [ (VVPHVoP) +ene) [ (V- oP 4 |FP)
Q3/4(0,t0) 1,4(0,t0)

< 1289 + c13(g2) <€% + /
a

< c1289 + c14(€2) (5% + 5) :

|VV (2',0,t) |2dxdt>

174(0,to)N{—46<x N <0}

Finally, for any € > 0 by choosing 2,1 and 0 appropriately we get (7.59). This completes
the proof of Lemma. [

Lemma 7.12 For any € > 0 there exists a small § = 6(N,A1,A2,e) > 0 such that if
v e C(ty — p? to; LA(Q2 N B,(0))) N L2(tg — p?,to; H (2N B,(0))) is a solution of

{ vy — div (Ap, 0y (t, Vv)) = 0in Q,(0)

v=0 on 3,Q,(0\(Qx (-T,T)) (7.61)
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and
B (0) c QN B,(0) C B,(0) N {xn > —4pd}. (7.62)

then there exists a weak solution V € C(to — p?, to; L*(B;F(0))) N L*(to — p?, to; H' (B} (0)))
of (7.40), whose zero extension to Q1(0,to) satisfies

||VVH%°°(QP/4(O¢0)) S C |VU|2d.'L'dt and (763)
Qn(ovtO)
][ Vo — VV2dedt < 52][ IVo|2dadt. (7.64)
Q,/8(0:t0) Qp(0,t0)

for some C = C(N,A1,A2) > 0.
Proof. We set
Az, t,6) = Apz, to + p*(t — to), 5€) [k and B(z,t) = v(px,to + p*(t — t0))/(pr)

1/2 . ..
where £ = (m pr(Qto) \Vv|2dxdt) . Then A satisfies conditions (2.3) and (2.29)
with the same constants A; and As. We can see that ¥ is a solution of

{ ¥ — div (Ap, o) (1, V0)) =0 in Q7(0)

5=0 on (09N Bi(0)) x (fo - L,t) U((Q° N Bi(0) x {t =tg —1})  69)

where O = {z = x/p : © € Q} and satisfies le(O t0) |Vo|2dzdt = 1. We also have
B (0) € QN B1(0) C B1(0) N {xn > —45}.

Therefore, applying Lemma 7.11 for any € > 0, there exist a constant § = §(N, Ay, Ag,€) >0
and V satisfies

Hv‘7||L°°(Q1/4(0,to)) <c¢ and Vo — V‘?‘Zdl‘dt <e?
Q1/8(0,t0)

We complete the proof by choosing V (x,t) = kpV (x/p, to + (t — to)/p?). ]

Lemma 7.13 Let sy be as in Lemma 7.7. For any € > 0 there exists a small § =
(N, A1, Aa,e) > 0 such that the following holds. If Q2 is a (6, Ro)-Reifenberg flat domain and
u € C(0,T; L3())NL2(0,T; HY(Q)) is a solution to equation (2.6) with p € L*(Qx (=T,T))
and uw(=T) = 0, for xg € 0N, =T <ty < T and 0 < R < Ry/6 then there is a function
Ve L2(tg — (R/9)* to; H (Bryo(20))) N L>®(to — (R/9)?, to; W (Bryo(20))) such that

|1|(Qer (o0, to))
19V Il @na(monte)) < € ]{g IVl g M) (7.66)

and

][ |Vu — VV|dxdt
Qryo(za,to)

<ele+ [A]go)][ Vuldedt + c(e + 1+ A1)

Qer(wo,to)

|l(Qer(wo, o))

o (7.67)

for some ¢ = ¢(N, A1, Ag) > 0.

Proof. Let a9 € 99, -T < tg < T and p = R(1 — ¢), we may assume that 0 €
xo = (0,...,—0p/(1 —4)) and

BS(0) € QN B,(0) C B,y(0) N {zn > —4pd}. (7.68)
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We also have
Qryo(@o,to) C Qp/s(0,t0) C Qpya(0,t0) C Qp(0,t0) C Q6p(0,%0) C Qor(wo,to)  (7.69)

provided that 0 < § < 1/625.

Let w and v be as in Theorem 7.5 and Lemma 7.7. By Lemma 7.12 for any € > 0 we
can find a small positive § = §(N, o, B,e) < 1/625 such that there is a function V €
L2(tg — p?, to; H(B,(0))) N L>®(tg — p2, to; WH>°(B,(0))) satisfying

[[VV ||2L<X>(Q L(0,40)) = €1 |Vo|?dzdt and
p/a(
QP(O’tO)

][ Vv — VV|? < 52][ |Vv|?dadt.
Qp/S(O'rtO) Qﬁ(ovto)

Then, by (7.39) in Lemma 7.7 and (7.18) in theorem 7.5 and (7.69) we get

1/2
IVV Lo (Qr o (z0.t0)) < €2 (]é Vw|2dxdt>

< c3][ V| drdt (7.70)
Qor(To,t0)

p(O,to)

and

1/2
][ Vo — VV|dzdt < cqe <][ |Vw|2dxdt>
Q,/8(0,t0) Q,(0,to0)
< 676][ |Vw|dzdt. (7.71)
Qsr(zo,to)

Therefore, from (7.17) in Theorem 7.5 and (7.70) we get (7.66).
Now we prove (7.67), we have

][ |[Vu — VVi]dzdt < 08][ |Vu — VV|dxdt
Qryo(zo,to) Q,/8(0,t0)

< Cs][ |Vu7Vw|dxdt+63f |Vw — Vo|dzdt
Q,/8(0t0) Qp/s(0;t0)
+ Cs][ Vv — VV|dzdt.
Q,/8(0,t0)

From Lemma 7.7 and Theorem 7.5 and (7.71) lead to

][ |Vu — Vw|dzdt < CQM
Qp/s(05to) - RN+1 )

][ Vv — Vw|dadt < ci0[A]F ][ |Vw|dxdt
Q,/8(0,t0) Qe (0t0)

< 611[14]520][ |Vw|dzdt
Qer(To,to)

t
< cpp[A)f0 7[ |Vu|dzdt + M and
Qer(zo0,t0) R

][ Vv — VV|dzdt < 0135][ |Vw|dzdt
Q,/8(0,t0)

Qor(z0,t0)

< cue ][ |wmmmw .
Qer(z0,to0) R
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Hence we get (7.67).

8 Global Integral Gradient Bounds for Parabolic equa-
tions

8.1 Global estimates on 2-Capacity uniform thickness domains

We use the Theorem 7.4, 7.5 to prove the following theorem.

Theorem 8.1 Suppose that RN\Q satisfies uniformly 2—thick with constants co,ro. Let
01,05 be in Theorem 7.1 and 7.5. Set 6 = min{01,02~} and Ty = diam(Q) + T1/~2. Let Q =
Bdwm(Q) (1’0) X (O,T) that contains Qp. Let By = QR1 (yo,SO), By = 4B, = Q4R1 (yo,SO)
for Ry > 0. For p € My(Qr), 0 € My(2), set w = |u| + |o| ® =0y, there ex-
ist a distribution solution u of equation (2.6) with data p, wo = o and constants Cq =
C1(N, A1, Az, c0,To/r0),c2 > 0, e1 = 1(N, A1, Az, ¢c0,To/7r0),62 = €1(N,A1,Az,c0) > 0
such that

{M(|Vau]) > e VA My [w] < e 5A} N Q| < Crel{M(|Vu|) > A} N Q| (8.1)
for all x> 0,e € (0,e1) and
{M (x5, |Vul) > e /oA Mi[xp,0] < '~ 9A}NBi| < Cie{M(xp,|Vul) > AN Bi|  (8.2)

fO?” all A > 8_1+%||VU'HL1(QTQBQ)R2_N_2; €Ec (0752) with Ry = inf{To,Rl}/IG.
Moreover, if o € L'(Q) then u is a renormalized solution.

Proof of Theorem 8.1. Let {u,} C CX(Qr),{on} C C(2) be as in the proof of
Theorem 2.1. We have |u,| < @y, * || and |0y | < @1, % |o| for any n € N, {¢,}, {p1.n} are
sequences of standard mollifiers in RV RY respectively.

Let u,, be solutions of equations

(up)¢ — div(A(z, t, Vuy,)) = pp, in Qp,
Up =0 on 02 x (0,7, (8.3)
up(0) =0, in Q.
By Proposition 3.5 and Theorem 3.6, there exist a subsequence of {u,}, still denoted by
{un} converging to a distribution solution w of (2.6) with data p € My(Q2r) and uy = o
such that u, — u in L*(0,T, Wy*(2)) for any s € [1, %—ﬁ) and if o € L'(Q) then u is a
renormalized solution.
By Remark 3.3 and Theorem 3.6, a sequence {u, », }m Of solutions to equations

(Un,m)t — div(A(z, t, Vipm)) = pnm 10 Q x (=T,7T),
Un,m =0 on 9 x (=T,T),
Un,m(=T) =0 on Q,
converges to xq,u, in L*(=T,T, Wols(Q)) for any s € [17 %—ﬁ), where finm = (n,m), +

X tns Gnm(2,1) = on(x) ij w2.m(s)ds and {p2n} is a sequence of mollifiers in R.
Set

El. = {M(|[Vu|) > e VoA M[w] <3N} NQ, Fi = {M(|Vu|) > A} NQ and
B3 . = {M(x5,|Vul) > e N My [xp,w] < e 73AYN By, F} = {M(xs,|Vul) > \} N B1.
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for e € (0,1) and X\ > 0.
We verify that }
|EX..| < c1e|Qry| VA>0,6€(0,1) and (8.4)

B2l < eolQmy| ¥ A > e8|Vl apnay Ry Y2 € (0,1) (8.5)

for some ¢; = ¢1(To/ro),c2 > 0 and R3 = inf{rq, To}/16.
In fact, we can assume that E/1\7E # 0 so (|u|(Qr) + |o] () < TNF1el=5 X, We have

c3
El |<—— Vu|dzdt.
| /\,EI = o—1/6) /QT| U| T

By Remark 3.2, fQT |Vuy|dedt < esTo (Jpen (1) + |0, |(2)) for all n. Letting n — oo we
get [o,|Vuldedt < caTo (|p|(Qr) + |o|(22)). Thus,

C3C C3C _1 S
Ty (1l (62r) +101(90)) < S TN = el O

1
|E>\,5| < gfl/GA 0

Hence, (8.4) holds with ¢; = ¢5(To/70).
For any A > 571+%||Vu||L1(QTﬂBz)R2_N_2 we have

C3 ~
F} | < —— Vuldxdt < coe .
B8l < oy | e Vet < cocl

Hence, (8.5) holds. .

Next we verify that for all (z,¢) € Q and r € (0, R3] and A > 0,¢ € (0,1) we have Q,(x,t)N
Q C F}if |E§\E N Qr(x,t)| > cee|@r(z,t)| where a constant c¢g does not depend on A and
e. Indeed, take (z,t) € Q and 0 < 7 < R3. Now assume that Q,.(z,t) N QN (F})¢ # () and
Ei,EﬂQr(x,t) # ) i.e, there exist (z1,t1), (2, t2) € Q,(z,t)NQ such that M(|Vul|)(x1, ;) <
X and M [w](z2,t2) < £'78 X\. We need to prove that

|EXe NQr(,1))] < coelQr (2, 1)] (8.6)
Obviously, we have for all (y,s) € Q,(x,t) there holds
M(IVul)(y. ) < max{M (xq, |Vl ) (), 3VF2A).
Leads to, for all A > 0 and ¢ € (0,) with g < 3-(V+2)¢,
EL. NQu(x,t) = (M (X@%(m |w) S e VO M W] <A QN D, (a,t).  (8.7)
In particular, E>1\,€ NQr(x,t) =0 if By (r) cC RV\Q. Thus, it is enough to consider the
case Byr(z) CC Q and By, () NQ # (.

We consider the case By, (z) CC Q. Let wy, ., be as in Theorem 7.1 with Qo = Qur (2, to)
and u = u,, , where tg = min{t + 2r2,T}. We have

[V m — Vg m|dedt < cq [ton,m| (Qar (2, 20)) and (8.8)
Qar(m;to) ’ ’ riH
0
f |V, m|? dedt < cg ][ VW, | ddt | . (8.9)
Q2r(x,t0) Qar(x,to)
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From (8.7), we have

B2 1@l 0)] < 1M (X (0. Viinm]) > =7 Y0/4} 0 Q)
1M (X, (00| Vitnom = Vtnm|) > &™/90/4} 1 Qr(a,)]
1M (X o)Vt n — Veta]) > <™0/4} 1 Q1 (2, )

+ HM (X, 00| Vitn = Vul) > €700/} 1 Qs (1)

< 095)\_9/ |an)m\9dmdt + 0951/9)\_1/ |Vt m — Vwp, m|dedt
Qar(,t) Qar(z,t)
+ coet/ N1 / |Vt — Vi, |dzdt + coe/O N1 / |V, — Vu|dzdt.
Q27‘(z7t) Q2T(I7t)

Thanks to (8.8) and (8.9) we can continue

0
B e N Qr(z,0)] < c10eA™|Qr ()] (7[ Vun,mldxdt>
Q

ar(z,t0)

6
A n,m T{E,t —11 A n.m riC,t
wen ?iQ (o, (L Qe ) 10311,y (Gl to)

+ 10t/ ONT |Vt m — Vg, |dedt + c10e/ON1 |Vu, — Vuldzdt.
Qa2r(z,t0) Qar(,to)

Letting m — oo and n — oo, we get

0
Bxe 0 G, 8)] < cr0eA 0|0y (2, 0)| (7[ Vu|dxdt>
Q

ar(x,to)

- 6 -
+ 10230 (2, )| (w(@i;«v(f{ to))) n 01061/0/\_1|C~27-(x,t)\w(Q:;“\,(fl’ to))

Since, M(|Vu|)(z1,t1) < A and My [w](z2, t2) < €175 X we have

/ |Vu|dzdt < / |Vu|dzdt < / \Vau|dzdt < |Qoy(x1,11)|A,
Qar(z,t0) Dsr(z,t) Qor(w1,t1)
and
w(Qur(,10)) < w(Qsr(x,1)) < w(Qor (o, ta) < =T A(9r)NHL.
Thus

|EA,5 N Qr($,t)| < 6116|Q7~(I’,t)|.

Next, we consider the case By, (z)NQ # 0. Let x3 € 0Q such that |z3—x| = dist (z,082). Let
wy, be as in Theorem 7.5 with Qgr = Q6 (23,t0) and u = uy, ,,, where tg = min{t +2r?,T'}.
We have Q12,(7,%0) C Qi6r(23,0),

][ [Vt m — VW m|dodt < c1 |“”’m‘(911[6:1($37t0)) and
Q12r(z:t0) r

( ][ |vwn,m|9dxdt>
QQT(IvtO)
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As above we also obtain

0
|E)1\76 NQ,(z,1)] < c14eA™%Q, (z,1)] <][ |Vu|d:17dt>
Q

12-(,t0)

N .
+Cl4€>\70|QT(IE7t)‘ <W(Q1f§\/(ff7t0))> +01461/0)\71‘(27«(177t)|—w(Q1ﬁ§V(ff’tO)).

Since, M(|Vu|)(z1,t1) < A and My [w](z2, t2) < €175 X we have

/ |Vul|dzdt < / |Vu|dzdt < / \Vau|dzdt < |Qasr(1,11)|A
Q12 (z,to) Q2ar (z,t) Qasr(z1,t1)

and

w(Qier (73, t0)) < w(Qa2r(23,1)) < W(Q36,(,1)) < w(Qa7r(2a,t2)) < 617%/\(377“)]\]“-

Thus R ~
|EXc N Qr(z,1)] < c15¢]Q(, 1))

Hence, (8.6) holds with ¢g = 2max{c;1, c15}.
Similarly, we also prove that for all (x,t) € By and r € (0, Rp] and A > 0,¢ € (0,1) we have
Qr(x,t)N By C FY if |[E3 _NQr(x,t)| > c166|Qy(, )| where a constant ¢z does not depend
on A and e. Now, choose £1 = (2max{1,¢1,cs}) ! and e = (2max{1, ¢y, c16} L. We apply
Lemma 3.21 for £ = E}\,aaF = F/\1 and ¢ is replaced by max{cy, cg}e for any 0 < ¢ < ¢
and A > 0 we get (8.1), for E = E ., F = F} and ¢ is replaced by max{cy, ci7}e for any
0<e<eyand A >e 110 ||Vu||L1(QTNB)Q)RQ_N_2 we get (8.2).
This completes the proof of Theorem. [

Proof of Theorem 2.17. By theorem 8.1, there exist constants ¢; > 0,0 < g9 < 1 and
a renormalized solution u of equation (2.6) with data p, ug = o such that for any e € (0, 1),
A>0

{M(|Vu]) > e 0N M [w] < 51*%)\} NQ| < c1el{M(|Vu]) > A} N Q).

Therefore, if 0 < s < 00

S —s >~ s — gdA
IM(Vul)l[zoe(q) = € /9p/0 M{(z,t) € Q: M([Vul) > e™V/OA}» =

s s(0—p o0 gd)\
< 7% )p/ Nl{(,0) € Q : M(IVul) > A}[3 2
0

A
s(6—

S ?) s —s s
= &7 MVl |00 q) + & IIMaw]l 0.e )

+€_S/‘9p/oo MH{(z,t) € Q : M [w] > 51_5)\}
0

Since p < 0, we can choose 0 < € < gg such that ci/pas%i;p) < 1/2 we get the result for case
0 < s < oco. Similarly, we also get the result for case s = co.

Also, we get (2.31) by using (4.16) in Proposition 4.8, (4.28) in Proposition 4.19. This
completes the proof. [

Remark 8.2 Thanks to Proposition 4.4 we have for any s € (N+2 N+2+9) ifu e L =L oo

N+1' Ni2
and o = 0 then

H‘VU‘S”LMM SCQHHJHSMQO
s ( L S ,

QT)

where constant co depends on N, Ay, Ao, s,co,To/70.

(Qr)

As the proof of Theorem 8.1, we also get
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Theorem 8.3 Suppose that RN\Q satisfies uniformly 2—thick with constants co,7o. Let
0 be as in Theorem 8.1. Let 1 < p < 6,0 < s < 0o and g € Mp(Qr), 0 € Mp(Q), set
w = |p|+|o|@dy—oy. There exist C1 = C1(N, A1, A2, p,5,c0) > 0 and a distribution solution
u of equation (2.6) with data p and ug = o such that

N+2 | _N—
MO (g0,50) VDI L5 (G yo,s0yy < C1BTF inf{ro, R} 721Vl 140 (40,50))
+Ch | ‘Ml [XQ4R(3J0,SO)W]||Lp’“(@n(yo,80)) (8'1O>

for any QR(yo, s0) C RN*Y and if o € LY(QQ) then u is a renormalized solution.

Proof of Theorem 2.19. Let {uy,} and gy, » be in the proof of Theorem 8.1. From
Corollary 7.2 and 7.6 we assert: for 2 — inf{f1, 82} < v < N + 2, there exists a constant
C = C(N,A1,A2,¢0,7) > 0 such that for any 0 < p < Tj

/ - Vg m|dzdt < C(N, A1, As, 7, co,To/m0)p™ 37|y [|ttn,m]| oo (ax (— 7.7
Qp Y,S

where 1, 82 are constants in Theorem 7.1 and Theorem 7.5. It is easy to see that

[y ([, m || 2o (2x (~,)) < |IMy [w]|[ Lo (@ (—,7)) = [IMy[w][[ Lo (27

for any n, m large enough.
Letting m — oo, n — oo, yield

/ (es) \Vu|dxdt S C(N, Al,AQ,'y,C(),TQ/?“Q)pN+3_’Y||M,Y[w]||Loo(QT)
Qp Y,Ss

By Theorem 8.3 we get

N2 g _
1Vl oo (6 (o,50)n02) < €1(T0/r0) R 17| |My [w]]| oo (020

+ caf M, [XQR(?JO,SO)W]||L"’S(C~2R(y0,50))

~ =Up (y=Ds.c._
for any Qr(yo, so) C RVt and 0 < R < Tp. It follows (2.32). Finally,ifp € L, * = 7 o 1)p(QT)
and o = 0, then clearly v is a unique renormalized solution. It suffices to show that

IV [l oo ) < esllpll amne a=ns and (8.11)
L, " v (Qr)
p(y=1)—N-2
R IMiXG n(y50) I Lot (G (5o,50)) < C3H/“|L@,@;wmm (8.12)

T)

for any QR(yO,so) C RN+ and 0 < R < Ty, where c3 = c3(N, A1, Az, p, 8,7, co, To/T0)-
In fact, for 0 < p < Tp and (z,t) € Qp we have

— - > -
HMHL*W e & 71>s;(7_1)p(QT = H/JHL*(w 71)@700;(7_1)1,(QT)
(y=1)p=N=-2
G—1p

>p 7 HM”L”?l)p

" (Qp(z,t)NQ)
(y=Dp—N-2
(y=Dp

>cp 0 |Qp( )T ER | u(Q (2, t) N Q)

(@, t) N Q)
=6 pN+2— ,

which obviously implies (8.11).
Next, we note that
1 1

1-1 1
M XG0 1)) < 6 (M (X s l]) (@ 8)) W i o,
e,

L, " (Qr)
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We derive

M
R HM1 [XQR (w.so) 1 o e(QR(ymso))

= Cs P X0 Hw - —1)s 12 - —1)s

Qr(y0,50) L(vwl)py(v’yl) (Gnluoiso)) Lﬁ%”’,%;m—l)pmﬂ
p(y=—1)-N-2 -1 3
<cR P HW” (.7,1)? (=Ds _ ||u||‘¥(7 Dp 7(7 s (y—1)p ’
L 7 7 (Qr(¥0,50)) L, ” (Qr)

= 1)IJ (=Ds 1><

(RN+1) for =Lp 1)p > 1. There-
fore, immediately we get (8.12). This completes the proof of theorem.

Here we used the boundedness property of M in L

8.2 Global estimates on Reifenberg flat domains

Now we prove results for Reifenberg flat domain. First, we will use Lemma 7.4, 7.13 and
Lemma 3.19 to get the following result.

Theorem 8.4 Suppose that A satisfies (2.29). Let s1,82 be in Lemma 7.3 and 7.7, set
so = max{sy,sa2}. Let w € As, p € My(Qr), 0 € Mp(Q), set w = |p| + |o| @ dp—0y-
There exists a distribution solution of (2.6) with data p and uy = o such that following
holds. For any € > 0,Ry > 0 one find 61 = 01(N,A1,Ag,¢,[w]a,) € (0,1) and 5y =
92(N, A1, Ag, e, [w]a,,, To/Ro) € (0,1) and A = A(N, A1, As) > 0 such that if Q is (61, Ro)-
Reifenberg flat domain and [A]f0 < &, then

w{M(|Vu]) > AN, Mi[w] < 820} N Q) < Bew({M(|Vu|) > A} N Qr) (8.13)

for all X\ > 0, where the constant B depends only on N, A1, As,To/Ro, [w]a
Furthermore, if o € LY(Q) then u is a renormalized solution.

oo *

Proof. Let {un}, {on}, {ttn.m}s {tn}, {tin.m}, u be as in the proof of Theorem 8.1. Let € be
in (0,1). Set Exs, = {M(|Vu|) > AN\, Mi[w] < d2A} N Qp and F\ = {M(|Vu|) > A} N Qrp
for e € (0,1) and A > 0. Let {y;}Z, C Q and a ball By with radius 27} such that

L
QC U Bm(yi) - BO
i=1
where 9 = min{R,/1080,T0}. Let s; = T — jra/2 for all j = 0,1,...,[—7;} and Qor, =
Bo x (T — 4T2,T). So,
Or | JQr (ir55) C Qory-

.
We verify that 5
w(Exs,) < cw(@rg(yi,s5)) YVA>0 (8.14)
for some d2 small enough, depended on n,p, a, B, €, [w]a__,To/Ro.

In fact, we can assume that Ey 5, # 0 so |u|(2r) + |o|(R2 ) < TP 161, We have

E < — .
Brsl< 2 /QT|Vu|da:dt

We also have
/ Vuldzedt < e To(|ul () + |o]().
Qr

Thus,

C
[Exel < S To(lul(Qr) +10](2) < A%TéV”(SM = €402|Qomy |-
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which implies

|E/\,52|
|Q2T0|

where (4,v) is a pair of Ay, constants of w. It is known that (see, e.g [31]) there exist
A; = A1(N, A,v) and v; = v1(N, A, v) such that

?(QZTO) < A1 < _ |Q2T0| )l/l y ]
w(Qro(yi>sj)) B ‘Qro(yivsjﬂ ,

w(Eys,) <A ( )V w(Qar,) < A(cada)” w(Qar,)

So,

|QT0| A

w(Exs,) < A(csdz)” Ay ( < ) w(Qry (Y1, 55)) < ew(Qry(yir 55)) Vi, j
|Qro (i, 55)

1/v
where dy < (+) . It follows (8.14).

ZCS(Toro_l)(N+2)V1 B
Next we verify that for all (z,t) € Qp and r € (0, 2] and A > 0 we have Q,(z,t)NQr C F),
. = 1/v
if U}(E)\752 n QT(I,t)) Z €w(Qr(z,t)) for some 52 S <W) .
Indeed, take (z,t) € Qp and 0 < r < 2r. Now assume that Q,(z,t)NQrNFY # ) and E) 5,N
Q. (x,t) # 0 i.e, there exist (z1,t1), (x2,t2) € Qr(x,t) N Qr such that M(|Vu|)(z1,t1) < A
and M [w](x2,t2) < d2A. We need to prove that
w(Bxs, N Qr(a,1)) < ew(Qr(z,1)). (8.15)

Clearly,
M(IVul)(y, 5) < max{M (xq, (o |Vul) (4,5),3¥ 72N} Wy, s) € Qp(a,1).
Therefore, for all A > 0 and A > 3NV+2,
Bxs, N Qp(z,) = {M (X@Twwuo > ANM[W] < 8N N Qe N Oy (z,t).  (8.16)

In particular, Ey 5, N Q. (x,t) = 0 if Bg,(z) cC RNV\Q. Thus, it is enough to consider the
case Bs,(x) CC Q and Bg,(z) NQ # (.

We consider the case Bs,(x) CC Q. Let vy, be as in Lemma 7.4 with Qar = Qsr(2,10)
and u = uy, , where tg = min{t + 2r?,T}. We have

. )b
Il @a i S 6 f [Vl + gl Qo) (g 47
Qsr(z,to) L4
and
t
][ |vun,m _ an7m|d.7:dt < cs |Nn,m|(?vfj:1($7 0)) + CS[A]E(‘;O ][ |Vun7m|da:dt
Quar(z,to) r Qsr(wto)
+|M7l-,m|(Q8r(x’t0)))
FPNTL :

Thanks to M(|Vul)(z1,t1) < X and M [w](x2,t2) < d2A with (z1,t1), (z2,t2) € Qr(z,t), we
get

w(Qrrr (w2, t2)

lim sup im sup ||V, m || 2o (s, (2,1)) < 09][ \Vuldzdt + ng
n—oo  m—+co0 Qirr(z1,t1) "

S Cg)\ + Cgég)\

< croA
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and

lim sup lim sup][ |Vu, — Vo, |dzdt
Qar(z,t0)

n—oo m—r 00

w(QNr(l"Q,tz)) W(Qlw(l’QatQ))

< ec1102A + Cll[A}RD ()\ + 52)\)
<1 (02 +61(1+d2)) A

Here we used [A]fo < §; in the last inequality.
So, we can find ng large enough and a sequence {k,} such that

IVopmll e (@) = IV ml Lo (Qar(at0)) < 2€10A and (8.18)
(Qa2r(

f |V’U,n7m - an7m|d$dt S 2011 (52 + 51(1 + 52)) A (819)
Qar(z,t0)

for all n > ng and m > k,,.
In view of (8.18) we see that for A > max{3V*2 8c;o} and n > ng, m > ky,

M (X (o) | Tl ) > AN/4} 0 Qr ()] = 0.
Leads to
[Bx s 0 Qr(@, 0] < M (Xa, )| Tttnm = Vonml) > AA/4} 1 @y (2,
(X )| Vttn = Fttnml ) > AN/4} 0 Qu ()]
+ 1M (Xqy (0 [V = Vil ) > AN/} 0 Q1 (1))
)

Therefore, by (8.19) and Qa,(,t) C Qu,(x,to) we obtain for any n > ng and m > k,

Brs, N Oy (2,1)] < S22 / IVt — Vo | dadt
Q2T(T t)

BY

+22 ] Vit — Vit mldzdt + 22 | \Vu — V| ddt
A S Gar(ait) A G (ait)

< i3 (62 +01(1 4 02)) |Qr (2, 2)]

+2 Vtty, — Vit o |ddt + 22 / IV — Vi, |dadt.
A St A St

Letting m — oo and n — oo we get
|Ex 5, 0 Qu(@,1)] < 13 (32 + 01(1 + 62)) [Qr(, 1)].
Thus,

- |Brs, N Q)]
w(EA7§2 N Qr(xvt)) <C ( ‘Qr(%t” > w(Qr(xat))

< C(ers (02 + 01(1 + 02)))" w(Qy (2, 1))
< ew(Q,(z,1)).

where d2, 01 are appropriately chosen, (C,v) is a pair of Ay constants of w.
Next we consider the case Bg,(x) N # (. Let z3 € 9Q such that |z — z| = dist (x, IQ).
Set to = min{t + 2r2, T}. We have

Q2r(x,t0) C Qior(x3,t0) C Qsa0r(z3,t0) C Q~1080r(9€37t) C Q1088r(x7t) C Q~1089r(3317(t1) )
8.20
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and
Qs40r(23,t0) C Qos0r(23,t) C Quossr(2,t) C Qiosor(x2,t2) (8.21)

Let V,,,m be as in Lemma 7.13 with Q¢r = Qs40-(23,%0), ¥ = Up,m and € = §3 € (0,1). We
have

|fin,m| (@540 (73, t0))
IVViml Lo (@uor(2s.t0)) < 014][ |Vt m |dedt + c14 RN+

Qs40r(3,t0)

and

][ Vit — V Vi | dzdt
Qior(z3,t0)

| in,m|(@s40r (23, t0))
RNTL

< er15(83 + [A]) f IVt ldedt + cr5(8s + 1+ [A]F0)

Qs40r(3,t0)

Since M(|Vu|)(21,t1) < A, Mj[w](22,t2) < daX and (8.20), (8.21) we get

lim sup lim sup [[VVy, i || 5 (Qa, (2.t0)) < limsuplimsup [|VVy, i l|Lo Q10 (5,t0))

n— oo m—r oo n—oo m—r o0

t
< c14][ |Vu|dzdt + c14 —W(QMO;V(E? )
Qs40r(23,t0) R

w(Q r(T2,t

< cw]{ Vuldwdt + c1s (ngﬁvif 2)
Q1os9r(z1,t1) R

< e + c1602A

< ci7A

and

lim sup lim sup ][ [Vt m — VVy m|dxdt
Qar(x,to)

n— oo m—r oo

e
< 1503+ [A}ﬁo)][ Vuldadt + c15(55 + 1 + [A]ﬁo)w

Qs40r(23,t0)

< cun(f + (A1) ©(Quoso (w2, 12))

R
|Vuldzdt 4 c19(03 + 1 4 [A]°) FN+1

Qiosor(x1,t1)
< 20(63 + [A]FO)N + c21(83 + 1+ [A]F0)d2A
< o0 ((05 4+ 01) + (95 + 1+ 51)d2) A.

Here we used [A]%o < §; in the last inequality.
So, we can find ng large enough and a sequence {k, } such that

||vv’”a7”HL°°(Q2r(m,t)) = ||VVn,mHL°°(Q2,.(z,to)) < 2ci7A  and (8.22)

][ |Vun,m - VVn’m|dl‘dt < 2¢91 ((53 + (51) + ((53 + 14+ (51)(52) A (8.23)
QZT(m7t0)

for all n > ng and m > k,,.
Now set A = max{3"V*2 8¢g,8¢c17}. As above we also have for n > ng, m > k,

By 1 Qr( )] < HM (X oy | Vitnan = Vil ) > AN4} 01 Q)
+ M (X@m,t) Vi, — Vun7m|) > AN/4} N O, (2, 1))

+{M (X@am IV — Vun|) > AN/4Y N Gy (2, 1).
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Therefore from (8.23) we obtain

|Exse 1 Qr(a, 1)) < 22 / |Vt — V'V | dadt

)\ Q~2T(m,t)

+22 / Vit — Vit | dadt + 22 \Vu — Vu, |dzdt
A JGar(at) A S Qo (at)

< o3 (83 + 61) + (83 + 14 61)82) |Qy(, 1)

+ 22 (Vi — Vit | dadt + 222 \Vu — Vu, |dzdt.
A JGor(at) A JGor(at)

Letting m — oo and n — oo we get
|Exs5, N Qr(2,)] < €22 (65 + 1) + (5 + 1+ 61)82) |Qr (2, 1)].
Thus

w(Exs, N Qr(x,1) < C <|Emz n Qr(x,t)> .

G D) w(Qr(x,1))

< C(caa (054 01) + (05 + 1+ 61)82))” w(Qr (2, 1))
< ew(Qr(x,t))

where 83,01, 2 are appropriately chosen, (C,v) is a pair of A, constants of w. }
Therefore, for all (z,t) € Qp and r € (0,2r¢] and A > 0 if w(E 5, NQr(z,t)) > ew(Q,(x,1))
then Q. (z,t)NQr C F\ where 6; = 61(N, A1, Ao, e, [w]a) € (0,1) and 2 = 62(N, Ay, Ag, &,

[w]a.,To/Ro) € (0,1). Applying Lemma 3.19 we get the result. ]
Proof of Theorem 2.20. As in the proof of Theorem 2.17, we can prove (2.34) by

using estimate (8.13) in Theorem 8.4. In particular, thanks to Proposition 4.4 for g > %—ﬁ,
(N+2)(g=1)
peL °(Qr) and 0 =0,
[[Vul?| N4 (a=1) < ¢l (N+2)(g—1) (8.24)
L a (Qr) L q 2 (Qr)
where the constant ¢ depends only on N, Ay, As, ¢ and Ty/Ry. [

Proof of Theorem 2.22. By Theorem 2.20, there exists a renormalized solution of (2.6)
with data p, ug = o satisfied

/QT Vultdw < e /QT (M [w])? dw (8.25)

for any w € Ay, where ¢1 = ¢1(N, A1, As,q,To/Ro, [w]a,)-
For 0 < ¢ < 1 we have M [w] < CQ]I?TO’é[w] in Qp. Thus, (8.25) can be rewritten

q
/ |Vu|Tdw < clcg/ (H?To’é[w]) dw. (8.26)
Qr Qr
Thanks to Proposition 4.24 and Corollary 4.39 and 4.38 we obtain the result. [

In follow that we usually employ the the Minkowski inequality, for convenience we recall
it, for any 0 < ¢1 < g2 < oo there holds

</X </Y et dm(y)) ’ dul(x)) i = </Y (/X | f (, y)QZdul(x)> : duz(y)> }

for any measure function f in X x Y, where uq, uo are nonnegative measure in X and Y
respectively.
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Proof of Theorem 2.21. We will consider only the case s # oo and leave the case
s = oo to the readers. Take k; € (0,k). It is easy to see that for (zg,t9) € Qr and
0 < p < diam(Q) 4+ 7"/?

w(z,t) = min{p~ V72T max{|z — x|, /2t — to|} VT2 € A

where [w]4_, is independent of (z¢,%y) and p. Thus, from (2.34) in Theorem 2.20 we have
R (N42—r+r1)s R
IMVaDl0e 3, @otonam =2 © IMAVEDI 0 6 (w0 t0)r2edu)
(N+2—k4rq)s s
<cp N HMl [W]HL%S(QT,dw)

(i2onins [ . d)
— e T [T (el > A 00T P
0
2 ninpe [ 00 T d)
_ q01p(N+z ) / ()\Q/ {Mi[w] > A\ w > T} ﬂQT|dT) 5%
0 0

(N+2—r+r1)s

. gy i (8.27)
Since w < p~N=2E=R and {M;[w] > A\, w > 7} C {M;[w] > A} N Q77N721+m7,¢1 (0, 10),
o0 pr T - T
A< q/o (Aq/o {M;[w] > A} N QTm(mo,to) N QT|dT> =

We divide to two cases.
Case 1: 0 < s < q. We can verify that for any nonincreasing function F in (0,00) and

0 < a <1 we have
(/Ooo F(T)dT)a < 4/OOO(TF(T))“Ci_T.

Hence,

—N-24r—r]

oo P ~ s
A< 4q/ / (A%\{Ml Wl >ANQ o (wo,t0) N Q|
o Jo T !

—N—2+4r—krq

—N-—24r—r]

P X
-4 f L R kit

L =N=2fr—nr]

/ (MMl > NN Qg (w0t n0])" T
0 T 1

—N—-2+Kk—r1

P (N+2—k)s s dT
< 4/0 (YA e R

= ol My ]l [$ e (pyp ™ T

Case 2: s > ¢q. Using the Minkowski inequality, yields

o </Op ([ (monte > 200 otnan) ) % d7>

—N—2+4k—r] q
P (N+2-r)s s
<o ( /0 (I [l ey T 2507 ) dr)

SK1

= 5| [Ma[W][|Laem @y @ -

—N—2+4r—rq

Q|

Q|
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Therefore, we always have

SK1

A < o [Miw][[ Lo sn(@ryp” 7 -

which implies (2.35) from (8.27).
Similarly, we obtain estimate (2.48) by adapting

w(z,t) = min{p VTV |z — g0 V"Y€ A

in above argument, where 0 < 1 < ¥, g € Q and 0 < p < diam(?) and [w]a__ is
independent of xy and p.

Next, to archive (2.37) we need to show that for any ball B, C RV

T q
9
(/0 OSCBPOQu(t)|th> <eptTa |Hvu|||LZ;}9(QT) (8.28)

Since the extension of u over (Q7)¢ is zero and u € L'(0,T, W;''(Q)) thus we have for a.e
€ (0,7), u(.,t) € WHL(RN). Applying [30, Lemma 7.16] to a ball B, C RV, we get for a.e
€(0,T) and z € B,

Vu(y,
(o, =m0 < Sy s
__on Va0l
= NIBLO)| By |2 =yl
/3p S5, @) [Vuly,t)ldy dp
rN-1 T
here up,(t) is the average of u(.,t) over B, i.e up,(t ‘B | fB u(x, t)dz.

Using the Minkowski and the Holder inequality, we dlscover that for a.e = €B,

T % T 3p . Vu(y,t dy q %
(/ |U(xat)_UBp(t)|th> < s (/ ( ffs<r(>|N_1 )ldy dr dt
0 0 0 r r
3p T 3 J
< e / / (/ |Vu<y,t>|th> dyT—JC
()
v g1 dr

N-9 N(a=1) dr

Ll N—-U
< ¢s|By(2)| 7 /O reer e IVl o)

= cop' 5|1 Vulll o -

Therefore, we find (8.28) with ¢; = 2¢y. ]

Proof of Proposition 2.28. Clearly, estimate (2.48) is followed by (4.12) in Propo-
sition 4.7. We want to emphasize that almost every estimates in this proof will be used the
Minkowski inequality. For a ball B, C RY, we have for a.e z € RY

too o Qe r\" i
|ﬂ1[u1<x,.>|Lq<R>—</ (/ Wd> dt)

<[ ( / +w<u<@r<x,t>>>th>éj’;2. (3.20)

—0o0
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Q=

Now, we need to estimate (fj;o(u(Qr(x, t)))th) .
b. We have

(f jw(@r(m,t»)th)é -(/ :’O ([ % <x1,t1>du<m1,t1>)q dt>;

+o0 %
S / (/ XQT(:E,t)(xl’tl)dt) d,LL(fL'l,tl)
RN+1 —0o0

=14 (B, ()

Combining this with (8.29) we obtain (2.49) and (2.51).
Thus, we also assert (2.51) from [1, Theorem 3.1 ].
c. Set dus(z) = ||pu(=,.)||pa (rydz. Using Holder’s inequality, yields

- 2(q1—1) t*é
(O, t)) <1 / / 7wl )ty | day.
B, (x) t

L

2

Leads to

too g 2(g; 1) Foo g
(/ (,u(QT(:c,t)))th> <% /() / / Tl )ty | de | das.
—o00 B, (x —00 t— L2

2

Q=

Note that

: </:O </+: X(i-eesg) (L tl))qldt1> ' dt) )

+oo 4o qu
S/’OO </oo X(t_pzzv”p;)(tl)dt) (w(z1,t1))dtq

2 +oo

2491

. / (w(a1,0)) " dbs.
2(4;171)_,'_2

(/_;oo(ﬂ@r(x,t)))th)
“ p2(Br(z)).

Consequently, since (8.29) we derive (2.52) and (2.53).
We also obtain (2.54) from [1, Theorem 3.1 ]. |

Hence

Q=

21 =1, 2
<ro o +q/ (@1, )| Lar (myda
xT

r(z

=r

8.3 Global estimates in RY x (0,00) and RV !

Now, we present the proofs of Theorem 2.25 and 2.27.
Proof of Theorem 2.25 and Theorem 2.27. For any n > 1, it is easy to see that

Capp(Bl/A;(Zo)»BQ(O))

i. RN\ B, (0) satisfies uniformly 2—thick with constants ¢y = Cap, (51 (0).5:(0))

(1/2,0,...,0) € RN and ry = n.

zZ0 =
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ii. for any ¢ € (0,1), B,(0) is a (d,2nd)— Reifenberg flat domain.
iii. [A]? < [A]2°

S0 — S0 "

a. Assume that |[M;[w]||pp.s@~+1) < oo. Thus by Remark 2.26 we have
Ir[w](z,t) < oo for a.e (z,t) € RVTL, (8.30)

In view of the proof of the Theorem 2.5 and applying Theorem 2.17 to B,,(0) x (—n?,n?) and
with data Xp,_,(0)x(~(n-1)2,(n—1)2)w for any n > 2, there exists a sequence renormalized
solution {u,} ( we will take its subsequence if need ) of

(un)e — div(A(z,t, Vun)) = XB,_1(0)x (= (n—1)2,(n—1)2)w in By, (0) x (—n?,n?),
up, =0 on 8B,(0) x (—n?n?),

un(—n?) =0 in B,(0),

converging to a distribution solution u in L{, (R; Wlf)’cl(RN)) of 2.8 with data y = w such
that

IVunlllLros (B, (0)x (—=n2,n2)) < 1lMilXB,_ (0)x(~(n-1)2,(n—1)2) W] |Lr-+ (B, (0) x (=02 ,n2))
< arl[Myflwl]]|zr.s @ven)-
Here ¢; = ¢1(N, A1, Aa, p, s) is not depending on n since % = M ~
Using Fatou Lemma, we get estimate (2.40).
b. Assume that ||My[w]||Le @y x(0,00)) < 00. Since Ia[xg, g gw] < o0 a.e in RN+ thus for

a.e (z,t) € Q1(0,0)

Lfw](@,t) = I2[xg, 00wl (@, t) + /100 W(ﬁ’

e’} B d,D
< Tl 0,015 8) + M ]| o (o2 x 0,000 / p
1

< Q.

which implies that (8.30) holds for a.e (z,t) € RVN*1. As above, we also obtain (2.41).
And similarly, we can prove Theorem 2.27 by this way.
This completes the proof of Theorem. [

Remark 8.5 (sharpness) The inequality (2.43) is in a sense optimal as follows:
CTHMu[wlllpage+1y < NIVH2| * wllLa@y x(0,00)) < ClIMi[w]]] pa@n+1) (8.31)
for every q > 1 where C = C(N,q). Indeed, we have

Coc X(O,oo)(t) |$‘2 X
VHy(z,t) = ~ 5 {NiD2 eXP(—Z)W,

leads to

671

e W < < a .
(R XXy visiaisavi < VHale. 0 < S

Immediately, we get

o /°° w ((BT(J:)\BT/Q(x)) X (t—r2t— 7"2/4)) dr
0

> NT1 - < |VHs| xw(z,t) < coly [w](z, t).
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By Theorem 4.2, give the right-hand side inequality of (8.31). So, it is enough to show that

q
* w ((Br(2)\Byj2(x)) x (t —r%,t —r2/4)) dr
A= RN+1 </0 ( / rN+1 ) r dxdt > c3||My [MH‘%LI(RNJrl)

(8.32)

To do this, we take r, = (3/2)* for k € Z,

(/ % 1 ((By (2)\Byja(@)) x (t = 12,1 — 12/4)) d) q
0 r

PN+

N+1
Tk

S ( (2)\Bar, /a(x)) x <t—r£,t—9rz/16>)>q

k=—o00

We deduce that

A>cy Z / ( By, ()\Bay, /a()) x (t—rz,t_grz/m)))qudt.

N1
Tk

For any k, puty =x + Iry and s =t — 2272, so By, (x)\Bsy, j4(x) D By, /s(y) and

I <w (B, (2)\Bar, ja(a)) x (¢ = 7.t = 912/16)) ) ' ded
RN+1

N+1
Tk

q
) <w (Brk/s(y)x(5—77”;%/327t+7T’%/32))> dyds.
RN+1

N1
Tk

Consequently,

B, —r2/32,t +7r2/32)) \ *
A>C4/RNH Z ( N ))) dyds

Tk

It follows (8.32).

9 Quasilinear Riccati Type Parabolic Equations

9.1 Quasilinear Riccati Type Parabolic Equation in

We provide below only the proof of Theorem 2.30, 2.32 and 2.33. The proof of Theorem
2.31 can be proceeded by a similar argument.

Proof of Theorem 2.30. Let {u,} C C*(Qr) be as in the proof of Theorem 2.1.
We have |un|(Qr) < |p|(2r) for any n € N. Let o, € C°(Q2) be converging to ¢ in the
narrow topology of measures and in L'(Q) if o € L'(Q) such that ||oy||11(0) < |o|(€2). For
ng € N, we prove that the problem (2.55) has a solution with data p = p,, and o = oy,.

Now we put
Exr={ue L'0,T,Wy () :

<A}

1% (Qr)

where L%ﬁ’“(QT) is Lorent space with norm
1
f = sup (D_N+2/ f)
1l =y = 0 (12177 1
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By Fatou’s lemma, F, is closed under the strong topology of L*(0, T, 01 (©)) and convex.
We consider a map S : Ey — FEj defined for each v € Ej by S(v) = u, where u €
LY(0,T, VVO1 1(Q)) is the unique solution of

—div (A(z,t,Vu)) = |[Vu|? + pp, in Qp,
u=0 on 90 x(0,T). (9.1
U(O) = Onyg
By Remark 3.2, we have

2o < e ([[IVolfllni + e [(Q7) + llon |l ()
(Qr)

for some c¢; = ¢1(IV, A1, Ag). It leads to

(N

<c1(c2|QT|1 RVl +|u|<QT>+|o|<Q>)

Njﬁ o o
(Qr) N+1%°(Qr)

< er (ealf2r]' = WA + [ () + [0](©)

for some co = c3(NV, q) > 0. Thus, we suppose that

_1

Q] T (ul(Qr) + [0](R) < (201) Ve, T

then

IVull] x <A =201 (|ul(2) + 1o](2))

LN ()

which implies that S is well defined.

Now we show that S is continuous. Let {v,} be a sequence in F, such that v,, converges
strongly in Ll(O T, W, (Q)) to a function v € Ey. Set u, = S(v,). We need to show that
u, — S(v) in L0, T, Wy' (). We have

(un)¢ — div (A(z, t, Vup)) = [Voa|? + pn, in Qr,
u, =0 on 90 x (0,7T), (9.2)
Un(0) =0y, in €Q,

satisfied

IVl wee . <A,
LN+1%(Qr) “(Qr)

<A

Thus, |Vv,|? — |[Vo|? in LY(Qr). Therefore, it is easy to see that we get u, — S(v) in
LY(0,T,Wy' () by Theorem 3.6.

Next we show that S is pre-compact. Indeed if {u,} = {S(vy)} is a sequence in S(Ej,).
By Proposition 3.5, there exists a subsequence of {u,,} converging to u in L(0,T, WO“(Q))
Consequently, by Schauder Fixed Point Theorem, S has a fixed point on E, this means:
the problem (2.55) has a solution with data pin,, op,-

Therefore, for any n € N, there exists a renormalized solution u,, of

(un)e — div (A(z,t, Vuy,)) = |Vug|?+ py,  in Qp,

u=0 on 9JQx(0,T). (9.3)
un(0) = oy
which satisfies
1Vl 22 o “ (o )<261(|u\( )+ [o](€2)).

Thanks to Proposition 3.5, there exists a subsequence of {u, } converging to u in L' (0, T, Wy"' (2)).
So, IIVulll w42, < 2e1(|1() + [0](2)) and [Vun|? = [Vul? in L}(€) since {|Veun|7}

1°°00
is equi-integrable. It follows the results by Proposition 3.5 and Theorem 3.6. ]
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Proof of Theorem 2.32. Case 1. A is linear operator. By Theorem 2.22, there
exist § = (N, A1, Aa,q) € (0,1) and sg = so(N, Ay, A2) > 0 such that Q is (d, Rg)- Reifen-
berg flat domain and [A]f < § for some Ry and a sequence {uy }, as distribution solutions
of

(u1)r — div(A(z,t,Vuy)) = p in Qr,
up =0 on 90 x(0,7),
u1(0) =0 in Q,

and

(unt1)e — div(A(z, T, Vni1)) = [Vua|? + p in Qr,
Uny1 =0 on 90 x (0,T),
unt+1(0) =0 in Q,

which satisfy
[Vts1] ger.or < 2| Vtnl? + o ¥ 2 0 (9.4)

where uy = 0 and constant ¢; depends only on N, Ay, As,q and Ty/Ry, To. Moreover, if
o € L'(Q) then {u,} is the sequence of renormalized solutions.
Clearly, up+1 — uy is the unique renormalized solution of

up — div (A(z, t, Vu)) = [Vup|? — |Vuy—1]9 in Qp,
u=0 on 00 x (0,T), (9.5)
w(0) =0 in .

So, we have

[[Vunsr — Vun|? o0 < ca[|Vun|? = [V, —1|9) Vn > 0. (9.6)

q

MG1:d’

We set Dy, = [|[Vuni1—Vun|9 \0,,¢ for any n, since ||V, |7 — |V, —1]7] < [Vuy =V, 1|
n_q

Thus D, < ¢;D}_; Vn > 1, which implies D,, < ¢,"" [w}j\:%q/ Vn > 1. Therefore,

> Cl [W}j\/lgl.q’ . qul 2
Z D, < - 2 provided that ¢f~ [w]3\4911q’ <1
n=1 1—cf " [w}j/lglaq/

i -1
In particular, if [w] \e,.o0 <27 9%¢; 7" then u, converges to u = uy + >~ (Upt1 — up) in
L9(0, T, Wy?(€2)) and satisfied

[Vl por o < 2e1 (1] 4o, -

By Theorem 3.6 we get the result.

Next, we will prove Case 1. and Case 2..

Let {pn} C CX(Qr),0, € C°(Q) be as in the proof of Theorem 2.1. We have |u,| <
©n * |y |on| < 1,0 % |o| for any n € N, {p,}, {¢1.n} are sequences of standard mollifiers in
RN RN respectively. Set wy, = |pin| + |0m| @ 1=y and w = |u| + |o| @ jt=0}-

Case 2. For ng € N, ¢ > 0, we prove that the problem (2.55) has a solution with data
W= ny, 0 = On,. Now we put

Bx ={ue L'0,T, Wy () : [[Vul"™ ] pyor arer ) < A}
By Fatou’s lemma, F, is closed under the strong topology of L(0, T, Woll(Q)) and convex.

We consider a map S : Ey — FEj defined for each v € Ej by S(v) = u, where u €
LY(0,T, WOM(Q)) is the unique solution of problem (9.1). By Theorem 2.22; there exist
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§ =06(N,A1,A2,q+¢) € (0,1) and sp = so(N, A1, A2) > 0 such that Q is (6, Ry)- Reifenberg
flat domain and [A]f> < § for some Ry we have

[|Vu|q+6]M91,<q+a>' < o[ VolT + Wno]z\:;xqm'

where ¢y = ¢o(N, A1, Ao, g+ ¢,To/Ro, To). By Remark 4.33, we deduce that

_q
(IV0] "] ppor carer < esl|VOIT 008 ver

where a constant c3 depends on N, q + ¢.
Thus,

+
Hvu\qﬂ}Mglxwev <c ([|Vv|q]M91,<q+e>' + [wno}MQ1v(q+E)’)q :

" _q q+e
< e (03[|Vu|q E]Jq\;;L(Q+E)/ + [wnO]Mgl,<q+e>/)

aq gt+e
<c (03/\‘”5 + [wno]Mgl,(we)')

A

IN

q’ 1
provided that [wyy] yge,.rer < €4 = 279 ¢, e, T and A = 291 ¢ofwn, ]
which implies that S is well defined with [wn] \i0,.ate < Ca.
Now we show that S is continuous. Let {v,} be a sequence in F, such that v,, converges
strongly in L'(0, T, Wy (€2)) to a function v € Ej. Set u,, = S(v,). We need to show that
u, — S(v) in LY(0,T, Wy' (). We have u,, satisfied (9.2) and

q+e
M1:(ate)*

[|Vun\q+€]Mg1,(q+s)' <A, [|VUn|q+s]M91,<q+s>’ <A

In particular, [|Vu,|lpete@,) < ACapgl,(q_s_s),(ﬁT) for all n. Thus, |Vv,|? — |Vov|? in
L'(Q7). Therefore, it is easy to see that we get u, — S(v) in L(0,T, W,""(Q)) by Theorem
3.6. On the other hand, S is pre-compact. Therefore, by Schauder Fixed Point Theorem, S
has a fixed point on E,. Hence the problem (2.55) has a solution with data p = ., 0 = oy
Thanks to Corollary 4.39 and Remark 4.40 we get

0°

[wn] pgor.arer < C5[W]pqe1.aiey ¥V nEN (9.7)

where ¢5 = ¢5(N,q +¢,Tp).

Assume that [w] 46, (a4e)y < C4c5_1. S0 [wn] pger.(atrer < c4 for all n.

Therefore, for any n € N, there exists a renormalized solution u,, of problem (9.3) which
satisfies

[|Vun‘q+€}/\/tgly(q4rs)/ é 2q+sc2[wn]3\j§1v(q+a)’ S 2q+ECQCg+E [w]ij[r§1v(q+e)"

By Proposition 3.5, there exists a subsequence of {u,, } converging to u in L*(0, T, W, (2)).

So, [|VulT] pgo1.a+er (00 < 20Fecycdte [w]ﬂgwqﬂ)’(ﬂﬂ and |Vu,|? — |[Vu|? in L1 () since

{|Vu,|?} is equi-integrable. It follows the result by Proposition 3.5 and Theorem 3.6.

Case 3. For ny € N. We prove that the problem (2.55) has a solution with data
W= lny,0 = 0p,. Now we put

Ex = {ue L'0,T, Wy () : [||Vull| Lovs2ra—1.00 () < A}

where L(N+2)(a=1).20(Q)) is Lorent space with norm

ST N
[l Lv+ra=1) .00 () = SUD <|D| e / |f|dxdt> .
0<|D|<o0 DNQr
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By Fatou’s lemma, F, is closed under the strong topology of L*(0, T, WOM(Q)) and convex.
We consider a map S : Ey — FEj defined for each v € Ej by S(v) = u, where u €
LY(0,T, WOM(Q)) is the unique solution of problem (9.1). By Theorem 2.20, there exist
d = 6(N,A1,A2,q) € (0,1) and sg = so(N, A1, A2) > 0 such that Q is (0, Ry)- Reifenberg
flat domain and [A]f> < § for some Ry we have

IVl ovsa-.0 @) < csl ML [VOlT + wnlll v oy
(Qr) (Qr)

< ¢ (\|M1[|V”|q}|\L<N+2><q—1>,oo(QT) + [1M [wno]||L<N+2><q—1>,oo(QT))

where cg = c6(N, A1, As, q,To/Ro) and Ty = diam(Q) + T/2.
By Proposition 4.4 we have

M| £ pov+2)a-100 mnt1y < erl[ T[] 1] Lovt2ra—1),00 mrt1)
< sl 113 vsmran o masry VS € LTI (R

where a constant cg only depends on N, q. Thus,

|||VU|||L<N+2><q71>,oo(QT) < ¢ (C8|HVU|||qL<N+2><q71>,OQ(QT) + ||M1[Wno]\|L<N+2><q—1>,w(QT)>

< e (es A7 + M [wn || L v2) (a-1).00 (0)) 5

_1
which implies that S is well defined with ||My [wn, || v+2)0-1).00 () < €9 1= (2¢6) T cg "
and A = 206‘|M1[wn0]|‘L(N+2)(q71),oo(QT)~

As in Case 1 we can show that S : Fy — Ej is continuous, thus by Schauder Fixed Point
Theorem, S has a fixed point on Ex. Hence the problem (2.55) has a solution with data
M= Hng, 0 = Ony-

To continue, we need to show that

||M1 [wn} | ‘L(N+2)(q—1),oo(RN+1)

< crolILflpllll v +2rta-1 .00 @41y + crol [T —allof]ll v @y (9-8)

2
(N2 (a1
for every n > ko. Where kq is a constant large enough and c19 = ¢109(V, ¢) Indeed, we have
M [wn] < enilifon * |ul] + c11li[(01,0 * [0]) @ d4=0y]. Thus, by Proposition 4.19 we deduce

| |M1 [wn] ‘ |L<N+2)(q—1>.oo(RN+1)

< ent||lifen * |l Lovi2r .00 @ne1) + c12||T _1lern # o]l Loveza-n @y

2
(N+2)(g—1)

= cn1llen * Liflpl]|| Lovr2ra—1).00 @1y + cr2l|o1,n * 1 ol Lov+2@-1 @)

2 __
(N+2)(q—1)

= en[|L |l Lov+2ya—1).00 @1y + c12|[T —alloflllzaven@-n @) asn = oco.

2
(N+2)(¢—1

It implies (9.8).
Now we assume that

L[|l L vt2ra-1).00 vty | Callollllpoveza-n @y < co(2e10) 7

2
EESNCESY
then [|My[wy]|| Lvi2)a-1),00mrt1) < €9 for all n > ko. Consequently, there exists a renor-
malized solution u,, of problem (9.3) satisfied

|||Vun|||L<N+2>(q—1>,oo(QT) < 2CG||M1[wn]||L(N+2)(Q*1),°O(QT)

< 2cgero||Tn[| ]| Lv+2rca-1).00 w1y + 2¢6¢10| [T )—1[|0H||L<N+2)(q‘”(RN) =0

2
(N+2)(g—1

for any n > ko. Thanks to Proposition 3.5, there exists a subsequence of {u,} converging
to w in L*(0, T, Wy (). So, [[[Vulllpov+za-1. (0 < C and [Vu,|? = [Vul? in LY(Q)
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since {|Vuy,|?} is equi-integrable.
It follows the result by Proposition 3.5 and Theorem 3.6. This completes the proof. ]

Proof of Theorem 2.33. Let {u,} C CX(Qr),0, € CX(Q) be as in the proof of
Theorem 2.1. We have |p,| < ¢pn * ||, |on| < @10 % |o| for any n € N, {p,}, {¢1.,} are
sequences of standard mollifiers in R¥+1 R respectively. We can assume that supp (i) C
(Y +Bg4,4(0))x[0,T] and supp () C Q' +Bgy4(0) for any n € N. Set wy, = |tn|4[00n @0 1=0y
and w = | + lo| & bg1—oy.

First, we prove that the problem (2.55) has a solution with data p = ppn,,0 = oy, for
ng € N. By Corollary 4.39 and Remark 4.40, we have

[wn]Mgl,q/ <cigg Vn €N (9.9)

where ¢; = ¢1(N, ¢, Tp) and €9 = [w] \40,../- By Proposition 4.36 and Remark 4.37, we have

a
13700 [(H%To’é[wnm ] < 6268_1]1?0’5[(#”] a.ein RNY*1 and (9.10)

q
LB wa]) ] < 26§ olwa] ae in RV (9.11)
for any n € N, where c2 = ¢2(N, d,¢,Tp) and 0 < 6 < 1. We set
Ex = {u e LY0, T, Wy () : [Vu| < A [w,,,]}.

Clearly, E is closed under the strong topology of L!(0, T, VVO1 1(Q)) and convex.
We consider a map S : Ex — L*(0,T, W, (?)) defined for each v € Ex by S(v) = u, where
u € L'0,T, W, (2)) is the unique renormalized solution of problem (9.1). We will show
that S(Ey) is subset of E5 for some A > 0 and £y small enough.
We have

|Vo| < Al [wn,] (9.12)

In particular, [|[Vv[|[Le(Q,x0,7) < AN + 1)71(d/2) "N w,, (Qr), where Q40 = {z €
Q:d(z,00) < d/2}.
From (9.10) and (9.11) lead to

L3700 Vol9) < AT [(H%Tf”é[wno]) } < Nl Ty, ] and
L[| Vo|9] < AL [(]ﬁm[%])q] < 3 A%e8 Ty .
Clearly, from [25, Theorem 1.2], we have for any Q,(z,t) CC Q X (—o0,T) with r < rg

|Vu(z,t)] ch][ ( )|Vu|dyd8+03HfT°’6[|Vv|q+wn0](a:,t)
Qr(z,t

< 03][ Vuldyds + eI [V ol (2, £) + 5270w ] (2, 1)
(1)

< 0372 " |Vu|dyds + c3 (cqusg_l + 1) H%To’é[wno](%t) (9.13)
(T,

where c3 = ¢3(N, A1) and ro = 79(N, A1, Ao, As, 5) > 0.
Since [|Vulllzar) < eaTo (101131, + o () ). for amy (2.1) € (2\Qusa) x (~00,T)
where Qg4 = {z € Q: d(x,00) < d/4},

1

Qa0 Jgp ey V10080 < 5™ T (V¥ oy + 0 )
o\ do (T,

< el (V0|7 + wny (2, t)

< ¢ (C2A%O + 1) 12709 [, ] (2, £) (9.14)
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where dy = min{d/8,7r¢} and ¢g = (N, p, A1, A, Tp/dp).
By regularity theory, we have

IVl Lo (944 % (0.7)) < er(lullzos (0% 0.7)) + VU Lo (9240 x (0,7))
where Cr = C7(N,A1,A2, A3, Q7T)
a. Estimate [||Vv|?]|zo(q,,,x(0,1)). Thanks to (9.12),
IV 0| 2o (0240 x 0,7 < (A(d/2)™N " (wn, Q1))
Since wy, (Qr) < cleoCapghq,(QTD (x0,%0)) = ¢cs(N, q,p, To)eo with (xg,t9) € Qr, thus
V0|9 Lo (/2% (0.1)) < oMl 2T0 P [, (2, t) V(2 t) € Qp

where cg = cg(N, A1, A2, A3, q,d,Q,T).
b. Estimate [[u||p~(q,,,)- By Theorem 2.1 we have

lu(z,t)] < crola]|Vo]? + wi (2, ) V(z,t) € Qp
where ¢19 = ¢10(N, A1, Ag). Thus,
lu(z, t)] < c10la]| V|9 (z, t) + c10l2[wn, ] (x, t)
< c1o (@Aqeg_l + 1) Lo [wn, | (, t)

which implies

lull e @ 07 < €11 (2A7287" 4+ 1) d~Noon, ()

< i (cqusg_l + 1) H%To’g[wno}(m,t) Y(z,t) € Qr

where ¢13 = ¢12(N, A1, Aa, Az, q,To/d). Therefore,

||vu||Loc(Qd/4X(0’T)) < ci3 (cMAqgg—l + 1) ( i)nefQ H%To,é[wno}(x,t) (9.15)
z, T

where C13 = 613(N7 Al, AQ, AS; q, da Qa T)
Finally from (9.14) (9.15) and (9.13) we get for all (z,t) € Qp

IVu(z,t)] < c1a (clsAqgg—l v 1) 12709, Y(z, ).

where C14 = C14 (N> A17 A27 AS; q, da Qa T) and Ci5 = 015(N7 57 q)
1

So, we suppose that A = 2¢14 and g < c;5ﬁ(2014)7ﬁ, it is equivalent to (2.63), (2.64)
holding for some C' > 0. Then for any (x,t) € Qr

Vu(a, t)] < AL [wn, | (2, )

and S is well defined.

On the other hand, we can see that S : Eyx — Ej is continuous and S(F) is pre-compact
under the strong topology of L'(0, T, WOM(Q))

Thus, by Schauder Fixed Point Theorem, S has a fixed point on E,. This means: the
problem (2.55) has a solution with data p = iy, 0 = op,.

Therefore, for any n € N, there exists a renormalized solution u,, of problem (9.3) which
satisfies

[V (@, 1)) < AL [w(2,8) ¥ (2,1) € Q.
Since 11" [wa) (@, £) < @ux I (|l (2, 1) +01,0 % (I3 |0 @5 (=0} ] (-, 1)) () =: An(a,t) and
A,, converges to ]I§T°’6[|,u|} +H?TO’5[|0| ® bgr—oy] in LI(RNTY), thus |[Vu,|? is equi-integrable.

As in the proof of Theorem 2.32, we get the result by using Proposition 3.5 and Theorem
3.6. This completes the proof. [ ]
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9.2 Quasilinear Riccati Type Parabolic Equation in RY x (0, 00) and
RN—H

In this subsection, we only provide the proofs of Theorem 2.37 and 2.38. In the same way,
we can prove Theorem 2.36.
Proof of Theorem 2.37. As in the proof of Theorem 2.25 and Theorem 2.27, we can
apply Theorem 2.32 to obtain: there exists a constant ¢; = ¢1(V, A1, Ag, q) that if [A]3° <6
and (2.66) holds with constant ¢; then we can find a sequence of renormalized solutions
{un, } of

(uny )t — div(A(z,t, Vg, ) = [Vun,|? + XD, ,w in Dy,

Up, =0 on 8By, (0) x (—ni,n}),

Un, (—n2) =0 on By, (0).

converging to some u in L{ (R; Wlicl (RY)) and satisfying
[V, ||| La-nav+z.op, ) < colll[lwl]]| Lov+za-1).00 vy

for some ca = ca(N, Ay, Aa, q), where D,, = B,,(0) x (—n? ,n?). Tt follows |Vuy,, |9 — |Vul?
in L (RN*1). Thus, u is a distribution solution of (2 57) which satisfies (2.65).
Furthermore, if w = pu —|— 0 ® 6gy—oy with p € M(RY x (0,00)) and o € M(RY), then
Up, = 0 in By, (0) x (=nf,0). So, u=0in RY x (—00,0). Therefore, clearly ulgy (g o) i
a distribution solution to (2.56).

[
Proof of Theorem 2.38. Let w, = ¢, *(xp,_,w) for any n > 2. We have y,, € C°(RN+1)
with supp (w,) C D, and w,, — w weakly in M(RN*1).
According to Corollary 4.39 and Remark 4.40, we have

[Wn] pprer < €160 YR €N
where ¢; = ¢1(N,q) and [w] \ 3. < €o. Thus, thanks to Theorem 1.3 we get
I (T [wn))Y] < c2ed ' [wn]  and (9.16)
I (I [wn])¥] < c2ed 'y[wn] Vn e N (9.17)

where ¢g = c3(N, ¢, ¢1).
We fix ng € N, put:

By = {u e L' (=nd,nd, W3 (Buy (0)) £ [Vl < Aifwon,] in Brg/a(0) x (~nf,nd)}

By using estimate (5.8) in Remark 5.3, we can apply the argument of the proof of Theorem
2.9, with problem (6.9) replaced by

— dw (A(ta vu)) = XBnO/4(O)X(—ng,nS)|VU|q + Wy 0 Dy,
u=0 on 0By (0) x (—n3,nd),
w(-ng) =0 in B, (0),

to obtain: the operator S (in the proof of Theorem 2.9) has a fixed point on E, for some
A=A(N,A1,Az,q9) > 0and g = e9(N, A1, A, q) > 0. Therefore, for any n € N there exists
a solution u,, of problem

(un)e — div (A(t, Vuy,)) = XB,L/4(0)><( n2.n2) |Vt |? + w, in Dy,
u, =0 on 0B,(0) x (—n? n?),
un(—n?) =0 in B,(0),

which satisfies

|V (2, )] < Al jw,](2,t) V(x,t) € By 4(0) x (—n?,n?).
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Moreover, combining this with (9.17) and Theorem 2.1 we also obtain

[ (2, D) < KT [ X5, ,400)% (~n2,2) [Vt + o] (1)
< KAy (0 [lwn )] + Ko [lwn] (@)
< sl [Jwn) (,1)
< espn * 1z (XD, wl] (1)

for any (z,t) € B,(0) x (—n?,n?).

Since Ty [w](wo, to) < oo for some (x9,t9) € RN*, thus sup,, [5, (Ia[w,])®dadt < oo for all
meN,1<q < %7 so sup,, fDm XD, |un|?dxdt < co.

In addition, since I [w] € L{ _(RN*1), thus ¢, * I; [|xp, ,w|] = Lijw] in L{ (RN*!) and
{XB,,L/4(0)><(—7L2,7L2)|vun‘q} is equi local integrable in RV +1,

Therefore, we can apply Corollary 3.18 to obtain: u, — u in L (R; W’I}DCI(RN)) ( we will
take its subsequence if need) and u satisfies (2.68). Also, |Vu,|? — |[Vu|? in L}, (RVT).
Finally, we can conclude that u is a distribution solution of problem (2.67). Note that the
assumption [w] ;¢ < €0 is equivalent to (2.69) holding with C' = &y.

Furthermore, if w = p1+ 0 ® (4=¢} with € M(RY x (0,00)) and o € M(RY), then u, =0
in B, (0) x (—n?,a,) where supp (w,) C RY x (a,,00) and a,, = 0~ as n — oo. So, u =0
in RY x (—00,0). Therefore, clearly Ulgn «[0,00) 18 @ distribution solution to (2.70).

This completes the proof of the Theorem. ]

10 Appendix

Proof of the Remark 2.7. For w € MT RV 0 < a < N + 2 if I, [w](x0, to) < oo for

some (zg,to) € RNVT! then for any 0 < 8 < o, Ig[w] € L{ (RN +1) for any 0 < s < NJX';Eﬁ.

Indeed, by Remark 4.28 we have I, [w] € L (RN *1) for any 0 < s < N]j_;EB.
Take0 < f <aand0 < s < NJX;EB. For R > 0, by Proposition 4.4 we have I [XQZR(O,O)“J} €
Lg (RN*+1). Thus,

loc

[ e ) dea

Qr(0,0)

< 01/ Islxa w](z,t) s dxdt + cl/ Ia[xs (1) s dodt
Gr(0,0) ( BLIXQ2r(0,0) ) Gr(0.0) ( BIXQ2r(0,0) )

<e / (I[ﬁ X3 (0.0 (@ t))s dwdt + c; R=5(=5) / (La[w](z, 0))° dadt
Qr(0,0) '

Qr(0,0)
< 00.

For 0 < B < a < N + 2, we consider

o]
ag

- - X6y 5 (x,1)
,;4 |Qrr1(0,0)\ Q1 (0,0)| @1 OONQK(O.0)

w(z,t) =

where aj, = 2"NV*+279) if k = 2" and a; = 0 otherwise with 0 € (3, a].

It is easy to see that I,[w] = oo and Iz[w] < oo in RV+L, |
Proof of the Remark 2.26. For w € MT(RN*1), since Iz[w] < e111[1[w]] thus:

If I [w] € L9°°(RN*+1) with 1 < s < N + 2, then by Proposition 4.4 in next section

[Tz [w]]

L, < eI [w]|

(&N )
If I; [w] € LN*+2°(RN*1) | then by Theorem 4.3,
Irjw] € L (RN F1) Vs > 1

loc

Ls:oo(RN+1) < 00
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So, Iz[w] < 0o a.e in RN if [} [w] € L9 (RN F!) with 1 < s < N + 2.
For s > N + 2, there exists w € MT(R¥*!) such that Irjw] = oo in RV*! and I;[w] €
L*(RN*1). Indeed, consider

o kal

= = X6 30(0,0) (L5 1)
] 1Q111(0,00\Q1(0,0)] Qr+1(0,00\Qx(0,0)

w(z,t) =
We have for (z,t) € R¥*1 and ng € N with ng > log, (max{|z|, /2[t[})

I | xt>c22 w(Qan (1)) > e Z Q2"100)

2nN

>C2ZZ
ZC4Zk_1:oo

k=ng

=c2 Z (Z Xk<2n—1-1 2,;,) KN
k=1 no

On the other hand, for s; > %

. 00 Es(N—1) X psi(N-1)
/wa dmdt:%;((kﬂ)“? N+2)s1—1 —C“Z Gy <%

since (s1 — 1)(N +1) — s1(N — 1) > 1. Thus,
[Ty [w]

S@NH) S erllll g(f;fs (RN+1)

n
Proof of the Proposition 3.16. We will use idea in [9, 10] to prove 3.14. For S’ €
W (R) with S(0) =0, S” >0, S'(r)r > 0 for all 7 € R and ||| (r) < 1 we have

— / neS(u)dadt +/ S’ (u)A(z, t, Vu)Vndzdt
D D
—|—/ S" (u)nA(zx, t, Vu)Vudzdt +/ S’ (w)nL(u)dzdt = / S (w)ndp.
D D D
Thus,
Ag/ S (u)n|Vul*dzdt
D
+/ S"(u)ynL(u)dzdt < Al/ |Vul|Vn|dzdt +/ nd|p| +/ [ne||u|dxdt.
D D D D
a. We choose S’ = ¢~ !'T. for € > 0 and let £ — 0 we will obtain
/ n|L(u)|dxdt < Al/ \Vu\|V77|d:Edt+/ nd| ] +/ |7e||ue|dzdt. (10.1)
D D D D

b. for S"(u) = (1 — (Ju| + 1)~ *)sign(u) for o > 0 then

\V4 2
/ %ndmdt < (/ |Vu|\V77|d:cdt+/ nd|p] +/ |nt|u|dmdt> ,
p (Jul +1) D D D

Using Holder’s inequality, we have

1 Vul|?
/|Vu||Vn\dmdt7 5 1/D(|u||+1)177dxdt+cz/(|u|+1)‘10ndxdt+02/ IVt |9 dzdt.
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Hence,

2
/ |Vu||V17\d9:dt+/ %ndazdt < c3B. (10.2)
D D (Jul+1)

—k+6 . .
c. for §'(u) = %‘”l&gn(u)xk_gqukk% + sign(u) X|u|>k+s, 0 < 6 <k then

1

— |Vu|*ndrdt < ¢4 </ |Vu||Vn\d:L’dt+/ nd\,u|+/ |77t||u|d;1:dt) (10.3)
26 k—o<|u|<k+d D D D

In particular,

1

7/ |V Ty (u)*ndzdt < cs (/ |Vu||V77|dxdt+/ 77d|u\+/ |T]t|u|dxdt> Vk >0 (10.4)
kJp D D D

Consequently, we deduce (3.14) from (10.1)-(10.4).

Next, take ¢ € C°(D) and S'(u) = X|u|<k—s + k+gg|u‘xk,5<|u‘<k+5, S(0) = 0 we have

—/ gotnS(u)dxdt—F/ S’(u)nA(x,t,Vu)Vgodxdt—i—/ S (w)pA(z, t, Vu)Vndzdt
D D D
1

B 275 k—d<|u|<k+d
= / S’ (u)pndp + / S (u)dxdt.
D D

Combining with (10.1), (10.2) and (10.3), we get

sign(u)cpnA(x,t,Vu)Vudxdt+/ S (u)enL(u)dzdt
D

- /D oS (u)dzdt + /D S (u)nA(z, t, Vu)Vedrdt < csl|¢|| L p)B.
Letting § — 0, we get
- /D 0Ty (u)dzdt + /D nA(z,t, VT (u))Vedrdt < cs||o|| e~ p)B.
By density, we can take ¢ = T (Tk(u) — (Tk(w)),),
~ [ g (T) = (Tiw)))) i) o
+ /D nA(z,t, VT (w)) VT (Tk(u) — (Ti(w)),)dzdt < c5eB.
Using integration by part, we have

~ [ 2 .00 - Oyt
D

- %/D(TE(T’“(U) — (T (w)),)) *nedadt
+ /D To(Ty (1) — (Ti(w)), ) {Ty (w))y 1 dacdt

+V/ (T (w) = (T (w))) Te(Th(u) = (Th(w)), )dadt.
D

Thus,
- /D % (Te(T (u) = (T (w))v)) nTh(u)dwdt

> —e(L+F)llnellr oy + V/D 1 (Te(w) = (T (w))y) Te(Ti (u) = (Ti (), )dwdt,
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which follows (3.15). |
Proof of the proposition 3.17. Let S € W2 (R) such that Sk(z) = z if |2| < k and
Sk(2) = sign(z)2k if |z| > 2k. For m € N, let n,, be the cut off function on D,,, with respect
to Dy,y1. It is easy to see that from the assumption and Remark 3.4, Proposition 3.15 we
get Unmn = NmSk(vn), Un = Un — hyp

211111 (” (Um,n)t ||L2(7m2,m2,H*1(Bm(O)))+L1(Dm) + ||Um,n||L2(—m2,m2,Hg(Bm(0)))

HlunllL1 (D) + 0nllL1(D,,)) < Mim < o0

Thus, {Usm.ntn>m+1 is relatively compact in L'(D,,). On the other hand, for any ni,ngy >
m+1

Hlvn, = vny| > A} 0 Din| = {0mn, — Nmvn,| > A} N Dyl

1 1

< = (lonalli ) + ons [l 21 (D) + 5 10mSk (Vnr) = 0mSk (vn )3 (,0)
2M,, 1

S T + X”Um,nl - Um,ngHLl(Dm)~

and hy, is convergent in L{ (RNT1). So, for any m € N there is a subsequence of {u,,}, still
denoted by {uy,} such that {u,} is a Cauchy sequence (in measure) in D,,. Therefore, there
is a subsequence of {u,}, still denoted by {u,} such that {u,} converges to u a.e in RV*1
for some u. Clearly, u € LL _(R;W,"!(RN)). Now, we prove that Vu, — Vu a.e in RN+,

loc loc

From (3.15) with D = Dy,19, 1 = 0, and Tg(w) = T (9m41u) we have
V/D Nm (Tk(Mm+11) = (T (my1w))w) Te(Th(un) — (Tk(Mmt1u))y )drdt
m+2

—|—/ DAz, t, VT (un)) VT (Ti(un) — (T(Mm+1w)), )dxdt
Doy

<cie(l+k)B(n,m) Vn>m+2 (10.5)
where

B(n,m) = [[(nm)i(lun| + DllL1(D,42)

+ / (] + 1)%ndrdt + / |0 e + / |t
Dm+2 Dm+2

Dipy2

with q1 < %. By the assumption, we verify that the right hand side of (10.5) is bounded
by cae, where co does not depend on n.

Since {1 Tk (un) tn>m+2 is bounded in L?(—(m + 2)?, (m + 2)?; Hj (Bin42(0))), thus there
is a subsequence of {u,}, still denoted by {u,} such that

Jim / T A(, £, VT (1)) (T () — To(w)) daedt = 0

n—roo
|Tk (un)7<Tk ("7m+1u)>l’|§5

Therefore, thanks to u, — u a.e in Dy, o and (Tk(Nmi1u))y — Te(Mmy1u) in L2(—(m +
2)%, (m + 2% HY (B 2(0))), we get

lim sup lim sup / Mm@ pdrdt < ce Ve € (0,1)
V—r00 n—oo
| T (un) —(Tk (Mm41u))w|<e
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where @, 1, = (A(z, t, Tk (un)) — Az, t, Ti(w))) V (Tk (ur,) — Tk (v)) . Using Holder inequality,

/D nmq)i{idmdt = / nm¢]:::7/2X‘Tk(un)7<Tk(nm+lu)>u‘ggdxdt
m+2

Dm,+2

1/2
+ / D@ X T () — (T (1)), | >l
D2

1/2
< |‘771,77L||2/12(Dm+2) / nmq)n,kdxdt
T (tn ) =Tk (Nm+1u))v|<e
1/2
+ {1 T (un) = (Tk(m1w))w| > €} N Dy |/ (/ nﬁl@k,ndwdt>
D?n+2

= An,u,s-

Clearly, limsup limsup limsup A4,, , . = 0. It follows
e—0 v—00  n—00

lim sup/ nmfbllc/dedt =0.
D2 ’

n—oo

Since ®,, 1 > Aa| VT (un) — VT (u)|?, thus VT (u,) — VTk(u) in LY(D,y,).
Note that

1
|{\Vun1 - Vun2| > /\} N Dm| < = (||un1||L1(Dm) + ||un2”L1(Dm))

1
+ LV Tk (Uny) = VT (o)l 2 (,0)

oM, 1
< — T IVTk(un,) = VT (una)ll21(D,0)-
Thus, we can show that there is a subsequence of {Vu,} still denoted by {Vu,,} converging
Vu a.e in RN+, ]
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