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1. Introduction 

 Computational fluid dynamics (CFD) is a powerful numerical tool that became widely used 

to simulate different processes in chemical engineering (Kuipers and Swaaij, 1998; Farmer et al., 

2005), including applications in the food industry (Xia and Sun, 2002; Norton and Sun, 2006). The 

design of reactors and development of products require the assessment of velocity, temperature and 

composition distributions on the entire equipment. Fluid flow, heat transfer and product 

transformation are coupled in a number of chemical engineering processes. Fluid flow and heat 

transfer determine the temperature field, which can influence the product transformation. 

Transformation can in turn modify the thermal and rheological properties associated with the 

product. This two-way dependence has been taken into account in modeling of coupled processes. 

Difficulties arise with the inclusion of complex transformation models. 

Many problems of practical interest in chemical engineering imply particles and/or droplets 

and/or crystals whose size distribution evolves along the process equipment. The solution of such 

problems requires the inclusion of the population balance equation (Ramkrishna, 2000) into the 

CFD model. However, the computational burden placed by including the population balance 

equation as a dispersed phase modeling tool can be excessive even with state-of-the-art computers. 



This is the reason why engineering applications need to have a simple reduced model for discrete 

phases, without losing the detailed description of the phenomena inherently embedded in the 

population balance equation (Attarakih, 2013).  

The numerical solvers used in CFD have become specialized, as a way for saving computer 

time and memory. In the present situation, only convection-diffusion-reaction equations can be 

included without depriving the solver efficiency. A first strategy for including the population 

balance equation into CFD models involves the discretization of the size distribution into a finite 

number of contiguous classes, as an attempt to represent the infinite range of sizes (Kumar and 

Ramkrishna, 1996). Methods of classes allow a discontinuous reconstruction of the size distribution 

over a truncated range (Drumm et al., 2010); further, its inclusion into CFD models significantly 

increases the numerical cost because every class of size is represented using a convection-diffusion-

equation which needs to be solved with the fluid flow and heat transfer along the whole domain of 

interest. The use of numerous convection-diffusion equations in connection with those describing 

the fluid flow problem leads to large systems, which in turn are computationally heavy and time 

consuming to solve. A second strategy for including the population balance equation into CFD 

models involves the reduction of the size distribution to its moments (Marchisio et al., 2003; Silva 

et al., 2010). Methods of moments require relatively lower numerical cost but provide a small 

amount of information about the size distribution (Drumm et al., 2010).  

There are product transformation processes of interest in chemical engineering whose 

coupling with CFD is even more difficult. For instance, agglomeration during spray drying is 

considered to be very difficult to control: it involves the atomization of the solution or suspension 

into droplets, then the mixing of spray and hot air, latter the drying of suspension droplets, and 

finally the collision of particles which might lead to coalescence or agglomeration. In this context, 

Verdurmen et al. (2005) have summarized the development of an Eulerian-Lagrangian strategy in 

order to combine elementary models for the main processes taking place in spray-dryers. Such a 

strategy combines the advantages of Eulerian and Lagrangian descriptions of fluid flow: on one 

hand, the velocity, pressure and temperature fields for the gas phase can be accurately predicted as 

continuous functions along the Eulerian frame; on the other hand, the microphysical properties 

associated with the particles under consideration can be evaluated along representative Lagrangian 

trajectories with the help of transformation models as complex as needed. 

The present study combines the advantages of Eulerian and Lagrangian descriptions, 

focusing on the coupled representation of fluid flow, heat transfer and transformation of a liquid 

food product. Changes in physicochemical properties of liquid products are relevant in the dairy 

industry as well as in the preparation of almost any kind of liquid food product (soups, juices, 

sauces, etc). These products can be represented by a single phase fluid, in the sense that all the 



elements (water, solutes, macromolecules, small particles) move according to a same velocity field. 

Fluid parcels containing all these elements are hereafter studied as the Lagrangian entities of the 

problem under consideration, rather than particles of a dispersed phase as usual. 

The Eulerian-Lagrangian approach presented in Section 2 is conceived to be flexible enough 

for including any available methodology able to evaluate the transformation state of a liquid food 

product under heat treatment. The approach is illustrated by the evolution of an aqueous suspension 

of starch granules which progressively swell under continuous heat treatment; the transformation 

state of the suspension is characterized by the swelling degree of granules in water, whose variation 

with time can reasonably be represented through a kinetics equation (Section 3). Such a choice 

allows us to solve also the whole problem through a purely-Eulerian approach (Section 4). Despite 

the challenging appearance of the coupled problem under consideration, the algorithm 

implementing the Eulerian-Lagrangian approach is relatively simple (Section 5). Finally, the 

availability of a purely-Eulerian solution for the whole problem provides the opportunity to assess 

the consistency of the Eulerian-Lagrangian approach (Section 6). 

 

2. Eulerian-Lagrangian Approach: Overview 

The proposed Eulerian-Lagrangian approach is based on an iterative algorithm, as presented 

in Figure 1. As an example, the liquid food is assumed flowing in a tubular heat exchanger, which is 

represented by a rectangular domain: the dashed red and the bold black lines indicate the axis of 

symmetry and the heating wall, while the left and right sides represent the domain inlet and outlet 

respectively. Along this domain, fluid parcels running nearer to the wall move slower than those at 

the axis; dynamical and thermal histories differ accordingly. 

 The first iteration starts with the Eulerian calculation of velocity, pressure, and temperature 

fields using given thermal and rheological properties. For this first iteration, viscosity  and thermal 

conductivity  are assumed to exhibit simple behavior in the whole equipment, such as uniform 

value or simple thermal dependency. 

The following step is the estimation of Lagrangian trajectories followed by representative 

fluid parcels of the liquid food product. This step involves also the retrieval of the shear rate 
 
and 

temperature T as functions of time along every trajectory. 

Next, such shear rate and temperature histories are employed in evaluating the liquid food's 

transformation state along every trajectory. This is the key step regarding the flexibility of the 

Eulerian-Lagrangian approach proposed. Any available methodology can be employed in evaluating 

the degree of transformation of the liquid food product along the process unit: population balance 

models and even sub-scale models (for instance, involving transport phenomena inside particles of 

a liquid suspension), dynamic Bayesian networks, stochastic models, etc. The transformation state 



is evaluated independently from the fluid flow and heat transfer coupled problem; the model chosen 

for representing the transformation of the liquid food product has to be integrated over the time 

only, and not over time and space as in the case of the Eulerian approach. Once evaluated the 

transformation state, the thermal and rheological properties of the liquid food can be estimated 

along every trajectory with the help of suitable laws. 

At this point, liquid food's thermal and rheological properties have been estimated along the 

domain of interest through a dense sampling with Lagrangian trajectories. The following step is 

devoted to the interpolation of such a large set of point estimates to the Eulerian frame, in which the 

variables of interest are continuous functions of position. 

The final step is the comparison between updated and previous estimates of liquid food's 

thermal and rheological properties. If the former compare favorably to the latter, that is if their 

maximum relative difference reaches a value below a certain threshold, then the iteration series is 

stopped and the updated estimates are provided as answer of the problem. Otherwise, the updated 

estimates are employed in a new iteration. 

 The respective advantages of Eulerian and Lagrangian descriptions can be easily recognized. 

On one hand, the Eulerian description of fluid flow and heat transfer can be applied for accurately 

obtaining velocity, pressure and temperature fields as continuous functions of position along the 

domain under consideration. On the other hand, the study of Lagrangian entities (the fluid parcels) 

offer the possibility of evaluating any product transformation of interest through any available 

methodology along a number of representative trajectories. 

The main assumption regarding the application of the Eulerian-Lagrangian approach is that 

each fluid parcel represents a closed system. Such a hypothesis is most often valid under laminar 

liquid flow. Indeed, typically the mean residence time is often of the order of 100 s, and molecular 

diffusion (denoted Ds) is of the order of 10-9 m2.s-1; hence the random walk of the molecules inside 

the fluid parcels between inlet and outlet of the equipment is typically less than 1 mm as estimated 

using the diffusion length l = tD2 s . For micrometric particles, diffusivity is about 10-12 m2.s-1, 

so that the random walk is less than 20 µm.  

 

3. Case Study: Starch Granule Swelling 

Starch is the most widely employed thickener in the food industry. Most industrial processes 

for starch-thickened products involve temperatures that can be high enough for enabling starch 

phase transitions. The concept of "gelatinization" refers to the destruction of the crystalline structure 

in granules, which is an irreversible process that includes, in a broad sense and in time sequence, 

granular swelling, native crystalline melting and molecular solubilization (Liu et al., 2009). We 

focus our attention on the granule swelling, whose consequences on the viscosity of starch 



suspensions have been observed at least since the 1940's. Early contributions (French, 1944) have 

identified a first reversible phase associated with limited granule swelling and weak viscosity 

increase, and a second phase within a small range of temperature at about 65 °C in which starch 

granules suddenly increase many times in size while the viscosity rapidly rises. More generally, the 

viscosity of the starch suspension relative to that of water was found to be dependent on the volume 

occupied by the particles, their shape and deformability; moreover, both swelling and deformability 

can depend on the heating rate employed to gelatinize the starch (Ellis et al., 1989). Starch research 

is a very active subject, and much effort have been done in characterizing native and modified 

starch, including various genotypes and climates (e.g., Singh et al., 2003; Xie et al., 2009). A 

number of starch swelling models have been proposed from experimental work. For instance, 

second-order kinetics have been successfully applied for describing the evolution of a) modified 

waxy maize starch until temperatures above 100 °C, b) native waxy maize starch until granules start 

to rupture, and c) native maize starch (Lagarrigue et al., 2008).  

The Eulerian-Lagrangian approach overviewed in Section 2 approach is hereafter illustrated 

in studying the evolution of modified waxy starch granules under hydrothermal treatment with the 

help of a thermo-rheological model based upon experimental work. Following Lagarrigue et al. 

(2008), the transformation state characterizing the evolution of starch granules is expressed in terms 

of the swelling degree defined by: 
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where D is the mean volume-weighted diameter of starch granules at a given time along the heat 

treatment, where D0 and DM are the mean diameter before any heat treatment and after complete 

heat treatment, respectively. The progressive increase of the swelling degree with time along the 

heat treatment is evaluated through a second-order kinetic equation, 
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where the rate constant V is estimated through the Arrhenius law,  
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where EA is the activation energy. In the scope of the Eulerian-Lagrangian approach, equation (2) is 

integrated along Lagrangian trajectories of fluid parcels. After evaluating the swelling degree 

associated with the starch suspension, the mean volume-weighted diameter of its granules can be 

estimated from equation (1), 
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The granule volume fraction is the key parameter for assessing the relative viscosity increase, and it 

can be estimated as: 
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where 0 and D0 values characterize the starch suspension before any thermal treatment. 

The liquid food product under consideration is an aqueous suspension of starch granules. 

The apparent viscosity  associated with the starch suspension is obtained by multiplying the 

continuous phase (water) viscosity W and the relative viscosity R which is a function of the 

transformation state. The water viscosity can be suitably evaluated as a function of the temperature 

(e.g. IAPWS, 2008). Various approximations have been proposed for estimating the relative 

viscosity as a function of the volume fraction ( ) occupied by the particles under consideration (see 

for instance Cheng and Law, 2003). We have retained the model proposed by Thomas (1965), 
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because it provides an increase of relative viscosity with the particle volume fraction which is 

intermediate to those obtained with other approximations. 

 Selected starch dispersions have been studied by Lagarrigue et al. (2008). Those 

authors followed the kinetics of swelling of starch granules in aqueous suspension when applying 

thermo-mechanical treatments in a laboratory simulator coupled to a rheometer. Data on granule 

swelling and suspension viscosity development were obtained under controlled temperature and 

shear conditions. In this study we focused the attention on waxy maize starch; its solubility under 



heat treatment is negligible because the low level of amylose molecules in its constitution. Further, 

we restrict the analysis to waxy maize starch which has been chemically modified, preventing the 

rupture of swollen granules. Hereafter, we consider the evolution of the 3.1 % w/w modified waxy 

maize starch dispersion studied by Lagarrigue et al. (2008); it corresponds to D0 15.5 and DM  

39.6 m, 0  0.03, V0 2.9 1012 s , and EA  84.8 kJ.mol . 

 

4. Purely-Eulerian Approach 

 

4.1. Models and methods 

Conservation equations for mass, momentum and energy can be written, under steady-state 

conditions, as:  
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where , CP, and are the density, the heat capacity and the thermal conductivity, respectively. 

Looking for a representation of the second-order kinetic equation (2) with the help of the Eulerian 

description of fluid flow, starch granule swelling can be evaluated through the following 

convection-diffusion equation: 
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where V is the rate constant expressed in terms of the Arrhenius law (3) and DS is the diffusion 

coefficient. 

Coupled phenomena involving fluid flow, heat transfer and starch granule swelling are 

hereafter illustrated inside a tubular heat exchanger with length 1 m and radius 5 mm, which is 

represented through a two-dimension axial-symmetric domain. The liquid food product under 

consideration is an aqueous suspension of starch granules; it is assumed to be a Newtonian liquid, 

and its density and thermal properties are approximated by those associated with water. A uniform 

flux of 10 kW.m-2 is applied on the heating wall, and the temperature is assumed to be 20 °C at the 

domain inlet. A fully developed parabolic flow profile was assumed at the inlet. The flow rate was 



fixed at 10 liters per hour (mean velocity of 0.035 m.s ). According to the Reynolds number, the 

flow regime is laminar. These conditions enable a maximum temperature near the wall at the outlet 

of about 91 °C, which corresponds to a relevant degree of starch granule swelling (see Table 2 of 

Lagarrigue et al., 2008). 

Equations (7-10) were solved under steady-state conditions with the finite-element method 

(simulation package COMSOL Multi-physics, version 3.5a). Second-order Lagrange finite elements 

were employed in all cases, excepting the pressure for which first-order finite elements were 

assumed. We choose the Parallel Sparse Direct Linear Solver (PARDISO) for solving the large 

systems resulting from the linearization of the coupled equations under consideration. PARDISO 

implements an efficient method for large systems of equations like those arising from the finite 

element method (Schenk and Gartner, 2004). Results discussed below were obtained by assuming a 

relative tolerance of 10-6. Looking for the solution of the whole problem, satisfying model 

convergence was reached after assuming the diffusion coefficient DS = 10-12 m2.s-1 in equation (10). 

Computations were carried out in a 64-bits calculator disposing of 24 Gb of RAM. 

 

4.2. Mesh influence 

 Sensitivity tests were conducted with the purely-Eulerian modeling of the whole coupled 

problem in order to assess the influence of the mesh resolution. As Kuipers and Swaaij (1998) have 

emphasized, only those computational results that possess invariance with respect to discretization 

could in a further step be confronted with experimental data. Following paragraphs discuss the 

influence of mesh resolution on mass-weighted results at the domain outlet (i.e. candidates for a 

future observation) and on local results along the outlet (i.e. the radial profiles). 

Meshes under consideration are constituted of identical rectangular cells characterized by 

dimensions dz and dr along the domain's length (1 m) and radius (5 mm), respectively. In our case, 

the velocity, temperature, product transformation state, and viscosity gradients are mainly oriented 

along the domain's radius and therefore dr has to be small. On the other hand, dz can be relatively 

larger because the flow is mainly oriented along the domain's length. Selected aspect ratio values 

were assumed in order to compare results obtained with "squares" (dz/dr = 1), "short-" (= 5) and 

"long-rectangles" (= 10).  

Figure 2 presents bulk (mass-weighted) estimates of temperature (left) and starch swelling 

degree (right) at the domain outlet as functions of the total number of cells under consideration (top 

displays). Bulk estimates exhibit a near asymptotic behavior as the total number of cells increases. 

In the case of meshes with about 250000 cells, results obtained with distinct aspect ratios exhibit 

small differences: less than 0.002 °C in temperature and 10-4 in swelling degree. Coarser resolutions 

(less than about 25000 cells) provided unreliable results somewhere in the domain, for instance 



swelling degree values higher than the unity. Finer resolutions (more than about 250000 cells) gave 

origin to LU factorization out of memory, indicating the limits in applying the PARDISO solver 

with our present calculation capabilities.  

Bottom displays in Figure 2 show the same results as function of the number of cells in the 

domain's radial direction. The interest on such a presentation can be justified by the fact that the 

main variables of interest (velocity, temperature, transformation state, and suspension viscosity) are 

expected to exhibit more important variations from the axis of symmetry to the heating wall than 

from the inlet to the outlet. Both presentations in Figure 2 put in evidence that results obtained with 

"long rectangles" (dz/dr = 10) converge faster than for shorter ones with the increase of the number 

of cells. Among the meshes associated with dz/dr = 10, we retained as reference the one which is 

constituted of 100 rectangles along the domain's radius and 2000 rectangles along the length 

(hereafter, the 100x2000 mesh). This mesh is further referred as mesh 1A. 

Table 1 compares, in its upper section, outlet bulk values of temperature and swelling degree 

after assuming selected meshes (bulk values are 20 °C and zero at the domain inlet). Relative 

differences are evaluated with respect to the range of bulk values between the outlet and the inlet; 

for instance, the relative difference in temperature for test 1B (0.02 %) results from the difference 

between tests 1B and 1A (5.33 10-3 °C) divided by the difference between the outlet (47.23 °C) and 

the inlet (20 °C) bulk temperatures from test 1A. 

Results obtained with the 100x2000 mesh (test 1A) compare favorably to those obtained 

after assuming a 50 % smaller number of cells on both directions (50x1000, test 1B). Results 

become progressively poorer after assuming coarser meshes, like those constituted of 25 and 10 % 

of the number of cells previously assumed on both directions (tests 1C and 1D). 

The lower section of Table 1 summarizes the range of values assumed along the outlet by 

temperature, swelling degree and suspension viscosity after assuming the 100x2000 mesh (test 1A). 

It shows also the maximum absolute impact of replacing the mesh 1A by the meshes 1B to 1D. The 

adoption of progressively coarser meshes leads to larger impact, particularly in the case of the 

suspension viscosity. 

In summary, a number of tests were performed regarding the mesh influence along the 

implementation of the purely-Eulerian approach for solving the whole problem under consideration. 

Tests summarized in Figure 2 and Table 1 support the adoption of the 100x2000 mesh in looking for 

the solution of the whole problem. This mesh is also adopted in the Eulerian step (fluid flow and 

heat transfer only) of the Eulerian-Lagrangian approach. 

 

4.3. Overview from purely-Eulerian results 

Main results obtained with the numerical model simulations described above are presented 



in Figure 3. Its left section displays the temperature (top), swelling degree (center) and suspension 

viscosity (bottom) fields in the domain under consideration. As in Figure 1, the liquid food product 

is assumed flowing in a heat exchanger whose inlet and outlet are represented by the left and right 

sides of the rectangular domain; the liquid food product is heated from the wall (bottom of domain). 

The suspension viscosity field was deformed according to the velocity, and inlet and outlet velocity 

profiles can be appreciated at domain extremes. 

Fluid parcels move slower and reach higher temperatures when running near it. Starch 

granules swell after heating, and their volume fraction increases as well as the suspension viscosity. 

In comparison with the conditions prevailing at the domain inlet, the suspension viscosity increases 

by a factor of about 7 near the corner of the domain outlet with the heating wall, slowing down the 

velocity in this region. 

 These results follow, in a partial extent, those obtained by Liao et al. (2000). Those authors 

also observed in the heating section of their tubular exchanger an increase of viscosity near the 

heating wall due to gelatinization, leading to a velocity decrease near this wall and a velocity 

increase at the axis of symmetry. Nevertheless starch type and concentration were different (4 % of 

waxy rice starch), and heating conditions were stronger (145 °C); therefore a direct comparison of 

results seems difficult. Their maximum suspension viscosity was much higher (about 6 Pa.s), which 

caused velocity profiles almost flat were the food product was very viscous; this was not observed 

in our case. Other geometries than tubular exchangers have been adopted in numerical models 

coupling fluid flow, heat transfer and starch swelling, like axially rotating cans (e.g., Tattiyakul et 

al. 2001). Any tentative of comparison with such results seems far to be straightforward. 

 The evolution of liquid food product properties can also be studied with the help of 

hypothetical trajectories of fluid parcels released at the domain inlet. Each fluid parcel can be 

interpreted as a suspension droplet containing an ensemble of starch granules at similar 

thermodynamic and kinetic conditions. Figure 3 displays, in its right section, selected properties 

associated with fluid parcels released at the domain inlet, at 0.5 mm (black curves) and at 1 mm 

(gray curves) from the heating wall. Because the maximum velocity takes place at the axis of 

symmetry (exchanger center), fluid parcels released at 0.5 and 1 mm reach the domain outlet after 

about 86 and 36 s respectively. When reaching the domain outlet, fluid parcels released at 0.5 mm 

are associated with higher values of temperature, of mean diameter, and of suspension viscosity 

than those released at 1 mm from the heating wall. Other the granule starch swelling, the suspension 

viscosity depends on the continuous phase (water) viscosity. The latter slowly decreases with 

heating, and this fact explains why the suspension viscosity is slightly reduced during the first 

seconds after the fluid parcel release. 

 Positions A and B in Figure 3 were selected because they correspond to a same temperature 



value (about 66 °C). Position A represents the outlet for fluid parcels released at 1.0 mm from the 

heating wall; they reached this position after running about 36 s since the inlet. Position B is located 

before the domain outlet; fluid parcels released at 0.5 mm from the heating wall move slower and 

spent about 55 s to come there since the inlet. Despite the same temperature, position B corresponds 

to a mean diameter of starch granules that is about 10 % greater, and to a suspension viscosity about 

45 % greater, than respective values at the position A. Such differences are explained by the fact 

that fluid parcels running at different distances from the heating wall move with different velocities 

and hence experience different temperature time series (or histories). We conclude that the influence 

of temperature on the suspension viscosity is not instantaneous. The liquid food product viscosity 

depends on the continuous phase viscosity as well as on the starch granule volume fraction. The 

former depends on the present local temperature whereas the latter depends on the whole thermal 

history of respective fluid parcels. 

 

5. Eulerian-Lagrangian Approach 

 

5.1. Models and methods 

The Eulerian-Lagrangian approach has been overviewed in Section 2. A detailed algorithm 

is presented in Figure 4, taking into account the liquid food product transformation presented in 

Section 3. Rectangles summarize the most relevant steps, where variables indicated on the left (and 

right) sides constitute key inputs (and outputs). 

Geometry and boundary conditions taken into account have been presented in the scope of 

the purely-Eulerian modeling of fluid flow and heat transfer. The 2000x100 mesh was retained (see 

Sub-section 4.2). 

Before the first iteration (k = 1), a preliminary Eulerian modeling of fluid flow and heat 

transfer is needed. It provides a first estimate of the velocity vk=0(x) and the temperature Tk=0(x) 

fields along the Eulerian frame (positions x). Because this modeling step is performed before any 

liquid food product transformation, the viscosity is here assumed to be the one of the continuous 

phase (water). 

The first step of a given k-th iteration is the estimation of Lagrangian trajectories associated 

with a number of representative fluid parcels. Each i-th trajectory is defined by a number of j-th 

positions, each position being described by axial (z) and radial (r) coordinates: xk = (rk
i,j, z

k
i,j), with 

i= max and j= max. Each of these positions is associated with a given time ti,j. The estimation 

of positions xk = (rk
i,j, z

k
i,j) from the Eulerian velocity field vk-1(x) is performed with the help of a 

routine implementing a fourth-order Runge-Kutta method (Abramowitz and Stegun, 1972).  

Fluid parcels are released at the domain inlet, where starting positions (ri,j=0, zi,j=0) are 



uniformly distributed from the axis of symmetry towards the heating wall. No fluid parcels are 

released at the heating wall because the latter corresponds to vanishing velocities and hence to 

unphysical thermal histories. In order to represent the physical conditions prevailing at the heating 

wall, an additional trajectory is placed nearby; the radial component of the velocity is set to zero 

and the resulting trajectory is parallel to the heating wall. This additional trajectory is arbitrarily 

placed at a distance from the heating w

width (5 mm / 1000 = 0.5 micrometer). In summary, the release positions of fluid parcels are the 

same for all the iterations that have to be considered, and they are defined as: 

 

ri,j=0 = (i/imax) R  for i=1 max 1, 

ri,j=0 = R 0-7 m  for i=imax , and        (11) 

zi,j=0 = 0  for i=1 max , 

 

where R is the radius of the heat exchanger under consideration. A number of sensitivity tests were 

conducted regarding the number of trajectories as well as the number of positions along every 

trajectory (Sub-section 5.3).  

Lagrangian trajectories are then employed in the reconstruction of thermal histories along 

the domain under consideration. Thermal histories are described by a series of positions (rk
i,j, z

k
i,j), 

times tk
i,j, and temperature values Tk

i,j. These temperature values are estimated by interpolation from 

the last available Eulerian temperature field Tk-1(x). 

The liquid food product transformation state is here assessed by the starch swelling degree, 

whose methodology of evaluation is based upon experimental work (Section 3). At k-th iteration, 

the thermal history associated with i-th trajectory (times tk
i,j and temperature values Tk

i,j) allows us 

to integrate equation (2) between two successive positions of interest: 
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After integrating the left-hand side and approximating the right-hand side with the help of the 

trapezoidal rule, the swelling degree at a given position can be evaluated as: 
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These expressions apply for all positions beyond the domain inlet (j=0), where the starch swelling 

degree is assumed to be null. 

 Suspension viscosity is obtained by multiplying the continuous phase (water) viscosity and 

the relative viscosity associated with the granules volume fraction. At k-th iteration, the water 

viscosity is straightforwardly evaluated from the temperature value Tk
i,j. The availability of the 

swelling degree Sk
i,j allows the evaluation of the mean diameter D (equation 4), then of the granule 

volume fraction  (equation 5), and finally the relative viscosity (equation 6).  

Suspension viscosity values as estimated above can appreciably vary between two 

successive iterations, turning longer the numerical procedure. The influence of large oscillations is 

here reduced by combining such new estimates j,i
k~  with those resulting from the previous 

iteration:  

 

j,i
1-k

j,i
k

j,i
k 1~  ,  (14) 

 

where the relaxation coefficient is set to 0.50. The application of such a strategy requires suspension 

viscosity values j,i
1k ; they are estimated by retrieving, in the suspension viscosity field k-1(x) 

corresponding to the Eulerian step performed at the previous iteration, those values which 

correspond to (rk
i,j, z

k
i,j) positions defining the present trajectories of interest. This step provides an 

ensemble of updated suspension viscosity values, k
i,j, which improves the knowledge available 

regarding the transformation of the liquid food product. 

Updated suspension viscosity values have to be informed to the Eulerian solver, as a 

previous task towards an updated solution for the fluid flow and heat transfer problem. Difficulties 

at this step come from the fact that Lagrangian trajectories provide updated viscosity values at a 

number of positions which are irregularly distributed along the Eulerian frame. The Delaunay 

triangulation was retained as strategy. The application of constraints relying successive positions 

along a same trajectory as well as those relying corresponding positions between successive 

trajectories prove useful. As a result, the suspension viscosity values k
i,j available at Lagrangian 

positions are successfully interpolated into a suspension viscosity field k(x) needed at the nodes 

constituting the Eulerian frame. 

Before the following iteration, an Eulerian modeling of fluid flow and heat transfer is 

performed. It provides updated fields for the velocity vk(x) and the temperature Tk(x). Because this 



modeling step is performed by taking into account an improved suspension viscosity field, it is 

expected that these velocity and temperature fields represent a somewhat better picture of the fluid 

flow and heat transfer conditions under the occurrence of product transformation. 

The final step is the comparison between updated k(x) and previous estimates k-1(x) of the 

suspension viscosity along the Eulerian frame. If their maximum relative difference reaches a value 

below 0.1 %, then the iteration series is stopped and the updated estimates are provided as answer 

of the problem. Otherwise, the updated estimates become the previous ones for the following 

iteration of the numerical procedure. 

In summary, the algorithm presented in Figure 4 for the Eulerian-Lagrangian approach is a 

particular case of that proposed in Figure 1. In studying the evolution of one starch dispersion under 

continuous heat treatment, we assumed negligible a) the influence of the shear rate on the swelling 

kinetics, and b) the influence of the solid fraction associated with progressively swollen starch 

granules on the suspension thermal conductivity. 

The algorithm described above for the Eulerian-Lagrangian approach was implemented 

through a main program and a set of functions developed in the programming language MATLAB. 

Eulerian modeling of fluid flow and heat transfer was solved with the help of the COMSOL 

Multiphysics 3.5a simulation package (see Section 4). The implementation of both tasks, including 

the adoption of other mathematical solvers, seems feasible in other programming languages. 

Following sub-sections shows how intermediate results of the Eulerian-Lagrangian approach 

evolve towards the solution reached for the whole problem including the product transformation 

(5.2), and then presents a number of sensitivity tests regarding the influence of the number of 

trajectories as well as that of the number of positions per trajectory on the solution reached for the 

problem (5.3). Section 6 compares selected results provided by the purely-Eulerian and Eulerian-

Lagrangian approaches for solving the whole problem. 

 

5.2. Evolution of selected results along the iterating procedure 

 A summary of the algorithm implementing the Eulerian-Lagrangian approach was presented 

in Figure 4. The solution reached for the coupled problem is obtained as the result of a number of 

iterations, each of them including the evaluation of the product transformation along Lagrangian 

trajectories as well as the Eulerian modeling of fluid flow and heat transfer. The algorithm assumes 

velocity and temperature fields associated with transformation-free conditions (k = 0) in obtaining 

the first evaluation of product transformation along Lagrangian trajectories (k = 1). The algorithm 

stops when the product transformation gives origin to a suspension viscosity field sufficiently close 

to the one obtained at the previous iteration. 

 The evolution of selected variables along the iterating procedure is discussed from results 



obtained with the Eulerian-Lagrangian approach by considering 400 trajectories with 10000 

positions each. Under such configuration, 22 iterations are necessary for reaching model 

convergence (that is, successive suspension viscosity fields which are closer than 0.1 % over the 

whole Eulerian frame). 

Figure 5 displays outlet profiles of axial velocity, temperature, starch swelling degree, and 

suspension viscosity at four stages of the iterating algorithm. Clear gray lines (k = 0) present the 

conditions prevailing in the exchanger before the product transformation onset, as obtained with the 

Eulerian modeling of fluid flow and heat transfer only. Such transformation-free conditions are 

characterized by i) axial velocity values remembering the fully developed parabolic flow that was 

assumed at the inlet; ii) temperature values associated with a developing thermal boundary layer; 

iii) no starch swelling; and iv) viscosity values decreasing from the exchanger center towards the 

heating wall, coherently with the temperature-dependence of water viscosity. 

Thin black lines (k = 1) display results after the first iteration of the Eulerian-Lagrangian 

algorithm, more precisely after the first Eulerian modeling of fluid flow and heat transfer that was 

performed by considering a suspension viscosity field already including the effects of the first 

product transformation estimation. An inflexion point appears in the axial velocity profile: relatively 

to the former one, fluid parcels move faster towards the exchanger center and slower towards the 

heating wall. Such a major change reflects the increase of the suspension viscosity in the vicinity of 

the heating wall, which in turn is a consequence of the starch swelling. Such a viscosity increase is 

due to the volume fraction of solid particles in the suspension, whose effects more than 

counterbalance those associated with the temperature-dependence of water viscosity. 

Remaining iterations globally follow the tendencies identified above. Dark gray lines (k = 2) 

and bold black lines (k = 22) show that i) axial velocity values increase at the exchanger center and 

decrease in the vicinity of the heating wall, ii) temperatures increase more importantly at the heating 

wall, and iii) both the starch swelling degree and the suspension viscosity increase at distances 

progressively larger from the heating wall. The abovementioned inflexion point in the axial velocity 

profile roughly divide the computational domain in two regions; the first, towards the heating wall, 

where the product transformation and its effects on the suspension viscosity are progressively 

higher, while fluid parcels moving slower are progressively more exposed to heating and product 

transformation; and the second region, towards the exchanger center, where the fluid parcels move 

faster and hence are relatively less exposed to heating and product transformation. 

 

5.3. Selected sensitivity tests 

The Eulerian-Lagrangian approach for solving the whole coupled problem involves the 

Eulerian modeling of fluid flow and heat transfer as well as the evaluation of liquid food product 



transformation along Lagrangian trajectories. It is therefore expectable that the solution reached 

depends on both the Eulerian mesh resolution and the distribution of Lagrangian positions in the 

computational domain. In this study these two influences are discussed separately. The influence of 

the mesh resolution on results obtained with the purely-Eulerian modeling of the whole problem 

was discussed above (Subsection 4.2). 

The distribution of Lagrangian positions depends on the velocity field taken into account as 

well as on the methodology adopted for computing them. The velocity field is obtained iteratively 

along the execution of the algorithm, hence it constitutes either a consequence of previous iterations 

or the starting condition for the next one. As explained above (Subsection 5.1), Lagrangian 

positions are computed from velocity components estimated with the help of a fourth-order Runge-

Kutta method. The implementation of the Eulerian-Lagrangian approach includes an additional 

trajectory in the vicinity of the heating wall, whose positions are evaluated neglecting the radial 

component of the velocity field; such an additional trajectory significantly improves the 

representation of physical conditions prevailing near the heating wall. In summary, the distribution 

of Lagrangian positions depends on: 

  

i) the number of trajectories; 

ii) the number of positions per trajectory; 

iii) the distance from the heating wall at which is located the additional trajectory; and 

iv) the distribution of release starting positions at the domain inlet. 

 

Regarding the latter, it would be convenient to distribute the starting positions in order to improve 

the sampling of regions associated with higher spatial variation; for instance, the number of 

trajectories might be greater in the vicinity of the heating wall, where temperature and hence 

suspension viscosity gradients are expected to be higher. In this study, looking for a strategy 

independent on the magnitude of physical conditions prevailing near the heating wall, the starting 

positions were uniformly distributed along the domain inlet (eq.11). Regarding the additional 

trajectory in the vicinity of the heating wall, it was located at 1/1000 of the computation domain's 

width; it was found to be a satisfying compromise. Larger distances from the heating wall 

progressively decrease our ability in properly representing the dynamical and thermal gradients 

prevailing there. Following paragraphs discuss the influence of the number of trajectories as well as 

the influence of the number of free positions per trajectory on the results obtained with the Eulerian-

Lagrangian approach. 

Tables 2 and 3 summarize the tests conducted, presenting results at the domain outlet only. A 

same reference set of results (test A) is adopted in both cases; it was obtained with the Eulerian-



Lagrangian algorithm by considering 400 trajectories with 10000 positions each. All the tests in 

Table 2 assume 10000 positions per trajectory, while 400 trajectories are assumed in all tests in 

Table 3. In both tables, there are two tests which represent a worsening of the algorithm 

performance in solving the whole coupled problem: a decrease by a factor of 2 (test B) and later of 

4 (test C) in the number of trajectories and in the number of positions per trajectory, respectively. 

A few conclusions emerge from these tests. The role played by the number of trajectories 

seems to be more important than the number of positions per trajectory, as indicated by tests 2C and 

3C: decreasing the number of trajectories by a factor of 4 has a larger impact on temperature values 

than decreasing the number of positions by a factor of 4. On the other hand, as indicated by tests 2B 

and 3B, there is narrow room for improvement. We can therefore conclude that reference results 

(test 2A) are robust regarding slight changes in both the number of trajectories and the number of 

positions per trajectories. 

 

6. Comparison between Purely-Eulerian and Eulerian-Lagrangian Approaches 

 The consistency of the Eulerian-Lagrangian approach for solving the coupled problem 

involving fluid flow, heat transfer and liquid food product transformation is hereafter assessed in the 

case of the starch swelling, by comparing its results at the domain outlet with those obtained 

through the purely-Eulerian modeling of the whole problem. It must be stressed that, in comparing 

these approaches, we are looking for consistency rather than accuracy: although classical in solving 

coupled problems including kinetic-type transformations, the purely-Eulerian approach is not free 

of sources of uncertainty. 

Previous sensitivity tests have indicated the degree of convergence of the purely-Eulerian 

approach with the mesh resolution (Subsection 4.2). Results obtained after assuming a mesh with 

100x2000 rectangles (test 1A) can satisfactorily represent this approach. Similarly, the influence of 

the number of trajectories and that of the number of positions per trajectory on the results obtained 

with the Eulerian-Lagrangian approach have both been assessed (Subsection 5.3). Results obtained 

with this approach can be illustrated by those assuming an Eulerian mesh with 100x2000 rectangles 

and 400 Lagrangian trajectories with 10000 positions each (test 2A). 

Table 4 compares selected results at the domain outlet after tests 1A and 2A. As in previous 

tables, relative differences between two sets of results are evaluated with respect to the difference 

between bulk values at the outlet and at the inlet.  

There is a good level of agreement between the purely-Eulerian and the Eulerian-Lagrangian 

approaches: differences between outlet bulk results are no larger than 0.4 % for temperature and 

swelling degree. Maximum differences between respective outlet profiles are smaller than 1 %. 

Figure 6 presents in its left section the outlet profiles of temperature, swelling degree and 



suspension viscosity obtained after assuming the 100x2000 mesh in the purely-Eulerian approach, 

as functions of the distance from the exchanger center. In its right section, Figure 6 shows the 

impact of replacing the purely-Eulerian approach by the Eulerian-Lagrangian one for solving the 

whole problem. With respect to the results obtained with the former, the latter approach slightly 

underestimates the temperature along the whole outlet. Regarding the starch swelling degree and the 

suspension viscosity, the difference between the approaches exhibits a broad minimum in the 

domain central region and a sharp maximum in the vicinity of the heating wall. The maximum 

difference between respective viscosity outlet profiles takes place in the vicinity of the heating wall, 

where dynamical and thermal gradients are significant and difficult to be numerically represented. 

Such a difference remains small: 0.033 mPa.s compared to the local viscosity (~ 5 mPa.s). 

 

7. Conclusion 

Looking for a general tool for representing coupled processes involving fluid flow, heat 

transfer and liquid food product transformation, a numerical approach was proposed by combining 

advantages of the Euler and Lagrange descriptions. The product transformation is evaluated along 

trajectories of representative fluid parcels, and such an issue provides flexibility regarding the 

methodology applied for evaluating the product transformation state along the thermal and 

dynamical histories in the processing unit. 

The approach consistency was verified in studying the evolution of a starch suspension in a 

heat exchanger. Quite standard conditions were assumed (cylindrical geometry, laminar Newtonian 

flow, uniform wall heat flux, steady-state conditions), and a kinetics equation was adopted for 

evaluating the swelling degree of the starch suspension. Despite such an apparent simplicity, the 

problem is challenging. Firstly, velocity and temperature gradients are higher in the vicinity of the 

heating wall; care is required in meshing the domain as well as in establishing the release protocol 

of fluid parcels. Secondly, starch granule swelling depends on thermal histories, and the latter are 

progressively longer towards the heating wall; hence Lagrangian trajectories have to include a high 

number of positions in order to reconstruct thermal histories. Finally, granule swelling severely 

impacts the suspension viscosity in the vicinity of the heating wall; therefore, the accurate 

representation of such a result asks for a fine Eulerian mesh as well as for a dense sampling with 

Lagrangian trajectories. Essentially the same results at the domain outlet can be obtained from a) 

the Eulerian-Lagrangian approach considering an Eulerian mesh with 100x2000 rectangles and 400 

Lagrangian trajectories with 10000 positions each, and b) the purely-Eulerian modeling of the 

whole problem in that 100x2000 mesh. We emphasize the consistency between results obtained 

with the Eulerian-Lagrangian approach here proposed and similar with the purely-Eulerian 

approach. The latter can be verified by others through any modeling software able to solve a 



coupled problem involving fluid flow, heat transfer and a kinetics reaction. 

Laminar Newtonian flow was considered above in illustrating the Eulerian-Lagrangian 

approach. No reasons forbid its application to non-Newtonian flow, i.e. to most fluids encountered 

either in nature (gums, proteins, blood...) or in technology (polymers, emulsions, slurries...). 

Further, no reasons prevent its application to flow patterns associated with the occurrence of 

stagnant pockets or short-circuiting features which may exist in process equipment (e.g. Levenspiel 

and Bischoff, 1963). The Eulerian-Lagrangian approach can also be applied to turbulent flows, 

which are often encountered in engineering. However, its application to turbulent flow could require 

further development, because fluid parcel trajectories can exhibit stochastic behavior; hence, 

additional attention should be paid in interpolating Lagrangian apparent viscosity fields into the 

Eulerian frame. The approach is flexible enough to be applied to more complex geometry 

(including 3D problems), to other strategies for meshing the computational domain and also to other 

boundary conditions than those assumed in the case study above. The Eulerian-Lagrangian 

approach was illustrated for a simple transformation process (swelling of starch granules in water, 

under continuous heating) whose representation can be achieved through a simple methodology (a 

second-order kinetics equation). These choices were deliberate. Firstly and with the consistency 

tests in view, we considered a methodology which could be included in both purely-Eulerian and 

Eulerian-Lagrangian approaches. Secondly and putting in evidence the two-way coupling between 

fluid flow, heat transfer and transformation process, we choose a liquid product whose progressive 

evolution allows significant consequences on the fluid transport properties. 

The Eulerian-Lagrangian approach allows the study of transformation processes more 

complex than the swelling of starch granules in water; further, this approach enables the 

representation of transformation processes through methodologies more sophisticated than kinetics 

reactions. Many problems of practical interest in chemical engineering imply particles and/or 

droplets and/or crystals whose size distribution evolves along the process equipment. In applying 

the Eulerian-Lagrangian approach, the discretization of the size distribution into a great number of 

classes does not add convection-diffusion-reaction equations to the Eulerian algorithm for solving 

the fluid flow and heat transfer coupled problem; hence the population balance equation can be 

successfully solved along a number of representative trajectories without demanding an exorbitant 

increase in computational resources. It has been accomplished by Chantoiseau et al. (2012), in 

studying the thermal denaturation-aggregation of whey proteins in aqueous suspension. The 

Eulerian-Lagrangian approach can be applied to any chemical engineering problem in which a 

single velocity field applies to both liquid and dispersed phases, as in oil-in-water emulsions 

(Almeida-Rivera and Bongers, 2010) and crystallization under batch conditions (Falola and 

Borissova, 2012). On the other hand, additional development in our approach can be required in the 



case of problems in which two fluid velocity phases should be retained, as in bubble columns 

(Bannari et al., 2008) and counter-current liquid-liquid extraction columns (Jaradat et al., 2012). 

Finally, we argue that any conceivable methodology for evaluating the transformation state 

of the liquid product can be properly taken into account in applying the Eulerian-Lagrangian 

approach, including sophisticated tools like stochastic models and dynamic Bayesian networks 

(e.g., Baudrit et al., 2010). 

Future work includes the implementation of the Eulerian-Lagrangian approach to real liquid 

food transformation, in order to evaluate its performance against experimental data. 
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Figure Captions 

 

 Figure 1: Main steps of the Eulerian-Lagrangian approach. 

 

 Figure 2: Bulk temperature (left) and swelling degree (right) values at the domain outlet as 

functions of the total number of mesh cells under consideration (top) and of the number of 

cells in the radial direction (bottom), as obtained with the purely-Eulerian modelling of the 

whole problem. Three sets of results are shown in this figure, corresponding to selected 

values of the aspect ratio dz/dr, where dz (dr) is the dimension along the domain's length 

(radius) of every rectangular cell constituting the mesh considered. Dotted lines were 

included for illustration purposes only. 

 

 Figure 3: Main results provided by the purely-Eulerian modeling of the coupled problem 

developed in this study. Left section presents the temperature (top), swelling degree (center) 

and suspension viscosity (bottom) fields in the domain under consideration; inlet is on the 

left, heating wall is on the bottom. Right section presents the time series of selected 

properties corresponding to the trajectories followed by two hypothetical fluid parcels 

released at the domain inlet at 0.5 and 1 mm from the heating wall. Dark blue and red colors 

indicate minimum and maximum respective values: about 20 and 91 °C for temperature, 0 

and 1 for swelling degree, and 0.7 and 7.1 mPa.s for suspension viscosity. 

 

 Figure 4: Summary of the algorithm implementing the Eulerian-Lagrangian approach. 



Rectangles summarize most relevant steps; variables indicated on the left (right) sides 

constitute inputs (outputs) whose values evolve along the iterating procedure. Ak(x) 

indicates the ensemble of values assumed by the variable A over the Eulerian frame 

(positions x), after a given k-th iteration. Bk
i,j indicates that the variable B is available at all 

j-th positions describing each i-th Lagrangian trajectory, after a given k-th iteration. Bold 

characters indicate vectors. 

 

 Figure 5: Profiles of axial velocity, temperature, swelling degree and suspension viscosity 

field at the domain outlet as obtained with the Eulerian-Lagrangian approach for solving the 

whole coupled problem, at four stages of the algorithm: before the first (k = 0), after the first 

(k = 1), after the second (k = 2), and after the last (here, k = 22) evaluation of product 

transformation along Lagrangian trajectories. 

 

 Figure 6: Left  Profiles of temperature, swelling degree and suspension viscosity field at 

the domain outlet as obtained with the purely-Eulerian modeling of the whole problem, by 

assuming the 100x2000 mesh (test 1A). Right  Impact of replacing the purely-Eulerian 

approach by the Eulerian-Lagrangian one for solving the whole problem, with the help of 

400 trajectories with 10000 positions each (test 2A). 
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