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Abstract—The main focus of this work is the estimation of a suitable differentiability assumptions on function— e,, if
complex valued signal assumed to have a sparse representationye assume that the perturbatio(&)1<n<N are small, we

in an uncounta_ble dictionary of signals. The dictionary elements can perform the following first-order Taylor expansion:
are parameterized by a real-valued vector and the available

observations are corrupted with an additive noise. By applying (Vn e {1 NY)
a linearization technique the original model is recast as a i
constrained sparse perturbed model. The problem of the com- , M . . o
putation of the involved multiple parameters is addressed from where €, © C@*M s the Jacobian matrix o Cv =
a nonconvex optimization viewpoint. A cost function is defined (€V(Q))1<q<Q ato,. For everyq € {1,...,Q}, the g-th line
including an arbitrary Lipschitz differentiable data fidelity term of ej thus corresponds to the gradient of ¢ component

acco_unting for_ the noise statistics, and an/y-like penalty. A functiony — e, (q) atf,,. With this approximation, Model (2)
proximal algorithm is then employed to solve the resulting takes the following bilinear form

nonconvex and nonsmooth minimization problem. Experimental
results illustrate the good practical performance of the proposd N
apf)rzggxd]l'grvrr:wesn—igglrlseg rtr?ogt[a)ll;%?ng%?nﬁgﬁgig'mpressive sens- = (C”G"" + C”eé’nén) ) ®)
ing; proximity operator; hard thresholding; multivariate esti- n=1
mation; 2D spectrum estimation; forward-backward algorithm; A similar sparse approach for decomposing a signal in terms
nonconvex optlmlzatlon. . . - ..
of translated versions of some features in a finite dictipnar
. INTRODUCTION is addressed in [2] where the proposed congéeformulation
{sf taylored for real-valued signals in the case whdn= 1.
ikewise, our work can be seen as bearing some similarities
with the perturbed compressive sampling approach in [3]
Yy=T+w (1) where a robust total least squares (TLS) approach based on

wherew € C® is a realization of a random noise vector. Her@" ¢1 regularization is deve_:loped. The diffe_zrence is that, in
we assume that the signalc C? admits a sparse represen:‘hIS paper, we adopt a d|_ff(_are_-nt _formulauon v_vhere an .
tation on a finite family of vector§ = {e, | » € RM} of C? cost is employed for the minimization process, instead of it
which are parameterized by a vector variable R, More {1 convex relaxation, and the perturbatiofs,),<.<n are

precisely, we suppose that a finite subet | 1 <n < N} constrained to satisfy the following inequalities:

év, X eg, + eéngn 4)

A classical problem in sparse estimation [1] consists
recovering a signat from a vector of observations:

of distinct elements of can be extracted such that (Vn e {1 N}) [5.] < A (6)
N geeey nil X ns
T=) Tuer, (2) the upper bound$A,)i<,<n € [0,+00)" being defined
n=1 by the user. Hereabovg - || denotes the Euclidean norm.

where a large number of components@f= (¢, )i1<,<n € Constraints (6) provide more flexibility than the TLS apprioa
CN are equal to zero (overlined variables are used here fas controlling the perturbation§,, )1<,<n- In addition, our
distinguish “true” vectors from generic variables). method makes it possible to deal with a general Lipschitz
In this paper, we consider the challenging context of egdifferentiable data fidelity term. Note that, in our prewsou
timation problems in which the paramete®,)i<,<n are work [4], a similar linearization approach was adopted wher
known in an imprecise manner, i.e. they are such that, fihre parameter was restricted to be a scalab/(= 1). The
everyn € {1,...,N}, proposed forward-backward method was then shown to be an
7 —0. 45 3) ex.tension of an .iterati\./e hard thrgsholding alg'oritlhm [B].
" weon this work, we will be interested in the more intricate case
where §,, ¢ RM is some given value and, ¢ RM is whenM > 1, which is useful for taking advantage of flexible
an unknown error on the parameter to be estimated. Undkctionaries.



This paper is organized as follows: In Section Il, th&/e shall now see how this minimization can be performed
estimation of the sparse components and the correspondimgnerically.
perturbation parameter vector are formulated as a nongonve
constrained optimization problem. An iterative algorittion
solving this problem is provided in Section Ill, which recps  A. Algorithm form
to derive the expression of the proximity operator of a func- |f we assume tha is a differentiable function, the previous
tion of several variables. A detailed discussion of thisiéss spjit form of the objective function suggests the use of a
is provided. The proposed approach is illustrated on a 4Brward-backward algorithm [7]:
spectrum estimation example in Section IV. The conclusmns(o) € OV ) ¢ cMN

of this work are given in Section V.
0<y<7y<|EE" + E(E)T)|

Notation: In the following, xs denotes the characteristic gq, 7. — 0,1,...
function of a setS which is equal to 0 ort and 1 elsewhere, A € [y ’Y]
and.s denotes the indicator function of a s&twhich is equal - o)
to 0 on S and +oo elsewhere. The transpose and transcon{ D) = V<I>([E E' L’l(k)] )
jugate operation for complex-valued vectors or matrices ar | i H ik
denoted by(-)" and(-)¥, respectively. (c"k Jicnen = ) —y® ELDE
1Y (A )1 cnen = d® — 4B (B)H DE)

. VARIATIONAL FORMULATION ;
_ (e, a5 ignen = (prox,0y, (@7, d0))) o,
We propose to estimate the parameters of the perturbed T (13)

sparse model by solving the following optimization problemye recall that the proximity operator of a proper,
N lower bounded, lower semi-continuous functign H —
minimize @(Z (cnco, + cnch, On) _y) (—00, +oc] where # is a finite dimensional Hilbert space
e=(cn)1<ngNECY equipped with the nornf| - || is defined as

[1l. PROPOSED ALGORITHM

6:(5w,)1€n<NEB n=l 1
+ Mo(c) + chHQ () (Yuet)  prox,(u) € argmin g lu - vl + ¢(v). (14)
where Although the uniqueness afrox,(u) is guaranteed when
B M @ is convex, this property is not necessarily satisfied in the
B = {(0n)1<ncn € (RT) nonconvex case.
| (Vne{l,....N}) [I6n| < An}, (8)  Note that the convergence of the forward-backward is

Jproven under some technical conditions, even in the noreonv
case [8], but a main difficulty here is to find a tractable manne
g1‘or computingprox. ,, wheny € (0, +oc) andn € N.

®: C? — R is the data-fidelity term which is often chose
equal to the negative-log-likelihood of the noise cormgtihe
observations) € (0, +00) is a regularization constant servin

to promote sparsity, and € [0, +00). The last term plays a g perivation of the involved proximity operator

I il I I
role similar to an elastic net regularization [6] As shown by the next result whose proof is skipped due to

Let us now define the matricds = [eg, . ..eq,] € CZ*YV, the lack of th it ¢ b ted
B = [¢) ...¢, ] € CMN and let us mtroduce the the Iac (I) spac? e proximity operator can be computed in
variable d = [cldAllr ...endy]T € CMNIn addition, let the a relatively simple manner:
function ¥ be defined as Proposition 1. Let v € (0,+o00). For everyn € {1,...,N}

and (c,,d,) € C x CM, the proximity operator ofy),, is
(Ve = (cn)i<nen € CV)(Vd = [d] ...d}]T € CMY) (e, dn)
Prox.,, (¢n,dn)

N
d) =Y Vnlcn dn) (9) (0,0) if pn(3n) < 29\
=< ¢ +6dy ~ . (15)
M — "= (1,4,) otherwise,
where (Vn € {1,...,N})(Ve, € C)(Vd,, € C¥) 1+ e + [|0n2
€
VYn(cnydn) = Axqoy(cn) + s, (cnydn) + 5\671\2, (10) wherep, is the function defined as
: . T 12
and S,, is the closed cone given by (o, € ]RM) p(62) = |cn + 6, dn (16)

" T4 ye + |0, ]2
Sy = {(cn,dy) €C x CM and ”
M ~
| 36, € R*™ with ”671” An, dn, = ¢, 0p } (11) S, € arg max pn((sn) (17)
Then, Problem (7) is equivalent to minimizing function Sn€RM N0l <An

e The determination of,, in (17) consists of maximizing
(e, d) = ‘I’([E E] M _?/) +¥(e,d). (12) 4 ratio of quadratic functions over an Euclidean ball. This



kind of problems has been investigated in the optimization  1). Without loss of generality, it can be assumed that
literature [9]. We will see however that, due to the specific |Re{a,}|| # |[Im{a,}|| or Re{a,} "Im{a,} # 0, since
form of the problem under consideration, the optimization the vectorsa,, for which this condition is not satisfied
problem can be recast in a low-dimensional space and a simple belong to a set of zero measure, which makes that this
characterization ofd,,)1<n<n Can be obtained. case is almost never met in practice. Simple calculations

show then that

Proposition 2. Assume that\/ > 2. Lety € (0,400), let

ne{l,...,N}, and let(c,,d,) € Cx CM. LetU, € RM*2 3 [Re{an} || + [[Im{an}[|* + 7 (24)
be a matrix whose columns form an orthonormal basis of a " 2
vector subspace includingpan{Re{d,,},Im{d,}}, let d,, = with
U, d, € C?, and let N
- Mn
Re(d,dtfy —etoadn) — V/(TRefan} T2 — Tim{an12)2 + A(Refan} Tm{an})?
A, = _ (14 e) c R3%3. (18) (25)
Re{cid,}" e, |?

If there exists an eigenvector

of A, associated with its largest eigenvalue, which is such

and the multiplicity of this eigenvalue is equal to 1. A
corresponding eigenvector is

] = Behde] e

To know whether an optimal solution to Problem (17) is
given by (20), it is thus sufficient to test Condition (19)

(1+ ve)l/2 1+ e

~ [ﬁﬂ } eR?
Hy,

fin = }JER

that .
~ — for 1, given by (23) and (26).
+112 2 H g y
(L9l 1" < (Anfiz) (19) (i) If we discard the trivial case wher\,, = 0, Prob-
then an optimal solution to Problef17) is lem (21) is equivalent to maximizing the quadratic
function
. 1 1/2
671 = %Un /7: . (20) T * 7 T T JH
ln apn — 20, Re{cld,} + Apa,, Re{d,d; Yo, (27)
Otherwise, we havé,, = A, U,@, Where on the unit circle. Such kind of quadratic optimization

@y € argmin (2AnaIRe{chjn} + AiaIRe{Janj}an).

Some guidelines concerning the numerical implementation

problems on the unit sphere has been well-investigated

, €R? in the literature [10, Chap. 12]. It can be shown that

llan =1 the problem reduces to searching the roots of a quartic
(21) polynomial.

IV. APPLICATION TO SPECTRUM ANALYSIS

of the solution provided by the above proposition are given i _ . . _ -
the next subsection. In this part, we provide an illustration of the validity of ou

approach in a 2D spectrum analysis problem. More precisely,

C. Implementation issues we consider an irregularly sampled complex-valued image
(i) Let n_e N. According to (16), ifd, = 0 andc, = 0, which can be modeled as a sum of noisy 2D cisoids corrupted

thend,, can be chosen arbitrarily ang,(d,,) = 0. with a white circular Gaussian noise with zero-mean. The

(i) The matrix A,, defined by (18) can be expressed as observed data of siz = @Q; x Q. result from a random

sampling at distinct locations, € R? in [0,Q1] x [0, Q2].

_ T T
An = Re{an}Re{an} " + Im{an Hifan} (22) The employed dictionary consists of the following functon

whereaq,, = [Jn (1+~e)~Y2¢,]T. Let us assume that

2 _ T

eitherd,, or ¢,, is nonzero, so that,, is also nonzero. (Vv eR?) ey = (exp (' 70)) 1 ¢0eq (28)
The rank of matrixA,, is thus either equal to 1 or 2. 3nd we have thus
An eigenvectorji,, of A, associated with its largest . T

i Tg, €X UV T,
eigenvalued,, > 0 can then be decomposed as (W €R?) o, = [ EJqu eXP EJVTTq; )1<q<Q ] (29)

fin = ikRe{an} + il Im{a, } (23) T2 SPUY Ta) N1<asa

where [ii} 7T € R? is an eigenvector of the where, for every; € {1,...,Q}, the components of vectar,

are denoted by, , 74,). If no prior information is available

) - about the frequency contents of the 2D field, a standard ehoic
”Re{?"}” Re{an} Im{fn} is to uniformly sample the 2D frequency domain, so that, for

Re{a,} ' Im{an} [Hm{an }i everyn; € {1,..., Ny}, for everyny € {1,..., Na},

associated with its largest eigenvakﬁg. (The result is (ny —1)/Ny
even valid in the case when the Gram matrix is of rank Onyiny =2 [ (ns —1)/Ns } - (30)

(nonzero) Gram matrix



With the notation used in the previous sections, this corre-
sponds to a scenario whedd = 2 and N = N;N,. In our
experiments, the frequencies of the sparse componentoare n
on the search grid. The proposed perturbed sparse estimatio
technique can however be applied in order to estimate them
by choosing, for everyn; € {1,...,N;} and, for every
na € {1,...,Na}, Apy ny = V21/ min{ Ny, Nao}.

The signal is estimated by using Algorithm (13), whérés
the squared Euclidean norm. The resulting global normalize
root mean square estimation errors are provided in Table I,
for Q1 = Q> = 8, N1 = Ny 32, and four values
of the signal-to-noise ratio. A comparison is drawn with a
standard basis pursuit approach usingZamorm or an/,
cost. The/;-based solution was chosen as an initial value for
our algorithm, as well as for the iterative hard threshadin
approach associated with the bagjcpenalty. Note that the
regularization parameterwas chosen in an automatic manner
from the observed data by an appropriate search technique,
assuming that the variance of the noise is known. The plots
shown in Figure 1 allow us to evaluate the good quality of
the estimates typically obtained when identifying the idso
parameters.

pulsations

pulsations
w

pulsations

[SNR@B) [ & | £ [ Proposed method Fig. 1. Estimation results in the case4tisoids (SNR =24.79 dB): values
14.72 0.4519 | 0.1292 0.01930 of (Jenl)1<n<n @s a function of(6,)1<n<n depicted with red crosses,
19.72 0.4496 | 0.1291 0.01088 and exact valueg|c,|)1<n<n With blue circles (top); values of estimated
24.72 0.4480 | 0.1291 0.00614 frequency positiongvy, )1<n<n depicted with red crosses, and exact values
29.72 0.4471 | 0.1292 0.00348 (7n)1<n<n With blue circles (bottom).

TABLE |

NORMALIZED ROOT MEAN SQUARE RECONSTRUCTION ERROR

(3]

V. CONCLUSION (4]

In this paper, a new variational approach for the estimation
of sparse signals has been proposed. The originality of our
work resides in the use of a dictionary whose elements afg]
parameterized by a real-valued vector of dimension greater
than 1, while considering the context of estimation probiem[G]
in which these parameters are known in an imprecise manner.
A proximal iterative algorithm constitutes an efficientuion  [7]
to the associated nonconvex optimization problem. Alttoug
few closed form expressions of the proximity operators of
functions of several variables exist in the literaturehibgld be ]
noticed that the proximity operator of the involved nonsithoo
function has been fully characterized. Numerical expenine
performed for a 2D spectrum analysis problem where tth]
observations are irregularly randomly sampled allowedaus t
evaluate the good quality of the results generated with the
proposed approach. [10]
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