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Abstract—The main focus of this work is the estimation of a
complex valued signal assumed to have a sparse representation
in an uncountable dictionary of signals. The dictionary elements
are parameterized by a real-valued vector and the available
observations are corrupted with an additive noise. By applying
a linearization technique the original model is recast as a
constrained sparse perturbed model. The problem of the com-
putation of the involved multiple parameters is addressed from
a nonconvex optimization viewpoint. A cost function is defined
including an arbitrary Lipschitz differentiable data fidelity term
accounting for the noise statistics, and anℓ0-like penalty. A
proximal algorithm is then employed to solve the resulting
nonconvex and nonsmooth minimization problem. Experimental
results illustrate the good practical performance of the proposed
approach when applied to 2D spectrum analysis.

Index Terms—sparse modelling; continuous compressive sens-
ing; proximity operator; hard thresholding; multivariate esti-
mation; 2D spectrum estimation; forward-backward algorithm;
nonconvex optimization.

I. I NTRODUCTION

A classical problem in sparse estimation [1] consists of
recovering a signalx from a vector of observations:

y = x+ w (1)

wherew ∈ C
Q is a realization of a random noise vector. Here

we assume that the signalx ∈ C
Q admits a sparse represen-

tation on a finite family of vectorsE = {eν | ν ∈ R
M} of CQ

which are parameterized by a vector variableν ∈ R
M . More

precisely, we suppose that a finite subset{eνn
| 1 6 n 6 N}

of distinct elements ofE can be extracted such that

x =
N∑

n=1

cneνn
(2)

where a large number of components ofc = (cn)16n6N ∈
C
N are equal to zero (overlined variables are used here to

distinguish “true” vectors from generic variables).
In this paper, we consider the challenging context of es-

timation problems in which the parameters(νn)16n6N are
known in an imprecise manner, i.e. they are such that, for
everyn ∈ {1, . . . , N},

νn = θn + δn (3)

where θn ∈ R
M is some given value andδn ∈ R

M is
an unknown error on the parameter to be estimated. Under

suitable differentiability assumptions on functionν 7→ eν , if
we assume that the perturbations(δn)16n6N are small, we
can perform the following first-order Taylor expansion:

(∀n ∈ {1, . . . , N}) eνn
≃ eθn + e′θnδn (4)

where e′θn ∈ C
Q×M is the Jacobian matrix ofν 7→ eν =(

eν(q)
)
16q6Q

at θn. For everyq ∈ {1, . . . , Q}, the q-th line
of e′θn thus corresponds to the gradient of theq-th component
functionν 7→ eν(q) at θn. With this approximation, Model (2)
takes the following bilinear form

x =
N∑

n=1

(
cneθn + cne

′
θnδn

)
. (5)

A similar sparse approach for decomposing a signal in terms
of translated versions of some features in a finite dictionary
is addressed in [2] where the proposed convexℓ1 formulation
is taylored for real-valued signals in the case whenM = 1.
Likewise, our work can be seen as bearing some similarities
with the perturbed compressive sampling approach in [3]
where a robust total least squares (TLS) approach based on
an ℓ1 regularization is developed. The difference is that, in
this paper, we adopt a different formulation where anℓ0
cost is employed for the minimization process, instead of its
ℓ1 convex relaxation, and the perturbations(δn)16n6N are
constrained to satisfy the following inequalities:

(∀n ∈ {1, . . . , N}) ‖δn‖ 6 ∆n, (6)

the upper bounds(∆n)16n6N ∈ [0,+∞)N being defined
by the user. Hereabove‖ · ‖ denotes the Euclidean norm.
Constraints (6) provide more flexibility than the TLS approach
for controlling the perturbations(δn)16n6N . In addition, our
method makes it possible to deal with a general Lipschitz
differentiable data fidelity term. Note that, in our previous
work [4], a similar linearization approach was adopted where
the parameterν was restricted to be a scalar (M = 1). The
proposed forward-backward method was then shown to be an
extension of an iterative hard thresholding algorithm [5].In
this work, we will be interested in the more intricate case
whenM > 1, which is useful for taking advantage of flexible
dictionaries.



This paper is organized as follows: In Section II, the
estimation of the sparse components and the corresponding
perturbation parameter vector are formulated as a nonconvex
constrained optimization problem. An iterative algorithmfor
solving this problem is provided in Section III, which requires
to derive the expression of the proximity operator of a func-
tion of several variables. A detailed discussion of this issue
is provided. The proposed approach is illustrated on a 2D
spectrum estimation example in Section IV. The conclusions
of this work are given in Section V.

Notation: In the following, χS denotes the characteristic
function of a setS which is equal to 0 onS and 1 elsewhere,
andιS denotes the indicator function of a setS, which is equal
to 0 on S and +∞ elsewhere. The transpose and transcon-
jugate operation for complex-valued vectors or matrices are
denoted by(·)⊤ and (·)H , respectively.

II. VARIATIONAL FORMULATION

We propose to estimate the parameters of the perturbed
sparse model by solving the following optimization problem:

minimize
c=(cn)16n6N∈C

N

δ=(δn)16n6N∈B

Φ
( N∑

n=1

(
cneθn + cne

′
θnδn

)
− y

)

+ λℓ0(c) +
ǫ

2
‖c‖2 (7)

where

B = {(δn)16n6N ∈ (RM )N

| (∀n ∈ {1, . . . , N}) ‖δn‖ 6 ∆n}, (8)

Φ: CQ → R is the data-fidelity term which is often chosen
equal to the negative-log-likelihood of the noise corrupting the
observations,λ ∈ (0,+∞) is a regularization constant serving
to promote sparsity, andǫ ∈ [0,+∞). The last term plays a
role similar to an elastic net regularization [6].

Let us now define the matricesE = [eθ1 . . . eθN ] ∈ C
Q×N ,

E′ = [e′θ1 . . . e
′
θN

] ∈ C
Q×MN , and let us introduce the

variabled = [c1δ
⊤
1 . . . cNδ

⊤
N ]⊤ ∈ C

MN . In addition, let the
functionΨ be defined as

(∀c = (cn)16n6N ∈ C
N )(∀d = [d⊤1 . . . d

⊤
N ]⊤ ∈ C

MN )

Ψ(c, d) =

N∑

n=1

ψn(cn, dn) (9)

where(∀n ∈ {1, . . . , N})(∀cn ∈ C)(∀dn ∈ C
M )

ψn(cn, dn) = λχ{0}(cn) + ιSn
(cn, dn) +

ǫ

2
|cn|2, (10)

andSn is the closed cone given by

Sn = {(cn, dn) ∈ C× C
M

| ∃δn ∈ R
M with ‖δn‖ 6 ∆n, dn = cnδn}. (11)

Then, Problem (7) is equivalent to minimizing function

(c, d) 7→ Φ
(
[E E′]

[
c
d

]
− y

)
+Ψ(c, d). (12)

We shall now see how this minimization can be performed
numerically.

III. PROPOSED ALGORITHM

A. Algorithm form

If we assume thatΦ is a differentiable function, the previous
split form of the objective function suggests the use of a
forward-backward algorithm [7]:

c(0) ∈ C
N , d(0) ∈ C

MN

0 < γ 6 γ < ‖EEH + E′(E′)H)‖−1

For k = 0, 1, . . .

γ(k) ∈ [γ, γ]

D(k) = ∇Φ
(
[E E′]

[
c(k)
d(k)

]
− y

)

(c̃
(k)
n )16n6N = c(k) − γ(k)EHD(k)

(d̃
(k)
n )16n6N = d(k) − γ(k)(E′)HD(k)

(c
(k+1)
n , d

(k+1)
n )16n6N =

(
proxγ(k)ψn

(c̃
(k)
n , d̃

(k)
n )

)
16n6N

.
(13)

We recall that the proximity operator of a proper,
lower bounded, lower semi-continuous functionϕ : H →
(−∞,+∞] where H is a finite dimensional Hilbert space
equipped with the norm‖ · ‖ is defined as

(∀u ∈ H) proxϕ(u) ∈ argmin
v∈H

1

2
‖u− v‖2 + ϕ(v). (14)

Although the uniqueness ofproxϕ(u) is guaranteed when
ϕ is convex, this property is not necessarily satisfied in the
nonconvex case.

Note that the convergence of the forward-backward is
proven under some technical conditions, even in the nonconvex
case [8], but a main difficulty here is to find a tractable manner
for computingproxγψn

whenγ ∈ (0,+∞) andn ∈ N.

B. Derivation of the involved proximity operator

As shown by the next result whose proof is skipped due to
the lack of space, the proximity operator can be computed in
a relatively simple manner:

Proposition 1. Let γ ∈ (0,+∞). For everyn ∈ {1, . . . , N}
and (cn, dn) ∈ C× C

M , the proximity operator ofγψn is

proxγψn
(cn, dn)

=





(0, 0) if ρn(δ̃n) < 2γλ

cn + δ̃⊤n dn

1 + γǫ+ ‖δ̃n‖2
(1, δ̃n) otherwise,

(15)

whereρn is the function defined as

(∀δn ∈ R
M ) ρn(δn) =

|cn + δ⊤n dn|2
1 + γǫ+ ‖δn‖2

(16)

and
δ̃n ∈ argmax

δn∈RM ,‖δn‖6∆n

ρn(δn). (17)

The determination of̃δn in (17) consists of maximizing
a ratio of quadratic functions over an Euclidean ball. This



kind of problems has been investigated in the optimization
literature [9]. We will see however that, due to the specific
form of the problem under consideration, the optimization
problem can be recast in a low-dimensional space and a simple
characterization of(δ̃n)16n6N can be obtained.

Proposition 2. Assume thatM > 2. Let γ ∈ (0,+∞), let
n ∈ {1, . . . , N}, and let(cn, dn) ∈ C×C

M . LetUn ∈ R
M×2

be a matrix whose columns form an orthonormal basis of a
vector subspace includingspan

{
Re{dn}, Im{dn}

}
, let d̃n =

U⊤
n dn ∈ C

2, and let

An =



Re{d̃nd̃Hn } Re{c∗nd̃n}

(1 + γǫ)1/2

Re{c∗nd̃n}⊤
(1 + γǫ)1/2

|cn|2
1 + γǫ


 ∈ R

3×3. (18)

If there exists an eigenvector

µ̃n =

[
µ̃+
n

µ̃−
n

]
} ∈ R

2

} ∈ R

of An associated with its largest eigenvalue, which is such
that

(1 + γǫ)‖µ̃+
n ‖2 < (∆nµ̃

−
n )

2 (19)

then an optimal solution to Problem(17) is

δ̃n =
(1 + γǫ)1/2

µ̃−
n

Un µ̃
+
n . (20)

Otherwise, we havẽδn = ∆nUnαn where

αn ∈ argmin
αn∈R

2

‖αn‖=1

(
2∆nα

⊤
nRe{c∗nd̃n}+∆2

nα
⊤
nRe{d̃nd̃Hn }αn

)
.

(21)

Some guidelines concerning the numerical implementation
of the solution provided by the above proposition are given in
the next subsection.

C. Implementation issues

(i) Let n ∈ N. According to (16), ifdn = 0 and cn = 0,
then δ̃n can be chosen arbitrarily andρn(δ̃n) = 0.

(ii) The matrixAn defined by (18) can be expressed as

An = Re{an}Re{an}⊤ + Im{an}Im{an}⊤ (22)

wherean = [d̃n (1+ γǫ)−1/2cn]
⊤. Let us assume that

either dn or cn is nonzero, so thatan is also nonzero.
The rank of matrixAn is thus either equal to 1 or 2.
An eigenvectorµ̃n of An associated with its largest
eigenvalueϑ̃n > 0 can then be decomposed as

µ̃n = µ̃R
nRe{an}+ µ̃I

nIm{an} (23)

where [µ̃R
n µ̃I

n]
⊤ ∈ R

2 is an eigenvector of the
(nonzero) Gram matrix

[
‖Re{an}‖2 Re{an}⊤Im{an}

Re{an}⊤Im{an} ‖Im{an}‖2
]

associated with its largest eigenvalueϑ̃n. (The result is
even valid in the case when the Gram matrix is of rank

1). Without loss of generality, it can be assumed that
‖Re{an}‖ 6= ‖Im{an}‖ orRe{an}⊤Im{an} 6= 0, since
the vectorsan for which this condition is not satisfied
belong to a set of zero measure, which makes that this
case is almost never met in practice. Simple calculations
show then that

ϑ̃n =
‖Re{an}‖2 + ‖Im{an}‖2 + η̃n

2
(24)

with

η̃n

=
√

(‖Re{an}‖2 − ‖Im{an}‖2)2 + 4(Re{an}⊤Im{an})2

(25)

and the multiplicity of this eigenvalue is equal to 1. A
corresponding eigenvector is

[
µ̃R
n

µ̃I
n

]
=

[
Re{an}⊤Im{an}
ϑ̃n − ‖Re{an}‖2

]
. (26)

To know whether an optimal solution to Problem (17) is
given by (20), it is thus sufficient to test Condition (19)
for µ̃n given by (23) and (26).

(iii) If we discard the trivial case when∆n = 0, Prob-
lem (21) is equivalent to maximizing the quadratic
function

αn 7→ 2α⊤
nRe{c∗nd̃n}+∆nα

⊤
nRe{d̃nd̃Hn }αn (27)

on the unit circle. Such kind of quadratic optimization
problems on the unit sphere has been well-investigated
in the literature [10, Chap. 12]. It can be shown that
the problem reduces to searching the roots of a quartic
polynomial.

IV. A PPLICATION TO SPECTRUM ANALYSIS

In this part, we provide an illustration of the validity of our
approach in a 2D spectrum analysis problem. More precisely,
we consider an irregularly sampled complex-valued image
which can be modeled as a sum of noisy 2D cisoids corrupted
with a white circular Gaussian noise with zero-mean. The
observed data of sizeQ = Q1 × Q2 result from a random
sampling at distinct locationsτq ∈ R

2 in [0, Q1] × [0, Q2].
The employed dictionary consists of the following functions:

(∀ν ∈ R
2) eν =

(
exp

(
ν⊤τq

))
16q6Q

(28)

and we have thus

(∀ν ∈ R
2) e′ν =

[ (
τq1 exp

(
ν⊤τq

) )
16q6Q(

τq2 exp
(
ν⊤τq

) )
16q6Q

]⊤

(29)

where, for everyq ∈ {1, . . . , Q}, the components of vectorτq
are denoted by(τq1 , τq2). If no prior information is available
about the frequency contents of the 2D field, a standard choice
is to uniformly sample the 2D frequency domain, so that, for
everyn1 ∈ {1, . . . , N1}, for everyn2 ∈ {1, . . . , N2},

θn1,n2
= 2π

[
(n1 − 1)/N1

(n2 − 1)/N2

]
. (30)



With the notation used in the previous sections, this corre-
sponds to a scenario whereM = 2 andN = N1N2. In our
experiments, the frequencies of the sparse components are not
on the search grid. The proposed perturbed sparse estimation
technique can however be applied in order to estimate them
by choosing, for everyn1 ∈ {1, . . . , N1} and, for every
n2 ∈ {1, . . . , N2}, ∆n1,n2

=
√
2π/min{N1, N2}.

The signal is estimated by using Algorithm (13), whereΦ is
the squared Euclidean norm. The resulting global normalized
root mean square estimation errors are provided in Table I,
for Q1 = Q2 = 8, N1 = N2 = 32, and four values
of the signal-to-noise ratio. A comparison is drawn with a
standard basis pursuit approach using anℓ1 norm or anℓ0
cost. Theℓ1-based solution was chosen as an initial value for
our algorithm, as well as for the iterative hard thresholding
approach associated with the basicℓ0 penalty. Note that the
regularization parameterλ was chosen in an automatic manner
from the observed data by an appropriate search technique,
assuming that the variance of the noise is known. The plots
shown in Figure 1 allow us to evaluate the good quality of
the estimates typically obtained when identifying the cisoid
parameters.

SNR (dB) ℓ1 ℓ0 Proposed method

14.72 0.4519 0.1292 0.01930

19.72 0.4496 0.1291 0.01088

24.72 0.4480 0.1291 0.00614

29.72 0.4471 0.1292 0.00348

TABLE I
NORMALIZED ROOT MEAN SQUARE RECONSTRUCTION ERROR.

V. CONCLUSION

In this paper, a new variational approach for the estimation
of sparse signals has been proposed. The originality of our
work resides in the use of a dictionary whose elements are
parameterized by a real-valued vector of dimension greater
than 1, while considering the context of estimation problems
in which these parameters are known in an imprecise manner.
A proximal iterative algorithm constitutes an efficient solution
to the associated nonconvex optimization problem. Although
few closed form expressions of the proximity operators of
functions of several variables exist in the literature, it should be
noticed that the proximity operator of the involved nonsmooth
function has been fully characterized. Numerical experiments
performed for a 2D spectrum analysis problem where the
observations are irregularly randomly sampled allowed us to
evaluate the good quality of the results generated with the
proposed approach.
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