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The main focus of this work is the estimation of a complex valued signal assumed to have a sparse representation in an uncountable dictionary of signals. The dictionary elements are parameterized by a real-valued vector and the available observations are corrupted with an additive noise. By applying a linearization technique the original model is recast as a constrained sparse perturbed model. The problem of the computation of the involved multiple parameters is addressed from a nonconvex optimization viewpoint. A cost function is defined including an arbitrary Lipschitz differentiable data fidelity term accounting for the noise statistics, and an ℓ0-like penalty. A proximal algorithm is then employed to solve the resulting nonconvex and nonsmooth minimization problem. Experimental results illustrate the good practical performance of the proposed approach when applied to 2D spectrum analysis.

I. INTRODUCTION

A classical problem in sparse estimation [1] consists of recovering a signal x from a vector of observations:

y = x + w (1) 
where w ∈ C Q is a realization of a random noise vector. Here we assume that the signal x ∈ C Q admits a sparse representation on a finite family of vectors E = {e ν | ν ∈ R M } of C Q which are parameterized by a vector variable ν ∈ R M . More precisely, we suppose that a finite subset {e νn | 1 n N } of distinct elements of E can be extracted such that

x = N n=1 c n e νn (2) 
where a large number of components of c = (c n ) 1 n N ∈ C N are equal to zero (overlined variables are used here to distinguish "true" vectors from generic variables).

In this paper, we consider the challenging context of estimation problems in which the parameters (ν n ) 1 n N are known in an imprecise manner, i.e. they are such that, for every n ∈ {1, . . . , N },

ν n = θ n + δ n (3) 
where θ n ∈ R M is some given value and δ n ∈ R M is an unknown error on the parameter to be estimated. Under suitable differentiability assumptions on function ν → e ν , if we assume that the perturbations (δ n ) 1 n N are small, we can perform the following first-order Taylor expansion:

(∀n ∈ {1, . . . , N }) e νn ≃ e θn + e ′ θn δ n

where e ′ θn ∈ C Q×M is the Jacobian matrix of ν → e ν = e ν (q) 1 q Q at θ n . For every q ∈ {1, . . . , Q}, the q-th line of e ′ θn thus corresponds to the gradient of the q-th component function ν → e ν (q) at θ n . With this approximation, Model (2) takes the following bilinear form

x = N n=1 c n e θn + c n e ′ θn δ n . (5) 
A similar sparse approach for decomposing a signal in terms of translated versions of some features in a finite dictionary is addressed in [2] where the proposed convex ℓ 1 formulation is taylored for real-valued signals in the case when M = 1. Likewise, our work can be seen as bearing some similarities with the perturbed compressive sampling approach in [START_REF] Zhu | Sparsity-cognizant total least-squares for perturbed compressive sampling[END_REF] where a robust total least squares (TLS) approach based on an ℓ 1 regularization is developed. The difference is that, in this paper, we adopt a different formulation where an ℓ 0 cost is employed for the minimization process, instead of its ℓ 1 convex relaxation, and the perturbations (δ n ) 1 n N are constrained to satisfy the following inequalities:

(∀n ∈ {1, . . . , N }) δ n ∆ n , (6) 
the upper bounds (∆ n ) 1 n N ∈ [0, +∞) N being defined by the user. Hereabove • denotes the Euclidean norm. Constraints [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] provide more flexibility than the TLS approach for controlling the perturbations (δ n ) 1 n N . In addition, our method makes it possible to deal with a general Lipschitz differentiable data fidelity term. Note that, in our previous work [START_REF] Florescu | A constrained optimization approach for complex sparse perturbed models[END_REF], a similar linearization approach was adopted where the parameter ν was restricted to be a scalar (M = 1). The proposed forward-backward method was then shown to be an extension of an iterative hard thresholding algorithm [START_REF] Blumensath | Iterative thresholding for sparse approximations[END_REF]. In this work, we will be interested in the more intricate case when M > 1, which is useful for taking advantage of flexible dictionaries.

This paper is organized as follows: In Section II, the estimation of the sparse components and the corresponding perturbation parameter vector are formulated as a nonconvex constrained optimization problem. An iterative algorithm for solving this problem is provided in Section III, which requires to derive the expression of the proximity operator of a function of several variables. A detailed discussion of this issue is provided. The proposed approach is illustrated on a 2D spectrum estimation example in Section IV. The conclusions of this work are given in Section V.

Notation: In the following, χ S denotes the characteristic function of a set S which is equal to 0 on S and 1 elsewhere, and ι S denotes the indicator function of a set S, which is equal to 0 on S and +∞ elsewhere. The transpose and transconjugate operation for complex-valued vectors or matrices are denoted by (•) ⊤ and (•) H , respectively.

II. VARIATIONAL FORMULATION

We propose to estimate the parameters of the perturbed sparse model by solving the following optimization problem:

minimize c=(cn) 1 n N ∈C N δ=(δn) 1 n N ∈B Φ N n=1 c n e θn + c n e ′ θn δ n -y + λℓ 0 (c) + ǫ 2 c 2 (7) 
where

B = {(δ n ) 1 n N ∈ (R M ) N | (∀n ∈ {1, . . . , N }) δ n ∆ n }, (8) 
Φ : C Q → R is the data-fidelity term which is often chosen equal to the negative-log-likelihood of the noise corrupting the observations, λ ∈ (0, +∞) is a regularization constant serving to promote sparsity, and ǫ ∈ [0, +∞). The last term plays a role similar to an elastic net regularization [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF].

Let us now define the matrices

E = [e θ1 . . . e θN ] ∈ C Q×N , E ′ = [e ′ θ1 . . . e ′ θN ] ∈ C Q×M N ,

and let us introduce the variable

d = [c 1 δ ⊤ 1 . . . c N δ ⊤ N ] ⊤ ∈ C M N .
In addition, let the function Ψ be defined as

(∀c = (c n ) 1 n N ∈ C N )(∀d = [d ⊤ 1 . . . d ⊤ N ] ⊤ ∈ C M N ) Ψ(c, d) = N n=1 ψ n (c n , d n ) (9)
where

(∀n ∈ {1, . . . , N })(∀c n ∈ C)(∀d n ∈ C M ) ψ n (c n , d n ) = λ χ {0} (c n ) + ι Sn (c n , d n ) + ǫ 2 |c n | 2 , ( 10 
)
and S n is the closed cone given by

S n = {(c n , d n ) ∈ C × C M | ∃δ n ∈ R M with δ n ∆ n , d n = c n δ n }. (11)
Then, Problem ( 7) is equivalent to minimizing function

(c, d) → Φ [E E ′ ] c d -y + Ψ(c, d). (12) 
We shall now see how this minimization can be performed numerically.

III. PROPOSED ALGORITHM

A. Algorithm form

If we assume that Φ is a differentiable function, the previous split form of the objective function suggests the use of a forward-backward algorithm [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]:

c (0) ∈ C N , d (0) ∈ C M N 0 < γ γ < EE H + E ′ (E ′ ) H ) -1 For k = 0, 1, . . .            γ (k) ∈ [γ, γ] D (k) = ∇Φ [E E ′ ] c (k ) d (k) -y ( c (k) n ) 1 n N = c (k) -γ (k) E H D (k) ( d (k) n ) 1 n N = d (k) -γ (k) (E ′ ) H D (k) (c (k+1) n , d (k+1) n ) 1 n N = prox γ (k) ψn ( c (k) n , d (k) n ) 1 n N .
(13) We recall that the proximity operator of a proper, lower bounded, lower semi-continuous function ϕ : H → (-∞, +∞] where H is a finite dimensional Hilbert space equipped with the norm • is defined as

(∀u ∈ H) prox ϕ (u) ∈ arg min v∈H 1 2 u -v 2 + ϕ(v). (14) 
Although the uniqueness of prox ϕ (u) is guaranteed when ϕ is convex, this property is not necessarily satisfied in the nonconvex case.

Note that the convergence of the forward-backward is proven under some technical conditions, even in the nonconvex case [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward backward splitting, and regularized Gauss-Seidel methods[END_REF], but a main difficulty here is to find a tractable manner for computing prox γψn when γ ∈ (0, +∞) and n ∈ N.

B. Derivation of the involved proximity operator

As shown by the next result whose proof is skipped due to the lack of space, the proximity operator can be computed in a relatively simple manner:

Proposition 1. Let γ ∈ (0, +∞). For every n ∈ {1, . . . , N } and (c n , d n ) ∈ C × C M , the proximity operator of γψ n is prox γψn (c n , d n ) =      (0, 0) if ρ n ( δ n ) < 2γλ c n + δ ⊤ n d n 1 + γǫ + δ n 2 (1, δ n ) otherwise, ( 15 
)
where ρ n is the function defined as

(∀δ n ∈ R M ) ρ n (δ n ) = |c n + δ ⊤ n d n | 2 1 + γǫ + δ n 2 (16) and δ n ∈ arg max δn∈R M , δn ∆n ρ n (δ n ). ( 17 
)
The determination of δ n in (17) consists of maximizing a ratio of quadratic functions over an Euclidean ball. This kind of problems has been investigated in the optimization literature [START_REF] Beck | Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares[END_REF]. We will see however that, due to the specific form of the problem under consideration, the optimization problem can be recast in a low-dimensional space and a simple characterization of ( δ n ) 1 n N can be obtained.

Proposition 2. Assume that M

2. Let γ ∈ (0, +∞), let n ∈ {1, . . . , N }, and let

(c n , d n ) ∈ C × C M . Let U n ∈ R M ×2
be a matrix whose columns form an orthonormal basis of a vector subspace including span Re{d n }, Im{d n } , let

d n = U ⊤ n d n ∈ C 2 ,

and let

A n =     Re{ d n d H n } Re{c * n d n } (1 + γǫ) 1/2 Re{c * n d n } ⊤ (1 + γǫ) 1/2 |c n | 2 1 + γǫ     ∈ R 3×3 . ( 18 
)
If there exists an eigenvector

µ n = µ + n µ - n } ∈ R 2 } ∈ R of A n associated with its largest eigenvalue, which is such that (1 + γǫ) µ + n 2 < (∆ n µ - n ) 2 (19) 
then an optimal solution to Problem (17) is

δ n = (1 + γǫ) 1/2 µ - n U n µ + n . (20) 
Otherwise, we have δ n = ∆ n U n α n where

α n ∈ arg min αn∈R 2 αn =1 2∆ n α ⊤ n Re{c * n d n } + ∆ 2 n α ⊤ n Re{ d n d H n }α n .
(21) Some guidelines concerning the numerical implementation of the solution provided by the above proposition are given in the next subsection.

C. Implementation issues

(i) Let n ∈ N. According to (16), if d n = 0 and c n = 0, then δ n can be chosen arbitrarily and ρ n ( δ n ) = 0. (ii) The matrix A n defined by (18) can be expressed as

A n = Re{a n }Re{a n } ⊤ + Im{a n }Im{a n } ⊤ (22)
where

a n = [ d n (1 + γǫ) -1/2 c n ] ⊤ .
Let us assume that either d n or c n is nonzero, so that a n is also nonzero. The rank of matrix A n is thus either equal to 1 or 2. An eigenvector µ n of A n associated with its largest eigenvalue ϑ n > 0 can then be decomposed as

µ n = µ R n Re{a n } + µ I n Im{a n } (23)
where

[ µ R n µ I n ] ⊤ ∈ R 2 is an eigenvector of the (nonzero) Gram matrix Re{a n } 2 Re{a n } ⊤ Im{a n } Re{a n } ⊤ Im{a n } Im{a n } 2
associated with its largest eigenvalue ϑ n . (The result is even valid in the case when the Gram matrix is of rank 1). Without loss of generality, it can be assumed that Re{a n } = Im{a n } or Re{a n } ⊤ Im{a n } = 0, since the vectors a n for which this condition is not satisfied belong to a set of zero measure, which makes that this case is almost never met in practice. Simple calculations show then that

ϑ n = Re{a n } 2 + Im{a n } 2 + η n 2 (24) 
with

η n = ( Re{an} 2 -Im{an} 2 ) 2 + 4(Re{an} ⊤ Im{an}) 2 (25)
and the multiplicity of this eigenvalue is equal to 1. A corresponding eigenvector is

µ R n µ I n = Re{a n } ⊤ Im{a n } ϑ n -Re{a n } 2 . ( 26 
)
To know whether an optimal solution to Problem ( 17) is given by (20), it is thus sufficient to test Condition (19) for µ n given by ( 23) and ( 26). (iii) If we discard the trivial case when ∆ n = 0, Problem ( 21) is equivalent to maximizing the quadratic function

α n → 2α ⊤ n Re{c * n d n } + ∆ n α ⊤ n Re{ d n d H n }α n (27)
on the unit circle. Such kind of quadratic optimization problems on the unit sphere has been well-investigated in the literature [START_REF] Golub | Matrix computations[END_REF]Chap. 12]. It can be shown that the problem reduces to searching the roots of a quartic polynomial.

IV. APPLICATION TO SPECTRUM ANALYSIS

In this part, we provide an illustration of the validity of our approach in a 2D spectrum analysis problem. More precisely, we consider an irregularly sampled complex-valued image which can be modeled as a sum of noisy 2D cisoids corrupted with a white circular Gaussian noise with zero-mean. The observed data of size

Q = Q 1 × Q 2 result from a random sampling at distinct locations τ q ∈ R 2 in [0, Q 1 ] × [0, Q 2 ].
The employed dictionary consists of the following functions:

(∀ν ∈ R 2 ) e ν = exp ν ⊤ τ q 1 q Q (28)
and we have thus

(∀ν ∈ R 2 ) e ′ ν = τ q1 exp ν ⊤ τ q 1 q Q τ q2 exp ν ⊤ τ q 1 q Q ⊤ (29)
where, for every q ∈ {1, . . . , Q}, the components of vector τ q are denoted by (τ q1 , τ q2 ). If no prior information is available about the frequency contents of the 2D field, a standard choice is to uniformly sample the 2D frequency domain, so that, for every n 1 ∈ {1, . . . , N 1 }, for every n 2 ∈ {1, . . . , N 2 },

θ n1,n2 = 2π (n 1 -1)/N 1 (n 2 -1)/N 2 . ( 30 
)
With the notation used in the previous sections, this corresponds to a scenario where M = 2 and N = N 1 N 2 . In our experiments, the frequencies of the sparse components are not on the search grid. The proposed perturbed sparse estimation technique can however be applied in order to estimate them by choosing, for every n 1 ∈ {1, . . . , N 1 } and, for every n 2 ∈ {1, . . . , N 2 }, ∆ n1,n2 = √ 2π/ min{N 1 , N 2 }. The signal is estimated by using Algorithm (13), where Φ is the squared Euclidean norm. The resulting global normalized root mean square estimation errors are provided in Table I

, for Q 1 = Q 2 = 8, N 1 = N 2 = 32
, and four values of the signal-to-noise ratio. A comparison is drawn with a standard basis pursuit approach using an ℓ 1 norm or an ℓ 0 cost. The ℓ 1 -based solution was chosen as an initial value for our algorithm, as well as for the iterative hard thresholding approach associated with the basic ℓ 0 penalty. Note that the regularization parameter λ was chosen in an automatic manner from the observed data by an appropriate search technique, assuming that the variance of the noise is known. The plots shown in Figure 1 

V. CONCLUSION

In this paper, a new variational approach for the estimation of sparse signals has been proposed. The originality of our work resides in the use of a dictionary whose elements are parameterized by a real-valued vector of dimension greater than 1, while considering the context of estimation problems in which these parameters are known in an imprecise manner. A proximal iterative algorithm constitutes an efficient solution to the associated nonconvex optimization problem. Although few closed form expressions of the proximity operators of functions of several variables exist in the literature, it should be noticed that the proximity operator of the involved nonsmooth function has been fully characterized. Numerical experiments performed for a 2D spectrum analysis problem where the observations are irregularly randomly sampled allowed us to evaluate the good quality of the results generated with the proposed approach. 

Fig. 1 .

 1 Fig. 1. Estimation results in the case of 4 cisoids (SNR = 24.79 dB): values of (|cn|) 1 n N as a function of (θn) 1 n N depicted with red crosses, and exact values (|cn|) 1 n N with blue circles (top); values of estimated frequency positions (νn) 1 n N depicted with red crosses, and exact values (νn) 1 n N with blue circles (bottom).

  allow us to evaluate the good quality of the estimates typically obtained when identifying the cisoid parameters.

	SNR (dB)	ℓ 1	ℓ 0	Proposed method
	14.72	0.4519	0.1292	0.01930
	19.72	0.4496	0.1291	0.01088
	24.72	0.4480	0.1291	0.00614
	29.72	0.4471	0.1292	0.00348

TABLE I NORMALIZED

 I ROOT MEAN SQUARE RECONSTRUCTION ERROR.