Effects of 1064 nm laser on MOS capacitor
Résumé
This study is driven by the need to improve failure analysis methodologies based on laser/silicon interactions, using the functional response of an integrated circuit to local laser stimulation. Thus, it is mandatory to understand the behavior of elementary devices under laser illumination, in order to model and predict the behavior of more complex circuits. This paper characterizes and analyses effects induced by static photoelectric laser stimulation (1064 nm) on a 90 nm technology metal-oxide-semiconductor (MOS) capacitor. On n-MOS capacitor the laser induces interface traps in the low part of the silicon band-gap, contrary to p-MOS capacitor where it is in the upper half part of the gap. It is also shown that electric stress increases the density of such interface traps.