
HAL Id: hal-00988333
https://hal.science/hal-00988333

Submitted on 7 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Failure anticipation in pursuit-evasion
Cyril Robin, Simon Lacroix

To cite this version:
Cyril Robin, Simon Lacroix. Failure anticipation in pursuit-evasion. Robotics Science and Systems,
Jul 2012, Sydney, Australia. 8p. �hal-00988333�

https://hal.science/hal-00988333
https://hal.archives-ouvertes.fr

Failure anticipation in pursuit-evasion

Cyril Robin∗† and Simon Lacroix∗†

∗CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
†Univ de Toulouse, LAAS, F-31400 Toulouse, France

cyril.robin@laas.fr, simon.lacroix@laas.fr

Abstract—This paper presents a new approach for the pursuit
of targets by a team of aerial and ground robots under realistic
conditions. Mobile target pursuit is often a sub-task of more
general scenarios, that call for environment exploration or
monitoring activities. Since most of the time a single robot
is sufficient to ensure the pursuit of a target, our approach
aims at minimizing the team resources devoted to the pursuit:
while ensuring the pursuit, a single pursuer evaluates its own
potential failures on the basis of the situation defined by the target
evolution and the environment structure. It thus assesses its need
for team support. When support is necessary to keep the target
in view, one or more additional robots are involved, according
to a task allocation scheme. We provide mathematical bounds
of the complexity of the approach, that ensure that the system
has real-time performance. Simulations in a variety of realistic
situations illustrate the efficiency of the proposed solution.

I. INTRODUCTION – CONTEXT

Numerous mobile robotics applications are related to “tar-

gets”, be the target adversaries to detect and chase, flocks of

animals to monitor, other robots to follow or assist... Detecting,

localizing or tracking targets raises a large variety of problems,

to which the research community has devoted a lot of work.

Figure 1 summarizes the primary problems encountered in

target related applications. One may first distinguish two

different missions: detecting one or more targets, and tracking

them.

The first mission aims to control an area, and ends with the

detection or the capture of the targets inside this area, using

several agents, robots or fixed sensors. The historical problem

is known as the art gallery problem [16] which considers fixed

sensors. More recent variations are the patrolling problem [14]

and the surveillance problem which consider either mobile

sensors only or a combination of mobile and fixed sensors.

Besides, most problems known as pursuit-evasion or search

problems are actually “capture” problems, where the aim

is to surround a target, avoiding both the contamination of

previously cleared areas and the evasion of the targets. It

is assumed that the number of robots is sufficient for such

purpose. Chung et al. [5] propose a good survey of existing

mathematical and robotics oriented work in this area.

Discovering or detecting a target is one thing, but in real

applications this is often only a part of the whole scenario,

either because the robots cannot neutralize the targets or

because it is not desired or expected. Once the targets are

designated, the robots often have to track them. This is the

second kind of mission, which starts upon target detection.

One may then want to localize the targets [10] or to monitor

them. Localization may use different sensors and vantage

points [19] or some targets specificities like group coherence

[17], while monitoring is achieved through a direct view to

the targets. With several targets, the problem often comes to

trade the targets between the observers, depending on their

relative positions [7, 8]. When there is only one target, a single

robot may perform the tracking task alone – which we call

“following”, but it often referred to as “pursuit-evasion”. This

latest problem often assumes that a single robot is enough to

perform the target monitoring task.

Target Management

Target Detection Target Tracking

Art Gallery
[16]

Search
[5]

Localizing
[10, 19, 17]

Monitoring

Observing multiple targets
[7, 8]

Following a single target
[13, 3, 11, 2, 12, 1]

Fig. 1. Overview of the target management problems.

For all these problems, whatever the application context and

the target type considered, multi-robot teams naturally extend

the capacity of a single robot to manage the targets. Heteroge-

neous team provides even more solutions and opportunities to

perform a mission, e.g. by multiplying the vantage points, as in

cooperating aerial and ground teams. Also, while a single kind

of robots can perform well on specific cases, a heterogeneous

team can achieve multi-objective missions, some robots being

more adapted to target tracking, others being better fitted to

target detection for instance.

We hereby consider a multi-objective scenario where an

heterogeneous team of robots is in charge of controlling a

predefined known area. They are not numerous enough to stat-

ically cover the entire area (this is not an art gallery problem),

and several targets can be present in the environment. The

robots are initially engaged in an exploration phase, according

to a pre-planned strategy. Once a mobile target is discovered,

the team must ensure that the target remains visible, while

pursuing the environment exploration. The scenario naturally

imposes the satisfaction of real-time constraints.

The paper focuses on the target pursuit phase, under the

realistic constraints raised by this multi-objective scenario.

The only hypothesis on the target is that it is not harmful for

the robots: besides this it may either be adversarial, evasive,

or move according to any other strategy. The success of the

tracking task is defined according to some visibility criteria (in

terms of distance and continuity, from a 100% target visibility

constraint to a more relaxed one).

As the team performs both exploration and one or more

tracking tasks, we want to minimize the resources required by

the management of one target: the objective is to satisfy visi-

bility constraints on the target, while minimizing the number

of required robots for this purpose. As a single pursuer is most

of the time sufficient to perform the tracking task, this is the

favored tracking configuration. However a single pursuer can

sometimes fail, in which case it is asks for support by other

robots. The two main issues raised here and tackled in this

paper are (i) how to predict the single pursuer failures and (ii)

how to anticipate and prevent them with support robots.

The next section reviews the main results of the literature

on target following, formalizes the problem, and presents our

approach and the used models. Section III is the heart of the

paper: it depicts how the pursuer can assess future tracking

failures while the target is being tracked. Results in various

realistic situation are presented and analyzed. Section IV

exploits these potential tracking failures to define cooperative

support tasks, using a task allocation scheme, and a discussion

concludes the paper.

II. THE PURSUIT PROBLEM

Much work on the target following problem can be found

in the literature. Eaton and Zadeh [18] first exposed the

search for an optimal strategy as an optimization problem

in discrete probabilistic systems, working with huge search

space size. More recently, contributions by Hutchinson et

al. [13, 3, 11, 2] thoroughly analyze the problem and some

of its variations: the following problem is fully decidable,

but its complexity hinders the definition of optimal solutions

under real time constraints. Besides, some single robot local

following strategies however exhibit great results in both

simulations and actual experiments (e.g. [12, 1]). Note that

these approaches exploit poor environment models, usually

2D binary free/obstacle models in which the obstacle areas

coincide with visibility masks.

To minimize the resources allocated to the target pursuit,

our approach is to mainly rely on one robot (the pursuer) to

perform the pursuit task: the state of the art shows that this

should be sufficient most of the time. But due to its capacities,

the target capacities and the environment configuration, the

purser may fail to ensure the visibility constraint, be its strate-

gy optimal or not. The pursuer therefore constantly evaluates

the potential upcoming failures and their associated risk, and

asks for support from others robots only when required. For

instance “the target is rather far and about to enter a maze”

or “the target is about to cross an area the pursuer can not

cross” are situations that do call for support from other robots,

whereas the situation “the target is moving behind a small

building located in a wide open area” does not if temporary

occlusions are allowed (figure 2).

(a) Pursuit with AAV

!

(b) Risks evaluation

(c) Ask for support (d) Pursuit with AGV

Fig. 2. Illustration of our approach. In (a) the helicopter is the pursuer. In
(b), the target is about to enter a building in which the helicopter can not
proceed: the pursuer asks for support (c), and the ground robot becomes the
pursuer (d).

A. Problem statement

According to an economy of means principle, we want to

minimize the number of robots requisitioned for the tracking

task.

Let R the set of robots. The problem is formally defined as

follows:

∀τ,minimize
∑

r∈R

a(r, τ) (1)

where

a(r, τ) =







1 if the robot r is active at time τ
for tracking or support in pursuit

0 else
(2)

while satisfying the visibility criteria :

∫ τ

τ−Tmax

h({r, a(r) = 1}, target, θ)dθ ≤ Tmax (3)

with

h(S, target, θ) =















1 if target is hidden
from the set of robots S
at time θ

0 else

(4)

More specifically, the target is hidden if none of the active

robots sees it (i.e. it is occluded by the environment or beyond

the sensor maximal range). Tmax is a criteria specified by the

operator, which allows relaxing the visibility conditions: the

target may be out of sight, but no longer than Tmax seconds

(Tmax can also be set to 0).

B. Realistic Models

To be able to deal with a whole variety of realistic environ-

ments, different types of target and heterogeneous robots, we

use environment models that explicit traversability properties

for both the ground robots and the target and on which

visibility constraints can be assessed.

A layered model of the environment allows to recover

inter-visibility and traversability information (namely, a 2.5D

elevation map and a symbolic layer that expresses the terrain

type, e.g. roads, grass, obstacles, buildings, rivers...). Motion

models are associated to each vehicle (robots and targets),

they define their movement capacities in terms of attainable

speeds.1 The robot sensors are modeled as omnidirectional

cameras, to which a maximal range of detection is associated.

By convolving the vehicle motion models with the terrain

type layer, we end up with a multi-layered map for traversabil-

ity, used for target motion prediction and robot planning. A

priori target visibility information are also computed for each

robot (e.g. an AAV will never be able to view a target in a

building), and the 2.5D elevation map is exploited to assess

visibilities (see figure 3). All these layers are represented by

Cartesian grids, and are exploited online to compute the mo-

tion and sensing possibilities using the available information

on the current state (such as target speed and position). Each

robot embeds the models of its motion and sensing capacities,

and the various target motion models.

III. ASSESSING THE NEED FOR TEAM SUPPORT

Our approach relies on the fact that the robot which tracks

the target, called the pursuer, is able to predict tracking

failures, that is loss of target visibility for a duration longer

than Tmax. For this purpose, we evaluate all the possible

pursuer / target situations over a temporal horizon h to isolate

the tracking failures that can occur between the current time

τ and the time τ + h. We hereby depict how this can be

achieved in real-time – the predicted failures generate support

task requests, whose processing is depicted in section IV.

A. Failure evaluation

As failures mainly depend on the environment and on the

relative positions of the target and the pursuer, there is no

real general shortcut for their assessment, and so one has to

compute all the possible future states over the time horizon h.

A future state is a failure state if constraint (3) is not satisfied,

which for the pursuer is equivalent to:

∀θ, θ ∈ [τ ; τ + Tmax], h({pursuer}, target, θ) = 1 (5)

i.e. if the target is hidden from the pursuer sensors for Tmax

seconds or more.

To compute all the possible states, we exploit the discrete

structure of the traversability models, and define a tree using

1 We assume that once detected, a target is identified – hence its capacities
are known to the pursuer

(a) Orthoimage (b) Elevation map

(c) Traversability map for AGV (d) Visibility map for AGV

Fig. 3. Environment models used. (a) Satellite view of the area (orthoimage);
(b) elevation model (derived from an airborne lidar survey); (c) 2.5D multi-
channel traversability map: different colors correspond to different attainable
speeds, along a green/red fast/slow scale; (d) 2.5D multi-channel visibility
map.

the pursuer and target motion models2. At every time step,

the tree grows with a branching factor of mt ∗ mr, where

mt and mr are respectively the number of possible motions

for the target and the robot. With a temporal horizon h, the

complexity of the tree building is O((mt ∗mr)
h).

Usual values for the parameters are mt = mr = 9 (9-

connexity in 2D-grid), and h = 20 at least. h must be large

enough so that the other robots of the team can address the

requests for support, without a priori constraining them too

much to remain in the vicinity of the pursuer: indeed the

smallest h is, the quicker and closer the supporting robots

must be. Using a value of h of 20 and considering 9-connexity,

the tree complexity is O(81h), i.e. near 1038, which is by no

means tractable.

B. Introducing the tracking strategy

Besides the combinatorial problem of the failures eval-

uation, the pursuer tracking strategy has to be efficient to

minimize the needs for team support. Efficient stands here for

“keep the target in sight”, while being predictable and fast to

compute. Indeed we seek to evaluate all the possible outcomes

with unpredictable target motions, hence numerous strategies

2For the sake of simplicity, we consider throughout this section that the
purser and the target evolve at the same speeds. This does not cause any
loss of genericity, but only slightly influences the overall complexity – see
appendix.

must be evaluated within the time horizon h to cope with this

unpredictability.

As computing an optimal tracking strategy raises a com-

binatorial problem, we use a local greedy strategy. One may

want to use a pre-computed optimal strategy but this would

not be robust to differences between the a priori environment

model and the actual environment. Real-time state-of-the-art

local strategies are efficient, but still require much computing

resources and often make strong assumption about the target

motions. Our local strategy applies the two following rules:

(1) if the target is visible, try to get closer to the target

while maintaining visibility; (2) else, find the shortest path

to the closest position which satisfies the target visibility

criteria. While clearly sub-optimal, this simple local strategy

shows acceptable tracking performances, is extremely quickly

computed, and can be applied to either an AAV or an AGV.

This local strategy also brings an important advantage:

the branching factor of the tree is directly reduced to mt,

the number of available positions for the target, because the

strategy associates a single robot position for a given target

position. The tree complexity becomes O(mh
t) (see figure 4),

that is near 1019 with mt = 9 and h = 20. Note that mt could

be reduced by making assumptions on the target motions, but

this is not desired, and this does not drastically reduces the

problem the exponential complexity.

Target

Robot

Target

Local Strategy

Fig. 4. Reducing the complexity: the impact of a local strategy

C. From a tree to a cyclic pursuit graph

The previous complexity gain is not enough to allow the

satisfaction of real-time constraints: the complexity needs to

be further reduced, while still ensuring the detection of all the

potential failures. Various structure transformations of the tree

allow to find and exploit states redundancies, that are brought

by the fact that the tree is built upon a grid structure.

First, note that several positions pt of the target may be

handled by only one robot position pr. The former state-nodes

(τ, pt, pr) become new nodes of type (τ, {pt}, pr), with τ the

considered time. This lets the tree structure unchanged (figure

5).

Second, for a same stage in the tree, there are several

similar nodes which only differ by their parents. However the

evaluation of a node only depends on spatial (and sometimes

temporal) considerations, not on the past positions of the target

or the robot. So similar nodes can be gathered, even if they

have different parents. The tree structure can be changed into

a graph structure, but the information carried by the nodes are

the same (figure 6).

1 32

A BA

Merging similar
children nodes

1 32

A B

Fig. 5. Reducing the complexity: merging spatial redundancies

1 32

A B

4 5

C

6 7

D

1 2

A

7 8

D

9

E

1 32

A B

4 5

C

6 8

7

D

9

E

Using a graph
structure

Fig. 6. Reducing the complexity: using a graph structure to exploit spatial
redundancies

For a 9-connexity grid, these two structure transformations

drastically reduce the complexity, down to O(h5) in the

worst case (see appendix for details). Temporal redundan-

cies allow to further reduce the complexity, by introducing

temporal loops in the graph: some situations are indeed

encountered several times, e.g. when none of the vehicle

move, or after one loop around a building (figure 7). The

nodes are embedded the following data: (τ̂ , {pt}, pr) where

τ̂ = minτ{τ/(τ, {pt}, pr)}, i.e. τ̂ is the first temporal occur-

rence of the considered spatial state. The resulting structure is

referred to as the pursuit graph.

Last, we introduce an iterative algorithm to build the graph,

which allows to only consider the real new nodes at each next

temporal step, which are referred to as the front nodes. This

shrinks the complexity down to O(h3), still without any loss

of information nor precision in the prediction (see appendix

for details).

1 32

A B

6 8

7

D

Introducing
temporal loops

1 32

A B

1 2

A

6 8

7

D

2

A

Fig. 7. Reducing the complexity: introducing temporal loops

The resulting complexity is polynomial of low degree,

which allows to assess the potential failures, and hence the

needs for team support in real time. Each potential failure

generates a task, which has the form (τ, p) where τ is the date

of the failure and p its position. In other words the support

task is defined as watch the position p at date τ . The result is

a small set of tasks, which is empty most of the time (when

the target is fully under the control of the pursuer), and which

constitute the seeds for multirobot cooperation.

D. Results

The bounded tractable complexity and the fact that the elab-

orated solution guarantees the assessment of all the potential

failures are satisfying, but in practice, how does the pursuer

perform and are the complexity bounds low enough for real-

time applications?

Three examples are hereby presented to appreciate the

performance of the solution: one takes place in a Manhattan-

like environment, one is a “river-crossing” situation, and one

exploits models from an actual experimental field.

(a) Robot traversability

Phase IIPhase I

Hidden Fail

(b) Target traversability

(c) Robot visibility

Fig. 8. Pursuit in a Manhattan environment: (a) traversability for the pursuer
(AAV); (b) traversability for the target (ground target); (c) Visibility map:
elevations of the buildings, and presence of a covered area in the bottom
center of the map (in black). The vehicle trajectories are displayed (dark grey
= target; light grey = pursuer), and the yellowish areas indicates places where
the target is temporary hidden. The target escapes in the covered area (which
is a definite failure, denoted as fail). In phase I the target is under control,
while in phase II the target is too close to the covered area (danger).

1) Manhattan situation: Figure 8 shows the traversability

and visibility maps, and the trajectories of both the target

and the robot pursuer. The situation is a typical pursuit in a

Manhattan-like town center, with a ground target and an AAV

pursuer. There are buildings and, in the middle, a covered area

where the AAV can not enter in nor see through (it can only fly

above). The buildings do not constraint the pursuer movement,

but its visibility. The motions of both the target and pursuer

are holonomic.

Figure 9-a displays the number of dangers (in red) and

temporal horizon (in green) over the time. Dangers are states

that do require a request for support from other robots of the

team. One can distinguish two phases: in phase I the target

is under control (no predicted failures), even if the target

is sometimes temporary hidden (in yellow). The temporal

horizon increases at the beginning (easy environment) and

then lowers as more buildings obstruct the visibility. This is

the result of the real-time constraints and the adjustment of the

III

(a) Manhattan environment

I II III

(b) River-crossing situation

I II III

(c) Realistic Environment

Fig. 9. Evolution of the number of dangers (in red) and of the temporal
horizon (in green) as a function of time steps for the three considered cases.
The time laps during which the target is temporary hidden are highlighted in
yellow.

computation time required by the building of the pursuit graph

(see paragraph III-D4). In phase II, the target approaches the

covered area, which generates several danger states – and in

the absence of support by an other robot, the target eventually

enters the covered area.

The figures highlight that the greedy strategy, although not

optimal, behaves quite well. Furthermore, the system generates

temporally and spatially gathered tasks (remind each danger

generates one task). This is really important because on the

one hand it will avoid “goings and comings” from the support

robots, and on the other hand the support robots will probably

be able to handle several tasks at the same time, which will

help to minimize the number of robots required for the pursuit

mission (see section IV).

2) River-crossing situation: Figure 10 shows a situation

where the target and the robot do not have the same traversabil-

ity map, with an advantage for the former – imagine for

example that the target is waterproof whereas the robot is not.

While the target crosses the river, the robot has to take the

bridge instead of directly following the target (phase I), which

will probably leads to a temporary occlusion (phase II), until

the robot reaches the target again (phase III).

Phase I

Phase II Phase III

Hidden

(a) Robot traversability (b) Target traversab. (c) Robot visibility

Fig. 10. Pursuit in a river-crossing situation: (a) traversability for the pursuer
(AAV), the river is the at the bottom of the terrain, a bridge in on the left;
(b) traversability for the target (ground target); (c) visibility map. Difficulties
arise when the target crosses the river, as the pursuer cannot follow it.

Figure 9-b displays the number of dangers and the temporal

horizon evolution over the pursuit. One can again distinguish

three phases: at the beginning there are risks that the target

escapes (by breaking some visibility constraints); then as the

target trajectory is not optimal the risks disappear, even if the

target hides behind the building; at the end the pursuer catches

up the target again. As the surrounding environment forms

a dead-end, which is easy to handle, the temporal horizon

reaches high values (over sixty time steps).

Phase I

Phase II
Phase III

Hidden

Hidden

(a) Robot and target traversability (b) Robot visibility

Fig. 11. Pursuit in a realistic environment: (a) the pursuer (AGV) and ground
target traversability; (b) the pursuer visibility. Difficulties arise in cluttered
areas (phases I and III).

3) Experimental field situation: The third example is a re-

alistic environment for ground target and pursuer, the vehicles

evolve in both cluttered and rather clear areas (figure 11).

As figure 9-c shows, dangers exist near and within the

cluttered areas, whereas in less difficult areas the greedy

strategy performs well enough to prevent risks of failure

(no need for support). In cluttered areas, the greedy strategy

performs quite well too. It cannot prevent the target to escape

with an optimal strategy, but is able to follow quite easily a

not so adversarial target.

4) Real-Time performances: The previous sections states

that considering a 9-connexity grid, the upper bound for

the complexity in the graph construction is O(h3) in the

worst case. It actually appears that the complexity is rather

near quadratic (figure 12). This allows real-time computation,

considering a value of 1 or 2 seconds for the time steps

(figure 13), while keeping a reasonably acceptable temporal

horizon (above 15). As a matter of fact, the temporal horizon

is constantly adjusted to fit the computation time with the real-

time constraint – that is, expand at least the graph of one time

step in no longer than one time step.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0

200

400

600

800

1000

1200

1400

1600

1800

Empirical Data

F(x) = 2* x^2.2

Temporal horizon

C
o

m
p

u
ta

ti
o

n
 t
im

e
 (

m
s
)

with

R² = 0.996

F(h) ≈ 2.h2.2

Fig. 12. Typical evolution of the computation time with the temporal horizon.
Polynomial regression gives a near quadratic complexity (here : F (h) ≈
2 ∗h2.2 with a very confident value for the coefficient of determination R2).

Note on figure 13 that at few times the computation time

exceeds the 1sec cycle criteria. This is actually because the

system currently computes the states not one by one, but one

horizon step at a time. As the prediction of the computational

cost is not very precise, sometimes the system asks for one

more horizon step and exceeds the time constraint. This

is always balanced by the next computation cycles, which

are very low. This would be solved by a slight adjustment

of the implementation to compute the states one by one,

improving both the respect of the time constraints and the

overall performance (since more states should be computed).

Fig. 13. Computation cycle at each time step for the tree previous examples.
The dashed line represents the “one second” limit.

IV. SUPPLYING TEAM SUPPORT

While a pursuer performs the following task, it predicts all

its potential failures until a temporal horizon τ + h, τ being

the current time. These predictions straightforwardly generate

a set a support tasks, defined as “watch place p at time θ”, with

p a cell of the spatial grid and τ ≤ θ ≤ τ+h. By construction,

the pursuer which issues these tasks cannot handle them. But

it manages them: it allocates them to other robots according to

their availability, capacities, priorities and the global objective

of minimizing the number of required robots. Note that com-

munication issues are currently not considered – they mainly

lead to situational awareness inconsistencies between robots,

and may also lead the pursuer to have no (or not enough)

support.

The set of support tasks is updated at each time step.

Depending on the target motions, new tasks may occur and

previous ones may become deprecated. The pursuer broadcasts

the updates to the surrounding robots, which in turn update

their current tasks list and evaluate if they could be of any

help for the non-allocated tasks: this is a classical multiple

task assignment problem.

Task allocation problems have given rise to a large amount

of work, they raise combinatorial issues and finding optimal

solution is still very difficult for non-trivial sized problem.

Nevertheless many solutions have been proposed, for example

using stochastic methods [15]. Auction-based approaches have

been largely studied (see Dias et al. [6] for a survey) and have

been shown to efficiently produce acceptable solutions. Choi

et al. [4] presents decentralized algorithms which lead to good

solution with some guaranties for optimum. The authors also

highlight the combinatorial issue raised by the construction of

the bundles of tasks (how to choose which subset of tasks will

an agent handle) and the conflicts that result from the iterative

construction of those bundles.

We have chosen to implement an auction process, as such

approaches have shown good results and can handle incon-

sistencies within the situational awareness of agents. But in

our case, costs are quite different from usual: as we aim to

minimize the number of required robots, performing one or

several support tasks has the same cost for a given robot,

whereas reward is linear with the number of handled tasks.

The auction process is one-turn, with multiple bids allowed:

after the update of the task lists, each available robot computes

several bundles of tasks it can handle together, and propose

them to the auctioneer (the pursuer robot). Then the auctioneer

combines those bundles and allocates subset of tasks (either

a bundle or sub-part of a bundle) to the robots, trying to

minimize the number of robots involved.

The support robots compute the bundles of tasks they can

handle according to their capacities, the other tasks they

already have, and their goals and priorities. As they cannot

be exhaustive (n tasks lead to
∑n

p=1

(

n
p

)

= 2n − 1 possible

bundles), they only compute the biggest bundles in an iterative

way. We also want each task to be part of at least one bundle

(if the robot is indeed able to perform the task). The results is

an overlapping partition of the task set. Reminding the results

of part III, the generated support tasks are spatially and tem-

porally gathered, which helps to keep a small number of task

bundles (usual values are 0 to 3). Tasks are also independent

from each other (except for the temporal constraints) and thus

can be handled separately.

Once these bundles are computed, the auctioneer gathers

them and allocate tasks. It optimally combines the different

bundles according to the following criteria :

(i) all the support task must be handled if possible

(ii) the number of required robots must be minimized.

This directly comes from the objective function (1). Finding

the optimal combination of bundles could be expensive: con-

sidering Nt the average number of bundle for each robot and

Nr the number of bidding robots, there are O((Nt + 1)
Nr)

possible combinations3. Typical maximum values are Nt = 3
and Nr = 4, which leads to 44 = 256 possible combinations.

This is still easy and quick to compute for the auctioneer

using Boolean representation and bit-to-bit computation. Fi-

nally, combinations are ranked with the number of handled

tasks (max) and the number of support robot involved (min),

including the previously required robots for non-deprecated

former tasks. Then the auctioneer sends the support robots the

support tasks they have been allocated.

Note that the heavy computational load of the auction

phase is deported on the bundles construction, sparing the

auctioneer which is also the pursuer. It can thus spend more

time computing the pursuit graph and expending the temporal

horizon, which is the heart of the system. For the same reason

we also introduce a temporal shift (of one time-step) between

the time tasks are issued and the time associated bids are

computed. Doing so allows support robots to compute bundles

while the pursuer computes the next pursuit graph, avoiding

the robots to await for the others. This shift is negligible

compared to the expected horizon size (1 ≪ h).

Work is still in progress for this part, but first results are

promising and show that a minimum number of robots are

involved, while still respecting our real-time constraints.

V. DISCUSSION

We have presented a new approach for realistic target

tracking problems. Keeping in mind that a team of robots often

have several distinct objectives, we provide a new pursuer-

centered cooperation which minimizes the number of required

robots at any time, thus satisfying an economy of means

principle. The approach is based on a single pursuer which

calls for team support only when required, by the evaluation

of future failures it can not handle alone. We exploit realistic

multi-layered 3D models, which allow to consider different

capacities (such as being waterproof or not) for both targets

and robots. Kolling et al. [9] recently introduced 2.5D visibility

in pursuit-evasion, but to the best of our knowledge it is the

first time realistic multi-layered models as ours are used for

such problems.

As our local following strategy performs quite well, only

one robot is required most of the time, but team provide

support when needed to prevent the target loss. The resulting

system shows promising results in realistic simulations, and

integration within a team composed of one AAV and two

UGVs is under way. We intend to extend the models by

considering communication constraints and failures: this is not

a trivial issue, as communication constraints threaten the whole

cooperation. Possible solutions are to extend the anticipation

from the pursuer, and to integrate communication rendez-vous

for the support robots.

3“+1” is for the empty bundle : each robot can either handle a bundle
of tasks, or none. This is important to consider as we want to minimize the
number of required robots.

Problems may also occur if the pursuer does not behave as

planned (i.e. according to its pursuing strategy). However, in

such situations the system is not totally failing, as re-planning

and re-computing the risks on-the-go remain tractable. Be-

sides, adjusting the spatial and temporal resolutions will lead

to better anticipation and to more flexibility in the execution

of the plans.

We also plan to integrate finer probabilistic motion models

and thus to handle potential failures according to both their

probability and their temporal proximity.

Finally, our longer term perspective is to merge our target

tracking system within an overall surveillance scheme, aiming

at having a whole team of robots performing under realistic

conditions several tasks and achieving different goals in par-

allel.

ACKNOWLEDGMENTS

This research is partially funded by the DGA.

APPENDIX

We develop hereby the mathematical bounds presented

section III. The mathematical proof stands for an environment

free of any obstacle and in 9-connexity (using a 2D grid).

Unexpectedly this is an upper bound for the complexity,

as obstacles, viewlength and lower-connexity lead to motion

restriction, and thus reduce the number of possible spatial

states.

Under such hypotheses, we have, for each stage s in

the graph obtained after spatial redundancies treatment, at

most ns nodes with ns ≤ |Acc (target, s)| ∗ |Acc (robot, s)|
where Acc (i, s) = Ai,s is the set of all accessible posi-

tions for i in time s. The total size N of the graph is

under
∑h

s=1
|At,s| ∗ |Ar,s|. Besides, in 9-connexity we have

Ai,s ≤ 1 +
∑s

σ=1
8σ = (2s + 1)2, therefore we have

N ≤
∑h

s=1
(2s + 1)4 = O(h5). Here we consider that the

pursuer and the target have the same velocity: this does not

restrict the generality of our proof, as different velocity will

only change the resulting complexity (|At,s| 6= |Ar,s|), not the

reasoning.

Adding temporal loops and iterative construction for the

graph, one only develop the new nodes at each stage, referred

to as the front nodes. Under the same hypothesis, we now have

a number of front nodes Nf :

Nf ≤ (At,h −At,h−1) ∗Ar,h−1 + (Ar,h −Ar,h−1) ∗At,h−1

≤ (8h ∗O(h2) + 8h ∗O(h2))
Nf ≤ O(h3)

REFERENCES

[1] T. Bandyopadhyay, Yuanping Li, M.H. Ang, and D. Hsu. A
greedy strategy for tracking a locally predictable target among
obstacles. In Proceedings. ICRA 2006. IEEE International
Conference on, pages 2342–2347, may 2006.

[2] S. Bhattacharya and S. Hutchinson. On the Existence of
Nash Equilibrium for a Two Player Pursuit-Evasion Game with
Visibility Constraints. In Algorithmic Foundation of Robotics
VIII, volume 57 of Springer Tracts in Advanced Robotics, pages
251–265. 2009.

[3] S. Bhattacharya, S. Candido, and S. Hutchinson. Motion
strategies for surveillance. In Proceedings of Robotics: Science
and Systems, 2007.

[4] Han-lim HL Choi, Luc Brunet, and Jonathan P How.
Consensus-based decentralized auctions for robust task alloca-
tion. Robotics, IEEE Transactions on, 25(4):912–926, 2009.

[5] T. Chung, G. Hollinger, and V. Isler. Search and pursuit-evasion
in mobile robotics. Autonomous Robots, 31:299–316, 2011.

[6] M.B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based
multirobot coordination: A survey and analysis. Proceedings of
the IEEE, 94(7):1257 –1270, july 2006.

[7] B. Jung and G. S. Sukhatme. Tracking Targets Using Multiple
Robots: The Effect of Environment Occlusion. Autonomous
Robots, 13:191–205, 2002.

[8] A. Kolling and S. Carpin. Cooperative Observation of Multiple
Moving Targets: an algorithm and its formalization. Int. J. Rob.
Res., 26:935–953, September 2007.

[9] A. Kolling, A. Kleiner, M. Lewis, and K. Sycara. Pursuit-
evasion in 2.5D based on team-visibility. In IROS 2010,
IEEE/RSJ International Conference on, pages 4610 –4616, oct.
2010.

[10] R. Mottaghi and R. Vaughan. An integrated particle filter and
potential field method applied to cooperative multi-robot target
tracking. Autonomous Robots, 23:19–35, 2007.

[11] R. Murrieta-Cid, R. Monroy, S. Hutchinson, and J.-P. Laumond.
A Complexity result for the pursuit-evasion game of maintaining
visibility of a moving evader. In IEEE International Conference
on Robotics and Automation.

[12] R. Murrieta-Cid, B. Tovar, and S. Hutchinson. A Sampling-
Based Motion Planning Approach to Maintain Visibility of
Unpredictable Targets. Autonomous Robots, 19:285–300, 2005.

[13] R. Murrieta-Cid, R. Sarmiento, S. Bhattacharya, and S. Hutchin-
son. Surveillance strategies for a pursuer with finite sensor
range. International Journal on Robotics Research, 2007.

[14] D. Portugal and R. Rocha. A Survey on Multi-robot Patrolling
Algorithms. In Technological Innovation for Sustainability, vol-
ume 349 of IFIP Advances in Information and Communication
Technology, pages 139–146. Springer Boston, 2011.

[15] Emilio Frazzoli Sertac Karaman, Tal Shima. Task assignment
for complex UAV operations using genetic algorithms. AIAA
Proceedings.[np]. 10- . . . , 2009.

[16] Jorge Urrutia. Art Gallery and Illumination Problems. In
Handbook of Computational Geometry, pages 973–1027, 2000.

[17] Christopher Vo and Jyh-Ming Lien. Visibility-Based Strategies
for Searching and Tracking Unpredictable Coherent Targets
Among Known Obstacles. In ICRA 2010 Workshop: Search and
Pursuit/Evasion in the Physical World: Efficiency, Scalability,
and Guarantees, Anchorage, Alaska, May 2010.

[18] L. A. Zadeh and J. H. Eaton. Optimal pursuit strategies in
discrete-state probabilistic systems. Trans. ASME Ser. D, J.
Basic Eng, 1962.

[19] Ke Zhou and S.I. Roumeliotis. Multirobot Active Target Track-
ing With Combinations of Relative Observations. Robotics,
IEEE Transactions on, 27(4):678 –695, aug. 2011.

http://guppy.mpe.nus.edu.sg/marcelo/publications/icra06-tirtha.pdf
http://guppy.mpe.nus.edu.sg/marcelo/publications/icra06-tirtha.pdf
http://guppy.mpe.nus.edu.sg/marcelo/publications/icra06-tirtha.pdf
http://dx.doi.org/10.1007/978-3-642-00312-7_16
http://dx.doi.org/10.1007/978-3-642-00312-7_16
http://dx.doi.org/10.1007/978-3-642-00312-7_16
http://www.roboticsproceedings.org/rss03/p32.pdf
http://www.roboticsproceedings.org/rss03/p32.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5072249
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5072249
http://dx.doi.org/10.1007/s10514-011-9241-4
http://dx.doi.org/10.1007/s10514-011-9241-4
http://dx.doi.org/10.1023/A:1020598107671
http://dx.doi.org/10.1023/A:1020598107671
http://dl.acm.org/citation.cfm?id=1286136.1286137
http://dl.acm.org/citation.cfm?id=1286136.1286137
http://www.ida.liu.se/divisions/aiics/publications/IROS-2010-Pursuit-Evasion-25d.pdf
http://www.ida.liu.se/divisions/aiics/publications/IROS-2010-Pursuit-Evasion-25d.pdf
http://dx.doi.org/10.1007/s10514-007-9028-9
http://dx.doi.org/10.1007/s10514-007-9028-9
http://dx.doi.org/10.1007/s10514-007-9028-9
http://homepage.cem.itesm.mx/raulm/pub/icra08.pdf
http://homepage.cem.itesm.mx/raulm/pub/icra08.pdf
http://dx.doi.org/10.1007/s10514-005-4052-0
http://dx.doi.org/10.1007/s10514-005-4052-0
http://dx.doi.org/10.1007/s10514-005-4052-0
http://www-cvr.ai.uiuc.edu/~sbhattac/surv.pdf
http://www-cvr.ai.uiuc.edu/~sbhattac/surv.pdf
http://dx.doi.org/10.1007/978-3-642-19170-1_15
http://dx.doi.org/10.1007/978-3-642-19170-1_15
http://sertac.scripts.mit.edu/web/wp-content/papercite-data/pdf/karaman.shima.ea-gnc09.pdf
http://sertac.scripts.mit.edu/web/wp-content/papercite-data/pdf/karaman.shima.ea-gnc09.pdf
http://correo.matem.unam.mx/~urrutia/ArtBook.html/Completo.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.175.358&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.175.358&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.175.358&rep=rep1&type=pdf
http://users.auth.gr/~kehagiat/DagstuhlTalk/Zadeh1962.pdf
http://users.auth.gr/~kehagiat/DagstuhlTalk/Zadeh1962.pdf
http://mars.cs.umn.edu/tr/reports/Ke10.pdf
http://mars.cs.umn.edu/tr/reports/Ke10.pdf

	Introduction – context
	The pursuit problem
	Problem statement
	Realistic Models

	Assessing the need for team support
	Failure evaluation
	Introducing the tracking strategy
	From a tree to a cyclic pursuit graph
	Results
	Manhattan situation
	River-crossing situation
	Experimental field situation
	Real-Time performances

	Supplying team support
	Discussion
	Appendix

