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An innovations approach to fault diagnosis in linear time-\arying
descriptor systems*

Abdouramane Moussa Ali? and Qinghua Zhany

Abstract— In this paper fault diagnosis is studied for linear and Ey, A, and B;, are time varying matrices of appropriate
time varying descriptor systems, the discrete time counter sjzes. The matrixZ;, may not be of full column rank.
part of dynamic systems described by differential-algebra Systems governed by (3) are knowndgscriptor systems

equations. The Kalman filter for descriptor systems is first This i | d ient f K f tudvi
revisited by completing existing results about its propertes IS IS a general and convenient framework for studying

that are essential for the purpose of fault diagnosis. Based DAE systems which can be appropriately linearized. Some
on the analysis of the effects of the considered actuator and descriptor systems can be simply regarded as implicitly
sensor faults on the innovation of the Kalman filter, it is shavn written State-space equationS, this is the case of Systems
that the considered fault diagnosis problem in linear time in which the matrixE;, has full column rank. In principle
varying descriptor systems is equivalent to a classical liear . . '
regression problem formulated by appropriately filtering the the theqry developed for (explicit) State'Space_equam )
input-output data. Following this result, algorithms for fault b€ applied to such systems. However, even in this case, it
diagnosis through maximum likelihood estimation are then is preferable to study them in the framework of descriptor
proposed. A numerical example is presented to illustrate ta  gystems, ifE, is possibly ill-conditioned.
proposed method. Descriptor systems have attracted considerable attention
|. INTRODUCTION in recent decades where great efforts where made to investi-

Many modern engineering systems can be modeled by e}2t€ descriptor system theory and applications ([1], [2], [
plicit ordinary differential equations (ODE) of the folling [4], [5]). Fault diagnosis (detection and identificatiorfafdilt)
form is rarely tackled in the descriptor case, in contrast to #sec

N of systems with classical explicit state space representat
() = fz(®), ult) @ where the theory is relatively well-established ([6], [7],
where z(t) and u(t) represent respectively the (vectorial)[g], [9], [10], [11] and references therein). For descripto
state and input of the system(t) denotes the time deriva- system fault diagnosis, most studies are on observer-based
tive of x(t), and f(-,-) is some function characterizing approaches in the time invariant case ([12], [13], [14],][15
the system. Such state space equations have a long-tgnmg).
mathematical history, and a large number of analytical and |n the present paper, fault diagnosis will be studied for the
numerical tools have been developed for their study. general class of time-varying discrete time linear desorip
However, in some cases such an explicit state space mo@gktems in the presence of actuator faults and sensor,faults
for the considered system is not available. Instead thesyst which will be modeled as linearly parametrized additive
may be described bymplicit differential equations, known terms in the descriptor system state equation (3) and in
as differential-algebraic equations (DAE), of the form the output equation. The main contribution of this paper is
F(i(t), z(t), u(t)) = 0 (2 establish the relationship between the innovation of the
descriptor systerKalman filter and the considered paramet-
where F'(-, -, -) is some vector-valued function. i(t) can rically modeled faults, which will constitute the basis for
be solved for from (2), then the DAE can be converted tgault parameter estimation.
an ODE, but this operation is not always possible. It is thus The paper is organized as follows. In Section Il, the
necessary to study DAE systems in some situations. descriptor system Kalman filter is first revisited from a
After linearization along a trajectory and discretization new point of view, which is essential for the new results
time, the original nonlinear DAE system is approximatelyhresented later in this section for charactering the inno-
described by ammplicit discrete time state space equation vation of this Kalman filter. Section IIl first establish the
Era(k) = Ap_rz(k — 1) + Br_qu(k — 1) + u(k — 1) (3) relationship between the ipnovation of the descriptoremst
Kalman filter and the monitored faults, based on which fault
wherez, v and p are respectively the discrete time statediagnosis algorithms through fault parameter estimatien a
the input and the modeling errors indexed/y- 0,1,2,...,  then proposed. In section IV, a simulation example is used

“This work was supported by the ITEA MODRIO project. to illustrate the effectiveness of the proposed approach.
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in this section let us revisit it from another point of viewet where

estimation of the probability distribution of the state t@c T

conditioned by the past observations. Yoo =[ 275y - yk)" ] (8)
Consider the problem of estimating the stateof the

system described for > 1 by andE(-) denotes the mathematical expectation.

Remark 1:Notice that the evaluation of this conditional
Eyx(k) = Ag—12(k — 1)+ Br—1u(k — 1) + u(k — 1) (4) expectation depends on the input sequence up to the time
k — 1, which are not explicitly expressed in (7) for the
compactness of the notation.

y(k) = Crx(k) + Dy—qu(k — 1)+ v(k — 1) (5) Let px,y,px|y and py denote respectively the joint,
conditional and marginal probability density functions of

based on the measurement vegjor

wherez(k) € R™, u(k) € R™ is the input vector (possibly .
including other known variablesy(k) € RP, Ej.1, A, some random variables vectos and Y. It follows from

By, Cy, Dy, are known real matrices of compatible Sizesequatlon (6) and the Gaussian distributions\gf,, that the

w(k) andv(k) represent modeling/measurement errors anig Nt probability density functio x. . ;... (Xo:, Yo:x) is, up
: 10 a normalization factor, equal to
are modeled as mutually independent and zero-mean white

Gaussian noises with covariance matri¢gsandS;, respec- 1 4

tively. exp | =5 (Vo = HXow) Ry 2y Vo — HieXow) | (9)
We shall make the following assumptions on system (4)- ) ) )

(5). whereR;_1 is the covariance matrix ofy.s.

Al : The initial statex(0) is Gaussian distributed with _1he conditional density function marginalized fofk) is
known meanz, and variance matrix?,, and is inde- 9iven by

pendent ofu andv. () Your) / (Ko Vo JAX.
T 2\ k) = . " :k :k tk—
A2 : For all k > 1, the matrixH;, = [ Ej } is supposed Pa(k)[Yo. ok Rkn PXo.& Yo, 20k | T0ck /A2 0k -1

Ck (10)
to be full column rank. where
A3 : For all £ > 0, the variance matrice®; and Sy are
positive definite. PXon Yo (Xok | Your) = PXounYour (Xoik, Yoi) (11)
From (4)-(5), we obtain the following equation o PYo., (Yor)
Vo = HiXok + Vo ) Py (You) = /R(M)n PXouYou (Xok, Your )Xok (12)
where For any given value o}, the conditional density func-
[ Bou(0) 1 tion p, (k) [ve.. (2(k)|Yo.x) is Gaussian, which is maximized
: 2(0) by (k) as defined in (7).
Bi_1u(k —1) z(1) Given the observation sequend®.;, the conditional
Vo = | To , Xok = : density functionpx,,, |v;.. (Xo:x|Yo:x) is Gaussian, which
y(1) = Dou(0) A is maximized byE[Xo..|Yo.x]. The lastn components of
: z(k) E[Xo.1|Y0.x] are equal tai(k) as defined in (7).
L y(k) — Dy—qu(k —1) | The valueE[Xo.x|Yo.x] maximizingpx, ., vy, (Xo:x|Yo:x)
- —u(0) _ - Ay Ei i maximizes als@x,., ve.. (Xo:x, Yo:x), as in (11) the denom-

inator is independent oK.
It has been shown in [1] (Lemma 2.3 and Lemma 2.4) that
the maximization solution of (10) given h¥(k) defined in
(7) is equivalent to the recursive state estimate derivenh fr
v(0) Ch . .
the following equation

L vk—1) | I Cr | Z(k) = Hyz(k) + V(k—1) (13)
z(0) ~ N (0, P,) is a Gaussian vector independent.oéind
v (due to Assumption Al).
Due to the linearity of (6) and the Gaussian distributions of (k)
the noises involved in (6);(k) is also Gaussian distributed.
It is thus sufficient to compute the mathematical expeatatio
of z(k) conditioned by the observations up to tira@nd the Vik—1) = [ —Ap—1@(k —1) — p(k — 1) } (15)
corresponding covariance matrix to estimate the distiobut v(k —1)
of z(k) conditioned by the observations up to tirhe
Let the conditional expectation af(k) be denoted by

where

].) + kalu(k — 1)

Ajp_12(k —
—{ y(k) — Di—rulk — 1) ] (14)

%(k—1) is the estimate of(k—1) at the previous instant and
Z(k —1) is the corresponding estimate error with covariance
#(k) 2 E[z(k)|Yo.] (7) matrix Py_;.



Giveni(k—1) andy(k), the recursive state estimat¢k) is called the innovation. For classical explicit state gpac
derived from (13) maximizes im(k) the joint probabil- systems, the Gaussian distribution and the whiteness gyope
ity density functionpg x—1).(k),y(x) (z(k — 1), 2(k),y(k)), of the innovation sequence is well known. For descriptor
which is, up to a normalization factor, equal to systems, this whiteness property was not discussed in [1],

1 nor in any other reference, up to our knowledge. Its extensio

exp (—§(Z(k) — Hyx(k)Ri 1 (Z (k) — Hkx(k))) (16) to linear descriptor systems is summarized in Theorem 1.
Theorem 1:The innovationy(k) of the Kalman filter (23)

where Ry, is the covariance matrix oF (k — 1) in (13) for the descriptor system (4)-(5) is a centered white Ganssi

given by sequence with the covariance matrix equal to
Rii — { Ap1Pe 1 AT |+ Qra 0 ] (17) o CrP.CT + Rk—l_- . (25)
0 Sk-1 The proof, similar to that of [17], is omitted here due to
Given Z(k), the maximization inc(k) of (16) leads to space limitation.
k) = (HTRH)'HIR:.Z(k)  (18) [1l. I NNOVATION BASED FAULT DIAGNOSIS

A. Problem formulation

Note that, the inverse matrices in (16) and (18) are well ~ynsider a descriptor system as expressed in (4)-(5), but

defined because of Assumptions A2 and A3. now subject to actuator and sensor faults, in the form of
The corresponding estimate errofk) is given by

Erx(k) = Ap—1x(k — 1) + Br—qu(k — 1) + @10 + u(k — 1)
y(k) = Crx(k) + Dy—1u(k — 1) + W10 + v(k — 1) (26)
The_: calcglapon of the error covariance assomated with th\/vhere the termsb), 10 and ¥,_,0 represent respectively
estimate is independent of state and is given by

i(k) = —(HI R Hy) "HIR  V(kE—1) (19)

faults possibly affecting the state and the output equation
P, = (HI R Hy) (20) typically the former for actuator faults, and the latter for
sensor faults. The matricds,_; € R"*? andW¥,_; € RP*¢
It has been shown that the distributionagf) conditioned are assumed known, whereas transtantparameter vector
by Y (k) is Gaussian, with the conditional mean equal t® ¢ R? is unknown. The fault-free system is characterized
#(k). The covariance matrix of this conditional distributionby the nominal valué of the parameter vector. In order to
is equal to that of the estimation error, namély, hence the simplify the presentation, the zero nominal valiie= 0 is
conditional density functiom,. )|y ) (z(k)|Y (k)) is fully  assumed in this paper. It is straightforward to generalize t

characterized a8/ (z(k), Py). results to the case of non zero nominal value.
Consider the following partition The fault diagnosis approach presented in this paper will
Ly K= PHT 31;11 21) be essentially based on the estimation of the fault paramete

vector. As the state vectar(k) is also unknown, typically
with L, € R"*" and K, € R"*?. The dynamics of the state joint state-parameter estimation should be consideredadh s

estimation erroti(k) can be expressed from (15), (19) ancBn approach. A classical solution consists in considetieg t

(21), yielding augmented systewbtained by concatenating the parameter
vector # into the state vector, so that Kalman filter can be
z(0) = z(0) — Zo (22a)  applied to the augmented system. Such a solution has a few

#(k) = Ly Ag_1d@(k — 1) + [Lep(k — 1) — Kgv(k — 1)) (22b)  drawbacks:

« treating equallyz(k) and 0 as if they had similar
dynamics may make the tuning of the Kalman filter
delicate.

#(0) = zo (23a) « the computational cost of the Kalman filter increases

#(k) = LpAp_13(k — 1) mainly because of the larger covariance matrix of the

b augmented state estimation error.
+ [LaBr-1 = K Dp—aJu(k — 1) + Kyy (k) (230) 0 approach presented below decouples to some extent

Finally, the descriptor system Kalman filter is summarized
in the following equations

§(k) = Cri(k) (23¢c)  parameter estimation from state estimation.

_ T T T T
P = LiAp 1 Peoa Ay Ly + D@1 Ly, + K’“Sk"égg) B. Innovation in the presence of faults

_ _ _ In the considered system modeled by (26), as the value of
_ T 1 17T 1

Ly K] = (Hi By, 2y Hi)™ Hy By, (23¢) # is unknown, it is not possible to apply the Kalman filter
Ry = Ap1Pe 1Al +Qr—1 0 . (231 t© it. Instead, let us apply the Kalman filter to the faultefre

o 0 Sk—1 system (corresponding tb= 0), no matter if the considered

system is affected by faults or not. The main idea of this
paper is to analyze the innovation sequence of this Kalman
y(k) = y(k) — Dy—1u(k — 1) — Crz(k) (24) filter designed for the fault-free systefor the purpose of

In filtering theory, the output prediction error defined by



fault diagnosis. If the monitored system is indeed fawdefr 1) Batch estimationFor compact notations, let us define
then the innovation is a centered white Gaussian sequentee kp x 1 vectorY; ., thekp x ¢ matrix G1., and thekp x 1

as shown in Theorem 1. However, if the monitored systemectorV;.;, as

is affected by some fault9) (%2 0), the same Kalman filter,

. . . m Q 1
which has been designed for the fault-free system, will have _ y(_l) o . ZO(Q;
an innovation sequence with different properties. The full Yix= | : |, Gux = » Vi = | 7 (30)
characterization of the properties of the innovation segae (k) Qi 7% (k)

in the faulty case will be helpful for the diagnosis of fault
corresponding to changes ¢h This characterization is the
purpose of the following theorem.

Theorem 2:When the system (26) is affected by faults Vi = G0 + Vi (31)
modeled by®;_16 and/or¥,_,60, then the innovation se- . N
quencey(k) of the Kalman filter (23) designed for the fault- VAcfccl)Irdmg tohTr;]eogems 1 ang_z, _tgle_sub-vecty%k) of
free system and applied to (26) satisfies 1% Tollow each the Gaussian distribution

N (0,(CLPCT + Ry—1))

and are independent between different time instants.
where j°(k) is the innovation sequence that the fault-free Assume that the matrbG7,, S;  G1. is invertible (it
system would generate with the same Kalman filter @pd  implies that®; and ¥, vary sufficiently), then the maximum
is a matrix generated by linearly filtering,_; and ¥,_; likelihood estimation of) is given by

SThen equation (27) evaluated at different time instants can
be compactly written as

g(k) = 5°(k) + Q0 (27)

through the state space equations i -1
A _ T p.oT =10, )
Ty —0 (28) 0(k) = (Z; Qf (CGiPCT + Riy) Q)
Ty =LA 1T 1+ LpPr_1 — KpWp_y (28b) k
O = O Tk + Ujy (28¢) Yool (GiPcl + Ri) ) (32)
The proof, omitted here due to space limitation, is ob- i=1
tained by adapting the approach of [18] with the main step One can easily show that the estimation of the parameter
analyzing the dynamics of the variable vector 0 given by (32) is an unbiased minimum-variance
estimator. After the computation of the parameter estlimate
n(k) = &(k) = Txf (29)  4(k), its error covariance matrix given b57., S;t G1x)

provides a confidence region of the true parameter vegtor
Remark 2:Up to the white Gaussian noise terifi(k),  which then can be used to decide if the parameter estimate
the only unknown in (27) is the fault parameter vector §(k) is significantly different from the nominal parameter
hence this equation can be viewed as a linear regressigilue or not.
with the regression coefficients containeddinThe original 2) Jumps in the parameter vectoket us assume that the
fault diagnosis problem in the descriptor system (26) isitheparameter vectof may change abruptly from one level to
equivalent to the much simpler problem formulated in th@nother at some instants, but such changes are sufficiently
linear regression equation (27). rare events so that there is at most a single jump of the
The method adopted in this paper is based on paramefgirameter vector in the considered time window, say from
estimation: after the estimation éf fault diagnosis can be instantl to k.
easily made by comparing the estimated value to the known|f a jump occurred at some instafitbetweenl and k,
nominal value, by taking into account the uncertainty eelat Theorem 2 can no longer be applied, though the value of
to the white Gaussian noigg¢ (k) in (27). 6 is kept constant before and after the jump. In this case,
Theorem 2 can be replaced by the following result.
C. Maximum likelihood estimation of the fault parameter Corollary 1: If the parameter vectoé = 0 before the
vector time instant; and then takes another constant value, the

. . L innovation sequence satisfies
In this subsection, the fault parameter vectoiis first g

estimated based on data collected for time instant G(k) = §° (k) + Q0 (33)
1,...,k. In principle, this estimation assumes constént - . . .
during the collection of the data. In practice, it is assume}ﬂ’hereyo(_k) Is, as before, t_he faultjfre(_a innovation, ko
that the value ofl evolves slowly so that it can be considered> & matrix generated by "”e"’?”y filtering.— and Wy,
constant within the data window. In this case fault diagz;nosithrough the state space equations
can be made by processing data in batch. To=0 (34a)
Alternatively, it is assumed that the parameter veétis Y = Lpdp 1 Tr1 + [Lk(i)k—l _ Kk\i/k_ﬂ (34b)
constant most of the time, but jumps from time to time. This ’ T o -
case is discussed in the second part of this subsection. Q= Cp Ty + Vg (34c)



with @51 = 411555y, Uy = U115, andlyy  time instant in the algorithm. The detection function can be
being the indicator function. O derived from the innovatioy(k) as follow

In practice, the jump time j is usually unknown. To solve 3 . T . L
this problem, the estimation @fcan be made once for each  €(k) = (y(/f) — 0k — 1)) [(Cy PyC + Ry—1]™
assumed jump timg = 1,...,k, what is computationally N A
expensive. (y(k) — bk — 1)) (38)
D. Recursive estimation of the fault parameter vector to be c_ompared ~W'th a detectlo.n thrfeshold. to be chosen

o _ ) zé\rpproprlately. Asy(k) has Gaussian distributior(k) has

~ The parameter estimation based on (32) is unreliable #ni_square distribution with one degree of freedom, thes th
jumps of the parameter vectdr occur within the consid- reshold can be determined by looking up the chi-square

ered data window, as the constant parameter assumptigfe following a specified probability of false alarm ([22]
is then violated. Parameter jumps can be handled wnﬂg])_

techniques based on variable/time-varying forgettingofiec

([19]), covariance matrix re-setting/modification ([208nd IV. NUMERICAL EXAMPLE
sliding window ([21]). The recursive algorithm proposed Consider a nonlinear system described by
below provides a simple solution with a minimum computer P, ) =0
memory requirement, and yet with an efficient treatment of T (39)
parameter jumps. {y =5+ 6>
By using the matrix inversion lemma with
(A+BCD) ' =A™ —A"'B(DA'B+C ) DA™ z5id1 + O10(t) + g
. . _ x5d2 + 015(t) + gra — g5
it easy to deduce from (32) the following recursive form F(&,x,t) = f— (40)
O(k) = 6(k —1) + Oy(y(k) — bk —1))  (35) IR

x%—l—xi—%

with the matrix gain computed from the following equationswhereg — 10, 0, represents a possible bias on the measure-

Or = My 1 QT (CLPyCT + Ry 1 + QM Q7)1 ment and
My = Mp_1 — O QM4 a(t) = —2-0.1sin(0.3t) — 0.2sin(0.5¢)  (41)
(36) B(t) = 2+40.2sin(0.3t) — 0.4sin(0.5¢)  (42)

If the parameter estimaté(k) and the matrix\/, are o ) ]

appropriately initialized, then the recursive estimdg) For this illustrative example, the nominal parameter vecto
given by (35) is equivalent to the batch estimate (32). I¥f 9iven by#; =1 and¢; = 0. _ o
order to exponentially forget past observations, it is well After discretization in time and by replacing the derivativ
known that a forgetting factor can be introduced, so thdE'm Py backward Euler approximation, then a linearization
the matrix gain computation is modified as along a given trajectory(t) = (0, 0, 0, —1, 1) wherel >

0, the continuous nonlinear system in (39) is approximately
{@k = My—1QF (NCrP.CL + Ry—1] + QkMk_lQ{)_l described by the following implicit discrete time state spa

My = $Mj—1 — 10,0 My_1 equation

(37) _
where) € (0, 1) is a forgetting factor. {Ekx(k) = Aroax(k = 1)+ @6 + (k- 1)
The inverse of the matrix\/, provides an estimate of y(k) = Cux(k) + g-10 +v(k —1)
the parameter estimation error covariance matrix, which cavhere
be used to derive a confidence region of the true parameter Tl T
vector for the purpose of fault diagnosis. A
Jumps in some parameters may cause a large fluctuation 0 — 0 g 0—g
in the parameter estimates during some transient interval By
after the jump, typically impacting the estimates of all the Ay
components of), though some of them have not changed. 0o -1 0 — 0
To improve the tracking capability of the above algorithm, a 0 0 0 0 0
detection function is used to determine whether a parametgrr]
change has occurred or not. Once a change is detectedd [ T
at some instantj, then some elements of the estimation Ay
algorithm are modified as follows. In the computation of 0o — 0 0 0
T, a reinitialization is made at instait(Y; = 0) and in Apq = 1
the Kalman filter the zero nominal parameter is replaced by Ay
the estimatd(j.) computed after the transient timg. ¢ /) 0 0 0 — o0
and to considering the detection tinjg as the new initial 0 0 0 2l 21

(43)




Ay = t(k)—t(k—1) is the sampling period for the discrete modeled as abrupt parameter changes in a class of discrete-
time modelC}, = [ 00 0 0 1 }T, U, = [0, 1]and time descriptor systems. The descriptor system Kalman filte
is used to generate an innovation sequence. We have shown

:ﬂgig 8 that the innovation sequence is white and can be used
U1 =100, 1] and®;_, = 0 0 to estimate possible changes in the parameter vector. The
0 0 implementation of this fault diagnosis approach requires

0 0

knowledge of the nominal parameter. The decision for fault

The sampling period for the discrete time model s diagnosis is based on the time evolution of parameter esti-
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