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An innovations approach to fault diagnosis in linear time-varying
descriptor systems*

Abdouramane Moussa Ali1, 2 and Qinghua Zhang3

Abstract— In this paper fault diagnosis is studied for linear
time varying descriptor systems, the discrete time counter-
part of dynamic systems described by differential-algebraic
equations. The Kalman filter for descriptor systems is first
revisited by completing existing results about its properties
that are essential for the purpose of fault diagnosis. Based
on the analysis of the effects of the considered actuator and
sensor faults on the innovation of the Kalman filter, it is shown
that the considered fault diagnosis problem in linear time
varying descriptor systems is equivalent to a classical linear
regression problem formulated by appropriately filtering the
input-output data. Following this result, algorithms for f ault
diagnosis through maximum likelihood estimation are then
proposed. A numerical example is presented to illustrate the
proposed method.

I. I NTRODUCTION

Many modern engineering systems can be modeled by ex-
plicit ordinary differential equations (ODE) of the following
form

ẋ(t) = f(x(t), u(t)) (1)

where x(t) and u(t) represent respectively the (vectorial)
state and input of the system,ẋ(t) denotes the time deriva-
tive of x(t), and f(·, ·) is some function characterizing
the system. Such state space equations have a long-term
mathematical history, and a large number of analytical and
numerical tools have been developed for their study.

However, in some cases such an explicit state space model
for the considered system is not available. Instead the system
may be described byimplicit differential equations, known
as differential-algebraic equations (DAE), of the form

F (ẋ(t), x(t), u(t)) = 0 (2)

whereF (·, ·, ·) is some vector-valued function. Iḟx(t) can
be solved for from (2), then the DAE can be converted to
an ODE, but this operation is not always possible. It is thus
necessary to study DAE systems in some situations.

After linearization along a trajectory and discretizationin
time, the original nonlinear DAE system is approximately
described by animplicit discrete time state space equation

Ekx(k) = Ak−1x(k − 1) +Bk−1u(k − 1) + µ(k − 1) (3)

wherex, u and µ are respectively the discrete time state,
the input and the modeling errors indexed byk = 0, 1, 2, ...,
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andEk, Ak andBk are time varying matrices of appropriate
sizes. The matrixEk may not be of full column rank.

Systems governed by (3) are known asdescriptor systems.
This is a general and convenient framework for studying
DAE systems which can be appropriately linearized. Some
descriptor systems can be simply regarded as implicitly
written state-space equations, this is the case of systems
in which the matrixEk has full column rank. In principle,
the theory developed for (explicit) state-space equationscan
be applied to such systems. However, even in this case, it
is preferable to study them in the framework of descriptor
systems, ifEk is possibly ill-conditioned.

Descriptor systems have attracted considerable attentions
in recent decades where great efforts where made to investi-
gate descriptor system theory and applications ([1], [2], [3],
[4], [5]). Fault diagnosis (detection and identification offault)
is rarely tackled in the descriptor case, in contrast to the case
of systems with classical explicit state space representations,
where the theory is relatively well-established ([6], [7],
[8], [9], [10], [11] and references therein). For descriptor
system fault diagnosis, most studies are on observer-based
approaches in the time invariant case ([12], [13], [14], [15],
[16]).

In the present paper, fault diagnosis will be studied for the
general class of time-varying discrete time linear descriptor
systems in the presence of actuator faults and sensor faults,
which will be modeled as linearly parametrized additive
terms in the descriptor system state equation (3) and in
the output equation. The main contribution of this paper is
to establish the relationship between the innovation of the
descriptor systemKalman filter and the considered paramet-
rically modeled faults, which will constitute the basis for
fault parameter estimation.

The paper is organized as follows. In Section II, the
descriptor system Kalman filter is first revisited from a
new point of view, which is essential for the new results
presented later in this section for charactering the inno-
vation of this Kalman filter. Section III first establish the
relationship between the innovation of the descriptor system
Kalman filter and the monitored faults, based on which fault
diagnosis algorithms through fault parameter estimation are
then proposed. In section IV, a simulation example is used
to illustrate the effectiveness of the proposed approach.

II. K ALMAN FILTER FOR DESCRIPTOR SYSTEMS

The Kalman filter for descriptor systems has been studied
in [1] from the point of view of maximum likelihood
estimation. In order to better characterize this Kalman filter,



in this section let us revisit it from another point of view: the
estimation of the probability distribution of the state vector
conditioned by the past observations.

Consider the problem of estimating the statex of the
system described fork ≥ 1 by

Ekx(k) = Ak−1x(k − 1) +Bk−1u(k − 1) + µ(k − 1) (4)

based on the measurement vectory

y(k) = Ckx(k) +Dk−1u(k − 1) + ν(k − 1) (5)

wherex(k) ∈ R
n, u(k) ∈ R

m is the input vector (possibly
including other known variables),y(k) ∈ R

p, Ek+1, Ak,
Bk, Ck, Dk are known real matrices of compatible sizes,
µ(k) and ν(k) represent modeling/measurement errors and
are modeled as mutually independent and zero-mean white
Gaussian noises with covariance matricesQk andSk respec-
tively.

We shall make the following assumptions on system (4)-
(5).
A1 : The initial statex(0) is Gaussian distributed with

known meanx̄0 and variance matrixP0, and is inde-
pendent ofµ andν.

A2 : For all k ≥ 1, the matrixHk =

[

Ek

Ck

]

is supposed

to be full column rank.
A3 : For all k ≥ 0, the variance matricesQk and Sk are

positive definite.
From (4)-(5), we obtain the following equation

Y0:k = HkX0:k + V0:k (6)

where
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
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x̃(0) ∼ N (0, P0) is a Gaussian vector independent ofµ and
ν (due to Assumption A1).

Due to the linearity of (6) and the Gaussian distributions of
the noises involved in (6),x(k) is also Gaussian distributed.
It is thus sufficient to compute the mathematical expectation
of x(k) conditioned by the observations up to timek and the
corresponding covariance matrix to estimate the distribution
of x(k) conditioned by the observations up to timek.

Let the conditional expectation ofx(k) be denoted by

x̂(k) , E[x(k)|Y0:k] (7)

where

Y0:k =
[

x̄T
0 y(1)T · · · y(k)T

]T
(8)

andE(·) denotes the mathematical expectation.
Remark 1:Notice that the evaluation of this conditional

expectation depends on the input sequence up to the time
k − 1, which are not explicitly expressed in (7) for the
compactness of the notation.

Let pX,Y , pX|Y and pY denote respectively the joint,
conditional and marginal probability density functions of
some random variables vectorsX and Y . It follows from
equation (6) and the Gaussian distributions ofV0:k that the
joint probability density functionpX0:k,Y0:k

(X0:k, Y0:k) is, up
to a normalization factor, equal to

exp

(

−
1

2
(Y0:k −HkX0:k)R

−1
k−1(Y0:k −HkX0:k)

)

(9)

whereRk−1 is the covariance matrix ofV0:k.
The conditional density function marginalized forx(k) is

given by

px(k)|Y0:k
(x(k)|Y0:k) =

∫

Rkn

pX0:k|Y0:k
(X0:k|Y0:k)dX0:k−1

(10)
where

pX0:k|Y0:k
(X0:k|Y0:k) =

pX0:k,Y0:k
(X0:k, Y0:k)

pY0:k
(Y0:k)

(11)

pY0:k
(Y0:k) =

∫

R(k+1)n

pX0:k,Y0:k
(X0:k, Y0:k)dX0:k. (12)

For any given value ofY0:k, the conditional density func-
tion px(k)|Y0:k

(x(k)|Y0:k) is Gaussian, which is maximized
by x̂(k) as defined in (7).

Given the observation sequenceY0:k, the conditional
density functionpX0:k|Y0:k

(X0:k|Y0:k) is Gaussian, which
is maximized byE[X0:k|Y0:k]. The lastn components of
E[X0:k|Y0:k] are equal tôx(k) as defined in (7).

The valueE[X0:k|Y0:k] maximizingpX0:k|Y0:k
(X0:k|Y0:k)

maximizes alsopX0:k,Y0:k
(X0:k, Y0:k), as in (11) the denom-

inator is independent ofX0:k.
It has been shown in [1] (Lemma 2.3 and Lemma 2.4) that

the maximization solution of (10) given bŷx(k) defined in
(7) is equivalent to the recursive state estimate derived from
the following equation

Z(k) = Hkx(k) + V (k − 1) (13)

where

Z(k) =

[

Ak−1x̂(k − 1) +Bk−1u(k − 1)
y(k)−Dk−1u(k − 1)

]

(14)

V (k − 1) =

[

−Ak−1x̃(k − 1)− µ(k − 1)
ν(k − 1)

]

(15)

x̂(k−1) is the estimate ofx(k−1) at the previous instant and
x̃(k− 1) is the corresponding estimate error with covariance
matrix Pk−1.



Given x̂(k−1) andy(k), the recursive state estimatex̂(k)
derived from (13) maximizes inx(k) the joint probabil-
ity density functionpx̂(k−1),x(k),y(k)(x(k − 1), x(k), y(k)),
which is, up to a normalization factor, equal to

exp

(

−
1

2
(Z(k)−Hkx(k))R

−1

k−1
(Z(k) −Hkx(k))

)

(16)

whereRk−1 is the covariance matrix ofV (k − 1) in (13)
given by

Rk−1 =

[

Ak−1Pk−1A
T
k−1 +Qk−1 0
0 Sk−1

]

(17)

GivenZ(k), the maximization inx(k) of (16) leads to

x̂(k) = (HT
k R

−1
k−1Hk)

−1HT
k R

−1
k−1Z(k) (18)

Note that, the inverse matrices in (16) and (18) are well
defined because of Assumptions A2 and A3.

The corresponding estimate errorx̃(k) is given by

x̃(k) = −(HT
k R

−1
k−1Hk)

−1HT
k R

−1
k−1V (k − 1) (19)

The calculation of the error covariance associated with this
estimate is independent of state and is given by

Pk = (HT
k R

−1
k−1Hk)

−1. (20)

It has been shown that the distribution ofx(k) conditioned
by Y (k) is Gaussian, with the conditional mean equal to
x̂(k). The covariance matrix of this conditional distribution
is equal to that of the estimation error, namelyPk, hence the
conditional density functionpx(k)|Y (k)(x(k)|Y (k)) is fully
characterized asN (x̂(k), Pk).

Consider the following partition

[Lk Kk] = PkH
T
k R

−1
k−1 (21)

with Lk ∈ R
n×n andKk ∈ R

n×p. The dynamics of the state
estimation error̃x(k) can be expressed from (15), (19) and
(21), yielding

x̃(0) = x(0)− x̄0 (22a)

x̃(k) = LkAk−1x̃(k − 1) + [Lkµ(k − 1) −Kkν(k − 1)] (22b)

Finally, the descriptor system Kalman filter is summarized
in the following equations

x̂(0) = x̄0 (23a)

x̂(k) = LkAk−1x̂(k − 1)

+ [LkBk−1 −KkDk−1]u(k − 1) +Kky(k) (23b)

ŷ(k) = Ckx̂(k) (23c)

Pk = LkAk−1Pk−1A
T
k−1L

T
k + LkQk−1L

T
k +KkSk−1K

T
k

(23d)

[Lk Kk] = (HT
k R

−1
k−1Hk)

−1HT
k R

−1
k−1 (23e)

Rk−1 =

[

Ak−1Pk−1A
T
k−1 +Qk−1 0
0 Sk−1

]

. (23f)

In filtering theory, the output prediction error defined by

ỹ(k) = y(k)−Dk−1u(k − 1)− Ckx̂(k) (24)

is called the innovation. For classical explicit state space
systems, the Gaussian distribution and the whiteness property
of the innovation sequence is well known. For descriptor
systems, this whiteness property was not discussed in [1],
nor in any other reference, up to our knowledge. Its extension
to linear descriptor systems is summarized in Theorem 1.

Theorem 1:The innovatioñy(k) of the Kalman filter (23)
for the descriptor system (4)-(5) is a centered white Gaussian
sequence with the covariance matrix equal to

CkPkC
T
k +Rk−1. (25)

The proof, similar to that of [17], is omitted here due to
space limitation.

III. I NNOVATION BASED FAULT DIAGNOSIS

A. Problem formulation

Consider a descriptor system as expressed in (4)-(5), but
now subject to actuator and sensor faults, in the form of

Ekx(k) = Ak−1x(k − 1) +Bk−1u(k − 1) + Φk−1θ + µ(k − 1)

y(k) = Ckx(k) +Dk−1u(k − 1) + Ψk−1θ + ν(k − 1) (26)

where the termsΦk−1θ and Ψk−1θ represent respectively
faults possibly affecting the state and the output equations,
typically the former for actuator faults, and the latter for
sensor faults. The matricesΦk−1 ∈ R

n×q andΨk−1 ∈ R
p×q

are assumed known, whereas theconstantparameter vector
θ ∈ R

q is unknown. The fault-free system is characterized
by the nominal valuēθ of the parameter vector. In order to
simplify the presentation, the zero nominal valueθ̄ = 0 is
assumed in this paper. It is straightforward to generalize the
results to the case of non zero nominal value.

The fault diagnosis approach presented in this paper will
be essentially based on the estimation of the fault parameter
vector. As the state vectorx(k) is also unknown, typically
joint state-parameter estimation should be considered in such
an approach. A classical solution consists in considering the
augmented systemobtained by concatenating the parameter
vector θ into the state vector, so that Kalman filter can be
applied to the augmented system. Such a solution has a few
drawbacks:

• treating equallyx(k) and θ as if they had similar
dynamics may make the tuning of the Kalman filter
delicate.

• the computational cost of the Kalman filter increases
mainly because of the larger covariance matrix of the
augmented state estimation error.

The approach presented below decouples to some extent
parameter estimation from state estimation.

B. Innovation in the presence of faults

In the considered system modeled by (26), as the value of
θ is unknown, it is not possible to apply the Kalman filter
to it. Instead, let us apply the Kalman filter to the fault-free
system (corresponding toθ = 0), no matter if the considered
system is affected by faults or not. The main idea of this
paper is to analyze the innovation sequence of this Kalman
filter designed for the fault-free systemfor the purpose of



fault diagnosis. If the monitored system is indeed fault-free,
then the innovation is a centered white Gaussian sequence,
as shown in Theorem 1. However, if the monitored system
is affected by some faults (θ 6= 0), the same Kalman filter,
which has been designed for the fault-free system, will have
an innovation sequence with different properties. The full
characterization of the properties of the innovation sequence
in the faulty case will be helpful for the diagnosis of faults
corresponding to changes inθ. This characterization is the
purpose of the following theorem.

Theorem 2:When the system (26) is affected by faults
modeled byΦk−1θ and/orΨk−1θ, then the innovation se-
quencẽy(k) of the Kalman filter (23) designed for the fault-
free system and applied to (26) satisfies

ỹ(k) = ỹ0(k) + Ωkθ (27)

where ỹ0(k) is the innovation sequence that the fault-free
system would generate with the same Kalman filter andΩk

is a matrix generated by linearly filteringΦk−1 andΨk−1

through the state space equations

Υ0 = 0 (28a)

Υk = LkAk−1Υk−1 + LkΦk−1 −KkΨk−1 (28b)

Ωk = CkΥk +Ψk−1 (28c)
The proof, omitted here due to space limitation, is ob-

tained by adapting the approach of [18] with the main step
analyzing the dynamics of the variable

η(k) = x̃(k)−Υkθ (29)

Remark 2:Up to the white Gaussian noise term̃y0(k),
the only unknown in (27) is the fault parameter vectorθ,
hence this equation can be viewed as a linear regression
with the regression coefficients contained inθ. The original
fault diagnosis problem in the descriptor system (26) is then
equivalent to the much simpler problem formulated in the
linear regression equation (27).

The method adopted in this paper is based on parameter
estimation: after the estimation ofθ, fault diagnosis can be
easily made by comparing the estimated value to the known
nominal value, by taking into account the uncertainty related
to the white Gaussian noisẽy0(k) in (27).

C. Maximum likelihood estimation of the fault parameter
vector

In this subsection, the fault parameter vectorθ is first
estimated based on data collected for time instanti =
1, . . . , k. In principle, this estimation assumes constantθ

during the collection of the data. In practice, it is assumed
that the value ofθ evolves slowly so that it can be considered
constant within the data window. In this case fault diagnosis
can be made by processing data in batch.

Alternatively, it is assumed that the parameter vectorθ is
constant most of the time, but jumps from time to time. This
case is discussed in the second part of this subsection.

1) Batch estimation:For compact notations, let us define
thekp×1 vectorỸ1:k, thekp×q matrixG1:k and thekp×1
vector Ṽ1:k as

Ỹ1:k =







ỹ(1)
...

ỹ(k)






, G1:k =







Ω1

Ω2

· · ·

Ωk






, Ṽ1:k =









ỹ
0(1)

ỹ
0(2)
· · ·

ỹ
0(k)









(30)

Then equation (27) evaluated at different time instants can
be compactly written as

Ỹ1:k = G1:kθ + Ṽ1:k (31)

According to Theorems 1 and 2, the sub-vectorsỹ0(k) of
Ṽ1:k follow each the Gaussian distribution

N
(

0, (CkPkC
T
k +Rk−1)

)

and are independent between different time instants.
Assume that the matrixGT

1:kS
−1
1:kG1:k is invertible (it

implies thatΦk andΨk vary sufficiently), then the maximum
likelihood estimation ofθ is given by

θ̂(k) =

(

k
∑

i=1

ΩT
i (CiPiC

T
i +Ri−1)

−1Ωi

)−1

·

k
∑

i=1

ΩT
i (CiPiC

T
i +Ri−1)

−1ỹ(i) (32)

One can easily show that the estimation of the parameter
vector θ given by (32) is an unbiased minimum-variance
estimator. After the computation of the parameter estimate
θ̂(k), its error covariance matrix given by

(

GT
1:kS

−1
1:kG1:k

)−1

provides a confidence region of the true parameter vectorθ,
which then can be used to decide if the parameter estimate
θ̂(k) is significantly different from the nominal parameter
value or not.

2) Jumps in the parameter vector:Let us assume that the
parameter vectorθ may change abruptly from one level to
another at some instants, but such changes are sufficiently
rare events so that there is at most a single jump of the
parameter vector in the considered time window, say from
instant1 to k.

If a jump occurred at some instantj between1 and k,
Theorem 2 can no longer be applied, though the value of
θ is kept constant before and after the jump. In this case,
Theorem 2 can be replaced by the following result.

Corollary 1: If the parameter vectorθ = 0 before the
time instantj and then takes another constant value, the
innovation sequence satisfies

ỹ(k) = ỹ0(k) + Ωkθ (33)

where ỹ0(k) is, as before, the fault-free innovation, butΩk

is a matrix generated by linearly filtering̃Φk−1 and Ψ̃k−1

through the state space equations

Υ0 = 0 (34a)

Υk = LkAk−1Υk−1 + [LkΦ̃k−1 −KkΨ̃k−1] (34b)

Ωk = CkΥk + Ψ̃k−1 (34c)



with Φ̃k−1 = Φk−111{k≥j}, Ψ̃k−1 = Ψk−111{k≥j} and11{·}
being the indicator function. �

In practice, the jump time j is usually unknown. To solve
this problem, the estimation ofθ can be made once for each
assumed jump timej = 1, ..., k, what is computationally
expensive.

D. Recursive estimation of the fault parameter vector

The parameter estimation based on (32) is unreliable if
jumps of the parameter vectorθ occur within the consid-
ered data window, as the constant parameter assumption
is then violated. Parameter jumps can be handled with
techniques based on variable/time-varying forgetting factors
([19]), covariance matrix re-setting/modification ([20]), and
sliding window ([21]). The recursive algorithm proposed
below provides a simple solution with a minimum computer
memory requirement, and yet with an efficient treatment of
parameter jumps.

By using the matrix inversion lemma

(A+BCD)−1 = A−1 −A−1B
(

DA−1B + C−1
)−1

DA−1

it easy to deduce from (32) the following recursive form

θ̂(k) = θ̂(k − 1) + Θk(y(k)− Ωkθ̂(k − 1)) (35)

with the matrix gain computed from the following equations:
{

Θk = Mk−1Ω
T
k (CkPkC

T
k +Rk−1 +ΩkMk−1Ω

T
k )

−1

Mk = Mk−1 −ΘkΩkMk−1

(36)
If the parameter estimatêθ(k) and the matrixMk are

appropriately initialized, then the recursive estimateθ̂(k)
given by (35) is equivalent to the batch estimate (32). In
order to exponentially forget past observations, it is well
known that a forgetting factor can be introduced, so that
the matrix gain computation is modified as
{

Θk = Mk−1Ω
T
k

(

λ[CkPkC
T
k +Rk−1] + ΩkMk−1Ω

T
k

)−1

Mk = 1
λ
Mk−1 −

1
λ
ΘkΩkMk−1

(37)
whereλ ∈ (0, 1) is a forgetting factor.

The inverse of the matrixMk provides an estimate of
the parameter estimation error covariance matrix, which can
be used to derive a confidence region of the true parameter
vector for the purpose of fault diagnosis.

Jumps in some parameters may cause a large fluctuation
in the parameter estimates during some transient interval
after the jump, typically impacting the estimates of all the
components ofθ, though some of them have not changed.
To improve the tracking capability of the above algorithm, a
detection function is used to determine whether a parameter
change has occurred or not. Once a change is detected
at some instantj, then some elements of the estimation
algorithm are modified as follows. In the computation of
Υk, a reinitialization is made at instantj (Υj = 0) and in
the Kalman filter the zero nominal parameter is replaced by
the estimatêθ(jc) computed after the transient time (jc ≥ j)
and to considering the detection timejc as the new initial

time instant in the algorithm. The detection function can be
derived from the innovatioñy(k) as follow

ǫ(k) =
(

ỹ(k)− Ωkθ̂(k − 1)
)T

[CkPkC
T
k +Rk−1]

−1·
(

ỹ(k)− Ωkθ̂(k − 1)
)

(38)

to be compared with a detection threshold to be chosen
appropriately. Asỹ(k) has Gaussian distribution,ǫ(k) has
chi-square distribution with one degree of freedom, thus the
threshold can be determined by looking up the chi-square
table following a specified probability of false alarm ([22],
[6]).

IV. N UMERICAL EXAMPLE

Consider a nonlinear system described by
{

F (ẋ, x, t) = 0

y = x5 + θ2
(39)

with

F (ẋ, x, t) =













x5ẋ1 + θ1α(t) + gx3

x5ẋ2 + θ1β(t) + gx4 − gx5

ẋ3 − x1

ẋ4 − x2

x2
3 + x2

4 − x2
5













(40)

whereg = 10, θ2 represents a possible bias on the measure-
ment and

α(t) = −2− 0.1 sin(0.3t)− 0.2 sin(0.5t) (41)

β(t) = 2 + 0.2 sin(0.3t)− 0.4 sin(0.5t) (42)

For this illustrative example, the nominal parameter vector
is given byθ̄1 = 1 and θ̄2 = 0.

After discretization in time and by replacing the derivative
term by backward Euler approximation, then a linearization
along a given trajectoryz(t) = (0, 0, 0, − l, l) wherel >
0, the continuous nonlinear system in (39) is approximately
described by the following implicit discrete time state space
equation
{

Ekx(k) = Ak−1x(k − 1) + Φk−1θ + µ(k − 1)

y(k) = Ckx(k) + Ψk−1θ + ν(k − 1)
(43)

where

Ek =



























l

∆k

0 g 0 0

0
l

∆k

0 g 0− g

−1 0
1

∆k

0 0

0 −1 0
1

∆k

0

0 0 0 0 0



























and

Ak−1 =



























l

∆k

0 0 0 0

0
l

∆k

0 0 0

0 0
1

∆k

0 0

0 0 0
1

∆k

0

0 0 0 2l 2l





























∆k = t(k)−t(k−1) is the sampling period for the discrete
time model,Ck =

[

0 0 0 0 1
]T

, Ψk−1 = [0, 1] and

Ψk−1 = [0, 1] andΦk−1 =











−α(tk) 0
−β(tk) 0

0 0
0 0
0 0











The sampling period for the discrete time model is1s.
The nominal (computed) output is compared with the

simulated output in figures 1, where dotted lines represent
the true simulated values, and the solid lines represent the
nominal values.

The recursively estimated values ofθ1 andθ2 are respec-
tively illustrated in figure 2, where the dotted lines represent
the true simulated parameter values, and the solid lines
represent the estimated values.

These results show that, after the transient time
corresponding to the unmodeled transient ofθ, the
parameter estimates follow closely the simulated parameter.
It is then possible to detect the simulated faults and estimate
their severity.
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Fig. 1. Graphical representations of the simulated noised outputy in dotted
line and the fault-free system outputy0 in solid line, over time (k).

25 50 75 100

0.8

0.9

1

 

 

θ̂1

θ1

25 50 75 100
−0.05

0

0.05

0.1

 

 

θ̂2

θ2

Fig. 2. Graphical representations of the simulated parameters θ1, θ2 in
dotted line and their estimateŝθ1, θ̂2 in solid line, over time (k).

V. CONCLUSION

This paper has dealt with fault diagnosis in descriptor
systems. We have focused our study on the diagnosis of faults

modeled as abrupt parameter changes in a class of discrete-
time descriptor systems. The descriptor system Kalman filter
is used to generate an innovation sequence. We have shown
that the innovation sequence is white and can be used
to estimate possible changes in the parameter vector. The
implementation of this fault diagnosis approach requires
knowledge of the nominal parameter. The decision for fault
diagnosis is based on the time evolution of parameter esti-
mates.
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