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Abstract
In this paper fault diagnosis is studied for linear time varying descriptor systems, which are
the discrete time counterpart of the continuous time dynamic systems described by differential-
algebraic equations. This class of systems includes and is broader than the well-known state
space systems. The framework of descriptor systems is particularly useful for studying dynamic
systems exhibiting time varying singularities. Actuator faults and sensor faults are respectively
modeled as parametric changes in the state equation and in the output equation. The main
result of this paper consists in extending an adaptive observer, initially designed for state space
systems, to descriptor systems. Based on this result, fault diagnosis is performed by estimating
the parameters characterizing actuator and sensor faults. Simulations examples are presented
to illustrate the proposed method.

Keywords: fault diagnosis, discrete-time descriptor dynamics, time-varying models, adaptive
observer.

1. INTRODUCTION

Many modern engineering systems can be modeled by an
explicit ordinary differential equation (ODE) of the form

ẋ(t) = f(x(t), u(t)) (1)

where x(t) and u(t) represent respectively the (vectorial)
state and input of the system, ẋ(t) denotes the time deriva-
tive of x(t), and f(·, ·) is some function characterizing
the system. Such state space equations have a long-term
mathematical history, and a large number of analytical
and numerical tools have been developed for their study.

However, in some cases such an explicit state space model
for the dynamics of a given system is not available. The
system may instead be described by implicit differen-
tial equations, known as differential-algebraic equations
(DAE), of the form

F (ẋ(t), x(t), u(t)) = 0 (2)

where F (·, ·, ·) is some vector-valued function. If ẋ(t) can
be solved for from (2), then the DAE can be converted to
an ODE, but this operation is not always possible. It is
thus necessary to study DAE systems in some situations.

After linearization around an operating point and dis-
cretization in time, the original nonlinear DAE system is
approximately described by an implicit discrete time state
space equation

Ek+1x(k + 1) = Akx(k) +Bku(k) + µ(k) (3)

where x(k), u(k) and µ(k) are respectively the discrete
time state, the input and the modeling errors indexed by
k = 0, 1, 2, ..., and the matrix Ek may not be of full column
rank.

⋆ This work was supported by the ITEA2 MODRIO project.

Systems governed by (3) are known as descriptor systems.
This is a general and convenient framework for studying
DAE systems which can be appropriately linearized.

Some descriptor systems can be simply regarded as im-
plicitly written state-space equations, this is the case of
systems in which the matrix Ek has full column rank. In
principle, the theory developed in the framework of linear
state-space equations can be applied in this case. However,
even if the matrix Ek is invertible for all k, it is preferable
to use the descriptor equation because of the possible ill
conditioning of Ek.

Descriptor systems have attracted considerable atten-
tions in recent decades where great efforts where made
to investigate descriptor system theory and applica-
tions (Nikoukhah et al. (1992), Benveniste et al. (1993),
Darouach and Boutayeb (1995), Shields (1997), Polycar-
pou et al. (1997), Zhang et al. (1998), Vemuri et al. (2001),
Koenig and Mammar (2002)).

Fault diagnosis (detection and identification of fault) is
rarely tackled in the descriptor case, in contrast to the
case of systems with classical state space representations,
where the theory is well-established (Ding (2008), Iser-
mann (2006) and references therein). For descriptor sys-
tem fault diagnosis, most studies are observer-based ap-
proaches in the time invariant case (Duan et al. (2002),
Marx et al. (2004)).

In this paper, fault diagnosis will be studied for the
general class of time-varying discrete time linear descriptor
systems in the form of



Ek+1x(k + 1) = Akx(k) +Bku(k) + Φkθ + µ(k) (4a)

y(k + 1) = Ck+1x(k + 1) + Ψkθ + ν(k) (4b)

k = 0, 1, 2, · · ·

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the
input vector (possibly including other known variables),
y(k) ∈ R

p is the output vector, Ek+1, Ak, Bk, Ck are
known real matrices of compatible sizes, µ(k) and ν(k)
represent modeling/measurement errors and are modeled
as independent, zero-mean, Gaussian vector sequences
with covariance matrices Qk and Rk respectively, the
terms Φkθ and Ψkθ represent respectively faults possibly
affecting the state and the output equation. The matrices
Φk ∈ R

n×q and Ψk ∈ R
n×q are assumed known, whereas

the parameter vector θ ∈ R
q is unknown and subject

to changes caused by faults. The fault-free system is
characterized by the nominal value θ̄ of the parameter
vector.

The development of this paper is based, on the one hand,
on the adaptive estimation techniques for explicit state
space systems (Zhang (2002)), and, on the other hand,
on the Kalman filter for time-varying discrete linear de-
scriptor systems. The core of the proposed fault diagnosis
methods consists of an adaptive observer which is used
both to estimate the monitored faults and to improve the
robustness against model uncertainty due to parameter
changes.

The paper is organized as follows. The first step in the
monitoring of a system modeled by (4) is necessarily the
state space x reconstruction when the only information
available is contained in signals u and y. In Section 2,
under some assumptions, a transformation of descriptor
systems is introduced which allows us to use a standard
Kalman filter for state vector estimation, in the fault-free
case. Section 3 is devoted to the outline of the approach
discussed in this paper. We detail the motivations of this
contribution and explain how adaptive observer based
fault diagnosis approach can be extended to general linear
descriptor systems. In section 4, a simulation example
is used to illustrate the effectiveness of the proposed
approach.

2. KALMAN FILTER FOR FAULT-FREE
DESCRIPTOR SYSTEMS

Here we recall some basic knowledge about the Kalman
filter of discrete linear descriptor systems described by

Ek+1x(k + 1) = Akx(k) +Bku(k) + µ(k) (5a)

y(k + 1) = Ck+1x(k + 1) + ν(k) (5b)

k = 0, 1, 2, · · ·

Like the classical Kalman filter for state space systems,
the purpose of descriptor system Kalman filter is for
state estimation from input and output signals. State
reconstruction has been frequently studied in continuous
time and usual for state space systems case (when E = I)
since the early work in (Kalman (1960), Kreindler and
Sarachik (1964), Silverman and Meadows (1967)) and in
the time invariant descriptor case. Theoretical work on
the observability of linear time-varying continuous time
descriptor systems can be found in (Campbell and Terrell
(1991)).

In (Nikoukhah et al. (1992)), the authors developed a
Kalman filter for (5), based on maximum likelihood esti-
mation. The filtered estimate x̂ is defined as the maximum
likelihood estimate of x based on (5) together with a priori
knowledge of the initial condition x(0). Recursively, we
obtain, from (5) and the estimate of x(k) denoted by x̂(k),
the following equation

Yk = Hk+1x(k + 1) + Vk, k = 0, 1, · · · (6)

where

Yk =

[

Akx̂(k) +Bku(k)
y(k + 1)

]

, Hk =

[

Ek

Ck

]

, Vk =

[

w(k)
ν(k)

]

w(k) = −Akx̃(k) − µ(k) and x̃(k) = x(k) − x̂(k) is the
state estimate error.

It has been shown in (Nikoukhah et al. (1992)) (Lemma
2.3 and Lemma 2.4) that the (optimal) estimate x̂(k+1) of
x(k+1) based on (5) is the same as its (optimal) estimate
based on (6).

Let Rk be the covariance matrix of Vk. It is shown in
(Nikoukhah et al. (1992)) that

Rk =

[

AkPkA
T
k +Qk 0
0 Rk

]

where Pk is a symmetric positive definite matrix, which
can be computed at each iteration of the maximum likeli-
hood estimation algorithm, as recalled later in this section.

We shall make the following assumptions on system (5).

A1 : The initial state x(0) is Gaussian with known mean
x̄0 and variance P0 and independent of µ and ν. This
can be represented by the following equation

x(0) = x̄0 + η (7)

where η is zero-mean, Gaussian and independent of µ
and ν, and with covariance P0.

A2 : The matrix Hk is supposed to be full column rank
∀ k ≥ 1

A3 : For all k ≥ 0, the variance matrices Qk and Rk are
positive definite.

From (6), the maximum likelihood estimate of x(k + 1)
consists in maximizing the probability density function of
Vk parameterized by x(k + 1). This estimate is given by

x̂(k + 1) = argmax
α

e{−
1
2
(Yk−Hk+1α)R

−1

k
(Yk−Hk+1α)} (8)

The solution of the maximization in (8) gives

x̂(k + 1) = (HT
k+1R

−1
k Hk+1)

−1HT
k+1R

−1
k Yk (9)

The error covariance associated with the estimate x̂(k+1)
is

Pk+1 = (HT
k+1R

−1
k Hk+1)

−1 (10)
Note that, the inverse matrices in (9) and (10) are well
defined because of assumptions A2 and A3.

Consider the following partition

[Lk Kk] = Pk+1H
T
k+1R

−1
k (11)

The estimate x̂(k+1) can be explicitly expressed from (6),
(9) and (11), yielding

x̂(k + 1) = LkAkx̂(k) +Kky(k + 1) + LkBku(k) (12)



and the state estimation error is then governed by the
equation

x̃(k + 1) = LkAkx̃(k) + Lkµ(k)−Kkν(k) (13)

Let P̃k be the predicted estimate covariance :

P̃k = Ak−1PkA
T
k−1 +Qk−1 (14)

The following Riccati equation is obtained from (10)

P̃k+1 =Ak

(

ET
k+1P̃

−1
k Ek+1 + CT

k+1R
−1
k Ck+1

)−1

Ak

+ Qk (15)

We know that the stability of the Kalman filter (the op-
timal estimator) is generally guaranteed if the covariance

matrix P̃k is bounded from above and from below by two
strictly positive definite matrices for all k ≥ 0.

In (Nikoukhah et al. (1992)), the asymptotic behavior of
the error variance Pk was examined in the time invariant
case (with constant matrices A, C, E, Q, R). It can be

shown in this case that this error variance P̃k converges
exponentially fast to the unique positive definite solution
of the algebraic descriptor Riccati equation (Nikoukhah
et al. (1987)):

P̃ =A
(

ET P̃−1E + CTR−1C
)−1

AT +Q (16)

3. ADAPTIVE OBSERVER

Consider the system in (4) subject to actuator and sensor
faults. By defining Lk and Kk as in (11), the following
explicit state recurrent equation is derived from (4):

x(k + 1) = LkAkx(k) +Kky(k + 1) + LkBku(k) (17a)

+ [LkΦk −KkΨk]θ + Lkµ(k)−Kkν(k)

y(k + 1) = Ck+1x(k + 1) + Ψkθ + ν(k) (17b)

k = 0, 1, 2, · · ·

We assume, in addition of assumptions A1 - A3, that

A4 : Ek, Ak, Bk, Ck, Φk, Ψk are all known and bounded
A5 : the parameter vector θ is constant

In fault diagnosis, the terms Φkθ and Ψkθ can be used
to model faults. In particular, they can be used to model
actuator or sensor faults according to their location in the
system model.

In this section, we aim to estimate the hidden variable vec-
tor x and the parameter vector θ based on the knowledge
of the input u and the output y signals. One commonly
used method to solve this problem is to augment the
state x(k) with the parameter vector θ and to implement
the Kalman filter (12). While this approach has proved
effective in some applications, at least in the case of state
space systems (Cox (1964)), it has also some well known
drawbacks. In particular,

• treating equally the state vector x(k) and the param-
eter vector θ as if they had similar dynamics may
make the tuning of the Kalman filter delicate.

• the computational cost of the Kalman filter increases
mainly because of the larger covariance matrix of the
augmented state estimation error.

The approach proposed in this section relies on an adaptive
observer. We extend the existing results concerning the
adaptive observer for fault diagnosis in linear state space
systems (Zhang (2002)) to the descriptor system.

Conceptually similar to the Kalman filter applied to the
augmented system, the adaptive observer explicitly takes
into account the difference between state variables and
unknown parameters.

For the descriptor system described by (4) we propose the
following adaptive observer

x̂(k + 1) = LkAkx̂(k) +Kky(k + 1) + LkBku(k)

+ [LkΦk −KkΨk]θ̂(k) + ωk (18a)

ŷ(k + 1) = Ck+1x̂(k + 1) + Ψkθ̂(k) (18b)

Υk+1 = LkAkΥk + [LkΦk −KkΨk] (18c)

Ωk+1 = Ck+1Υk+1 +Ψk (18d)

ωk = LkAkΥk(θ̂(k)− θ̂(k − 1)) (18e)

θ̂(k + 1) = θ̂(k) + Θk+1 (y(k + 1)− ŷ(k + 1)) (18f)

Θk+1 = SkΩ
T
k+1

(

λRk +Ωk+1SkΩ
T
k+1

)−1
(18g)

Γk+1 =
(

λRk +Ωk+1SkΩ
T
k+1

)−1
(18h)

Sk+1 =
1

λ
(I −Θk+1Ωk+1)Sk (18i)

k = 0, 1, 2, · · ·

where λ ∈ (0, 1) is a forgetting factor, θ̂(k) is the estimate
of the parameter vector θ at time k, matrices gain Lk

and Kk are computed as in (11). The term ωk added in
(18a) and defined in (18e) may appear unusual. It will help
to establish the proof of the convergence of this adaptive
observer later in this section.

This adaptive observer is the discrete time counterpart
of the continuous time algorithm presented in (Li et al.
(2011)). A simpler discrete time algorithm (no unknown
parameter vector in the output equation) has been pro-
posed in (Guyader and Zhang (2003)). Its generalizations
to some particular class of nonlinear systems have been
considered in (Xu and Zhang (2004), Zhang and Besançon
(2008), Farza et al. (2009)).

The convergence of the adaptive observer (18) can be
studied both in the noise-free case and in the noise-
corrupted case. As the proofs are similar to those of
(Guyader and Zhang (2003)) and (Li et al. (2011)), let
us formulate here its main lines.

Define the state and parameter estimation errors, respec-
tively given by

x̃(k) = x(k) − x̂(k) (19)

θ̃(k) = θ − θ̂(k) (20)

In the noise-free case (µ(k) = ν(k) = 0), the state
estimation error is governed by the following equation
derived from (17a) and (18a)

x̃(k + 1) = LkAkx̃(k) + [LkΦk −KkΨk]θ̃(k)− ωk (21)

Define the variable

z(k) = x̃(k)−Υkθ̃(k − 1) (22)

From (21), (18c) and (18e), the dynamics of zk is simplified
to an exponentially stable system



z(k + 1) = LkAkz(k) (23)

The parameter estimation error is governed by

θ̃(k+1) = (I −Θk+1Ωk+1) θ̃(k)−Θk+1Ck+1z(k+1) (24)

The key issue is to prove the exponential stability of the
homogeneous part of (24) given by

ζ(k + 1) = (I −Θk+1Ωk+1) ζ(k) (25)

Lemma 3.1. Under conditions

• the matrix LkAk in (18c) is stable
• there exists an integer N and a real α > 0, such that
for all k ≥ 0

αI ≤

k+N−1
∑

i=k

ΩT
i+1R

−1
i Ωi+1 (26)

• the forgetting factor λ ∈ (0, 1)
• the initial gain matrix S0 is symmetric positive defi-
nite

then the matrix Sk in (18i) is positive definite and bounded
from above and from below by two strictly positive definite
matrices for all k ≥ 0.

A proof of this lemma can be found in Appendix A. The
stability of the matrix LkAk is directly related to the
stability of the Kalman filter (12), which is assumed in
this paper. In the literature the condition (26) is referred
to as the persistent excitation condition (Narendra and
Annaswamy (2005)).

The boundedness of Sk ensured by the above lemma allows
us to define the Lyapunov as follows

Vk = ζ(k)TS−1
k ζ(k) (27)

It follows

Vk+1 = ζ(k + 1)TS−1
k+1ζ(k + 1) (28a)

= λζ(k)T (I −Θk+1Ωk+1)
T
S−1
k ζ(k) (28b)

= λVk − λζ(k)TΩT
k+1Θ

T
k+1S

−1
k ζ(k) (28c)

= λVk − λ [Ωk+1ζ(k)]
T
Γk+1 [Ωk+1ζ(k)] (28d)

where Γk+1 is the positive definite matrix given by (18h)

i.e [Ωk+1ζ(k)]
T
Γk+1 [Ωk+1ζ(k)] ≥ 0.

We then conclude that Vk+1 ≤ λVk. This means that for
any λ ∈ (0 , 1), Vk decreases exponentially and that ζk
and thus θ̃k also tends exponentially to zero.

It then follows from (22) that, in the noise-free case,






lim
k→+∞

zk = 0

lim
k→+∞

θ̃k = 0
⇒ lim

k→+∞
x̃k = 0

In the noise-corrupted case, instead of ordinary conver-
gence, the state and parameter estimation errors converge
in the mean to zeros (Guyader and Zhang (2003)).

The proposed adaptive observer has two practical advan-
tages. The gains Lk and Kk for state estimation and Θk+1

for parameter estimation can be tuned in two steps in

simulation studies. In the first step the parameter θ is
assumed known, hence the tuning of Lk and Kk is like in
the case of the classical Kalman filter for state estimation
and afterward, in the second step, Θk+1 is tuned while the
tuning of Lk and Kk is fixed. Another advantage of the
adaptive observer is that the recursive computations of the
gains for state and parameter estimations are separated,
implying a lower numerical cost, compared to the fully
coupled gain matrix computation in the Kalman filter
applied to the augmented system.

4. NUMERICAL EXAMPLE

In this example, we use the adaptive observer to monitor
faults in a system modeled by (5) with the following data

Ek+1 =





0 0

−1
k

k + 1



 , Ak =







1 −
k + 1

k + 0.5

0
1

k + 1







Bk =

[

1

1

]

, u(k) =







1−
e−0.018k

0.8
sin(0.03k)

1 + e−0.03k sin(0.1k)







Ck+1 = [0 1], θ̄ = 1, Φk =





1− e
−k

30 sin(0.1k)

1− e
−k

15 sin(0.5k)



 , Ψk = 0

It is easy to verify that the matrix Ek+1 is not invertible
and that the matrix

[

Ek+1

Ck+1

]

is full column rank for all k ≥ 0. The sampling period
for the discrete time model is 1s and the simulation is
performed during 1000s. We simulate a degradation of
the parameter θ starting from time instant k = 200.
Centered Gaussian white noise is added to the output.
The simulated output with noise y is plotted in figure 1.
The simulated and estimated parameter (fault) are shown
in figure 2, where the dotted lines represent the true
simulated parameter values, and the solid lines represent
the estimated values. The estimated states are compared
with the simulated states in figures 3 and 4, where dotted
line represents the true simulated state variables, and the
solid line represents the estimated values. These results
show that, after the transient time of about 100s corre-
sponding to the transient time (unmodeled transient) of
θ, the parameter estimates follow closely the evolution of
the simulated parameter. It is then possible to detect the
simulated faults and estimate their severity.

5. CONCLUSION

This paper has dealt with fault diagnosis in descriptor
systems. We have focused our study on the diagnosis of
faults modeled as parameter changes in a class of discrete-
time descriptor systems. Under realistic assumptions on
the system, a Kalman filtering algorithm is derived. Then,
the adaptive observer technique is used to accomplish the
fault diagnosis task. We have shown that the adaptive



0 100 200 300 400 500 600 700 800 900 1000
−25

−20

−15

−10

−5

0

5

10

 

 
y

Figure 1. Graphical representations of the simulated noised
output y over time (k).
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Figure 2. Graphical representations of the simulated pa-

rameter θ in dotted line and its estimate θ̂ in solid
line, over time (k).
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Figure 3. Graphical representations of the simulated state
x1 in dotted line and its estimate in solid line, over
time (k).

observer initially developed for explicit linear state space
systems can be extended to general linear descriptor
systems. The decision for fault diagnosis is based on the
time evolution of parameter estimates. Simulation results
are produced to illustrate the ability of the proposed
approach to detect faults.
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Appendix A. PROOF OF LEMMA 3.1

Consider Mk governed by

{

Mk+1 = λMk + ΩT
k+1R

−1
k Ωk+1

M0 = S−1
0 > 0

(A.1)

Let us first study the upper bound of Mk. Due to the
stability of LkAk, the matrix Ωk computed from bounded
Φk and Ψk is also bounded. As 0 < λ < 1, the iterations
in (A.1) is exponentially stable. Hence Mk driven by the
bounded term ΩT

k+1R
−1
k Ωk+1 is also bounded.

Now consider the lower bound of Mk. A recursive evalua-
tion of (A.1) leads to

Mk+1 = λk+1M0 +
k
∑

j=0

λk−jΩT
j+1R

−1
j Ωj+1 (A.2)

Mk+1 ≥ λk+1M0 +

⌊ k

N
⌋

∑

i=1

iN−1
∑

j=(i−1)N

λk−jΩT
j+1R

−1
j Ωj+1

≥ λk+1M0 +

⌊ k

N
⌋

∑

i=1

λk−iN+1
iN−1
∑

j=(i−1)N

ΩT
j+1R

−1
j Ωj+1

where ⌊·⌋ denotes the floor (greatest integer) function.

It follows from (26) that

Mk+1 ≥ λk+1M0 + α





⌊ k

N
⌋

∑

i=1

λk−iN+1



 I (A.3)

Then, we can conclude that Mk is bounded from below by
a strictly positive definite matrix. Hence we have proved
that Mk has both an upper bound and a strictly positive
definite lower bound.

From (A.1) the inverse of the matrix Mk+1 writes

M−1
k+1 =

1

λ

(

Mk +
1

λ
ΩT

k+1R
−1
k Ωk+1

)−1

(A.4)

By using the matrix inversion lemma

(A+BCD)−1 = A−1 −A−1B
(

DA−1B + C−1
)−1

DA−1

it easy to check that Sk = M−1
k satisfies

Sk+1 =
1

λ
(I −Θk+1Ωk+1)Sk (A.5)

with the initial condition S0.

Therefore, we conclude that Sk is bounded from above and
from below by two strictly positive definite matrices, for
all k ≥ 0. �


