
HAL Id: hal-00988129
https://hal.science/hal-00988129

Submitted on 7 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visibly Pushdown Transducers with Well-nested
Outputs

Pierre-Alain Reynier, Jean-Marc Talbot

To cite this version:
Pierre-Alain Reynier, Jean-Marc Talbot. Visibly Pushdown Transducers with Well-nested Outputs.
2014. �hal-00988129�

https://hal.science/hal-00988129
https://hal.archives-ouvertes.fr

Visibly Pushdown Transducers with Well-nested Outputs

Pierre-Alain Reynier and Jean-Marc Talbot

Aix Marseille Université, CNRS, LIF UMR 7279, 13288, Marseille, France

Abstract. Visibly pushdown transducers (VPTs) are visibly pushdown automata

extended with outputs. They have been introduced to model transformations of

nested words, i.e. words with a call/return structure. When outputs are also struc-

tured and well nested words, VPTs are a natural formalism to express tree trans-

formations evaluated in streaming. We prove the class of VPTs with well-nested

outputs to be decidable in PTIME. Moreover, we show that this class is closed un-

der composition and that its type-checking against visibly pushdown languages

is decidable.

1 Introduction

Visibly pushdown automata (VPA) [1] (first introduced as input-driven pushdown au-

tomata [3]) are pushdown machines whose stack behavior is synchronized with the

structure of the input word. More precisely, the input alphabet is partitioned into call

and return symbols; when reading a call symbol the machine must push a symbol onto

the stack, when reading a return symbol it must pop a symbol from the stack and when

reading an internal symmbol the stack remains unchanged. Such words over a structure

alphabet are called nested words.

Visibly pushdown transducers (VPTs) [7,8,6,9] extend visibly pushdown automata

with outputs. Each transition is equipped with an output word; a VPT thus transforms

an input word into an output word obtained as the concatenation of all the output words

produced along a successful run (ie a sequence of transitions) on that input. VPTs are a

strict subclass of pushdown transducers (PTs) and strictly extend finite state transduc-

ers. Several problems that are undecidable for PTs are decidable for VPTs similarly

to finite state transducers: functionality (in PTIME), k-valuedness (in co-NPTIME) and

functional equivalence (EXPTIME-complete) [6]. However, some decidability results

or valuable properties of finite-state transducers unfortunately do not hold for VPTs:

type-checking against VPA (deciding whether the range of a transducer is included into

the language of a given VPA) is undecidable for VPTs and VPT are not closed under

composition [7].

Unranked trees and more generally hedges can be linearized into nested words over

a structured alphabet (such as XML documents). These words for which the matching

between call and return symbols is perfect are called well-nested words. So, VPT are

a suitable formalism to express hedge transformations. Moreover, as they process the

linearization from left to right, they are also an adequate formalism to model and ana-

lyze transformations in streaming, as shown in [5]. VPTs output strings; operating on

well-nested inputs, they define hedge-to-string transformations. If the output strings are

well-nested too, they define hedge-to-hedge transformations [4].

In [6], by means of a syntactical restriction on transition rules, a class of VPTs

whose range contains only well-nested words is presented. This class enjoys good prop-

erties: it is closed under composition and type-checking against visibly pushdown lan-

guages is decidable. One may then wonder whether these properties come from this

particular subclass or from the fact that the ranges of these VPTs contain only well-

nested words.

In this paper, we consider two classes of transductions (that is of relations) over

nested words and definable by VPTs. First, the class of globally well-nested transduc-

tions, denoted Gwn, is the class of VPT transductions whose range contains only well-

nested words. The second class, named almost well-nested and denoted Awn, slightly

generalizes the first one as follows: there should exist k ∈ N such that every output

word contains at most k unmatched returns, and at most k unmatched calls. These

two classes of transductions naturally define some classes of transducers gwnVPT and

awnVPT, a VPT being in gwnVPT (resp. in awnVPT) if the transduction it repre-

sents is in Gwn (resp. in Awn). While defined in a semantical way, we provide criteria

on successful computations of VPTs characterizing precisely the classes gwnVPT and

awnVPT. Then based on these criteria, we prove the class awnVPT to be decidable

in PSPACE. Regarding the class gwnVPT, using a recent result of [2], we prove it is

decidable in PTIME. Finally, we prove that the two classes gwnVPT and awnVPT en-

joy good properties: they are closed under composition and type-checking is decidable

against visibly pushdown languages.

The paper is organized as follows: definitions and recalls of some basic proper-

ties on VPT are presented in Section 2. We introduce in Section 3 the two classes of

transductions we define in this paper as well as the corresponding classes of transduc-

ers. Considering additionally the (restricted) class introduced in [6], we prove also that

they form a strict hierarchy. Then, we give in Section 4 a precise characterization of

the classes gwnVPT and awnVPT by means of some criteria on VPTs. Section 5 de-

scribes decision procedure of the considered classes of transducers. Finally, the closure

of the considered classes under composition and the decidability of type-checking are

addressed in Section 6. Omitted details can be found in the Appendix.

2 Preliminaries

(Well) nested words The set of all finite words (resp. of all words of length at most n)

over a finite alphabet Σ is denoted by Σ∗ (resp. Σ≤n); the empty word is denoted by ǫ.

A structured alphabet is a triple Σ = (Σc, Σi, Σr) of disjoint alphabets, of call, internal

and return symbols respectively. Given a structured alphabet Σ, we always denote by

Σc, Σi and Σr its implicit structure, and identify Σ with Σc ∪Σi ∪Σr. A nested word

is a finite word over a structured alphabet.

The set of well-nested words over a structured alphabet Σ is the least set, denoted

by Σ∗
wn, that satisfies (i) ǫ ∈ Σ∗

wn, (ii) for all i ∈ Σi, w ∈ Σ∗
wn, iw ∈ Σ∗

wn, and (iii)
for all w,w′ ∈ Σ∗

wn, c ∈ Σc, r ∈ Σr, cwrw′ ∈ Σ∗
wn. E.g. on Σ = ({c1, c2}, {r}), the

nested word c1rc2r is well-nested while rc1 is not.

For a word w from Σ∗, we define its balance B as the difference between the number

of symbols from Σc and of symbols from Σr occurring in w. Note that if w ∈ Σ∗
wn,

then B(w) = 0; but the converse is false as examplified by rc1.

2

Lemma 1. Let u, v ∈ Σ∗. We have B(uv) = B(u) + B(v) = B(vu).

For any word w from Σ∗, we denote by Oc(w) (resp. Or(w)) the number of open

calls (resp. open returns) in w. Formally,

Or(w) = −min{B(w′) | w′w′′ = w} Oc(w) = B(w) + Or(w)

We define, for any word w, O(w) as the pair (Or(w),Oc(w)) ∈ N2. We also define

||O(w)|| = max{Or(w),Oc(w)}. Note that for any word w, w ∈ Σ∗
wn iff ||O(w)|| = 0,

that is O(w) = (0, 0).
Given a word u ∈ Σ∗, we define the height of u, denoted height(u), as max{||O(u1)|| |

u = u1u2}. We denote by |u| the length of u, defined as usual.

Definition 1. For any two pairs (n1, n2) and (n′
1, n

′
2) of naturals from N2, we define

(n1, n2)⊕ (n′
1, n

′
2) as the pair

{

(n1, n2 − n′
1 + n′

2) if n2 ≥ n′
1

(n1 + n′
1 − n2, n

′
2) if n′

1 > n2

Proposition 1. (N2,⊕, (0, 0)) is a monoid, and the mapping O is a morphism from

(Σ∗, ., ǫ) to (N2,⊕, (0, 0)); in particular, for any two words u1, u2 from Σ∗, O(u1u2) =
O(u1)⊕O(u2).

Transductions - Transducers Let Σ be a structured (input) alphabet, and ∆ be a struc-

tured (output) alphabet. A relation over Σ∗ × ∆∗ is a transduction. We denote by

T (Σ,∆) the set of these transductions. For a transduction T , the set of words u (resp.

v) such that (u, v) ∈ T is called the domain (resp. the range) of T .

A visibly pushdown transducer from Σ to ∆ (the class is denoted VPT(Σ,∆)) is a

tuple A = (Q, I, F, Γ, δ) where Q is a finite set of states, I ⊆ Q the set of initial states,

F ⊆ Q the set of final states, Γ the (finite) stack alphabet, and δ = δc ⊎ δr ⊎ δι is the

transition relation where:

– δc ⊆ Q×Σc × Γ ×∆∗ ×Q are the call transitions,

– δr ⊆ Q×Σr × Γ ×∆∗ ×Q are the return transitions.

– δi ⊆ Q×Σi ×∆∗ ×Q are the internal transitions.

A stack (content) is a word over Γ . Hence, Γ ∗ is a monoid for the concatenation

with ⊥ (the empty stack) as neutral element. A configuration of A is a pair (q, σ) where

q ∈ Q and σ ∈ Γ ∗ is a stack content. Let u = a1 . . . al be a (nested) word on Σ, and

(q, σ), (q′, σ′) be two configurations of A. A run of the VPT A over u from (q, σ) to

(q′, σ′) is a (possibly empty) sequence of transitions ρ = t1t2 . . . tl ∈ δ∗ such that there

exist q0, q1, . . . ql ∈ Q and σ0, . . . σl ∈ Γ ∗ with (q0, σ0) = (q, σ), (ql, σl) = (q′, σ′),
and for each 0 < k ≤ l, we have either (i) tk = (qk−1, ak, γ, wk, qk) ∈ δc and

σk = σk−1γ, or (ii) tk = (qk−1, ak, γ, wk, qk) ∈ δr, and σk−1 = σkγ, or (iii)
tk = (qk−1, ak, wk, qk) ∈ δi, and σk−1 = σk. When the sequence of transitions is

empty, (q, σ) = (q′, σ′).
The length (resp. height) of a run ρ over some word u ∈ Σ∗, denoted |ρ| (resp.

height(ρ)) is defined as the length of u (resp. as the height of u).

3

The output of ρ (denoted output(ρ)) is the word v ∈ ∆∗ defined as the concate-

nation w = w1 . . . wl when the sequence of transitions is not empty and ǫ otherwise.

We write (q, σ)
u|w
−−→ (q′, σ′) when there exists a run on u from (q, σ) to (q′, σ′) pro-

ducing w as output. Initial (resp. final) configurations are pairs (q,⊥) with q ∈ I (resp.

with q ∈ F). A configuration (q, σ) is reachable (resp. co-reachable) if there exists

some initial configuration (i,⊥) (resp. some final configuration (f,⊥)) and a run from

(i,⊥) to (q, σ) (resp. from (q, σ) to (f,⊥)). A run is accepting if it starts in an initial

configuration and ends in a final configuration.

A transducer A defines relation/transduction from nested words to nested words,

denoted by JAK, and defined as the set of pairs (u, v) ∈ Σ∗ × ∆∗ such that there

exists an accepting run on u producing v as output. Note that since both initial and

final configurations have empty stack, A accepts only well-nested words, i.e. JAK ⊆
Σ∗

wn ×∆∗.

We denote VP(Σ,∆) the class of transductions defined by VPTs over the struc-

tured alphabets Σ (as input alphabet) and ∆ (as output alphabet).

Given a VPT A = (Q, I, F, Γ, δ), we let OA
max be the maximal number of open

calls and of open returns in a word produced as output of a call or of a return transition

in A. Formally, we have:

OA
max = max{||O(w)|| | (p, α, w, γ, q) ∈ δc ∪ δr}

Visibly pushdown automata We define visibly pushdown automata (VPA) simply as a

particular case of VPT; we may think of them as transducers with no output. Hence,

only the domain of the transduction matters and is called the language defined by the

visibly pushdown automaton. For an automaton A, this language will be denoted L(A).

Properties of computations in VPA/VPT We recall two standard results on runs of

visibly pushdown machines.

Lemma 2. Let A be a VPA with set of states Q and ρ : (p,⊥)
u
−→ (q,⊥) be a run of A

over some word u ∈ Σ∗
wn. Let h ∈ N>0. We have:

(i) if height(u) < h and |u| ≥ |Q|h, then ρ can be decomposed as follows:

ρ : (p,⊥)
u1−→ (p1, σ)

u2−→ (p1, σ)
u3−→ (q,⊥)

with u1u3 and u2 well-nested words and u2 6= ǫ.
(ii) if height(u) ≥ |Q|2, then ρ can be decomposed as follows:

ρ : (p,⊥)
u1−→ (p1, σ)

u2−→ (p1, σσ
′)

u3−→ (p2, σσ
′)

u4−→ (p2, σ)
u5−→ (q,⊥)

with u1u5, u2u4 and u3 well-nested words, and σ′ 6= ⊥.

3 Classes of VPT producing (almost) well-nested outputs

In this section, after recalling the definition of (locally) well-nested VPT, we introduce

the new classes of globally and almost well-nested VPT. Then, we prove relationships

between these classes.

4

3.1 Definitions

Locally Well-nested VPTs (lwnVPT) In [6], the class of (locally) well-nested VPT has

been introduced. For this class, the enforcement of the well-nestedness of the output is

done locally and syntactically at the level of transition rules.

Definition 2 (Locally Well-nested). Let A = (Q, I, F, Γ, δ) be a VPT. A is a locally

well-nested VPT (lwnVPT) if:

– for any pair of transitions (q, a, v, γ, q′) ∈ δc, (p, b, w, γ, p′) ∈ δr, the word vw is

well nested, and

– for any transition (q, a, v, q′) ∈ δi, the word v is well-nested.

A VPT transduction T is locally well-nested if there exists a lwnVPT A that realizes T

(JAK = T). The class of locally well-nested VPT transductions is denoted Lwn.

It is straightforward to prove that

Proposition 2. Let A be a locally well-nested VPT and (p, σ), (q, σ) two configura-

tions of A. For all well-nested word u, if (p, σ)
u/v
−−→ (q, σ) then v ∈ Σ∗

wn.

Therefore, any locally well-nested VPT transduction T is included into Σ∗
wn×∆∗

wn.

Globally well-nested VPT transduction - Almost well-nested VPT transduction In this

section, we introduce the class of globally well-nested transductions and its weaker

variant of ”almost” well-nested transductions. Unlike the definition of Lwn which is

done at the level of transducers, these definitions are done at the level of transductions

and thus, as a semantical property.

Definition 3 (Globally Well-nested). A VPT transduction T is globally well-nested if

T (Σ∗
wn) ⊆ ∆∗

wn. The class of globally well-nested VPT transductions is denoted Gwn.

A VPT A is globally well-nested if its transduction JAK is. The class of globally

well-nested VPT is denoted gwnVPT.

Definition 4 (Almost Well-nested). A VPT transduction T is almost well-nested if

there exists k in N such that for every pair of words (u, v) ∈ T , it holds that ||O(v)|| ≤
k. The class of almost well-nested VPT transductions is denoted Awn.

A VPT A is almost well-nested if its transduction JAK is. The class of almost well-

nested VPT is denoted awnVPT.

3.2 Comparison of the different classes

Classes of transductions Gwn and Awn are defined by semantical conditions on the de-

fined relations. This yields a clear correspondence between the classes Gwn and gwnVPT

on one side and Awn and awnVPT on the other side. This is not the case for Lwn: two

examples of VPTs are given in Figure 1. It is easy to verify that A1, A2 ∈ gwnVPT.

Moreover, none of these transducers belongs to lwnVPT. However, one can easily build

a transducer A′
2 such that JA2K = JA′

2K and A′
2 ∈ lwnVPT. Indeed one can perform

the following modifications:

5

i p1 p2 f
c|ccc, γ i|rr r|r, γ

c|cr, γ′ r|cr, γ′

(a) The VPT A1.

i p1 p2 f
c|cc, γ i|c r|rrr, γ

c|cr, γ′ r|rc, γ′

(b) The VPT A2.

Fig. 1. Two VPTs in VP(Σ,Σ) with Σc = {c}, Σr = {r} and Σi = {i}.

– the transition (p1, i, c, p2) becomes (p1, i, ǫ, p2)

– the transition (p2, r, rc, γ
′, p2) becomes (p2, r, cr, γ

′, p2)

– the transition (p2, r, rrr, γ, f) becomes (p2, r, crrr, γ, f)

On the contrary, as we prove below, the transduction JA1K does not belong to Lwn: there

exists no transducer A′
1 ∈ lwnVPT such that JA′

1K = JA1K.

To summarize, we prove the following proposition.

Proposition 3. The following inclusion results hold:

– For transducers: lwnVPT (gwnVPT (awnVPT

– For transductions: Lwn (Gwn (Awn

Proof (Sketch). The non-strict inclusions are straightforward. The strict inclusions gwnVPT (

awnVPT and Gwn (Awn follow from the constraint on the range. The strict inclusion

lwnVPT (gwnVPT is witnessed by A2 from Figure 1, as explained above.

We sketch now the proof of the strict inclusion Lwn (Gwn, and therefore consider

the transducer A1 on Figure 1. Observe that JA1K ∈ Gwn, we show that JA1K 6∈ Lwn.

First note that JA1K = {(cckirkr, ccc(cr)krr(cr)kr) | k ∈ N} and that

(Fact 1) the transduction defined by A1 is injective

(Fact 2) any word of the output can be decomposed as w1rrw2 where w1 = ccc(cr)k and

w2 = (cr)kr for some natural k and for each w1 with fixed k there exists a unique

w2 such that w1rrw2 is in the range of A1 (and conversely).

By contradiction, suppose that there exists A′
1 ∈ lwnVPT such that JA′

1K = JA1K. Now,

for k sufficiently large and depending only on the fixed size of A′
1, A′

1 has an accepting

run for the input cckirkr of the form given in the point (ii) of Lemma 2. Let us denote

by ui (resp. vi), i ∈ {1, . . . , 5} the corresponding decomposition of the input (resp.

output) word. Due to Proposition 2, words v1v5, v2v4 and v3 are well-nested.

Now, assume that v2 = ǫ and v4 = ǫ. Then, using a simple pumping argument

over the pair (u2, u4), one would obtain a different input producing the same output,

contradicting the injectivity of A′
1 (due to (Fact 1)). So, v2 6= ǫ or v4 6= ǫ.

Using a case analysis on the presence of the previously mentioned pattern rr in the

outputs of A′
1, using the fact that v2v4 6= ǫ, (Fact 2) and a pumping argument over the

pair of words (u2, u4), one obtains a contradiction.

6

4 Characterizations

In this section we give criteria on VPTs that aim to characterize the classes gwnVPT

and awnVPT.

Definition 5. Let A be a VPT. Let us consider the following criteria:

(C1) For all states p, i, f such that i is initial and f is final, for any stack σ, then any

accepting run

(i,⊥)
u1/v1
−−−−→ (p, σ)

u2/v2

−−−−→ (p, σ)
u3/v3

−−−−→ (f,⊥)

with u1u3, u2 ∈ Σ∗
wn satisfies B(v2) = 0.

(C2) For all states p, q, i, f such that i is initial and f is final, for any stack σ, σ′, then

any accepting run

(i,⊥)
u1/v1

−−−−→ (p, σ)
u2/v2

−−−−→ (p, σσ′)
u3/v3
−−−−→ (q, σσ′)

u4/v4

−−−−→ (q, σ)
u5/v5

−−−−→ (f,⊥)

with u2u4, u3 ∈ Σ∗
wn and σ′ 6= ⊥ satisfies B(v2) + B(v4) = 0 and B(v2) ≥ 0.

It holds that

Theorem 1. Let A be a VPT. Then A is almost well-nested iff A verifies criteria (C1)
and (C2).

This is an immediate consequence of Propositions 4 and 5 that we prove now.

Lemma 3. Let X ⊆ Σ∗ such that the set B(X) = {B(u) | u ∈ X} is infinite. Then

the set {O(u) | u ∈ X} is infinite as well.

Lemma 4. Let u ∈ Σ∗ and k be a strictly positive integer. Then O(uk) is equal to

(Or(u), (Oc(u) − Or(u)) ∗ (k − 1) + Oc(u)) if Oc(u) ≥ Or(u) and to (Or(u) +
(Or(u)− Oc(u)) ∗ (k − 1),Oc(u)) otherwise.

Proof. By definition of ⊕ and by induction on k.

Proposition 4. Let A be a VPT. If A does not satisfy (C1) or (C2), then A is not

almost well-nested.

Proof. Let us assume that A does not satisfy (C1). Hence there exists an accepting

run as described in criterion (C1) such that B(v2) 6= 0. We then build by iterating the

loop on word u2 accepting runs for words of the form u1(u2)
ku3 for any natural k,

producing output words v1(v2)
kv3. Let us denote this set by X . As B(v2) 6= 0 and by

Lemma 1, the set B(X) is infinite. Lemma 3 entails that A is not almost well-nested.

Assume now that A does not satisfy (C2). Hence, there exists an accepting run as

described in the statement of the proposition such that either (i) B(v2)+B(v4) = b 6= 0
or (ii) B(v2) < 0. In the case of (i), from this run, one can build by pumping accepting

runs for words of the form u1(u2)
ku3(u4)

ku5 for any natural k, producing output words

v1(v2)
kv3(u4)

kv5. As before, Lemmas 1 and 3 imply that A is not almost well-nested.

7

Now, for (ii) assuming that B(v2)+B(v4) = 0. As B(v2) < 0, it holds that B(v4) >
0 and thus, Or(v2) > Oc(v2), Or(v4) < Oc(v4). From the run of the statement, one can

build by pumping accepting runs for words of the form u1(u2)
ku3(u4)

ku5 for any natu-

ral k, producing output words v1(v2)
kv3(v4)

kv5. Now, we consider O(v1(v2)
kv3(v4)

kv5)
which, by associativity of ⊕, is equal to O(v1)⊕O((v2)

k)⊕O(v3)⊕O((u4)
k)⊕O(v5)).

Now, by Lemma 4, it is equal to

O(v1)⊕ (Or(v2) + (Or(v2)− Oc(v2)) ∗ (k − 1),Oc(v2))⊕ O(v3)⊕
(Or(v4), (Oc(v4)− Or(v4)) ∗ (k − 1) + Oc(v4))⊕ O(v5)

It is easy to see that for k varying, the described pairs are unbounded.

Given a VPT A = (Q, I, F, Γ, δ), we define the integer NA = 2|Q|2|Q|2 .

Lemma 5. Let A be a VPT. If A satisfies the criteria (C1) and (C2), then for any

accepting run ρ such that |ρ| ≥ NA, there exists an accepting run ρ′ such that |ρ′| < |ρ|
and ||O(output(ρ′))|| ≥ ||O(output(ρ))||.

Proof (Sketch). Let A = (Q, I, F, Γ, δ) and ρ be an accepting run such that |ρ| ≥ NA.

We distinguish two cases, depending on height(ρ):

– when height(ρ) < 2|Q|2 : by definition of NA, we can apply Lemma 2.(i) twice

and prove that ρ is of the following form:

(i,⊥)
u1/v1

−−−−→ (p, σ)
u2/v2

−−−−→ (p, σ)
u3/v3
−−−−→ (q, σ′)

u4/v4

−−−−→ (q, σ′)
u5/v5

−−−−→ (f,⊥)

with u2, u4 ∈ Σ∗
wn \ {ǫ}. Then, by criterion (C1), we have B(v2) = B(v4) = 0.

One can prove that at least one of u2 and u4 can be removed from u while preserv-

ing the value Or(u). Let us denote by v′ the resulting output word. Observe also

that removing this part of the run does not modify the balance B(.) of the run, as

B(v2) = B(v4) = 0. As Oc(v) = B(v)+Or(v), we obtain O(v) = O(v′), yielding

the result.

– when height(ρ) ≥ 2|Q|2 : in this case, we can apply Lemma 2.(ii) twice and prove

that ρ is of the following form:

(i,⊥)
u1/v1

−−−−→ (p1, σ)
u2/v2

−−−−→ (p1, σσ1)
u3/v3

−−−−→ (q1, σσ1σ2)
u4/v4

−−−−→ (q1, σσ1σ2σ3)
u5/v5

−−−−→ (q2, σσ1σ2σ3)
u6/v6

−−−−→ (q2, σσ1σ2)
u7/v8
−−−−→ (p2, σσ1)

u8/v8
−−−−→ (p2, σ)

u9/v9
−−−−→

(f,⊥), with u1u9, u2u8, u3u7, u4u6, u5 ∈ Σ∗
wn and σ1, σ3 6= ⊥.

Then the two following runs can be built: the one obtained by removing the parts

of ρ on u2 and u8, and the one obtained by removing the parts of ρ on u4 and u6,

yielding runs whose length is strictly smaller than |ρ|. Let us denote these two runs

by ρ′ and ρ′′ respectively, and their outputs by v′ and v′′. As A verifies the criterion

(C2), we have that B(v) = B(v′) = B(v′′), as B(v2)+B(v8) = B(v4)+B(v6) = 0
and B is commutative. In order to obtain the result, we study Or(v). Considering

different cases, we manage to prove that either Or(v′) ≥ Or(v) or Or(v′′) ≥ Or(v).
The result follows as for any word w we have Oc(w) = B(w) + Or(w).

Proposition 5. Let A be a VPT. If A satisfies (C1) and (C2), then every accepting run

ρ : (i,⊥)
u|v
−−→ (f,⊥) of A verifies ||O(v)|| ≤ NA.O

A
max.

8

Proof. If |v| ≤ NA the result is trivial; otherwise, assuming the existence of a minimal

counter-example of this statement, a contradiction follows from Lemma 5.

Now we can show a precise characterization of transducers from gwnVPT amongst

those in awnVPT.

Definition 6. Let A be a VPT. We consider the following criterion:

(D) For all (u, v) ∈ JT K , if |u| ≤ NA then v ∈ Σ∗
wn.

Theorem 2. Let A be a VPT. Then A is globally well-nested iff A verifies criteria

(C1), (C2) and (D).

Proof. The left-to-right implication is trivial. The other one is an easy consequence of

Lemma 5.

5 Deciding the classes of almost and globally well-nested VPT

In this section, we prove that given a VPTA, it is decidable to know whether JAK ∈ Awn

and whether JAK ∈ Gwn.

It is known that

Proposition 6. The following problems can be solved in PTIME: given A = (Q, I, F, Γ, δ)
a VPT and states p, q of A. Decide whether there exists some stack σ such that:

– (p, σ) is reachable

– (q, σ) is co-reachable

– (p, σ) is reachable and (q, σ) is co-reachable

Theorem 3. Let A be a VPT. Whether JAK ∈ Awn can be decided in PSPACE.

Proof (Sketch). By Theorem 1, deciding the class awnVPT amounts to decide criteria

(C1) and (C2). Therefore we propose a non-deterministic algorithm running in poly-

nomial space, yielding the result thanks to Savitch theorem.

We claim that A verifies (C1) and (C2) if and only if it verifies these criteria on

”small instances”, defined as follows:

– Criterion (C1): consider only words u2 such that height(u2) ≤ |Q|2 and |u2| ≤

2.|Q||Q|2 .

– Criterion (C2): consider only stacks σ′ such that |σ′| ≤ |Q|2 and words u2, u4 of

height at most 2.|Q|2 and length at most |Q|2.|Q||Q|2 .

The non-deterministic algorithm follows from the claim: in order to exhibit a witness

of the fact that A 6∈ awnVPT, the algorithm guesses whether (C1) or (C2) is violated,

and a pair of states (p, q) and one or two runs, according to the criterion, of exponential

size, which can be done in polynomial space. Using Proposition 6 it also verifies that

there exists a stack σ such that (p, σ) is reachable and (q, σ) is co-reachable.

To prove this claim, we show, by induction on u ∈ Σ∗
wn, that for every run (p,⊥)

u|v
−−→

(q,⊥) that can be completed into an accepting run, and for every decomposition of this

run according to criterion (C1) or (C2), the property stated by the corresponding crite-

rion is fulfilled.

9

The previous algorithm could be extended to handle in addition criterion (D), yield-

ing a PSPACE algorithm to decide whether a VPT A is globally well-nested. However,

we can use a recent result to prove that this problem can be solved in PTIME.

Theorem 4. Let A be a VPT. Whether JAK ∈ Gwn can be decided in PTIME.

Proof. This proof heavily relies on results from [2] showing that deciding whether a

context-free language is included into a Dyck language can be solved in PTIME.

We first erase the precise symbols of the produced outputs keeping track only of

the type of the symbols: we build from A a VPT A′ defined on the output alphabet Σ′

with Σ′
c = {(}, Σ′

r = {)} and Σ′
i = ∅. A transition of A′ is obtained from a transition

of A by replacing in output words of the transition of A call symbols by (and return

symbols by) and removing internal symbols. It is then easy to see that A is in gwnVPT

iff A′ is in gwnVPT (actually, for each run in A producing v, its corresponding run in

A′ produces some v′ such that O(v) = O(v′)). Then, as shown in [8], one can build in

polynomial time a context-free grammar GA′ generating the range of A′. Finally, we

appeal to [2] to conclude.

6 Closure under composition and Type-checking

6.1 Definitions and existing results

In this section, we consider two natural problems for transducers : the first one is related

to composition of transductions. The second problem is the type-checking problem that

aims to verify that any output of a transformation belongs to some given type/language.

For VPT, the obvious class of ”types” to consider is the class of languages defined by

VPA.

Definition 7 (Closure under composition). A class T of transductions included in

Σ∗ × Σ∗ is closed under composition if for all T, T ′ in T , the transduction T ◦ T ′ is

also in T . It is effectively closed under composition if for any transducers A, A′ such

that JAK, JA′K ∈ T , A ◦A′ is computable and JA ◦A′K is in T .

A class of transducers T is effectively closed under composition if for any two trans-

ducers A,A′ in T, A ◦A′ is computable and A ◦A′ is in T.

Definition 8 (Type-checking (against VPA)). Given a VPT A and two VPA B,C,

decide whether JAK(L(B)) ⊆ L(C).

The following results give the status of these properties for arbitrary VPTs and for

lwnVPT:

Theorem 5 ([7,6]). Regarding closure under composition, we have:

– The class VP(Σ,Σ) is not closed under composition.

– The class lwnVPT is effectively closed under composition.

In addition, the problem of type checking against VPA is undecidable for (arbitrary)

VPT and decidable for lwnVPT.

10

6.2 New results

Actually, regarding the closure under composition of the class lwnVPT, though it is not

explicitly stated, the result proved in [6] is slightly stronger. It is indeed shown that for

any VPT A,B such that A ∈ lwnVPT, there exists an (effectively computable) VPT C

satisfying JCK = JAK ◦ JBK. In addition, if B ∈ lwnVPT, then C ∈ lwnVPT.

We extend this positive result to any almost well-nested transducer.

One of the main ingredients of the proof of this result is the set UPSA defined for

any VPT transducer A = (QA, IA, FA, ΓA, δ
A) as

{

(p, p′, n1, n2)
∃σ ∈ Γ ∗, (p, σ) is reachable and (p′, σ) is co-reachable and

∃u ∈ Σ∗
wn, (p,⊥)

u|v
−−→ (p′,⊥) and O(v) = (n1, n2)

}

Proposition 7. Let A in awnVPT. Then the set UPSA is finite and computable in ex-

ponential time in the size of A.

Theorem 6. Let A,B be two VPTs. If A is almost-well nested, then one can compute

in exponential time in the size of A and B a VPT C such that JCK = JAK ◦ JBK.

Moreover, if B is also almost well-nested, then so is C, and if A and B are globally

well-nested, then so is C.

Proof (Sketch). We present the construction of C, the proof of correctness can be found

in the Appendix. By Proposition 7, UPSA is finite and we let K be the computable

integer value max({π3(x) | x ∈ UPSA} ∪ {π4(x) | x ∈ UPSA}).
Given B = (QB , IB , FB , ΓB , δ

B), we define C = (QC , IC , FC , ΓC , δ
C) as

QC = QA ×QB × Γ
≤K
B IC = IA × IB × {⊥}

ΓC = ΓA × Γ
≤O

A

max
+K

B FC = FA × FB × {⊥}

Now for the transition rules δC :

– ((p, q, σ), i, w, (p′, q′, σ′)) ∈ δCi if there exist a word v ∈ ∆∗ and a stack σ0 ∈ Γ ∗
B

such that σ = σ0σ1, σ′ = σ0σ
′
1, O(v) = (|σ1|, |σ

′
1|), and (p, i, v, p′) ∈ δAi and

there exists a run (q, σ1)
v|w
−−→ (q′, σ′

1) in B,

– ((p, q, σ), c, w, (γ, σ3), (p
′, q′, σ4)) ∈ δCc if there exist a word v ∈ ∆∗, two stacks

σ0, σ2 ∈ Γ ∗
B and a stack symbol γ ∈ ΓA such that σ = σ0σ1, O(v) = (|σ1|, |σ2|),

σ0σ2 = σ3σ4, (p, c, v, γ, p′) ∈ δAc and there exists a run (q, σ1)
v|w
−−→ (q′, σ2) in B,

such a transition exists provided the bounds on the sizes of the different stacks are

fulfilled, i.e. |σ| ≤ K, |σ4| ≤ K, and |σ3| ≤ OA
max +K

– ((p, q, σ), r, w, (γ, σ3), (p
′, q′, σ′)) ∈ δCr if there exist a word v ∈ ∆∗, a stack σ0 ∈

Γ ∗
B such that σ0σ1 = σ3σ, σ0σ2 = σ′, O(v) = (|σ1|, |σ2|), (p, r, v, γ, p

′) ∈ δAr

and there exists a run (q, σ1)
v|w
−−→ (q′, σ2) in B

such a transition exists provided the bounds on the sizes of the different stacks are

fulfilled, i.e. |σ| ≤ K, |σ′| ≤ K, and |σ3| ≤ OA
max +K

Intuitively, in a state of C, we store the current states of A and B. In addition, a part

of the top of the stack of B is also stored in the state of C to allow the simulation of B.

The (finite) amount that needs to be stored in the state is identified using the set UPSA.

11

Corollary 1. The classes Gwn and Awn are (effectively) closed under composition.

Theorem 7 (Type-checking against VPA). Given an almost well-nested VPT A and

two visibly pushdown automata B,C, whether JAK(L(B)) ⊆ L(C) is decidable in

2− EXPTIME.

Proof. Restricting the domain of A to L(B) is easy: it suffices to compute the product

VPA of A and B. Then, VPA being closed under complementation, we compute C, the

complement of C. Note that the size of C is at most exponential in the size of C. We

then turn C into a transducer C ′ defining the identity relation over L(C) (this is obvious

by simply transforming rules of C into rules of transducers outputting their input). Now,

by Theorem 6, one can build a transducer defining the composition of JAK ◦ JC ′K. This

can be done in doubly exponential time in the size of A and C. Now, it is sufficient to

test whether the VPA underlying this transducer is empty or not.

7 Conclusion

In this paper, we have considered and precisely characterized the class of VPT with

well-nested outputs. We have shown that this class is closed under composition and that

its type-checking against VPA is decidable. We have restricted ourselves in this paper to

transducers with well-nested domains. We conjecture that this restriction can be easily

relaxed and thus, one could consider transducers based on nested word automata [1].

We left open the problem of deciding the class Lwn. As we have described on some

examples, this problem is far from being trivial. In [4], a clear relationship between

the class lwnVPT and hedge-to-hedge transducers is described; investigating such a

relationship for gwnVPT is also an interesting problem.

References

1. R. Alur and P. Madhusudan. Adding Nesting Structure to Words. JACM, 56(3):1–43, 2009.

2. A. Bertoni, C. Choffrut, and R. Radicioni. The inclusion problem of context-free languages:

Some tractable cases. Int. J. Found. Comput. Sci., 22(2):289–299, 2011.

3. B. v. Braunmühl and R. Verbeek. Input-driven Languages are Recognized in log n Space. In

FCT, volume 158 of LNCS, pages 40–51. Springer, 1983.

4. M. Caralp, E. Filiot, P.-A. Reynier, F. Servais, and J.-M. Talbot. Expressiveness of visibly

pushdown transducers. In Proceedings Second International Workshop on Trends in Tree

Automata and Tree Transducers, TTATT 2013, volume 134 of EPTCS, pages 17–26, 2013.

5. E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. Streamability of Nested Word Transduc-

tions. In FSTTCS, volume 13 of LIPIcs, pages 312–324. Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, 2011.

6. E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais, and J.-M. Talbot. Properties of Visibly Push-

down Transducers. In MFCS’10, volume 6281 of LNCS, pages 355–367. Springer, 2010.

7. J.-F. Raskin and F. Servais. Visibly pushdown transducers. In ICALP, volume 5126 of LNCS,

pages 386–397, 2008.

8. F. Servais. Visibly Pushdown Transducers. PhD thesis, Université Libre de Bruxelles, 2011.

9. S. Staworko, G. Laurence, A. Lemay, and J. Niehren. Equivalence of deterministic nested

word to word transducers. In FCT, volume 5699 of LNCS, pages 310–322, 2009.

12

A Proofs of Section 2

Proof (of Proposition 1). We only prove that (N2,⊕, , (0, 0)) is a monoid. The second

part of the statement is an easy consequence.

Let us prove that (0, 0) is a neutral element. Obviously, (n1, n2)⊕(0, 0) = (n1, n2).
Now, for (0, 0) ⊕ (n′

1, n
′
2), if the first case applies then 0 ≥ n′

1 = 0 and the result is

indeed (0, n′
2) = (n′

1, n
′
2). Otherwise, the second case applies and gives (n′

1, n
′
2).

Now, let us prove that ⊕ is associative.

(1a) (n1, n2)⊕ (n′
1, n

′
2) = (n1, n2 − n′

1 + n′
2) if n2 ≥ n′

1.

Now, ((n1, n2)⊕ (n′
1, n

′
2))⊕ (n′′

1 , n
′′
2) is equal to

{

(n1, n2 − n′
1 + n′

2 − n′′
1 + n′′

2) if n2 − n′
1 + n′

2 ≥ n′′
1(ie n2 + n′

2 ≥ n′
1 + n′′

1)
(n1 + n′′

1 − n2 + n′
1 − n′

2, n
′′
2) if n2 − n′

1 + n′
2 < n′′

1

(1b) (n1, n2)⊕ (n′
1, n

′
2) = (n1 + n′

1 − n2, n
′
2) if n2 < n′

1.

Now, ((n1, n2)⊕ (n′
1, n

′
2))⊕ (n′′

1 , n
′′
2) is to equal to

{

(n1 + n′
1 − n2, n

′
2 − n′′

1 + n′′
2) if n′

2 ≥ n′′
1

(n1 + n′
1 − n2 + n′′

1 − n′
2, n

′′
2) if n′

2 < n′′
1

(2a) (n′
1, n

′
2)⊕ (n′′

1 , n
′′
2) = (n′

1, n
′
2 − n′′

1 + n′′
2) if n′

2 ≥ n′′
1 .

Now, (n1, n2)⊕ ((n′
1, n

′
2)⊕ (n′′

1 , n
′′
2)) is equal to

{

(n1, n2 − n′
1 + n′

2 − n′′
1 + n′′

2) if n2 ≥ n′
1

(n1 + n′
1 − n2, n

′
2 − n′′

1 + n′′
2) if n2 < n′

1

(2b) (n′
1, n

′
2)⊕ (n′′

1 , n
′′
2) = (n′

1 + n′′
1 − n′

2, n
′′
2) if n′

2 < n′′
1 .

Now, (n1, n2)⊕ ((n′
1, n

′
2)⊕ (n′′

1 , n
′′
2)) is to equal to

{

(n′
1 + n′′

1 − n′
2 + n1 − n2, n

′′
2) if n′

1 + n′′
1 − n′

2 ≥ n2(ie n′
1 + n′′

1 ≥ n2 + n′
2)

(n1, n2 + n′′
2 − n′

1 − n′′
1 + n′

2) if n′
1 + n′′

1 − n′
2 < n2

Proof (of Lemma 4). The proof goes by induction over k. It is obvious for k = 1.

Asssuming it true for k ≥ 1, we consider k + 1. By induction hypothesis, O(uk) is

equal to (Or(u), (Oc(u)−Or(u))∗(k−1)+Oc(u)) if Oc(u) ≥ Or(u) and to (Or(u)+
(Or(u)− Oc(u)) ∗ (k − 1),Oc(u)) otherwise.

In the first case, (Or(u),Oc(u))⊕ (Or(u), (Oc(u)−Or(u)) ∗ (k − 1) +Oc(u)) =
(Or(u), (Oc(u)−Or(u))+ (Oc(u)−Or(u)) ∗ (k− 1)+Oc(u)) as Oc(u) ≥ Or(u). In

the second case, (Or(u),Oc(u))⊕ (Or(u)+(Or(u)−Oc(u))∗ (k−1),Oc(u)) is equal

to (Or(u) + (Or(u)−Oc(u)) ∗ (k− 1)+ (Or(u)−Oc(u)),Oc(u)) as Or(u) > Oc(u)
and thus, Or(u)+ (Or(u)−Oc(u)) ∗ (k− 1) > Oc(u). In both cases, the lemma holds.

13

B Proof of Section 3

Proof (of Proposition 3). The non-strict inclusions are straightforward. The strict in-

clusions gwnVPT (awnVPT and Gwn (Awn follow from the constraint on the range.

The strict inclusion lwnVPT (gwnVPT is witnessed by A2, as explained above.

We prove now the strict inclusion Lwn (Gwn, and therefore consider the transducer

A1. Observe that JA1K ∈ Gwn, we show that JA1K 6∈ Lwn. First note that JA1K =
{(cckirkr, ccc(cr)krr(cr)kr) | k ∈ N} and that

(Fact 1) the transduction defined by A1 is injective

(Fact 2) any word of the output can be decomposed as w1rrw2 where w1 = ccc(cr)k and

w2 = (cr)kr for some natural k and for each w1 with fixed k there exists a unique

w2 such that w1rrw2 is in the range of A1 (and conversely).

By contradiction, suppose that there exists A′
1 ∈ lwnVPT such that JA′

1K = JA1K.

Now, for k sufficiently large and depending only on the fixed size of A′
1, A′

1 has an

accepting run for the input cckirkr of the form given in the point (ii) of Lemma 2. Let

us denote by ui (resp. vi), i ∈ {1, . . . , 5} the corresponding decomposition of the input

(resp. output) word. Due to Proposition 2, words v1v5, v2v4 and v3 are well-nested.

Now, assume that v2 = ǫ and v4 = ǫ. Then, using a simple pumping argument

over the pair (u2, u4), one would obtain a different input producing the same output,

contradicting (Fact 1) as JA1K = JA′
1K. So, v2 6= ǫ or v4 6= ǫ.

Our aim is to identify in which vj’s the pattern rr mentionned previously occurs.

Now, by case inspection :

– the pattern rr is in v1: w2 as for suffix v2v3v4v5. By a pumping argument over the

pair (u2, u4) using the fact that v2 6= ǫ or v4 6= ǫ, one would obtain a different w′
2

such that w1rrw
′
2 is in the range of T2 (and thus T1). Contradiction.

– the pattern rr is in v5 or split as the last letter of v1 and the first letter of v2 (resp. as

the last letter of v4 and the first letter of v5): follow the lines of the previous case.

– the pattern rr is in v2 or v4: note that for any output the number of occurrences of

the subword rr is upper-bounded by 3. Using a pumping over the pair (u2, u4), one

could obtain outputs with unboundedly many subwords rr. Contradiction.

– the pattern rr is split as the last letter of v2 and the first letter of v3: v3 is well-

nested. Hence, it can not start with some return symbol. Contradiction.

– the pattern rr is split as the last letter of v3 and the first letter of v4: note that

no output contains the subword ccccc. As v3 is well-nested,it must be of the form

c(cr)kr. So, v1v2 = cc. If v2 6= ǫ, v2 is equal to c or cc. Using a pumping over

the pair (u2, u4), one could obtain outputs containing the subword ccccc. Contra-

diction. Otherwise, if v2 = ǫ, then by a pumping argument over the pair (u2, u4)
using the fact that v4 6= ǫ, one would obtain a different w′

2 such that w1rrw
′
2 is in

the range of T2 (and thus T1). Contradiction.

– the pattern rr is in v3: v3 is well-nested and contains as a suffix after this pattern

rr a prefix of w2: depending on the form of this prefix:

• the prefix is of the form (cr)k
′

: v3 must be of the form cc(cr)k
′

rr(cr)k
′

and

thus, k′ = k. So, v1v2 = c. We then conclude as in the previous case.

• the prefix is of the form (cr)k
′

c: this is not possible as v3 ∈ Σ∗
wn.

14

• the prefix is of the form (cr)kr: v3 must be of the form ccc(cr)k
′

rr(cr)k
′

. It

implies that v2 = ǫ and v4 = ǫ. Contradiction.

Hence, there is no situation in which rr can occur maintaining A′
1 to be locally well-

nested. Therefore, such a A′
1 can not exist.

C Proofs of Section 4

Lemma 6. For any finite sequence of words v1, v2, . . . vn,

Or(v1v2 . . . vn) = max
1≤i≤n

(Or(vi)− B(v1v2 . . . vi−1))

Proof. The proof goes by induction over the length n of the sequence. This is obvious

for n = 1. Now, for n + 1 assuming this holds for n. Or(v1v2 . . . vn+1) is equal by

definition of ⊕ to

{

Or(v1) if Oc(v1) ≥ Or(v2 . . . vn+1))
Or(v1) + Or(v2 . . . vn+1)− Oc(v2 . . . vn+1) if Oc(v1) < Or(v2 . . . vn+1))

Now,

Or(v1v2 . . . vn+1) = max(Or(v1),max2≤i≤n+1(Or(vi)− B(v1v2 . . . vi−1)))
= max(Or(v1),max2≤i≤n+1(Or(vi)− B(v2 . . . vi−1))− B(v1))
= max(Or(v1),Or(v2 . . . vn+1)− B(v1)) (by ind. hyp.)

Now depending of the greatest of the two elements; if Or(v1) ≥ Or(v2 . . . vn+1) −
B(v1) = Or(v2 . . . vn+1) − Oc(v1) + Or(v1). We have Oc(v1) ≥ Or(v2 . . . vn+1).
If Or(v1) < Or(v2 . . . vn+1) − B(v1) = Or(v2 . . . vn+1) − Oc(v1) + Or(v1). Then,

Oc(v1) < Or(v2 . . . vn+1). In both cases, this is equal to Or(v1v2 . . . vn+1).

Proof (of Lemma 5). Let A = (Q, I, F, Γ, δ) and ρ be an accepting run such that |ρ| ≥
NA. We distinguish two cases, depending on height(ρ):

– when height(ρ) < 2|Q|2 : in this case, by definition of NA, we can apply Lemma 2.(i)
twice and prove that ρ is of the following form:

(i,⊥)
u1/v1

−−−−→ (p, σ)
u2/v2
−−−−→ (p, σ)

u3/v3

−−−−→ (q, σ′)
u4/v4
−−−−→ (q, σ′)

u5/v5

−−−−→ (f,⊥)

with u2, u4 ∈ Σ∗
wn \ {ǫ}. Then, by criterion (C1), we have B(v2) = B(v4) = 0.

One can prove that at least one of u2 and u4 can be removed from u while preserv-

ing the value Or(u). Let us denote by v′ the resulting output word. Observe also

that removing this part of the run does not modify the balance B(.) of the run, as

B(v2) = B(v4) = 0. As Oc(v) = B(v)+Or(v), we obtain O(v) = O(v′), yielding

the result.

– when height(ρ) ≥ 2|Q|2 : in this case, we can apply Lemma 2.(ii) twice and prove

that ρ is of the following form:

(i,⊥)
u1/v1

−−−−→ (p1, σ)
u2/v2

−−−−→ (p1, σσ1)
u3/v3

−−−−→ (q1, σσ1σ2)
u4/v4
−−−−→ (q1, σσ1σ2σ3)

15

u5/v5

−−−−→ (q2, σσ1σ2σ3)
u6/v6

−−−−→ (q2, σσ1σ2)
u7/v8

−−−−→ (p2, σσ1)
u8/v8
−−−−→ (p2, σ)

u9/v9
−−−−→

(f,⊥), with u1u9, u2u8, u3u7, u4u6, u5 ∈ Σ∗
wn and σ1, σ3 6= ⊥.

Then the two following runs can be built: the one obtained by removing the parts

of ρ on u2 and u8, and the one obtained by removing the parts of ρ on u4 and u6,

yielding runs whose length is strictly smaller than |ρ|. Let us denote these two runs

by ρ′ and ρ′′ respectively, and their outputs by v′ and v′′. As A verifies the criterion

(C2), we have that B(v) = B(v′) = B(v′′), as B(v2)+B(v8) = B(v4)+B(v6) = 0
and B is commutative. In order to obtain the result, we study Or(v).
By Lemma 6,

Or(v) =
9

max
i=1

{Or(vi)− B(v1 . . . vi−1)}

Then, we distinguish two cases:
• If the maximum corresponding to Or(v) is not obtained for i ∈ {4, 5, 6}. In

this case, we will prove that Or(v′′) ≥ Or(v). When we remove parts of ρ on

u4 and u6, we have:

Or(v′′) = max{Or(v1),Or(v2)− B(v1),Or(v3)− B(v1v2),Or(v5)− B(v1v2v3),
Or(v7)− B(v1v2v3v5),Or(v8)− B(v1v2v3v5v7),Or(v9)− B(v1v2v3v5v7v8)}

As B(v4) + B(v6) = 0 and the maximum corresponding to Or(v) is not ob-

tained for i ∈ {4, 5, 6}, we obtain:

Or(v′′) = max{Or(v),Or(v5)− B(v1v2v3)}

This proves Or(v′′) ≥ Or(v). As for any word w we have Oc(w) = B(w) +
Or(w) we also have Oc(v′′) ≥ Oc(v). This entails ||O(v′′)|| ≥ ||O(v)||.

• If the maximum corresponding to Or(v) is obtained for i ∈ {4, 5, 6}. In this

case, we will prove that Or(v′) ≥ Or(v). When we remove parts of ρ on u2

and u8, denoting by v′ the resulting output word, we have:

Or(v′) = max{Or(v1),Or(v3)− B(v1),Or(v4)− B(v1v3),Or(v5)− B(v1v3v4),
Or(v6)− B(v1v3v4v5),Or(v7)− B(v1v3v4v5v6),Or(v9)− B(v1v3v4v5v6v7)}

As the maximum corresponding to Or(v) is obtained for i ∈ {4, 5, 6}, we can

write:

Or(v) = max{Or(v4)− B(v1v2v3),Or(v5)− B(v1v2v3v4),Or(v6)− B(v1v2v3v4v5)}
= max{Or(v4)− B(v1v3),Or(v5)− B(v1v3v4),Or(v6)− B(v1v3v4v5)} − B(v2)

By criterion (C2), we have B(v2) ≥ 0 and thus:

max{Or(v4)−B(v1v3),Or(v5)−B(v1v3v4),Or(v6)−B(v1v3v4v5)} ≥ Or(v)

In addition, by Lemma 6, we have Or(v) ≥ Or(v1) and Or(v) ≥ Or(v9) −
B(v1v2v3v4v5v6v7v8). By criterion (C2), the latter property can be written as

Or(v) ≥ Or(v9)−B(v1v3v4v5v6v7) thanks to the property B(v2)+B(v8) = 0.

Using these facts, we can simplify the previous expression and obtain:

Or(v′) = max{Or(v3)− B(v1),Or(v4)− B(v1v3),Or(v5)− B(v1v3v4),
Or(v6)− B(v1v3v4v5),Or(v7)− B(v1v3v4v5v6)}

= max{Or(v3)− B(v1v2),Or(v4)− B(v1v2v3),Or(v5)− B(v1v2v3v4),
Or(v6)− B(v1v2v3v4v5),Or(v7)− B(v1v2v3v4v5v6)}+ B(v2)

= Or(v) + B(v2)

16

The last equality follows from the fact the maximum corresponding to Or(v)
is obtained for i ∈ {4, 5, 6}. This concludes this case.

D Proofs of Section 5

Proof (of Proposition 6). We consider only the third point which combined the first two.

Is is well-know that the set of stacks of a pushdown automata obtained along successful

computations is a regular language. For a VPT A, it is easy to built in polynomial time

a finite state automaton Areach
p (resp. Acoreach

p) over Γ such a word ω is accepted by

Areach
p iff (p, ω) is reachable (resp. co-reachable) in A. It is then enough to consider

pairs (p, p′) such that L(Areach
p) ∩ L(Acoreach

p′) 6= ∅.

Proof (of Theorem 3). By Theorem 1, deciding the class awnVPT amounts to decide

criteria (C1) and (C2). Therefore we propose a non-deterministic algorithm running in

polynomial space, yielding the result thanks to Savitch theorem.

We claim that A verifies (C1) and (C2) if and only if it verifies these criteria on

”small instances”, defined as follows:

– Criterion (C1): consider only words u2 such that height(u2) ≤ |Q|2 and |u2| ≤

2.|Q||Q|2 .

– Criterion (C2): consider only stacks σ′ such that |σ′| ≤ |Q|2 and words u2, u4 of

height at most 2.|Q|2 and length at most |Q|2.|Q||Q|2 .

The non-deterministic algorithm follows from the claim: in order to exhibit a witness

of the fact that A 6∈ awnVPT, the algorithm guesses whether (C1) or (C2) is violated,

and a pair of states (p, q) and on the fly, one or two runs, according to the criterion,

of exponential size, which can be done in polynomial space (using counters keeping

track of the current length of the guessed run(s)). Using Proposition 6 it also verifies

that there exists a stack σ such that (p, σ) is reachable and (q, σ) is co-reachable.

To prove this claim, we will show, by induction on u ∈ Σ∗
wn, that for every run

ρ : (p,⊥)
u|v
−−→ (q,⊥) that can be completed into an accepting run, and for every

decomposition of this run according to criterion (C1) or (C2), the property stated by

the corresponding criterion is fulfilled. Formally, this means that:

– for every decomposition ρ : (p,⊥)
u1/v1
−−−−→ (p′, σ)

u2/v2

−−−−→ (p′, σ)
u3/v3

−−−−→ (q,⊥)
with u1u3, u2 ∈ Σ∗

wn, we have B(v2) = 0,

– for every decomposition ρ : (p,⊥)
u1/v1

−−−−→ (p′, σ)
u2/v2
−−−−→ (p′, σσ′)

u3/v3

−−−−→ (q′, σσ′)
u4/v4

−−−−→

(q′, σ)
u5/v5

−−−−→ (q,⊥) with u2u4, u3 ∈ Σ∗
wn and σ′ 6= ⊥, we have B(v2)+B(v4) = 0

and B(v2) ≥ 0.

We now suppose that criteria (C1) and (C2) are verified on small instances, as

defined above, and prove, by induction on u ∈ Σ∗
wn, that the VPT A verifies the criteria

(C1) and (C2) on every decomposition of a run on u.

Cases u = ǫ and u = a ∈ Σi: The result directly follows from the hypothesis as they

are small words.

17

Case u = u1u2 with u1, u2 6= ǫ. Consider a run ρ : (p,⊥)
u1u2|v
−−−−→ (q,⊥). First,

consider a decomposition of ρ according to criterion (C2). This decomposition is nec-

essarily either completely in the sub-run on u1, or in that on u2. The result follows

by induction. Second, consider a decomposition of ρ according to criterion (C1). If

the decomposition is completely in the sub-run on u1, or in that on u2, then the re-

sult follows by induction. Otherwise, the decomposition of ρ looks as follows: ρ :

(p,⊥)
u′

1
|v′

1−−−→ (p1,⊥)
u′′

1
|v′′

1−−−−→ (p2,⊥)
u′

2
|v′

2−−−→ (p1,⊥)
u′′

2
|v′′

2−−−−→ (q,⊥) where ui = u′
iu

′′
i

for i ∈ {1, 2}. Let us denote by ρ1 the run (p1,⊥)
u′′

1
|v′′

1−−−−→ (p2,⊥) and by ρ2 the run

(p2,⊥)
u′

2
|v′

2−−−→ (p1,⊥). The loop under consideration is represented by the run ρ1ρ2.

By induction hypothesis applied on u1, any decomposition of ρ1 according to cri-

teria (C1) and (C2) fulfills these criteria. Using Lemma 2, one can identify such de-

compositions if the height or the length of the run is large enough. Using the according

criterion and the definition of the mapping B(.), one can remove the identified loop

while preserving the value of B(.). Applying iteratively this process, we can build from

ρ1 a run ρ′1 such that B(ρ′1) = B(ρ1), height(ρ
′
1) < |Q|2 and |ρ′1| < |Q||Q|2 .

A similar construction can be done for ρ2, yielding some run ρ′2.

By construction of ρ′1 and ρ′2, we have B(ρ′1ρ
′
2) = B(ρ1ρ2). Moreover, it is routine

to verify that the run ρ′1ρ
′
2 verifies the constraints of the hypothesis on its height and

length, and thus B(ρ′1ρ
′
2) = 0.

Case cur. We consider some run ρ as follows ρ : (p,⊥)
c|v0
−−→ (p′, γ)

u|v
−−→ (q′, γ)

r|v4

−−→
(q,⊥).

We first consider a decomposition of ρ according to criterion (C1). If it is com-

pletely in the sub-run on u, then the result follows by induction. Otherwise, we have

p = q and the run ρ itself verifies the conditions of criterion (C1). Using standard hori-

zontal and vertical pumping and the induction hypothesis on u, we can assume that the

height of u is strictly less than |Q|2 and that the length of u is strictly less than |Q|(Q|2

(otherwise by a pumping reasoning we can exhibit a decomposition that satisfies either

criterion (C1) or criterion (C2) and using the induction hypothesis remove this part of

u). Then, the word cur verifies our initial requirements on the height and the size, and

we thus have B(v0vv4) = 0, as expected.

Consider now a decomposition of ρ according to criterion (C2). If it is completely

in the sub-run on u, then the result follows by induction. Otherwise, there exists a

decomposition of u as u = u1u2u3, with u1u3, u2 ∈ Σ∗
wn, and there exists a run

(p′,⊥)
u1|v1

−−−→ (p, σ)
u2|v2
−−−→ (q, σ)

u3|v3
−−−→ (q′,⊥). First, if |σ| ≥ |Q|2, then one can find

in this run a decomposition according to criterion (C2), and by induction hypothesis on

u, the corresponding matched loops have a null effect in the computation of B. When

removing these matched loops, we thus obtain new input words u′
1 and u′

3 with output

words v′1 and v′3 such that B(v′1) + B(v′3) = B(v1) + B(v3), and B(v1) ≥ B(v′1). We

thus assume now that |σ| < |Q2| and let k = |σ|.

We decompose u′
1 as follows: u′

1 = w0c1w1c2 . . . ckwk. Using standard horizontal

and vertical pumping (Lemma 2) and the induction hypothesis on u, we can assume that

the height of wi’s is strictly less than |Q|2 and that the length of wi’s is strictly less than

|Q||Q|2 . A similar reasoning can be done on word u′
3. Thus, the two words cu′

1 and u′
3r

18

verify the conditions on their height and size to ensure that B(v0v
′
1) + B(v′3v4) = 0,

and B(v0v
′
1) ≥ 0. This entails B(v0v1) +B(v3v4) = 0, and B(v0v1) ≥ 0 as we wanted

to prove.

This concludes the induction, and thus the proof.

E Proofs of Section 6

This section is devoted to the proof of Theorem 6.

We define the set AC of pairs (p, p′) such that for some σ, (p, σ) is reachable and

(p′, σ) is co-reachable. This set can be computed in polynomial time thanks to Propo-

sition 6.

For a VPT A, we consider triples of the form (p, q, (n1, n2)) where p, q ∈ Q such

that (p, q) ∈ AC and (n1, n2) ∈ N × N. We consider the set S of such triples, as the

least one satisfying the rules from Figure 2.

(p, p) ∈ AC

(p, p, (0, 0)) ∈ S
(R0)

(p′, c, γ, v1, p) ∈ δc, (q, r, γ, v2, q
′) ∈ δr, (p′, q′′) ∈ AC

(p, q, (n1, n2)) ∈ S, (q′, q′′, (n′

1, n
′

2)) ∈ S

(p′, q′′,O(v1)⊕ (n1, n2)⊕ O(v2)⊕ (n′

1
, n′

2
)) ∈ S

(R1)

(p, i, v, q) ∈ δi, (q, q
′, (n1, n2)) ∈ S, (p, q′) ∈ AC

(p, q′,O(v)⊕ (n1, n2)) ∈ S
(R2)

Fig. 2.

Proposition 8. For any VPT A, S = UPSA.

Proof. The proof goes by induction over the structure of runs for well-nested input

words of the form ǫ, au, cu1ru2.

Proposition 9. For A in awnVPT, the set S is finite and can be computed in exponen-

tial time.

Proof. Obviously, rules from Figure 2 can be turned into an algorithm whose iterations

will inspect each inference rule for each possible inputs. Such an iteration may add

at least one new triple in S . By Proposition 8 and Proposition 5, it is known that in

triples (p, p′, (n1, n2), n1, n2 are bounded exponentially in the size of A which ensured

termination for the algorithm.

We consider the following definition:

Definition 9. Given a run ρ : (p,⊥)
u|v
−−→ (p′,⊥) of A, we define MAX-BAL(ρ) as

the largest non-negative integer n such that ρ can be decomposed as ρ : (p,⊥)
u1|v1

−−−→

(p1,⊥)
u2|v2

−−−→ (p′,⊥) and n = Or(v2) or n = Oc(v1).

19

The following lemma states that a run of A and a run of B can be combined to build

a run of C, provided there exists a word v ∈ ∆∗ produced by the run of A, and taken as

input of the run of B. Observe also that we may add a stack in the state of C, considered

as an unused stack added ”below” the run of B, provided the size of the resulting stack

stored in the state never exceeds the bound K. This is obtained thanks to the definition

of MAX-BAL.

Lemma 7. If we have:

– ρ : (p,⊥)
u|v
−−→ (p′,⊥) is a run of A

– σ, σ′ ∈ Γ ∗
B such that O(v) = (|σ|, |σ′|)

– (q, σ)
v|w
−−→ (q′, σ′) is a run of B

Then ((p, q, σ0σ),⊥)
u|w
−−→ ((p′, q′, σ0σ

′),⊥) is a run of C, for every stack σ0 ∈

Γ
≤K−MAX-BAL(ρ)
B

Proof. We proceed by induction on some word u′ ∈ Σ∗
wn.

Cases u′ = ǫ, u′ ∈ Σi: these cases directly follows from the definition of C.

Case u′ = u1u2. We have ρ = ρ1ρ2 with ρ1 : (p,⊥)
u1|v1

−−−→ (p1,⊥) and ρ2 :

(p1,⊥)
u2|v2

−−−→ (p′,⊥), and a run (q, σ)
v1|w1

−−−→ (q1, σ1)
v2,w2

−−−→ (q′, σ′) of B.

We let O(v) = (n,m), O(v1) = (n1,m1) and O(v2) = (n2,m2). We have

(n,m) = (n1,m1)⊕ (n2,m2).
There exist two stacks σ̃⊥, σ⊥ ∈ Γ ∗

B such that:

1. σ = σ̃⊥σ̃ and |σ̃| = n1

2. σ1 = σ̃⊥σ̃1 and |σ̃| = m1

3. σ1 = σ⊥σ1 and |σ1| = n2

4. σ′ = σ⊥σ
′ and |σ′| = m2

One of σ̃⊥ and σ⊥ is actually the empty stack.

Thanks to O(v1) = (n1,m1) and O(v2) = (n2,m2), the following runs exist in B:

– (q, σ̃)
v1|w1

−−−→ (q1, σ̃1)

– (q1, σ1)
v2,w2

−−−→ (q′, σ′)

Let σ0 ∈ Γ
≤K−MAX-BAL(ρ)
B . We can easily prove that MAX-BAL(ρ) = max(MAX-BAL(ρ1)+

|σ̃⊥|, MAX-BAL(ρ2)+|σ⊥|). We thus have |σ0σ̃⊥| ≤ K−MAX-BAL(ρ1) and |σ0σ⊥| ≤
K − MAX-BAL(ρ2). By induction hypothesis applied on u1 and u2, we obtain:

– ((p, q, σ0σ̃⊥σ̃),⊥)
u1|w1

−−−−→ ((p1, q1, σ0σ̃⊥σ̃1),⊥) is a run of C.

– ((p1, q1, σ0σ⊥σ1),⊥)
u2|w2

−−−−→ ((p′, q′, σ0σ⊥σ
′),⊥) is a run of C.

This concludes the proof for this case.

Case u′ = cur: We can decompose the run ρ in A on cur as follows:

ρ : (p,⊥)
c|v1
−−→ (p1, γ)

u|v2
−−−→ (p′1, γ)

r|v3
−−→ (p′,⊥)

20

Let v = v1v2v3, we write O(v) = (n,m), and O(vi) = (ni,mi) for i = 1, 2, 3.

We can decompose the run in B on the word v as follows:

(q, σ)
v1|w1

−−−→ (q1, σ1)
v2|w2

−−−→ (q2, σ2)
v3|w3

−−−→ (q′, σ′)

with O(v) = (|σ|, |σ′|).
There exist stacks σ⊥, σ⊥, σ̂⊥ such that:

1. σ = σ⊥σ̃ and |σ̃| = n1

2. σ1 = σ⊥σ̃1 and |σ̃1| = m1

3. σ1 = σ⊥σ1 and |σ1| = n2

4. σ2 = σ⊥σ2 and |σ2| = m2

5. σ2 = σ̂⊥σ̂2 and |σ̂2| = n3

6. σ′ = σ̂⊥σ̂
′ and |σ̂′| = m3

By points 1 and 2, we have: (q, σ̃)
v1|w1

−−−→ (q1, σ̃1) in B.

By points 3 and 4, we have: (q1, σ1)
v2|w2

−−−→ (q2, σ2) in B.

By points 5 and 6, we have: (q2, σ̂2)
v3|w3

−−−→ (q′, σ̂′) in B.

As the underlying input word is cur, observe that we have MAX-BAL(ρ) = max(n,m).

Let σ0 ∈ Γ
≤K−MAX-BAL(ρ)
B . In particular, we have |σ0| ≤ K − n = K − |σ|.

Observe that:

1. as O(v1) = (n1,m1), we have |σ̃1| ≤ OA
max

2. we have |σ⊥| ≤ |σ| and thus |σ0σ⊥| ≤ K

3. from the two previous points we deduce |σ0σ1| ≤ OA
max + K, which implies

|σ0σ⊥| ≤ OA
max +K

4. as O(v2) = (n2,m2), we have |σ1| ≤ K

From these points we deduce the existence of the following call transition in C:

(p, q, σ0σ)
c|w1,(γ,σ0σ⊥)
−−−−−−−−−→ (p1, q1, σ1)

By induction hypothesis applied on u, we have that the following run exists in C:

((p1, q1, σ1),⊥)
u|w2

−−−→ ((p2, q2, σ2),⊥)

As above, we have |σ0| ≤ K − m = K − |σ′|. Observe also that as O(v2) =
(n2,m2), we have |σ2| ≤ K.

From these points we deduce the existence of the following return transition in C:

(p2, q2, σ2)
r|w3,(γ,σ0σ⊥)
−−−−−−−−−→ (p′, q′, σ0σ

′)

Using the run of C on u, the call transition and the return transition, we can build a

run of C on cur as expected. This concludes this proof.

The next lemma states the result in the other way: a run in C implies the existence

of corresponding runs in A and B.

21

Lemma 8. If there exists a run ((p, q, σ),⊥)
u|w
−−→ ((p′, q′, σ′),⊥) in C, then there

exists a word v ∈ ∆∗ and a stack σ0 ∈ Γ ∗
B such that:

– there exists a run ρ : (p,⊥)
u|v
−−→ (p′,⊥) in A

– σ = σ0σ1, σ′ = σ0σ2, and O(v) = (|σ1|, |σ2|)

– there exists a run (q, σ1)
v|w
−−→ (q′, σ2) in B

Proof. We proceed by induction on u ∈ Σ∗
wn.

Case u = ǫ, a ∈ Σi: the result directly follows from the definition of C.

Case u = u1u2. We have a run (p, q, σ)
u1|w1

−−−−→ (p1, q1, σ1)
u1|w2

−−−−→ (p′, q′, σ′).

By induction hypothesis on u1 and u2, there exist words v1, v2 ∈ ∆∗ and stacks

σ0, σ
′
0 such that:

– σ = σ0σ,

– σ1 = σ0σ1,

– σ1 = σ′
0σ̃1, and

– σ′ = σ′
0σ̃

′.

In addition, the following runs exist in C:

– (q, σ)
v1|w1

−−−→ (q1, σ1)

– (q1, σ̃1)
v2|w2

−−−→ (q′, σ̃′)

It is then easy to prove the result by considering the word v = v1v2 and the stack

σ′′
0 such that |σ′′

0 | = min(|σ0|, |σ
′
0|).

Case u = cu1r.

We decompose the run as follows :

((p, q, σ),⊥)
c|w0

−−−→ ((p1, q1, σ1), (γ, σ0))
u1|w1

−−−−→ ((p2, q2, σ2), (γ, σ0))
r|w2

−−−→ ((p′, q′, σ′),⊥)

By definition of call and return transitions of C, there exist words v0, v2 ∈ ∆∗ such

that we have:

– p
c|v0,γ
−−−−→ p1 is a call transition of A

– p2
r|v2,γ
−−−−→ p′ is a return transition of A

– (q, σ)
v0|w0

−−−→ (q1, σ0σ1) is a run of B

– (q2, σ0σ2)
v2|w2

−−−→ (q′, σ′) is a run of B

By induction hypothesis applied on u1, there exist a word v1 ∈ ∆∗ and a stack

σ′
0 ∈ Γ ∗

B such that:

– there exists a run (p1,⊥)
u1|v1

−−−→ (p2,⊥) in A,

– σ1 = σ′
0σ

′
1 and σ2 = σ′

0σ
′
2,

– there exists a run (q1, σ
′
1)

v1|w1

−−−→ (q2, σ
′
2) in B.

22

Let v = v0v1v2. By the previous facts, there exists a run (p,⊥)
u|v
−−→ (p′,⊥) in A

and the following run exists in B:

(q, σ)
v0|w0

−−−→ (q1, σ0σ1)
v1|w1

−−−→ (q2, σ0σ2)
v2|w2

−−−→ (q′, σ′)

Considering σ0, σ, σ
′ such that σ = σ0σ, σ′ = σ0σ

′ and O(v) = (|σ|, |σ′|), we deduce

that the following run exists in C, which yields the result:

(q, σ)
v|w
−−→ (q′, σ′)

Theorem 6 follows from Lemma 7 and 8 and from the definition of initial and final

states.

23

