
HAL Id: hal-00988072
https://hal.science/hal-00988072v1

Submitted on 15 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing an Optimal Control Policy for an Energy
Storage

Pierre Haessig, Thibaut Kovaltchouk, Bernard Multon, Hamid Ben Ahmed,
Stéphane Lascaud

To cite this version:
Pierre Haessig, Thibaut Kovaltchouk, Bernard Multon, Hamid Ben Ahmed, Stéphane Lascaud. Com-
puting an Optimal Control Policy for an Energy Storage. 6th European Conference on Python in
Science (EuroSciPy 2013), Aug 2013, Bruxelles, Belgium. pp.51-58. �hal-00988072�

https://hal.science/hal-00988072v1
https://hal.archives-ouvertes.fr

PROC. OF THE 6th EUR. CONF. ON PYTHON IN SCIENCE (EUROSCIPY 2013) 51

Computing an Optimal Control Policy for an Energy
Storage

Pierre Haessig∗†, Thibaut Kovaltchouk†, Bernard Multon†, Hamid Ben Ahmed†, Stéphane Lascaud‡

F

Abstract—We introduce StoDynProg, a small library created to solve Optimal
Control problems arising in the management of Renewable Power Sources, in
particular when coupled with an Energy Storage System. The library implements
generic Stochastic Dynamic Programming (SDP) numerical methods which can
solve a large class of Dynamic Optimization problems.

We demonstrate the library capabilities with a prototype problem: smoothing
the power of an Ocean Wave Energy Converter. First we use time series analysis
to derive a stochastic Markovian model of this system since it is required by
Dynamic Programming. Then, we briefly describe the “policy iteration” algorithm
we have implemented and the numerical tools being used. We show how the
API design of the library is generic enough to address Dynamic Optimization
problems outside the field of Energy Management. Finally, we solve the power
smoothing problem and compare the optimal control with a simpler heuristic
control.

Index Terms—Stochastic Dynamic Programming, Policy Iteration Algorithm,
Autoregressive Models, Ocean Wave Energy, Power Smoothing.

1 INTRODUCTION TO POWER PRODUCTION

SMOOTHING

Electric power generated by renewable sources like wind,
sun or ocean waves can exhibit a strong variability along
time. Because on an electricity grid the energy production
must match the consumption, this variability can be an issue
for the grid stability. Yet most of the time, fluctuations of
renewable power sources are absorbed without trouble thanks
to regulation mechanisms which make flexible generation units
adjust their production in real-time. Therefore, the production-
consumption equilibrium can be maintained.

However, there are cases where fluctuations may be consid-
ered too strong to be fed directly to the grid so that an energy
storage system, acting as a buffer, may be required to smooth
out the production. The schematic of the system considered in
this article is given on figure 1.

1.1 Smoothing with an Energy Storage

Electricity generation from ocean waves (with machines called
Wave Energy Converters) is an example where the output

* Corresponding author: pierre.haessig@ens-rennes.fr
† SATIE CNRS laboratory - ENS Rennes, Bruz, France
‡ LME department - EDF R&D, Écuelles, France

Copyright © 2014 Pierre Haessig et al. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.
http://creativecommons.org/licenses/by/3.0/

Ocean Wave Energy
Converter

? Storage

Production Grid

Energy
Management

Renewable Energy Source

with an Energy Storage System

Fig. 1: Power smoothing with an Energy Storage: an example of an
Optimal Control problem.

240 260 280 300 320
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
w

e
r

(M
W

)

Pprod

Pgrid

Fig. 2: Smoothing the Ocean Power injected to the grid using an
Energy Storage controlled by the simple linear law (3). The storage
buffers the difference between the two powers.

power can be strongly fluctuating. This is illustrated on figure 2
where the output power Pprod(t) from a particular wave energy
converter called SEAREV is represented during 100 seconds.

We just mention that this production time series does not
come from measurements but from an hydro-mechanical sim-
ulation from colleagues since the SEAREV is a big 1 MW - 30
meters long machine which is yet to be built [Ruellan-2010].

The oscillations of Pprod(t) at a period of about 1.5 s comes
from the construction of the SEAREV: in short, it is a floating
double-pendulum that oscillates with the waves. Also, because
ocean waves have a stochastic behavior, the amplitude of these
oscillations is irregular.

Therefore an energy storage absorbing a power Psto can be
used to smooth out the power Pgrid injected to the electricity

ar
X

iv
:1

40
4.

63
89

v1
 [

cs
.S

Y
]

 2
5

A
pr

 2
01

4

mailto:pierre.haessig@ens-rennes.fr

52 PROC. OF THE 6th EUR. CONF. ON PYTHON IN SCIENCE (EUROSCIPY 2013)

network:
Pgrid(t) = Pprod(t)−Psto(t) (1)

The energy of the storage then evolves as:

Esto(k+1) = Esto(k)+Psto(k)∆t (2)

expressed here in discrete time (∆t = 0.1 s throughout this
article), without accounting for losses. The storage energy is
bounded: 0 ≤ Esto ≤ Erated , where Erated denotes the storage
capacity which is set to 10 MJ in this article (i.e. about 10
seconds of reserve at full power)

It is a control problem to choose a power smoothing law.
We present the example of a linear feedback control:

Pgrid(t) =
Pmax

Erated
Esto(t) (3)

where Pmax is the rated power of the SEAREV (1.1 MW). This
law gives “good enough” smoothing results as it can be seen
on figure 2.

The performance of the smoothing is greatly influenced by
the storage sizing (i.e. the choice of the capacity Erated). This
question is not addressed in this article but was discussed by
colleagues [Aubry-2010]. We also don’t discuss the choice of
the storage technology, but it is believed that super-capacitors
would be the most suitable choice. Because energy storage
is very expensive (~20 kC/kWh or ~5 kC/MJ for supercaps),
there is an interest in studying how to make the best use of a
given capacity to avoid a costly over-sizing.

1.2 Finding an Optimal Smoothing Policy

Control law (3) is an example of heuristic choice of policy
and we now try to go further by finding an optimal policy.

Optimality will be measured against a cost function J that
penalizes the average variability of the power injected to the
grid:

J =
1
N
E

{
N−1

∑
k=0

c(Pgrid(k))

}
with N→ ∞ (4)

where c is the instantaneous cost (or penalty) function which
can be c(Pgrid) = P2

grid for example. Expectation E is needed
because the production Pprod is a stochastic input, so that the
output power Pgrid is also a random variable.

This minimization problem falls in the class of stochastic
dynamic optimization. It is dynamic because decisions at each
time-step cannot be taken independently due to the coupling
along time introduced by the evolution of the stored energy
(2). To describe the dynamics of the system, we use the generic
notation

xk+1 = f (xk,uk,εk) (5)

where x,u,ε are respectively state variables, control variables
and perturbations. State variables are the “memory” of the
system. The stored energy Esto is here the only state variable,
but more will appear in section 2.2. Control variables are the
ones which values must be chosen at each instant to optimize
the cost J. The injected power Pgrid is here the single control
variable.

Dynamic optimization (also called optimal control)
is addressed by the Dynamic Programming method

[Bertsekas-2005] which yields a theoretical analysis of
the solution structure. Indeed, once all state variables (i.e.
“memories”) of the system are identified, the optimum of the
cost J is attained by a “state feedback” policy, that is a policy
where the control is chosen as a function of the state:

Pgrid(t) = µ(x(t)) (6)

The goal is then to find the optimal feedback function µ . Since
Esto is a state variable, policy (3) is in fact a special case of
(6). Since µ has no special structure in the general case1, it
will be numerically computed on a grid over the state space.
We cover the algorithm for this computation in section 3.

1.2.1 Prerequisite

Dynamic Programming does require that stochastic pertur-
bations are independent random variables (i.e. the overall
dynamical model must be Markovian) and this is not true
for the Pprod(k) time series. Therefore we devote section 2
to the problem of expressing Pprod as a discrete-time Markov
process, using time series analysis. This will yield new state
variables accounting for the dynamics of Pprod .

2 STOCHASTIC MODEL OF A WAVE ENERGY PRO-
DUCTION

We now take a closer look at the Pprod time series. A 1000 s
long simulation is presented on figure 4, along with a zoom to
better see the structure at short time scales. An histogram is
also provided which shows that Pprod is clearly non-gaussian.
This precludes the direct use of “standard” time series models
based on Autoregressive Moving Average (ARMA) models
[Brockwell-1991].

However, we can leverage the knowledge of the inner
working of the SEAREV. Indeed, by calling Ω the rotational
speed of the inner pendulum with respect to the hull, we know
that the output power is:

Pprod = TPTO(Ω).Ω (7)

where TPTO is the torque applied to the pendulum by the
electric machine which harvests the energy (PTO stands for
“Power Take Off”). Finding the best TPTO command is actually
another optimal control problem which is still an active
area of research in the Wave Energy Conversion community
[Kovaltchouk-2013]. We use here a “viscous damping law,
with power leveling”, that is TPTO(Ω) = β .Ω. This law is
applied as long as it yields a power below Pmax. Otherwise
the torque is reduced to level the power at 1.1 MW as can be
seen on figure 4 whenever the speed is more than 0.5 rad/s.

Thanks to equation (7), we can thus model the speed Ω and
then deduce Pprod . Modeling the speed is much easier because
it is quite Gaussian (see fig. 4) and has a much more regular
behavior which can be captured by an ARMA process.

2.1 Autoregressive Model of the Speed

Within the ARMA family, we restrict ourselves to the autore-
gressive (AR) processes because we need a Markovian model.
The equation of an AR(p) model for the speed is:

Ω(k) = φ1Ω(k−1)+ · · ·+φpΩ(k− p)+ ε(k) (8)

COMPUTING AN OPTIMAL CONTROL POLICY FOR AN ENERGY STORAGE 53

0 5 10 15 20 25 30 35 40
time lags (s)

1.0

0.5

0.0

0.5

1.0
data acf

AR(2) model - acf fit on 15 s

AR(2) model - cmle fit

Fig. 3: Autocorrelation function (acf) of the speed data, compared
with the acf from two AR(2) models, fitted with two different methods.

where p is the order of the model and ε(k) is a series
independent random variables. Equation (8) indeed yields a
Markovian process, using the lagged observations of the speed
Ω(k−1), . . . ,Ω(k− p) as state variables.

AR(p) model fitting consists in selecting the order p and
estimating the unknown coefficients φ1, . . . ,φp as well as the
unknown variance of ε which we denote σ2

ε .

2.1.1 Order selection

is generally done using information criterions such as AIC
or BIC [Brockwell-1991], but for this modeling problem, we
restrict ourselves to the smallest order which can reproduce
the decaying oscillations of the autocorrelation function. Au-
tocorrelation (acf) of the speed is plotted on figure 3 where we
can see that a model of order p = 2 can indeed reproduce the
autocorrelation up to about 15 s of time lags (a 1st order model
would only yield an exponential decay without oscillations).
15 s is thought to be the time horizon of interest when using
a 10 MJ/1.1 MW energy storage.

Keeping the model order low is required to maintain the
dimension of the overall state vector under 3 or 4. The
underlying issue of an exponentially growing complexity will
appear in section 3 when solving the Dynamic Programming
equation.

2.1.2 Parameter estimation

Once the order is selected, we have to estimate coef-
ficients φ1, φ2 and σ2

ε . “Classical” fitting methodology
[Brockwell-1991] is based on Conditional Maximum Like-
lihood Estimators (CMLE). This method is readily avail-
able in GNU R with the arima routine or in Python with
statsmodel.tsa.ar_model.

However, we have plotted the autocorrelation of the esti-
mated AR(2) model on figure 3 to show that CMLE is not
appropriate: oscillations of the acf clearly decay too slowly
compared to the data acf.

The poor adequacy of this fit is actually a consequence of
our choice of a low order model which implies that the AR(2)
process can only be an approximation of the true process.
Statistically speaking, our model is misspecified, whereas
CMLE is efficient for correctly specified models only. This
problem has been discussed in the literature [McElroy-2013]
and has yielded the “Multi-step ahead fitting procedure”.

method φ̂1 φ̂2 σ̂ε

CMLE 1.9883
(.0007)

-0.9975
(.0007)

0.00172

fit on 15
s

1.9799 -0.9879 0.00347

TABLE 1: AR(2) fitting results from the two methods (along with
standard error when available).

Being unfamiliar with the latter approach, we compute
instead φ1,φ2 estimates which minimize the difference between
the theoretical AR(2) acf and the data acf. The minimization
criterion is the sum of the squared acf differences over a range
of lag times which can be chosen. We name this approach
the “multi-lags acf fitting” method. Minimization is conducted
with fmin from scipy.optimize.

The result of this acf fitting over time lags up to 15 s (i.e.
150 lags) is shown on figure 3 while numerical estimation
results are given in table 1.

With the model obtained from this multi-lags method, we
can simulate speed and power trajectories and check that they
have a “realistic behavior”. We can thus infer that the dynamic
optimization algorithm should make appropriate control deci-
sions out of it. This will be discussed in section 3.3. Going
further, it would be interesting to study the influence of the AR
parameters (including order p) on the dynamic optimization to
see if the “multi-lags acf fitting” indeed brings an improvement
of the final cost function J.

2.2 Reformulation as a state-space model

The AR(2) model is a state-space model with state variables
being the lagged observations of the speed Ω(k − 1) and
Ω(k− 2). In order to get a model with a better “physical
interpretation” we introduce the variable Ak = (Ωk−Ωk−1)/∆t
which is the backward discrete derivative of Ω. As the timestep
gets smaller Ak comes close to the acceleration (in rad/s2) of
the pendulum. Using (Ω,A) as the state vector, we obtain the
following state-space model:(

Ωk

Ak

)
=

[
φ1 +φ2 −φ2∆t

(φ1 +φ2−1)/∆t −φ2

](
Ωk−1

Ak−1

)

+

[
1

1/∆t

]
εk

(9)

We now have a stochastic Markovian model for the power
production of the SEAREV. Taken together with state equation
of the storage (2) and algebraic relations (1) and (7), we have
a Markovian model of the overall system. The state vector
x = (Esto,Ω,A) is of dimension 3 which is just small enough
to apply the Stochastic Dynamic Programming method.

3 OPTIMAL STORAGE CONTROL WITH DYNAMIC

PROGRAMMING

3.1 The Policy Iteration Algorithm

We now give an overview of the policy iteration algorithm
that we implemented to solve the power smoothing problem

54 PROC. OF THE 6th EUR. CONF. ON PYTHON IN SCIENCE (EUROSCIPY 2013)

1.0

0.5

0.0

0.5

1.0
sp

e
e
d
 (

m
/s

)

1.0

0.5

0.0

0.5

1.0

200 400 600 800
time (s)

0.2

0.4

0.6

0.8

1.0

p
o
w

e
r

(M
W

)

240 250 260 270 280 290
zoomed time (s)

0.2

0.4

0.6

0.8

1.0

Fig. 4: Speed & Power time series from a 1000 seconds SEAREV simulation (sample Em_1.txt). The gray rectangle time interval is enlarged
in the middle panel. Distribution histogram on the right.

described in the introduction. Among the different types of
dynamic optimization problems, it is an “infinite horizon,
average cost per stage problem” (as seen in (4)). While at
first this cost equation involves a summation over an infinite
number of instants, the Dynamic Programming approach cuts
this into two terms: the present and the whole future. In the
end, the optimization falls back to solving this equilibrium
equation:

J+ J̃(x) = min
u∈U(x)

E
w

{
c(x,u,w)︸ ︷︷ ︸
instant cost

+ J̃(f (x,u,w))︸ ︷︷ ︸
cost of the future

} (10)

where J is the minimized average cost and J̃ is the transient
(or differential) cost function, also called value function.

Note that eq. (10) is a functional equation for J̃ which
should be solved for any value of the state x in the state space.
In practice, it is solved in a discrete grid that must be chosen so
that the variations of J̃ are represented with enough accuracy.
Also, the optimal policy µ appears implicitly as the argmin
of this equation, that is the optimal control u for each x value
of the state grid.

3.1.1 Equation solving

The simplest way to solve eq. (10) is to iterate the right-hand
side, starting with a zero value function. This is called value
iteration.

A more efficient approach is policy iteration. It starts with
an initial policy (like the heuristic linear (3)) and gradually
improves it with a two steps procedure:

1. policy evaluation: the current policy is evaluated,
which includes computing the average cost (4) and
the so-called value function

2. policy improvement: a single step of optimization
with policy iteration yields a improved policy. Then
this policy must be again evaluated (step 1).

The policy evaluation involves solving the equilibrium equa-
tion without the minimization step but with a fixed policy µ

instead:

Jµ + J̃µ(x) = E
w

{
c(x,µ(x),w)︸ ︷︷ ︸

instant cost

+ J̃µ(f (x,µ(x),w))︸ ︷︷ ︸
cost of the future

}
It can be solved by iterating the right-hand side like for policy
iteration but much faster due to the absence of minimization.
In the end, a few policy improvement iterations are needed
to reach convergence. More details about the value and policy
iteration algorithms can be found in [Bertsekas-2005] textbook
for example. The conditions for the convergence, omitted here,
are also discussed.

3.2 StoDynProg library description

We have created a small library to describe and solve opti-
mal control problems (in discrete time) using the Stochastic
Dynamic Programming (SDP) method. It implements the
value iteration and policy iteration algorithms introduced
above. Source code is available on GitHub https://github.com/
pierre-haessig/stodynprog under a BSD 2-Clause license.

3.2.1 Rationale for a library, benefits of Python

Because the SDP algorithms are in fact quite simple (they can
be written with one set of nested for loops) we were once told
that they should be written from scratch for each new problem.
However we face in our research in energy management
several optimization problems with slight structural differences
so that code duplication would be unacceptably high. Thus the
motivation to write a unified code that can handle all our use
cases, and hopefully some others’.

StoDynProg is pure Python code built with numpy for
multi-dimensional array computations. We also notably use

https://github.com/pierre-haessig/stodynprog
https://github.com/pierre-haessig/stodynprog

COMPUTING AN OPTIMAL CONTROL POLICY FOR AN ENERGY STORAGE 55

an external multidimensional interpolation routine by Pablo
Winant (see 3.2.5 below).

The key aspect of the flexibility of the code is its ability
to handle problems of arbitrary dimensions (in particular the
state space and the control space). This impacts particularly
the way to iterate over those variables. Our code makes thus
a heavy use of Python tuple packing/unpacking machinery
and itertools.product to iterate on rectangular grids
of arbitrary dimension.

3.2.2 API description

StoDynProg provides two main classes: SysDescription
and DPSolver.

3.2.3 SysDescription

holds the description of the discrete-time dynamic optimiza-
tion problem. Typically, a user writes its dynamics function
(the Python implementation of f in (5)) and handles it to a
SysDescription instance:
from stodynprog import SysDescription
SysDescription object with proper dimensions
of state (2), control (1) and perturbation (1)
mysys = SysDescription((2, 1, 1))

def my_dyn(x1, x2, u, w):
’dummy dynamics’
x1_next = x1 + u + w
x2_next = x2 + x1
return (x1_next, x2_next)

assign the dynamics function:
mysys.dyn = my_dyn

We use here a setter/getter approach for the dyn property. The
same is used to describe the cost function (c in (4)). We believe
the property approach enables simplified user code compared
to a class inheritance mechanism. With some inspiration of
Enthought traits, the setter has a basic validation mecha-
nism that checks the signature of the function being assigned
(with getargspec from the inspect module).

3.2.4 DPSolver

holds parameters that tunes the optimization process, in partic-
ular the discretized grid of the state. Also, it holds the code of
the optimization algorithm in its methods. We illustrate here
the creation of the solver instance attached to the previous
system:
from stodynprog import DPSolver
Create the solver for ‘mysys‘ system:
dpsolv = DPSolver(mysys)
state discretization
x1_min, x1_max, N1 = (0, 2.5, 100)
x2_min, x2_max, N2 = (-15, 15, 100)
x_grid = dpsolv.discretize_state(x1_min, x1_max, N1,

x2_min, x1_max, N2)

Once the problem is fully described, the optimization can
be launched by calling dpsolv.policy_iteration with
proper arguments about the number of iterations.

For more details on StoDynProg API usage, an example
problem of Inventory Control is treated step-by-step in the
documentation (created with Sphinx).

3.2.5 Multidimensional Interpolation Routine

StoDynProg makes an intensive use of a multidimensional
interpolation routine that is not available in the “standard
scientific Python stack”. Interpolation is needed because the
algorithm manipulates two scalar functions which are dis-
cretized on a grid over the state space: the value function J̃ and
feedback policy µ . Thus, functions are stored as n-d arrays,
where n is the dimension of the state vector (n = 3 for ocean
power smoothing example). In the course of the algorithm, the
value function needs to be evaluated between grid points, thus
the need for interpolation.

3.2.6 Requirements and Algorithm Selection

No “fancy” interpolation method is required so linear interpo-
lation is a good candidate. Speed is very important because it
is called many times. Also, it should accept vectorized inputs,
so that interpolation of multiple points can be done efficiently
in one call. We assert that the functions will be stored on a
rectangular grid which should simplify interpolation compu-
tations. The most stringent requirement is multidimensionality
(for 0≤ n≤ 4) which rules out most available tools.

We have evaluated 4 routines (details available in an IPython
Notebook within StoDynProg source tree):

• LinearNDInterpolator class from
scipy.interpolate

• RectBivariateSpline class from
scipy.interpolate

• map_coordinates routine from scipy.ndimage
• and MultilinearInterpolator class written by

Pablo Winant within its Dolo project [Winant-2010]
for Economic modelling (available on https://github.com/
albop/dolo).

The most interesting in terms of performance and off-
the-shelf availability is RectBivariateSpline which ex-
actly meets our needs expect for multidimensionality be-
cause it’s limited to n = 2. LinearNDInterpolator has
no dimensionality limitations but works with unstructured
data and so does not leverage the rectangular structure.
Interpolation time was found 4 times longer in 2D, and
unacceptably long in 3D. Then map_coordinates and
MultilinearInterpolator were found to both satisfy
all our criterions but the latter being consistently 4 times
faster (both 2D and 3D case). Finally we also selected
MultilinearInterpolator because it can be instanti-
ated to retain the data once and then called several time. We
find the usage of this object-oriented interface more convenient
than functional interface of map_coordinates.

3.3 Results for Searev power smoothing

We have applied the policy iteration algorithm to the SEAREV
power smoothing problem introduced in section 1. The algo-
rithm is initialized with the linear storage control policy (3).
This heuristic choice is then gradually improved by each policy
improvement step.

https://github.com/albop/dolo
https://github.com/albop/dolo

56 PROC. OF THE 6th EUR. CONF. ON PYTHON IN SCIENCE (EUROSCIPY 2013)

Fig. 5: Storage control policy: Power injected to the grid as a function
of speed and acceleration, for 7 levels of stored energy between empty
and full.

3.3.1 Algorithm parameters

About 5 policy iterations only are needed to converge to an
optimal strategy. In each policy iteration, there is a policy
evaluation step which requires 1000 iterations to converge.
This latter number is dictated by the time constant of the
system (1000 steps ↔ 100 seconds) and 100 seconds is the
time it takes for the system to “decorrelate”, that is loose
memory of its state (both speed and stored energy).

We also need to decide how to discretize and bound the
state space of the {SEAREV + storage} system:
• for the stored energy Esto, bounds are the natural limits

of the storage: Esto ∈ [0,Erated]. A grid of 30 points yields
precise enough results.

• for the speed Ω and the acceleration A, there are no
natural bounds so we have chosen to limit the values
to ±4 standard deviations. This seems wide enough to
include most observations but not too wide to keep a
good enough resolution. We use grids of 60 points to
keep the grid step small enough.

This makes a state space grid of 30×60×60≈ 110k points.
Although this number of points can be handled well by a
present desktop computer, this simple grid size computation
illustrates the commonly known weakness of Dynamic Pro-
gramming which is the “Curse of Dimensionality”. Indeed,
this size grows exponentially with the number of dimensions
of the state so that for practical purpose state dimension is
limited to 3 or 4. This explains the motivation to search a low
order model for the power production time series in section 2.

3.3.2 Algorithm execution time

With the aforementioned discretization parameters, policy
evaluation takes about 10 s (for the 1000 iterations) while
policy improvement takes 20 s (for one single value iteration
step). This makes 30 s in total for one policy iteration step,
which is repeated 5 times. Therefore, the optimization con-
verges in about 3 minutes. This duration would grow steeply
should the grid be refined.

As a comparison of algorithm efficiency, the use of value
iteration would takes much longer than policy iteration. In-
deed, it needs 1000 iterations, just like policy evaluation (since
it is dictated by the system’s “decorrelation time”) but each
iteration involves a costly optimization of the policy so that it
takes 20 s. This makes altogether 5 hours of execution time,
i.e. 100 times more than policy iteration!

As possible paths to improve the execution time, we see, at
the code level, the use of more/different vectorization patterns
although vectorized computation is already used a lot. Maybe
the use of Cython may speed up unavoidable loops but this
may not be worth the loss of flexibility and the decrease
in coding speed. Optimization at the algorithm level, just as
demonstrated with “policy vs. value iteration”, is also worth
investigating further. In the end, more use of Robert Kern’s
line_profiler will be needed to decide the next step.

3.3.3 Output of the computation

The policy iteration algorithm solves equation (10) and outputs
the minimized cost J and two arrays: function J̃ (transient
cost) and function µ (optimal policy (6)), both expressed on
the discrete state grid (3d grid).

We focus on µ which yields the power Pgrid that should
be injected to the grid for any state of the system. Figure 5
is a Mayavi surface plot which shows Pgrid(Ω,A) for various
levels of Esto. Observations of the result are in agreement with
what can be expected from a reasonable storage control:
• the more energy there is in the storage, the more power

should be injected to the grid (similar to the heuristic
control (3)).

• the speed and acceleration of the SEAREV also modu-
lates the injected power, but to a lesser extent. We may
view speed and acceleration as approximate measure-
ments of the mechanical energy of the SEAREV. This
energy could be a hidden influential state variable, in
parallel with the stored energy.

• the injected power is often set between 0.2 and 0.3 MW,
that is close to the average power production.

Such observations show that the algorithm has learned from
the SEAREV behavior to take sharper decisions compared to
the heuristic policy it was initialized with.

3.3.4 Qualitative analysis of the trajectory

To evaluate the storage control policy, we simulate its effect on
the sample SEAREV data we have (instead of using the state
space model used for the optimization). The only adaptation
required for this trajectory simulation is to transform the policy
array (µ known on the state grid only) into a policy function
(µ evaluable on the whole state space). This is achieved
using the same n-dimensional interpolation routine used in the
algorithm.

A simulated trajectory is provided on figure 6 to compare
the effect of the optimized policy with the heuristic linear
policy (3). As previously said, the storage capacity is fixed at
Erated = 10 MJ or about 9 seconds of charge/discharge at the
rated power.

Positive aspect, the optimized policy yields an output power
that is generally closer to the average (thin gray line) than the

COMPUTING AN OPTIMAL CONTROL POLICY FOR AN ENERGY STORAGE 57

0.0

0.2

0.4

0.6

0.8

1.0
P
o
w

e
r

(M
W

)
Pprod

Pgrid

average

200 250 300 350 400
time (s)

0

2

4

6

8

E
n
e
rg

y
 E

st
o

(M
J)

linear
policy

optimized
policy

optimized
policy

linear
policy

Fig. 6: Comparison of the power smoothing behavior between the heuristic (dark blue) and optimized (light blue) storage management
policies (storage capacity of 10 MJ). Stored energy on the bottom panel.

linear policy. This better smoothing of the “peaks and valleys”
of the production is achieved by a better usage of the available
storage capacity. Indeed, the linear policy generally under-uses
the higher levels of energy.

As a slight negative aspect, the optimized policy yields
a “spiky” output power in the situations of high production
(200–220 s). In this situation, the output seems worse that
the linear policy. We connect this underperformance to the
linear model (9) used to represent the SEAREV dynamics.
The linearity holds well for small movements but not when
the speed is high and the pendulum motion gets very abrupt
(acceleration high above 4 standard deviations which contra-
dicts the Gaussian distribution assumption). Since the control
optimization is based on the linear model, the resulting control
law cannot appropriately manage these non-linear situations.
Only an upgraded model would genuinely solve this problem
but we don’t have yet an appropriate low-order non-linear
model of the SEAREV. One quick workaround to reduce the
power peaks is to shave the acceleration measurements (not
demonstrated here).

3.3.5 Quantitative assessment

We now numerically check that the optimized policy brings
a true enhancement over the linear policy. We simulate the
storage with the three 1000 s long samples we have and
compute the power variability criterion2 for each.

Figure 7 shows the standard deviation for each sample
in three situations: without storage (which yields the natural
standard deviation of the SEAREV production), with a storage
controlled by the linear policy and finally the same storage
controlled by the optimized policy. Sample Em_1.txt was
used to fit the state space model (9) but we don’t think this
should introduce a too big bias because of the low model order.

Beyond the intersample variability, we can see the consistent
improvement brought by the optimized law. Compared to the
linear policy, the standard deviation of the injected power
is reduced by about 20 % (27 %, 16 %, 22 % for each
sample respectively). We can conclude that the variability of

no storage linear
control

optimized
control

0.00

0.05

0.10

0.15

0.20

0.25

P
g
ri

d
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
 (

M
W

)

data sample
Em_1.txt

Em_2.txt

Em_3.txt

Fig. 7: Effect of optimizing the storage control on three SEAREV
production time series. Standard deviation compared to the heuristic
linear control case is reduced by about 20 %.

the injected power is indeed reduced by using the Dynamic
Programming.

Because the RMS deviation criterion used in this article is
not directly limited or penalized in current grid codes, there is
no financial criterion to decide whether the observed deviations
are acceptable or not. Therefore we cannot conclude if the
~20% reduction of the variability brought by optimal control is
valuable. Nevertheless, there exists criterions like the "flicker"
which are used in grid codes to set standards of power quality.
Flicker, which is way more complicated to than an additive
criterion like (4) could be used to put an economic value on
a control strategy. This is the subject of ongoing research.

4 CONCLUSION

With the use of standard Python modules for scientific com-
puting, we have created StoDynProg, a small library to solve
Dynamic Optimization problems using Stochastic Dynamic
Programming.

We have described the mathematical and coding steps
required to apply the SDP method on an example problem
of realistic complexity: smoothing the output power of the
SEAREV Wave Energy Converter. With its generic interface,

58 PROC. OF THE 6th EUR. CONF. ON PYTHON IN SCIENCE (EUROSCIPY 2013)

StoDynProg should be applicable to other Optimal Control
problems arising in Electrical Engineering, Mechanical Engi-
neering or even Life Sciences. The only requirement is an
appropriate mathematical structure (Markovian model), with
the “Curse of Dimensionality” requiring a state space of low
dimension.

Further improvements on this library should include a better
source tree organization (make a proper package) and an
improved test coverage.

REFERENCES

[Aubry-2010] J. Aubry, P. Bydlowski, B. Multon, H. Ben Ahmed,
and B. Borgarino. Energy Storage System Sizing for
Smoothing Power Generation of Direct Wave Energy
Converters, 3rd International Conference on Ocean En-
ergy, 2010.

[Bertsekas-2005] D. P. Bertsekas, Dynamic Programming and Optimal
Control, Athena Scientific, 2005.

[Brockwell-1991] P. J. Brockwell, and R. A. Davis. Time Series: Theory
and Methods, Springer Series in Statistics, Springer,
1991.

[Kovaltchouk-2013] T. Kovaltchouk, B. Multon, H. Ben Ahmed, F. Rongère,
J. Aubry, and A. Glumineau. Influence of control strat-
egy on the global efficiency of a Direct Wave Energy
Converter with electric Power Take-Off, EVER 2013
conference, 2013.

[McElroy-2013] T. McElroy, and M. Wildi. Multi-step-ahead estimation
of time series models, International Journal of Forecast-
ing, 29: 378–394, 2013.

[Ruellan-2010] M. Ruellan, H. Ben Ahmed, B. Multon, C. Josset, A.
Babarit, and A. Clément. Design Methodology for a
SEAREV Wave Energy Converter, IEEE Trans. Energy
Convers, 25: 760–767, 2010.

[Winant-2010] P. Winant. Dolo, a python library to solve global eco-
nomic models, http://albop.github.io/dolo, 2010.

1. In the special case of a linear dynamics and a quadratic cost (“LQ
control”), the optimal feedback is actually a linear function. Because of the
state constraint 0 ≤ Esto ≤ Erated , the storage control problem falls outside
this classical case.

2. Instead of using the exact optimization cost (4) (average quadratic
power in MW2), we actually compute the standard deviation (in MW). It is
mathematically related to the quadratic power and we find it more readable.

http://albop.github.io/dolo

	1 Introduction to Power Production Smoothing
	1.1 Smoothing with an Energy Storage
	1.2 Finding an Optimal Smoothing Policy
	1.2.1 Prerequisite

	2 Stochastic Model of a Wave Energy Production
	2.1 Autoregressive Model of the Speed
	2.1.1 Order selection
	2.1.2 Parameter estimation

	2.2 Reformulation as a state-space model

	3 Optimal storage control with Dynamic Programming
	3.1 The Policy Iteration Algorithm
	3.1.1 Equation solving

	3.2 StoDynProg library description
	3.2.1 Rationale for a library, benefits of Python
	3.2.2 API description
	3.2.3 SysDescription
	3.2.4 DPSolver
	3.2.5 Multidimensional Interpolation Routine
	3.2.6 Requirements and Algorithm Selection

	3.3 Results for Searev power smoothing
	3.3.1 Algorithm parameters
	3.3.2 Algorithm execution time
	3.3.3 Output of the computation
	3.3.4 Qualitative analysis of the trajectory
	3.3.5 Quantitative assessment

	4 Conclusion
	References

