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OPTIMAL CONTROL FOR QUASI-STATIC EVOLUTION OF

PLASMA EQUILIBRIUM IN TOKAMAKS

HOLGER HEUMANN AND JACQUES BLUM

Abstract. We present a new approach to the optimization of plasma sce-
narios in tokamaks. We formulate this task as an optimal control problem
and use numerical methods for optimization problems with partial differential
equation (PDE) constraints. The latter are discretized by linear finite elements
and implicit Euler time stepping. Due to the free-boundary setting, we have
introduced a new linearization of the non-linear equations that is consistent
with the discretization. It is only this consistency, overlooked in previous ap-

proaches for the even simpler static setting, that guarantees that the method
converges to the optimum. We give various numerical tests and simulation

that illustrate our new method.

1. Introduction

A tokamak is an experimental device that aims at establishing the conditions
to start nuclear fusion reactions. It uses a magnetic field to confine the plasma.
Basic control mechanism for running such a device are externally applied voltages
in various coils surrounding the main chamber, beam injection or wave heating
devices. The control of plasma in tokamaks relies until today mainly on empirical
experience and feed-back control systems [2]. Todays experimental tokamaks such
as Tore Supra in Cadarache, JET (Joint European Torus) at Culham or TCV
(Tokamak à Configuration Variable) in Lausanne use a very complex settings of
such feed-back control system. It is highly questionable that such feed-back control
systems can be transferred one-to-one to newly designed tokamaks. Hence, in view
of the upcoming ITER tokamak, the control of plasma scenarios has recently gained
priority attention within the research community.

With this work we would like to promote a modern feed-forward approach to the
control of plasma in tokamaks. Feed-forward approaches, also called optimal control
approaches in engineering and mathematical literature, predict control parameters
prior to the actual experiment. Feed-forward approaches for the control of plasma
date back to the pioneering work in [3]. But while in [3] even the supercomputers
of that time were able to tackle only simplified stationary problems, we have now
the computational power to tackle the entire discharge scenario. We would like to
stress that nevertheless feed-back control will be inevitable to run tokamak devices.

As in any other optimal control formulation we have to rely on the assumption
that the whole process is accurately described by a set of (partial) differential
equations. In our case it is the widely accepted Grad-Hogan model [10, 11] for
the direct simulation of plasma evolution. This model decomposes the evolution of
plasma in a tokamak into two main subproblems:
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• the two dimensional axisysmmetric equilibrium problem together with Max-
well’s equation in coils and conducting structures that determine the evo-
lution of the poloidal flux for given pressure;
• the one dimensional transport equations together with the resistive diffusion
equation for the poloidal flux that describe the evolution of density and
temperature in the direction perpendicular to the poloidal flux lines.

We refer to [4] or [17] for more details on that topic, but need to highlight that
both the appropriate models for transport and the numerical treatment of the two
coupled problems are presently the subject of intense research [7, 15, 16, 6].

In this work we will concentrate on the equilibrium part and extend the ideas
of the static case in [3] to a quasi-static setting. We formulate a cost function that
penalizes deviations of the plasma from the desired state. State-of-the-art methods
for constrained optimization, so-called sequential quadratic programming (SQP)
[21, Chapter 18], are used to minimize this cost function under the constraint of
quasistatic evolution of plasma equilibrium. It is nowadays widely accepted that
only accurately evaluated sensitivities of the direct non-linear model can guarantee
robustness and liability of the optimization procedure. The free plasma boundary
setting of the direct problem leads in here to some subtle discretization schemes
that have been overlooked in similar earlier work on the static case [3, 13].

The outline of the paper is the following: In Section 2 we recall the Grad-
Shafranov-Schlüter equation for plasma equilibrium and supplement these with
Maxwell’s equations in the coils and other conducting structures. This results in a
non-linear free boundary problem that is a static problem if we prescribe currents
in the coils and quasi-static if we prescribe voltages in the coil circuits. We present
a variational formulation and formulate the corresponding inverse problems. The
first aims at identifying optimal currents that ensure that the stationary plasma
equilibrium has a certain desired shape. The second aims at identifying optimal
evolution of voltages that ensure that the transient plasma equilibrium follows a
desired shape trajectory. In Section 3 we present the main numerical methods. We
use a standard finite element method with linear Lagrangian basis functions and
focus on specific points, due to the non-linearity introduced by the definition of the
plasma domain. This is followed by numerical tests and simulations that validate
our implementation.

2. Optimal Control of Plasma Equilibrium

2.1. Plasma Equilibrium as Free-Boundary Problem. The essential equa-
tions for describing plasma equilibrium in a tokamak are force balance

(1) grad p = J×B ,

and the magneto-quasistatic approximation of Maxwell’s equations with Ohm’s law:

(2) ∂tB = curlEsrc − curl
1

σ
J , divB = 0 , curl

1

µ
B = J .

Here, p is the kinetic pressure, B the magnetic field and J the current density and
Esrc an externally applied electric field. µ and σ are the magnetic permeability
and the electrical conductivity. Hence for the resistive timescale the plasma is in
equilibrium and (1) holds at each instant of time. Only the Faraday’s law in (2)
drives the dynamics.
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As it can easily be seen from (1), both the magnetic field B and the current
density J lie on surfaces of constant pressure p. This property is the major idea
behind the tokamak concept for fusion: A magnetic cage confines particles and the
particle pressure gradient is balanced by the magnetic pressure gradient. Hence, in
light of this, the fusion community prefers to work with a reformulation of (1) and
(2) that uses unknowns that are constant on such constant pressure surfaces. We
would like to refer to standard text books, e.g. [23, Chapter 3], [8, Chapter 6] and
[17, Chapter 4], for a detailed derivation and restate here only the final equations.

Under the assumption of perfect axial symmetry, it is convenient to put (1)
and (2) in a cylindrical coordinate system (r, ϕ, z) and to consider only a meridian
section of the tokamak. The primal unknowns are the poloidal magnetic flux ψ =
ψ(r, z), the pressure p = p(ψ) and the poloidal current flux f = f(ψ). The poloidal
magnetic flux ψ := rA · eϕ is the scaled toroidal component of the vector potential
A, i.e. B = curlA and eϕ the unit vector for ϕ. The poloidal current flux f =
rB · eϕ is the scaled toroidal component of the magnetic field. We introduce Ω∞ =
[0,∞]×[−∞,∞], the positive half plane, to denote the meridian plane that contains
the cross section of the tokamak device. The geometry of the tokamak determines
the various subdomains (see Figure 1):

r

Ωf

z

Ωci

Ωps

Ωp

ΩL

∂ΩL

0

Figure 1. Left: Geometric description of the poloidal cross sec-
tion of the tokamak device. Right: Sketch for characteristic plasma
shapes during the so-called ramp-up phase. The ψ-isolines are in-
dicated by black lines. In the beginning (first three pictures) the
plasma touches the limiter wall and becomes more and more elon-
gated, while finally it moves into the contact-free configuration.

• the domain Ωf ⊂ Ω∞ corresponds to those parts that are made of iron, the
iron core and return limbs;
• the domain Ωci ⊂ Ω∞ corresponds to the N poloidal field coils, where each
coil Ωci has ni wire turns, total resistance Ri and cross section Si;
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• the domain Ωps ⊂ Ω∞ corresponds to the passive structures, with conduc-
tivity σ;
• the domain ΩL ⊂ Ω∞, bounded by the limiter, corresponds to the domain
that is accessible by the plasma.

Then, the equilibrium of plasma in a tokamak has to satisfy the following non-linear
boundary value problem:

(3)

Lψ(r, z, t) = j(r, z) in Ω ;

ψ(0, z, t) = 0 ;

lim
‖(r,z)‖→+∞

ψ(r, z, t) = 0 ;

ψ(r, z, 0) = ψ0(r, z) ,

where L is a non-linear second-order elliptic differential operator

(4) Lψ := −
∂

∂r

(
1

µ(ψ)r

∂ψ

∂r

)
−

∂

∂z

(
1

µ(ψ)r

∂ψ

∂z

)
:= −∇ ·

(
1

µ(ψ)r
∇ψ

)
,

with

(5) µ(ψ) = µf(|∇ψ|
2r−2)

{
≥ µ0 in Ωf

= µ0 else .

Here, ∇ is the 2D gradient in the (r, z)-plane. The current density j is a non-linear
function of ψ:

(6) j =





rp′(ψ) + 1
µ0r

ff ′(ψ) in Ωp(ψ) ;
niVi(t)
RiSi

− 2π
n2
i

RiS
2
i

∫
Ωci

∂ψ
∂t
drdz =: Ii(ψ)

Si
in Ωci ;

−σ
r
∂ψ
∂t

in Ωps ;

0 elsewhere ,

where the domain Ωp(ψ), the domain of the plasma, is the largest subdomain of
ΩL that is bounded by a ψ-isoline that is closed in ΩL, more precisely,

Ωp(ψ) = {(r, z) ∈ ΩL , ψ(r, z) ≥ max

(
max

(r,z)∈∂ΩL

(ψ(r, z)), max
(rX ,zX)∈ΩL

(ψ(rX, zX))

)
}

where (rX, zX) denotes the coordinates of the saddle points, also called X-points,
of ψ. The different characteristic shapes of Ωp(ψ) are illustrated in Figure 1: the
boundary of Ωp(ψ) either touches the boundary of ΩL, the limiter, or the boundary
contains one or more corners (X-points of ψ). The current density j is non-linear
in ψ due to the non-linear functions p′ and f f ′ and the definition of the plasma
domain Ωp(ψ). While Ωp(ψ) is fully determined for a given ψ, the two functions p′

and f f ′ are not determined by the model (3)-(6). In general, (3)-(6) is augmented
by the so-called transport and diffusion equations, that determine p′ and f f ′. In
this work, we will assume that, up to some scaling coefficient λ, the functions p′

and f f ′ are known. For the current profile j in the plasma domain Ωp we will
consider the a priori model:

(7) j = λjp(r, ψN) := λh(r)g(ψN) := λ

(
β
r

R0
+ (1− β)

R0

r

)
(1− ψαN)

γ in Ωp ,

with R0 the major radius of the vacuum chamber and α, β, γ ∈ R given parameters.
We refer to [20] for a physical interpretation of these parameters. The parameter β
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is the poloidal beta at r = R0, whereas α and γ describe the peakage of the current
profile. The normalized poloidal flux ψN(r, z) is

(8) ψN(r, z) =
ψ(r, z)− ψax(ψ)

ψbnd(ψ)− ψax(ψ)
.

with the scalar values ψax and ψbnd being the flux values at the magnetic axis and
at the boundary of the plasma:

(9)

ψax(ψ) := ψ(rax, zax) ,

ψbnd(ψ) := max

(
max

(r,z)∈∂ΩL

ψ(r, z), max
(rX,zX)∈ΩL

ψ(rX, zX)

)
,

where (rax, zax) = (rax(ψ), zax(ψ)) and (rx, zx)=(rx(ψ), zx(ψ)) are the global max-
imum and the saddle points of ψ in ΩL. For convenience we introduce also the co-
ordinates (rbnd, zbnd) = (rbnd(ψ), zbnd(ψ)) of the point that determines the plasma
boundary, i.e.

(rbnd, zbnd) = argmax
(r,z)∈∂ΩL

ψ(r, z) or (rbnd, zbnd) = argmax
(rX,zX)∈ΩL

ψ(rX, zX).

The coefficient λ is determined by forcing that

(10) IP =

∫

Ω(ψ)

j(r, z)drdz

holds for some given total plasma current IP.
In the following we will refer to (3)-(6) as the quasi-static free-plasma-boundary

problem. The static case, the static free-plasma-boundary problem is the special
case, where ∂ψ

∂t
is set to zero in Ωci and the currents Ii in the coils are assumed

to be known input parameters. The first lines of (3) and (6) are known as the
Grad-Shafranov-Schlüter equation [12, 22, 19].

2.2. Variational Formulation on the Truncated Domain. Let Ω ⊂ Ω∞ be a
sufficiently large semi-circle of radius ρΓ, that is centered at the origin and contains
the geometry of the tokamak. The boundary ∂Ω splits into Γr=0 := {(r, z) , r = 0}
and Γ = ∂Ω \ Γr=0. The variational formulation of (3) uses the following Sobolev
space:

(11) V :=

{
ψ : Ω→ R,

∫

Ω

ψ2r drdz <∞,

∫

Ω

(∇ψ)2r−1 drdz <∞

}
∩ C0(Ω).

Then we define

• two mappings A : V × V → R and Jp : V × V → R that are linear in the
last argument:

(12)

A(ψ, ξ) :=

∫

Ω

1

µ(ψ)r
∇ψ · ∇ξ drdz

Jp(ψ, ξ) :=

∫

Ωp(ψ)

jp(r, ψN(ψ(r, z), ψax, ψbnd))ξ drdz
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• N + 1 bilinear forms jcv, jci : V × V → R

(13)

jcv(ψ, ξ) := −

∫

Ωps

σ

r
ψξ drdz

jci(ψ, ξ) := −2π
n2i
RiS

2
i

(∫

Ωci

ψ drdz

)(∫

Ωci

ξ drdz

)

• N bilinear mappings ℓci : R× V → R:

(14) ℓci(V, ξ) :=
niV

RiSi

∫

Ωci

ξ drdz

• a bilinear form C : V × V on Γ, that accounts for the boundary conditions
at infinity [1]:

(15)

C(ψ, ξ) :=
1

µ0

∫

Γ

ψ(P1)N(P1)ξ(P1)dS1

+
1

2µ0

∫

Γ

∫

Γ

(ψ(P1)− ψ(P2))M(P1,P2)(ξ(P1)− ξ(P2))dS1dS2.

with

M(P1,P2) =
kP1,P2

2π(r1r2)
3
2

(
2− k2P1,P2

2− 2k2P1,P2

E(kP1,P2
)−K(kP1,P2

)

)

N(P1) =
1

r1

(
1

δ+
+

1

δ−
−

1

ρΓ

)
and δ± =

√
r21 + (z1 − ρΓ)2 ,

where Pi = (ri, zi) and K and E the complete elliptic integrals of first and
second kind, respectively and

kPj ,Pk
=

√
4rjrk

(rj − rk)2 + (zj − zk)2
.

We refer to [13, Chapter 2.4] for the details of the derivation. The bilinear
form C(·, ·) follows basically from the so called uncoupling procedure in
[9] for the usual coupling of boundary integral and finite element methods.
The Green’s function that is used in the derivation of the boundary integral
methods for our problem was used earlier in finite difference methods for
the Grad-Shafranov-Schlüter equations [18].

We introduce ψ̇ for the derivative ∂ψ
∂t

and derive the following variational formula-
tion of the quasi-static free-plasma-boundary problem: Let the voltages V1(t), . . . VN (t)
and the initial data ψ0 and λ0 be given. Find ψ(t) ∈ V and λ(t) ∈ R, t ∈ [0, T ]
such that for all ξ ∈ V :

(16)
A(ψ, ξ)− λ Jp(ψ, ξ)− jcv(ψ̇, ξ)−

N∑

i=1

jci(ψ̇, ξ) + C(ψ, ξ) =

N∑

i=1

ℓci(Vi, ξ),

Ip − λ Jp(ψ, 1) = 0, ψ(0) = ψ0, λ(0) = λ0 .

The implicit Euler method on 0 := t0 < t0+∆t1 = t1 < . . . tn−1+∆tn = tn = T

gives the following semi-discretization for ψ(k) and λ(k) approximating ψ(tk) and
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λ(tk):

(17)

∆tkA(ψ(k), ξ)−∆tkλ(k) Jp(ψ(k), ξ)− jcv(ψ(k) − ψ(k−1), ξ)

−

N∑

i=1

jci(ψ(k) − ψ(k−1), ξ) + ∆tkC(ψ(k), ξ) = ∆tk

N∑

i=1

ℓci(Vi(tk), ξ),

Ip(tk)− λ(k) Jp(ψ(k), 1) = 0, ψ(0) = ψ0, λ(0) = λ0 .

To define Newton-type methods for (16) and (17) we need to calculate all the di-

rectional derivatives DψA(ψ, ξ)(ψ̃), DψJp(ψ, ξ)(ψ̃), Dψjcv(ψ, ξ)(ψ̃), Dψjci(ψ, ξ)(ψ̃)

and DψC(ψ, ξ)(ψ̃). This calculation is simple for the bilinear mappings jci , jcv and
the non-linear mapping A (see (5)). The remaining derivatives are given in [5, p.
238].

2.3. The Inverse Problem. The inverse problem that corresponds to the equa-
tions (3)-(6) is the problem of determining external voltages such that the solution
of (16) has certain prescribed properties. We will state this problem more rigorously
as optimal control problem.

Let Γdesi(t) ⊂ ΩL denote the evolution of a closed line, contained in the domain
ΩL that is either smooth and touches the limiter at one point or has at least one cor-
ner. The former case prescribes a desired plasma boundary that touches the limiter.
The latter case aims at a plasma with X-point that is entirely in the interior of ΩL.
Further let (rdesi(t), zdesi(t)) ∈ Γdesi(t) and (r1(t), z1(t)), . . . (rNdesi

(t), zNdesi
(t)) ∈

Γdesi(t) be Ndesi + 1 points on that line. We define a quadratic functional K(ψ)
that evaluates to zero if Γdesi(t) is an ψ(t)-iso-line, i.e. if ψ(t) is constant on Γdesi(t):

(18) K(ψ) :=
1

2

∫ T

0

(
Ndesi∑

i=1

(
ψ(ri(t), zi(t), t)− ψ(rdesi(t), zdesi(t), t)

)2
)
dt.

Another functional, that will serve as regularization, is

(19) R(V1, . . . , VN ) :=

N∑

i=1

wi

2

∫ T

0

(Vi(t))
2
dt,

that penalizes the strength of the voltages Vi and represents the energetic cost of
the coil system. The coefficients wi ≥ 0 are called regularization weights.

Problem 1. Inverse Quasi-Static Free-Plasma-Boundary Problem. We
assume: that the geometric quantities Ωci (Si), 1 ≤ i ≤ N , Ωps, Ωf , ΩL are given;
that the physical quantities Ri and Ni, 1 ≤ i ≤ N , and σ, µ0 and µf are given;
that the function jp : R+ × [0, 1] → R is given; that the total plasma current Ip(t)
is given and that the initial data ψ0 and λ0 is given. Define the control vector u,
with components ui = Vi, 0 < i ≤ N , the state vector y := (ψ, λ) and functional
J(y,u) := K(ψ) + R(V1, . . . , VN ). Solve the following non-linear optimal control
problem:

min
y,u

J(y,u) subject to (16)

The inverse problem that corresponds to the static case of equations (3)-(6) is
the problem of finding externally applied currents Ii in the coils that correspond
to a given shape and position of the plasma. The numerical solution of this inverse
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problem, the inverse static free-plasma-boundary problem was previously treated in
e.g. [3] or [13].

3. Numerical Methods

3.1. Fast Algorithms for Optimal Control Problems. The inverse Problem
1 is a constrained optimization problem, where the constraints are a set of partial
differential equations that model the plasma equilibrium in a tokamak. In the
mathematical literature such type of problems are called optimal control problems.
The following section is a short summary on algorithms for general optimal control
problems.

We consider the following optimal control problem

(20) min
u,y

1

2
〈u,Hu〉+

1

2
〈y,Ky〉 s.t B(y) = F(u),

where 1
2 〈·,H·〉 and

1
2 〈·,K·〉, are quadratic cost functions and y and u the so-called

state and control variables. In our setting y will be the variable that describes
the plasma and u will be the externally applied currents or voltages. In a contin-
uous setting, where the state y, e.g. the flux ψ is a function of space, < ·,H· >
and < ·,K· > are weighted L2-innerproducts, and B(y) and F(u) are non-linear
operators with the variational formulation (16) or (17). In the discrete setting,
e.g. a finite element framework, where y are finitely many variables, < ·,H· >
and < ·,K· > are weighted Euclidian innerproducts and B(y) and F(u) are proper
approximations of the non-linear operators in the variational formulation (16) or
(17).We refer to [14, Chapter 1] for more general formulations with non-linear
cost functions and non-separating constraints. Sequential Quadratic Programming
(SQP) is one of the most effective methods for non-linear constrained optimization
with significant non-linearities in the constraints [21, Chapter 18]. SQP methods
find a numerical solution by generating iteration steps that minimize quadratic cost
functions subject to linear constraints. The Lagrange function formalism in com-
bination with Newton-type iterations is one approach to derive the SQP-methods:
the Lagrangian for (20) is

(21) L(y,u,p) =
1

2
〈u,Hu〉+

1

2
〈y,Ky〉+ 〈p,B(y)− F(u)〉

and the solution of (20) is a stationary point of this Lagrangian:

(22)
Ky +DyB

T (y)p = 0,
Hu−DuF

T (u)p = 0,
B(y)− F(u) = 0

The superscript T indicates the adjoint operator, which corresponds to matrix
transposition in the finite dimensional case. The second line in (22) corresponds to
the optimality condition for the gradient of the reduced cost functional 1

2 〈u,Hu〉+
1
2 〈y(u),Ky(u)〉, where y(u) is implicitly defined by B(y(u)) = F(u). This is the
main reason for which gradient type methods for a corresponding unconstrained
optimization problem for the reduced cost function are too expensive: one evalua-
tion of the gradient requires the very expensive solution of the non-linear problem
in the third line of (22).
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A quasi-Newton method for solving (22) are iterations of the type
(23)


K 0 DyB
T (yk)

0 H −DuF
T (uk)

DyB(yk) −DuF(u
k) 0





yk+1 − yk

uk+1 − uk

pk+1 − pk


 = −



Kyk +DyB

T (yk)pk

Huk −DuF
T (uk)pk

B(yk)− F(uk)




which corresponds to the following quadratic optimization problem with linear con-
straints:

(24)
min

uk+1,yk+1

1

2
〈uk+1,Huk+1〉+

1

2
〈yk+1,Kyk+1〉

s.t B(yk) +DyB(yk)(yk+1 − yk) = F(uk) +DuF(u
k)(uk+1 − uk),

We call (23) a quasi-Newton method since we omit the second order derivatives
of B and F. If the linear systems in (23) become too large, we could pursue the
usual Schur complement approach: and obtain the following linear system for the
increment ∆uk := uk+1 − uk

(25) M(yk,uk)∆uk = h(yk,uk)

with

M(yk,uk) := H+DuF
T (uk)DyB

−T (yk)KDyB
−1(yk)DuF(u

k)

h(yk,uk) := −Huk −DuF
T (uk)DyB

−T (yk)KDyB
−1(yk)(r(yk,uk))

r(yk,uk) := −B(yk) +DyB(yk)yk + F(uk).

We will use iterative methods, e.g. the conjugate gradient methods, to solve (25).
Since, in our case the number of control variables will be small, we can expect
convergence within very few iterations. In each iteration step, we still have to
solve the two linear systems corresponding to DyB(yk) and DyB

T (yk). These are
usually referred to as linearized direct and adjoint problems. Once we know ∆uk

we could compute yk+1 and pk+1 by:

(26)
DyB(yk)yk+1 = r(uk,yk) +DuF(u

k)∆uk

DyB
T (yk)pk+1 = −Kyk+1.

Fortunately, the conjugate gradient (CG) method for (25) allows for direct compu-
tation of yk+1 and uk+1 (see Algorithm 1).

We would like to highlight that the SQP-method relies on proper derivatives of
the non-linear operators B and F. In our case F is affine, hence the derivative of B
remains the most difficult part. When it comes to the derivation of fully discrete
schemes there are two choices:

(1) discretize the derivative of the continuous operator;
(2) compute the derivative of a discretized version of the continuous operator.

With the first approach, we cannot guarantee that the discretization yields a linear
operator that is a derivative, hence we cannot guarantee that the numerical solution
is the solution of the discrete optimization problem. Therefore it is nowadays
considered to be important to follow the second approach.
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Algorithm 1

1: Set ∆u←0;
2: Set yk+1 ← DyB(yk)−1r(uk,yk)
3: Set pk+1 ← −DyB(yk)−TKyk+1

4: Set R←Huk −DuF
T (uk)pk+1

5: Set P←−R

6: while R 6= 0 do

7: a← DyB(yk)−1DuF(u
k)P

8: b← DyB(yk)−Ta
9: M←HP+DuF

T (uk)b

10: α← RTR
PTM

11: ∆u← ∆u+ αP

12: yk+1 ← yk+1 + αa

13: pk+1 ← pk+1 − αb

14: R̃← R+ αM

15: β ← R̃T R̃
RTR

16: P̃← −R̃+ βP

17: R← R̃, P← P̃

18: end while

19: uk+1 ← uk +∆u

3.2. The Galerkin Discretization. We introduce a triangulation Ωh of the do-
main Ω that resolves the subdomains ΩL,Ωf ,Ωci ,Ωps and use standardH1-conforming
Lagrangian finite elements with nodal degrees of freedom.

Let λi(r, z) denote the Lagrangian basis functions associated to the vertices of
the mesh. The finite element approximation ψh of ψ is:

(27) ψh(r, z, t) =
∑

i

ψi(t)λi(r, z) with ψi ∈ R.

The domain of the plasma Ωp(ψh) of a finite element function ψh is bounded by
a continuous, piecewise straight, closed line. The critical points (rax(ψh), zax(ψh))
and (rbnd(ψh), zbnd(ψh)) are the coordinates of certain vertices of the mesh. The
saddle point of a piecewise linear functions ψh is some vertex (r0, z0) with the fol-
lowing property: if (r1, z1), (r2, z2) . . . (rn, zn), denote the counterclockwise ordered
neighboring vertices the sequence of discrete gradients ψ0−ψ1, ψ0−ψ2 . . . ψ0−ψn
changes at least four times the sign.

To discretize the non-linear and linear operators in (16) we split the integrations
over the entire domain Ω in sums of integrations over the elements T of the mesh
Ωh and apply some quadrature. Except for the bilinear form C(ψ, ξ) (see (15)), this
procedure involves basically two different types of integrals:

(28)

∫

T

f(r, ψh, λi)drdz and

∫

T∩Ωp(ψh)

g(r, ψh, λi)drdz,

where the two integrands T

∈

(r, z) 7→ f(r, ψh(r, z), λi(r, z)) and T ∩Ωp(ψ)

∈

(r, z) 7→
g(r, ψh(r, z), λi(r, z)) are smooth functions on the integration domains. The second
type of integrals appears in JP due to the fact that the mesh does not resolve the
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boundary of the plasma domain Ωp. In any case we will use the centers of gravity

(29)
bT := (rT , zT )

bT (ψh) := (rT (ψh), zT (ψh)) := (rT∩Ωp(ψh), zT∩Ωp(ψh))

of the integration domains T or T ∩ Ωp(ψh) as quadrature points. The barycenter
for the second type of integrals depends itself on ψh. Our choice of quadrature
rule introduces a consistency error of order O(h2), where h is the diameter of the
triangle, i.e. the quadrature is exact for linear integrands.

For a triangle T with vertex coordinates ai,aj ,ak the center of gravity corre-
sponds to the barycenter:

(30) (rT , zT ) =
1

3
(ai + aj + ak).

If the domain of integration is T ∩ Ωp(ψh), we have to distinguish the two cases.
T ∩ Ωp(ψh) is either a triangle or a quadrilateral. Without loss of generality we
assume that ai,aj ,ak is a counterclockwise ordering of the vertex coordinates of T
and that ∂Ωp(ψ) intersects ∂T at two pointsmk andmj at the edges opposite to the
vertices ak and aj (See Figure 2). The barycentric coordinates of the intersecting

ai

ak aj

∂Ωp

mk

mj

aj

ak

ai

∂Ωp

mk

mj

Figure 2. Integration over T ∩ Ωp(ψh). The green dots indicate
the location of the quadrature point. The integration domain T ∩
Ωp(ψh) is either a) empty, b) the whole element T , c) a triangular
domain or d) or quadrilateral domain.

points mk and mj are functions of ψh:

(31)

1− λi(mk) = λj(mk) = λj(mk(ψh)) =
ψbnd(ψh)− ψi

ψj − ψi

1− λi(mj) = λk(mj) = λk(mj(ψh)) =
ψbnd(ψh)− ψi

ψk − ψi
,

and, clearly, we have λk(mk) = λj(mj) = 0.
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If T ∩Ωp(ψh) is a triangle and ai that vertex of T that is contained in T ∩Ωp(ψh)
(See Figure 2, left) we find:

(32) (rT (ψh), zT (ψh)) = ai +
1

3
λj(mk)(aj − ai) +

1

3
λk(mj)(ak − ai)

and

(33) |T ∩ Ωp(ψh)| = |T |λj(mk)λk(mj).

If T ∩ Ωp(ψh) is a quadrilateral and ai that vertex of T that is not contained in
T ∩ Ωp(ψh) (See Figure 2, right) we find:

(34) (rT (ψh), zT (ψh))

= ai +
1

3

1− λ2j (mk)λk(mj)

1− λj(mk)λk(mj)
(aj − ai) +

1

3

1− λj(mk)λ
2
k(mj)

1− λj(mk)λk(mj)
(ak − ai)

and

(35) |T ∩ Ωp(ψh)| = |T | (1− λj(mk)λk(mj)) .

3.3. The Discrete Optimal Control Problem. We introduce the subscript
h to denote the fully discrete version of the operators involved in (17) that we
obtain when we use the quadrature rules from the previous section 3.2. The
fully discrete formulation of the dynamic free-plasma-boundary problem is: Find
(ψ1
h, λ

1), . . . , (ψnh , λ
n), such that

(36)

∆tkAh(ψ
k
h, ξ)−∆tkλ

k JP,h(ψ
k
h, ξ)− jcv,h(ψ

k
h − ψ

k−1
h , ξ)

−

N∑

i=1

jci,h(ψ
k
h − ψ

k−1
h , ξ) + ∆tkC(ψ

k
h, ξ) = ∆tk

N∑

i=1

ℓci,h(Vi(tk), ξ),

Ip(tk)− λ
k Jp,h(ψ

k
h, 1) = 0, ψ0

h = ψ0, λ(0) = λ(t0).

To formulate the discrete version of the optimal control Problem 1 we define a
discrete cost function Kh({ψ

k
h}
n
k=1):

(37) Kh({ψ
k
h}
n
k=1) =

n∑

k=1

(
∆tk
2

Ndesi∑

i=1

(
ψkh(ri, zi)− ψ

k
h(rdesi(tk), zdesi(tk))

)2
)

and a discrete regularization function:

(38) Rh({V1(tk)}
n
k=1, . . . , {VN (tk)}

n
k=1) =

N∑

i=1

wi

2

n∑

k=1

∆tkV
2
i (tk) .

Problem 2. Discrete Inverse Dynamic Free-Plasma-Boundary Problem.
We assume that the geometric quantities Ωci (Si), 1 ≤ i ≤ N , Ωps, Ωf , ΩL

are given; that the physical quantities Ri and Ni, 1 ≤ i ≤ N , and σ, µ0 and
µf are given; that the function jp : R+ × [0, 1] → R is given; that the exter-
nal sources {Ip(tk)}

n
k=0 are given, that the initial data ψ0, λ0 is given, Then

we define the control vector ū := ({V1(tk)}
n
k=1, . . . , {VN (tk)}

n
k=1), the state vector

ȳ := (ψ1
h, λ

1, . . . , ψnh , λ
n) and the functional

(39) Jh(ȳ, ū) := Kh({ψ
k
h}
n
k=1) +Rh({V1(tk)}

n
k=1, . . . , {VN (tk)}

n
k=1).

Solve the following discrete non-linear optimal control problem:

min
ȳ,ū

Jh(ȳ, ū) subject to (36)
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As it is indicated in the previous sections, we have to pay particular attention
to the discretization of our non-linear constraints. We need to ensure that, loosely
speaking, the linear constraints of the quadratic optimization problem during the
SQP iterations are accurate derivatives of the non-linear constraints. Only then,
the SQP-method guarantees convergence to the optimal solution.

Except for JP,h(ψ
k
h, ξ) the derivatives for the non-linear operators in (36) are

straight-forward and simple calculations. The non-linear operator JP,h(ψ
k
h, ξ) in-

volves quadrature points that depend on the numerical solution ψh and we have to
pay particular attention to the derivative of this operator.

3.4. The Derivative of the Discrete Current JP,h. The discrete non-linear
current is given by

JP,h(ψh, λm) =
∑

T

JTP,h(ψh, λm) :=
∑

T

|T ∩ Ωp(ψh)| jp(bT (ψh))λm(bT (ψh)),

where jp(bT (ψh)) = jp(rT (ψh), ψN(ψh(bT (ψh)), ψax(ψh), ψbnd(ψh))). To find the
derivative

DψJP,h(ψh, λm)(λn) =
d

dψn
JP,h(ψh, λm)

we compute the derivative for each term of the sum. Computing the derivative of
each term is a tedious application of chain and product rules. We distinguish three
different cases: T ∩ Ωp(ψh) = 0, T ∩ Ωp(ψh) = T and T ∩ Ωp(ψh) ⊂ T . With a
slightly abuse of notation we identify ψbnd and ψax with the corresponding finite
element expansion coefficient and use the Dirac deltas δn,bnd and δn,ax.

(1) T ∩ Ωp(ψh) = 0:

d

dψn
JTP,h(ψh, λm) = 0 ∀n,m;

(2) T ∩ Ωp(ψh) = T :

d

dψn
JTP,h(ψh, λm) =|T |

∂jp(rT , ψN(bT ))

∂ψN

∂ψN(bT )

∂ψh
λn(bT )λm(bT )

+|T |
∂jp(rT , ψN(bT ))

∂ψN

∂ψN(bT )

∂ψbnd
δn,bndλm(bT )

+|T |
∂jp(rT , ψN(bT ))

∂ψN

∂ψN(bT )

∂ψax
δn,axλm(bT )

(3) T ∩ Ωp(ψh) ⊂ T : Without loss of generality we adopt the notation from

section 3.2, introduce λkj = λj(mk) λ
j
k = λk(mj) use bT to denote bT (ψh).

We define Ar = |T |λkjλ
j
k if T ∩Ωp(ψh) is a triangle and Ar = |T |(1−λkjλ

j
k)

if T ∩ Ωp(ψh) is a quadrilateral. We find

d

dψn
JTP,h(ψh, λm) =An(ψh, λm) + Cn(ψh, λm) + Tn(ψh, λm)

with
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• the derivative related to the area |T ∩ Ωp(ψh)|:

An(ψh, λm) =s|T |

(
∂λkj

∂ψn
λ
j
k + λ

j
k

∂λkj

∂ψn

)
jp(bT )λm(bT )

+ s|T |

(
∂λkj

∂ψbnd
λ
j
k + λ

j
k

∂λkj

∂ψbnd

)
δn,bnd jp(bT )λm(bT ),

where s = 1 if |T ∩ Ωp(ψh)| is a triangle and s = −1 else.
• the derivative related to the current jp(rT , ψN(bT )):

Cn(ψh, λm) =Ar
∂jp(rT , ψN(bT ))

∂ψN

∂ψN(bT )

∂ψh
λn(bT )λm(bT )

+Ar
∂jp(rT , ψN(bT ))

∂ψN

∂ψN(bT )

∂ψh
∇ψh(bT ) ·

∂bT

∂ψn
λm(bT )

+Ar
∂jp(rT , ψN(bT ))

∂ψN

∂ψN(bT )

∂ψh
∇ψh(bT ) ·

∂bT

∂ψbnd
δn,bndλm(bT )

+Ar
∂jp(rT , ψN(bT ))

∂ψN

∂ψN(bT )

∂ψbnd
δn,bndλm(bT )

+Ar
∂jp(rT , ψN(bT ))

∂ψN

∂ψN(bT )

∂ψax
δn,axλm(bT )

+Ar
∂jp(rT , ψN(bT ))

∂r

drT

dψn
λm(bT )

+Ar
∂jp(rT , ψN(bT ))

∂r

∂rT

∂ψbnd
δn,bndλm(bT )

• the derivative related to the test function λi(bT ):

Tn(ψh, λm) =Ar

(
jp(bT )∇λm(bT ) ·

∂bT

∂ψn
+ jp(bT )∇λm(bT ) ·

∂bT

∂ψbnd
δn,bnd

)

The derivatives of ψN follow easily from (8). We would like to stress that the
Galerkin matrix DψJ

T
P,h(ψh, λm)(λn) can be assembled in a fairly standard, i.e.

element wise, fashion, provided we compute in a preprocessing step the following
information for each element: we know for each element T to which of the three
different cases it belongs. If an element T belongs to the last case we need to know
the barycententric coordinates of the intersection points λk(mj) and λj(mk), the

barycenter bT (ψh) and the derivatives
∂λk(mj)
∂ψi

,
∂λk(mj)
∂ψj

,
∂λk(mj)
∂ψk

,
∂λk(mj)
∂ψbnd

,
∂λj(mk)
∂ψi

,
∂λj(mk)
∂ψj

,
∂λj(mk)
∂ψk

,
∂λj(mk)
∂ψbnd

and ∂bT

∂ψi
, ∂bT

∂ψj
, ∂bT

∂ψk
, ∂bT

∂ψbnd
. All this information can be

easily computed for given ψh, ψbnd and ψax using the formulas (31), (32) and (34).
All the terms that contain the Dirac deltas δn,bnd or δn,ax lead to non-local entries
in the stiffness matrix. They connect all the coefficients of ψbnd and ψax with all
coefficients that are associated to vertices of elements that are intersected by the
boundary ∂ΩP(ψh).

4. Numerical Tests

We present three different numerical tests, that verify that we use correct gra-
dients in our implementation. In the following calculation we use a ITER-like
geometry and an equlibrium plasma (see Fig. 3) that corresponds to the currents



OPTIMAL CONTROL FOR QUASI-STATIC EVOLUTION OF PLASMA EQUILIBRIUM IN TOKAMAKS15

in the table of Figure 3. The total plasma current is IP = 15× 106A and the four
parameters for the current profile (7) are R0 = 6.2m , α = 2.0, β = 0.5978 and
γ = 1.395.

coil Ii
U3 −1.400× 106

U2 −9.500× 106

U1 −20.388× 106

L1 −20.388× 106

L2 −9.000× 106

L3 3.564× 106

P1 5.469× 106

P2 −2.266× 106

P3 −6.426× 106

P4 −4.820× 106

P5 −7.504× 106

P6 17.240× 106

Figure 3. Left: The plasma (flux lines and flux intensity) that
correspond to the currents in the table. Center: The triangulation
of the ITER-geometry. Right: Data for coils. Coils U1-U3 and
L1-L3 are upper and lower position control coils. Coils P1-P6 are
the poloidal field coils.

4.1. Convergence of finite differences of JP,h to DψJP,h. Let J(ψh) denote
the Galerkin matrix of the derivative DψJP,h(ψh, λm)(λn) of the bilinear form
JP,h(ψh, λm). In a first test we verify that for given ψh and perturbation δψh =∑
n λnvn our implementation yields:

(40) EFD(ε) :=

∥∥∥∥∥∥∥
ε−1



JP,h(ψh + εδψh, λ1)− JP,h(ψh, λ1)
JP,h(ψh + εδψh, λ2)− JP,h(ψh, λ2)

...


− J(ψh)v

∥∥∥∥∥∥∥
‖J(ψh)v‖

= O(ǫ).

The perturbation increment δψh is randomly chosen. In Table 1 we monitor this
relative error and observe, as expected, first order convergence.

4.2. Convergence of the Sensitivities. We consider the variational formulation
of the static free-plasma-boundary problem for given currents I1, . . . IN : Find ψ

such that

(41)
A(ψ, ξ)− λ JP(ψ, ξ) + C(ψ, ξ) =

N∑

i=1

ℓci(
Ri

ni
Ii, ξ),

Ip − λ Jp,h(ψ, 1) = 0 .

When we solve this non-linear problem with a real Newton method, the convergence
theory for Newton methods asserts that we will have second order convergence,
when we use accurate derivatives of the non-linear operators. But, since in many
cases also with inaccurate derivatives one observes super-linear convergence, this
second order convergence is an inappropriate indicator for accurate or inaccurate
derivatives.
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εi = 0.5i EFD(εi) rate ERN(εi) rate EQN(εi) rate
0 0.0150819 11647.2 2928.07
1 0.0075431 0.99958 5485.42 1.08631 1125.83 1.37897
2 0.0037716 0.99998 3362.31 0.70615 1182.56 −0.07086
3 0.0018859 0.99997 1936.28 0.79616 846.373 0.48247
4 0.0009429 0.99997 694.294 1.47967 149.343 2.50266
5 0.0004715 0.99998 4.26942 7.34536 268.207 −0.84472
6 0.0002357 0.99999 9.65561 −1.17733 145.894 0.87843
7 0.0001179 0.99998 2.39544 2.01108 70.5145 1.04893
8 0.0000589 0.99997 0.60127 1.99421 34.6608 1.02462
9 0.0000295 0.99973 0.15064 1.99689 17.1804 1.01254
10 0.0000147 1.00045 0.03770 1.99843 8.55259 1.00633
11 0.0000074 0.99865 0.00943 1.99919 4.26687 1.00318
12 0.0000037 0.99134 0.00236 1.99959 2.13108 1.00159
13 0.0000019 0.92854 0.00059 1.99982 1.06495 1.00081
14 0.0000011 0.870235 0.00015 1.99993 0.53233 1.00043
15 0.0000004 1.568283 0.00003 2.00002 0.26613 1.00028

Table 1. Convergence and convergence rate

( log(E...(εi+1))−log(E...(εi))
log(εi+1)−log(εi)

) of the finite difference error EFD

and the errors ERN and EQN of the real Newton method described
in Section 3.2 and the quasi-Newton method in [3, 13].

A better indicator is the following test: Let ψh(I1, . . . , In) denote the discrete
solution for given control parameters I1, . . . IN and I1(ε), . . . , IN (ε) is some pertur-
bation of the data. A real Newton method that determines ψh(I1(ε), . . . , In(ε)) and
uses ψ0

h(I1(ε), . . . , In(ε)) = ψh(I1, . . . , In) as initial guess, yields already in the first
iteration an approximation ψ1

h(I1(ε), . . . , In(ε)) that is a second order perturbation
of the solution.

Here, we will solve the non-linear static free-plasma-boundary problem (41) with
the Newton method outlined in Section 3.2 for the data given in the table in Figure
3. As perturbation we choose a random incremental current for each coil and scale
it with ε = 0.50, . . . 0.515. In Table 1 we monitor the error

(42) ERN(ε) = ‖v(ε)− v1(ε)‖,

where v(ε) and v1(ε) are the coefficients of the solution ψh(I1(ε), . . . , In(ε)) and the
first Newton iterate ψ1

h(I1(ε), . . . , In(ε)). We get second order convergence, which
shows that we use accurate derivatives. In contrast, the results of the Newton-like
method that follows from the discretization of the continuous Newton method in
[3, 13], yields only first order convergence. This second approach does not use an
accurate derivative.

4.3. Quasi-Static Free-Plasma-Boundary Problem. In this example we study
the inverse quasi-static free-plasma-boundary problem defined in Problem 2. For
demonstration purposes we present here a first example with 5 timesteps with
timestep length τ = 1s, the plasma current varies in time IP(t1) = 692350.62A,
IP(t2) = 884463A, IP(t3) = 1077116.1A, IP(t4) = 1269026.7A, IP(t5) = 1461458.2A,
the parameters of the current profile (7) are constant: α = 2, β = 0.09, γ = 1.95,
R0 = 6.211m. The coils have total resistance Ri = 5 × 10−4Ω and wire turns ni
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Newton iteration 0 1 2 3 4
Kh 0.149969 0.010203 0.009634 0.009631 0.009631
Rh 4× 10−6 0.010082 0.009447 0.009448 0.009448

rel. residuum 5.37051 0.006889 1× 10−5 1× 10−9

CG iterations 60 58 60 60
Table 2. Dynamic free-plasma-boundary problem: convergence
history.

coil ni step 1 step 2 step 3 step 4 step 5
U3 553.0 597.146 601.843 595.93 552.652 432.379
U2 553.0 −749.273 −780.675 −728.05 −545.037 −124.193
U1 553.0 265.837 112.625 5.3857 −156.643 −345.023
L1 553.0 −140.032 −258.246 −333.515 −387.679 −322.303
L2 553.0 −296.528 −226.159 −117.576 53.0662 310.864
L3 553.0 386.966 426.462 452.892 447.854 367.449
P1 248.6 891.221 915.511 911.834 842.517 647.715
P2 115.2 −548.666 −442.296 −356.817 −247.353 −110.528
P3 185.9 −426.476 −490.581 −649.557 −819.796 −966.274
P4 168.9 −985.828 −967.609 −1068.51 −1150.05 −1157.72
P5 216.8 −342.551 −184.267 −50.9846 87.5257 192.708
P6 459.4 347.911 409.129 452.483 462.886 391.759
Table 3. Dynamic free-plasma-boundary problem: Computed
optimal voltages.

as indicated in Table 3. We use 65 points to prescribe the desired boundary in
each time step and deploy the SQP method to determine the optimal solution. The
quadratic subproblems within the SQP iterations are solved by the CG method
outlined in Section 3.1.

In this experiment the SQP-iterations are stopped if the relative residuum, the
scaled righthand side in (23), is smaller than 10−7. The stopping criterion for the
conjugate gradient method is a residuum that is smaller than 10−7 or that the
number of iterations exceeds the number of control parameters, i.e. 60. The Table
2 summarizes the convergence. The computed optimal voltages are shown in Table
3, the corresponding evolution of the plasma is depicted in Figure 4. We see a
perfect agreement with the desired evolution of the boundary.

Finally, we would like to show first results for a so-called ramp-up scenario, where
the plasma evolves from a small circular to a large elongated plasma. We simulate
60s. The computed coil voltages are depicted in Figure 5. Then, if we use those
as data to solve the direct problem we observe that the plasma boundary follows
indeed the prescribed trajectory (see Figure 6).

5. Conclusions and Perspectives

The models that describe the evolution of plasma in tokamak devices are highly
non-linear. Already a direct simulation, meaning a simulation that shows only
how the plasma will evolve for certain given control inputs is a demanding task.
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Figure 4. Dynamic free-plasma-boundary problem: the plasma
boundary (magenta) follows the prescribed boundary (white
points).

Figure 5. Instationary Equilibrium: The optimal voltages.

Elongated plasmas are known to suffer from serious physical instabilities [23, Section
6.15], and therefore also numerical methods will be very likely to be unstable.

On the other hand, the real pivotal question for the control of plasma is the
task to find those control parameters that ensure that the plasma evolves through
certain prescribed states. From the engineering point of view it would be beneficial
to provide the majority of control as feed-forward control that can be determined a
priori, and to minimize the amount of feed-back control that needs to be calculated
during the operation. Until today, the calculation of the feed-forward control is
mainly tackled by linear ODE models that have the flavor of electrical circuits.
These ODE models determine the coil voltages that correspond to the coil currents
of precomputed static equilibria. Particular feed-back controller are then necessary
to ensure that the currents in the system are indeed close to the precomputed ones.
The utility of this approach is underlined by the fact that control engineers have
today the knowledge to operate the present tokamaks.

Nevertheless we believe that the computation of feed-forward control can be done
much more accurately. In this work we formulated an optimal control problem, that
uses the force balance (1) and Maxwell’s equations (2) as constraints, to compute
directly the optimal feed-forward control. This approach is much more consistent,
since we use the full nonlinear PDE model. Then, in the solution of this optimiza-
tion problem, it is Newton’s method that determines consistently the linearization,
that provide the linear approximation of the non-linear model.
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Figure 6. Optimal control for a ramp-up scenario: the plasma
boundary (green) follows the prescribed boundary (black points),
snapshots at t = 0, 2, 6, 10, 20, 30, 40, 45, 50, 54, 58, 60s.
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We presented here the two basic ingredients, the finite element method and se-
quential quadratic programming, to set up such an optimal control approach for
plasma evolution in tokamaks. The finite element method allows for an easy treat-
ment of free plasma boundary and the decaying conditions at infinity. Further, we
can, almost automatically, compute linearizations and the adjoint operators that
are required for the optimization with sequential quadratic programming. In the
future we will have to augment the non-linear model (3)-(6) with further equations,
namely the resitive diffusion and transport equations, that provide a more com-
plete description. Our preliminary simulations provide a fairly promising proof of
concepts.
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