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The stress-induced yielding scenario of colloidal gels is investigated under rough boundary condi-
tions by means of rheometry coupled to local velocity measurements. Under an applied shear stress
σ, the fluidization of gels made of attractive carbon black particles dispersed in a mineral oil is shown
to involve a previously unreported shear rate response γ̇(t) characterized by two well-defined and
separated timescales τc and τf . First γ̇ decreases as a weak power law strongly reminiscent of the
primary creep observed in numerous crystalline and amorphous solids, coined the “Andrade creep.”
We show that the bulk deformation remains homogeneous at the micron scale, which demonstrates
that if plastic events take place or if any shear transformation zone exists, such phenomena occur
at a smaller scale. As a key result of this paper, the duration τc of this creep regime decreases as
a power law of the viscous stress, defined as the difference between the applied stress and the yield
stress σc, i.e. τc ∼ (σ − σc)

−β, with β = 2–3 depending on the gel concentration. The end of this
first regime is marked by a jump of the shear rate by several orders of magnitude, while the gel
slowly slides as a solid block experiencing strong wall slip at both walls, despite rough boundary
conditions. Finally, a second sudden increase of the shear rate is concomitant to the full fluidization
of the material which ends up being homogeneously sheared. The corresponding fluidization time
τf robustly follows an exponential decay with the applied shear stress, i.e. τf = τ0 exp(−σ/σ0), as
already reported for smooth boundary conditions. Varying the gel concentration C in a systematic
fashion shows that the parameter σ0 and the yield stress σc exhibit similar power-law dependences
with C. Finally, we highlight a few features that are common to attractive colloidal gels and to
solid materials by discussing our results in the framework of theoretical approaches of solid rupture
(kinetic, fiber bundle, and transient network models).

PACS numbers:

I. INTRODUCTION

Yield stress fluids are ubiquitous in our everyday life
and encompass a wide range of systems. From dry gran-
ular media [1, 2], slurries [3], and foams [4, 5] to (amor-
phous or crystallised) hard colloidal assemblies [6, 7] and
concentrated suspensions of soft colloidal particles such
as emulsions, microgels [8], etc. Despite a huge diversity
of compositions and microstructures, the mechanical be-
havior of these materials is dominated by a critical shear
stress σc, traditionally named the yield stress [9]. Be-
low σc, these materials all display a solid-like mechanical
behavior which can be reversible as for a standard elas-
tic solid, but most of the time involves aging phenomena
[10–12] and/or slow relaxation processes [13, 14] depend-
ing on the particle elasticity, the packing fraction, and
the nature of the interparticle interactions. For stresses
above σc, the microstructure is fully reorganized and the
yield stress fluid subsequently flows like a liquid while
the shear rate reaches a steady-state value. Despite this
apparently simple distinction between flowing and non-
flowing states, the yielding transition still raises many
open questions such as the influence of confinement [15],
of boundary conditions [16], or of previous flow history
[17].
Among the above listed materials, colloids are a versa-

tile model system which individual elastic properties and
inter-particle interactions can be finely tuned [8, 18]. For

packing fractions above φg ≃ 0.58 colloidal hard spheres,
characterized by repulsive interactions, display solid-like
features at rest and behave as yield stress materials [19].
However, in the presence of attractive interactions, par-
ticles tend to stick to each other and an attractive col-
loidal dispersion behaves as a yield stress material from
dense packing fractions (colloidal glasses) down to ex-
tremely low packing fractions (colloidal gels). The yield-
ing scenario of colloidal assemblies for both repulsive and
attractive interactions has been studied at length over
the past fifteen years through different rheological ap-
proaches. First, yielding has been meticulously explored
under imposed shear rate for hard spheres [20–25] and
dense assemblies of soft spheres [26–28], as well as for
attractive glasses [29, 30] and gels [30–33]. For dense
repulsive systems and low density gels, the yielding is a
single step process involving a stress overshoot which am-
plitude increases for increasing shear rates [25, 27, 30, 32].
Based on confocal microscopy experiments and molecu-
lar dynamics simulations, it was recently shown that in-
dividual colloids in hard-sphere-like systems experience
transient superdiffusive motions as they are being pushed
out of their cage by shear [22–24]. On the other hand
sufficiently dense attractive systems exhibit a two-step
yielding dynamics that involve two different character-
istic strains which have been interpreted respectively as
intercluster bond breaking followed by the breaking of
clusters into smaller constituents [30].
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This major difference in the yielding of attractive
and repulsive non-ergodic systems has been confirmed
through strain [21, 28, 34–38] or stress [39] controlled
Large Amplitude Oscillatory Shear (LAOS) (see Ref. [40]
for a recent enlightening review). Starting from low oscil-
lation amplitudes, the elastic component G′ and the vis-
cous component G′′ of the shear modulus remain fairly
constant with G′ ≫ G′′ for any solidlike colloidal as-
sembly over the usual range of accessible frequencies
(f = 10−3–10 Hz). In the case of dense hard sphere-
like systems, upon increasing the strain amplitude, G′ is
observed to decrease monotonically as a power law and
intersects G′′, which exhibits a bell-shaped curve, defin-
ing a single yield strain associated to sample fluidiza-
tion [21]. In the case of attractive colloidal glasses, G′

departs sooner from the linear regime and does not de-
crease monotonically but exhibits a second shoulder at a
higher strains, which defines a second yield strain where
the local topology of a particle, bounded to its nearest
neighbours, is supposedly destroyed [21]. Thus, LAOS
experiments also support the picture of a single vs a two-
step yielding scenario in repulsive and attractive colloidal
glasses respectively. Oscillatory experiments performed
at constant strain-rate rather than constant frequency,
and coined Strain Rate Frequency Superposition, nicely
supplement LAOS experiments since they have allowed
to probe the universality of the structural relaxation in
dense colloidal assemblies and to put forward a shear-
rate dependent timescale associated to the sample yield-
ing [37, 41].

Finally, the yielding scenario has been studied through
step-stress experiments starting from rest. Previous work
on colloids include a vast series of papers on hard sphere
glasses [42–44], soft sphere glasses [27, 45–47], attrac-
tive glasses [48] and colloidal gels [31, 45, 49–52]. For
stresses applied below the yield stress the material expe-
riences a creep flow and eventually stops flowing, while
the shear rate decreases as a weak power law of time
[27, 44, 45, 47]. Above the yield stress, the material first
displays a creep regime during which the shear rate may
either be constant or decrease as a weak power law, fol-
lowed by a brutal fluidization associated to an increase of
the shear rate by several orders of magnitude before the
shear rate reaches steady state [27, 44–46, 50]. The dura-
tion of the creep regime prior to abrupt yielding has been
reported to decrease for increasing applied shear stress
[27, 46, 50, 51]. For applied stresses close to the yield
stress, the creep regime may become extremely long (up
to several hours) which is often referred to as “delayed
yielding” or “time-dependent yielding” in the literature
[31, 52]. Now, contrary to what has been discussed above
for shear startup and LAOS experiments, the yielding
scenario under applied stress appears to be surprisingly
similar for both attractive and repulsive colloidal assem-
blies. For both types of materials, the yielding appears
to be a single-step process well characterized by a single
timescale (which decreases for increasing applied shear
stress) and a shear rate that exhibits a temporal evolu-

tion with a characteristic “S” shape.

To summarize this overview of the current state of
knowledge, it is now well established based on the various
protocols listed above that a yield stress departs a solid
state from a liquid one and that yielding involves com-
plex system-dependent dynamical processes that reflect
in the behaviour of rheological observables such as the
shear stress σ, the shear rate γ̇, or viscoelastic moduli
G′ and G′′. However, in spite of a few experimental and
numerical approaches at the scale of individual colloids
already mentioned above [22–24], the question remains
whether the various timescales or characteristic strains
involved in yielding have a mesoscopic signature on the
local strain field, e.g. through collective behaviour, frac-
ture planes, or shear localization. In the past few years
the transient regime leading from rest to flow has been
shown to involve either heterogeneous [27, 53, 54] or ho-
mogeneous [55] flows, themselves leading to either het-
erogeneous or homogeneous flows in steady state [56, 57].
While several mechanisms have been proposed and tested
to account for steady-state flow heterogeneities, including
competition between aging and shear rejuvenation [58]
or flow-concentration coupling [55], the reason why soft
glassy materials shall exhibit homogeneous rather than
heterogeneous velocity profiles during transient flows re-
mains a burning issue [59]. In particular the role of the
interparticle interactions [60] and the subtle interplay be-
tween the flow and the boundary conditions [16, 61–64]
remain to be fully assessed.

The aim of the present paper is to investigate thor-
oughly the yielding dynamics of attractive colloidal gels
made of carbon black particles under steady shear stress.
The stress-induced yielding of such attractive gels has
already been studied but only under smooth boundary
conditions [50, 51] or with no access to the local flu-
idization scenario [49]. Here we demonstrate through
rheological measurements coupled to time-resolved ve-
locimetry that stress-induced yielding of this attractive
colloidal assembly involves a two-timescale process in the
presence of rough boundary conditions. After an initial
creep regime, the gel first fails at the moving wall with
a timescale τc that depends on the applied shear stress
and decreases as a power law of the viscous stress, defined
as the difference between the stress and the yield stress,
i.e. τc ∼ (σ − σc)

−β , with β = 2–3 depending on the
gel concentration. Second, the attractive gel slowly turns
from a sliding solid block into a fully liquid state through
a fluidization process that involves strongly heteroge-
neous flows and characterized by another timescale τf
that decays exponentially with the applied shear stress,
i.e. τf = τ0 exp(−σ/σ0). These two timescales τc and τf
are measured for various gel concentrations C. We show
that the characteristic stresses σc and σ0 depend on C as
power laws with exponents comparable to those found for
standard rheological quantities. This two-step yielding
scenario under rough boundary conditions is significantly
different from that observed in smooth geometries where
only one timescale τf is reported and from that observed
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for dense repulsive microgels [27]. Finally our results are
discussed in light of the experiments mentioned in the
introduction and of models for solid rupture.

II. MATERIALS AND METHODS

A. Experimental setup

Our experimental setup for performing simultaneous
rheological and local velocity measurements has been
described at length in Ref. [65]. It consists in cou-
pling a standard stress-controlled rheometer (Anton Paar
MCR301 in the present work) to an ultrasonic velocime-
try technique that allows one to monitor the azimuthal
velocity profile within the 1-mm gap of a Taylor-Couette
cell with a spatial resolution of about 40 µm. Ultrasonic
velocimetry relies on the cross-correlation of successive
pressure signals backscattered by the sample. Acoustic
contrast arises either naturally from the material mi-
crostructure or artificially through seeding with small
contrast agents such as glass or polystyrene microspheres.
The reader is referred to Ref. [65] for full details on ul-
trasonic data analysis.
In the following, we shall note respectively σ and γ̇

the shear stress and shear rate imposed or recorded by
the rheometer. It is important to keep in mind that these
are “engineering” or “global” quantities, in the sense that
they result from torque and velocity measurements on the
inner rotating cylinder. In particular, in the presence of
wall slip, γ̇ only represents an apparent shear rate which
may strongly differ from the actual shear rate in the bulk
material. [66]
In our previous work on carbon black gels, only

“smooth” boundary conditions were used [50]. Here, in
order to focus on the effect of boundary conditions on
yielding, we shall rather use sand-blasted Plexiglas for
both the fixed outer cylinder and the inner rotating bob
of our Taylor-Couette device. Sand-blasting induces a
typical surface roughness of 1 µm which is large enough
to scatter ultrasound significantly. In order to avoid ar-
tifacts due to ultrasonic waves scattered off the rough
stator, a specific procedure has been implemented as de-
tailed in the supplementary material (see Supplemental
Fig. 1).

B. Rheological characteristics of the samples

Carbon black (CB) refers to colloidal soot particles
produced from the incomplete combustion of fossil fuels.
Made of permanently fused “primary” particles of diam-
eter 20–40 nm [67], these fractal soot particles, of typi-
cal size 0.2–0.5 µm, tend to form reversible and weakly
linked agglomerates when dispersed in a liquid hydrocar-
bon [68]. Indeed CB particles interact through a short-
range attractive potential, whose depth is estimated at
about 30 kBT [69]. Small volume fractions are sufficient
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Figure 1: Viscoelastic moduli G′ (filled symbols) and G′′

(open symbols) of carbon black gels at C = 4 (⊲), 6 (◦), 8
(�), and 10% w/w (△) in a rough Couette geometry. (a) Fre-
quency sweeps at a fixed stress amplitude σ = 2 Pa. The wait-
ing time per point is 6 oscillation periods. (b) Stress sweeps
at a fixed frequency f = 1 Hz with a waiting time of 5 s per
point.
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Figure 2: Flow curves σ vs γ̇ of carbon black gels at C = 4, 6,
8, and 10% w/w from bottom to top, in a rough Couette ge-
ometry. The shear rate is swept down from γ̇ = 103 s−1 with
a logarithmic spacing of 15 points per decade and a waiting
time of 1 s per point. Solid lines are fits using a Herschel-
Bulkley law, σ = σy2 + Aγ̇n, for γ̇ > 1 s−1. For C = 10%
w/w, shear rates smaller than 0.1 s−1 could not be reached
with such a short waiting time per point. Inset: viscosity ηp
measured at the highest shear rate γ̇p = 103 s−1 as a function
of the gel concentration C. The red line is the best power-law
fit which yields an exponent of 2.1.

to turn the dispersion into an interconnected network,
hence into a colloidal gel [70, 71]. Such dispersions are
involved in a wide variety of industrial applications in-
cluding paints, coatings, rubbers and tires [72]. On a
more fundamental side, CB colloidal gels, which proper-
ties may be tuned by the addition of dispersant [70, 73],
are model systems for studying both the yielding transi-
tion [50, 51] and the subsequent shear-induced structura-
tion in confined geometries [74, 75], since they are neither
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subject to shear degradation nor to evaporation and thus
allow long lasting and reproducible measurements.

Here, CB gels are prepared in the absence of any dis-
persant by mixing CB particles (Cabot Vulcan XC72R
of density 1.8) in a light mineral oil (from Sigma, den-
sity 0.838, viscosity 20 mPa.s) as described in Ref. [50]
at weight concentrations C ranging from 4 to 10% w/w,
which roughly correspond to effective volume fractions
from 0.1 to 0.3 [69]. Furthermore, in order to ensure ul-
trasonic scattering, the gels are seeded with 1% w/w hol-
low glass microspheres of mean diameter 6mm (Sphericel,
Potters) and density 1.1 kg.m−3.

All the experiments reported in the present paper are
performed at a temperature of 25◦C which is held fixed
up to ±0.1◦C thanks to a water circulation around the
Couette cell that also ensures the acoustic coupling be-
tween the ultrasonic probe and the cell. CB dispersions
are systematically presheared at a high shear rate (typi-
cally γ̇p = 103 s−1 for 20 s). As discussed by Osuji et al.
[76, 77], such preshearing allows the sample to reach a
shear-thickened state due to the breakup of locally dense
clusters into sparser structures, which enhances viscous
dissipation. For concentrations larger than 4% w/w,
shear-thickening always sets in below 1000 s−1 so that our
preshearing rate γ̇p is into the shear-thickening regime
for all concentrations [76, 78]. Upon flow cessation, very
fast gelation of the system is observed over less than 1 s
leading to a solidlike behaviour.

The rheological features of the resulting gels are cap-
tured in Figs. 1 and 2. Figure 1 shows oscillatory shear
tests performed on the various gels involved in the present
study. In the linear regime the evolutions of the vis-
coelastic moduli G′ and G′′ with frequency [Fig. 1(a)]
are characteristic of soft solids with a storage modulus G′

that remains essentially constant and much larger than
the loss modulus G′′, which shows a small increase at
high frequency [78]. Stress sweeps at a given frequency
[Fig. 1(b)] allow one to get an estimate for the yield
stress σy1 by looking at the stress amplitude at which
G′ = G′′. Table I and Figure 3 summarize the charac-
teristic rheological features of our samples as a function
of their weight concentration C. The various rheological
parameters are seen to increase with C as power laws of
exponents ranging from 3 to 4. In particular the elastic
modulus G′ ∼ Cα yields an exponent of 4.0 in line with
previous measurements on shear-thickened CB gels pre-

Table I: Rheological parameters of carbon black gels at dif-
ferent weight concentrations C (see text for definitions). The
last line gives the values of the exponents extracted from the
power-law fits shown in Fig. 3.

C G′ (Pa) G′′ (Pa) σy1 (Pa) σy2 (Pa) n ηp (Pa.s)
4% 310 30 4.8 5.6 0.60 0.067
6% 1500 110 15.3 22.5 0.49 0.137
8% 4900 380 32.5 62 0.43 0.230
10% 1.2·104 820 80 146 0.45 0.468
exp. 4.0 3.7 3.0 3.5 n/a 2.1

pared in similar low polarizable solvents such as tetrade-
cane [76] (α = 3.5) or base stock oil [70] (α = 4.1). Also
note that increasing the solvent molecular mass or in-
creasing its polarizability decreases the degree of floccu-
lation [68] and leads to weaker structures [79] which ex-
plains the smaller values of the exponents [80] also found
in the literature, e.g. α = 2.6 for CB dispersed in sil-
icone oil [78]. Interestingly, the exponent 4.0 that we
report here is also consistent with earlier data on gels of
(i) silica particles coated with octadecyl chains and dis-
persed in hexadecane [81] (3.2 ≤ α ≤ 7), or decalin [82]
(4.4 ≤ α ≤ 5.6), (ii) glycerol tristearate aggregates in
olive oil [83] (α = 4.1), (iii) bohemite alumina powders
dispersed in water [84] (α = 4.1), and (iv) aggregated
polystyrene latex dispersions [85, 86] (α = 4.6 ± 0.3).
These exponents have been linked to a gelation mech-
anism based on the aggregation of fractal clusters [85]
and a scaling approach has shown that well above the
gelation threshold, the elastic properties are dominated
by the fractal nature of the flocs that form the building
blocks of the system [84]. In particular, since the yield
strain defined as γc = σy1

/G′ decreases for increasing
carbon black gel concentrations (see Table 1), we can ex-
pect from Ref. [84] that the gels studied in this paper
are made of large and weak flocs, and that their yielding
process will be dominated by bond breaking within each
floc.
The observed scaling of the elastic modulus with con-

centration can be further interpreted in terms of the re-

lationship G′ ∼ Cσ
df/(3−df )
p derived in Ref. [76] where

σp is the preshear stress at which the gel is prepared
and df the cluster fractal dimension. This relationship
results from the scaling of the size Rc of fractal clus-

ters with σp, Rc ∼ σ
1/(df−3)
p , and from G′ ∼ CU/R

df
c ,

where U is the interaction energy between two colloids.
In our case, CB gels are prepared at a given preshear rate
γ̇p = 103 s−1 whatever the concentration C. Introduc-
ing the viscosity in the presheared state ηp = σp/γ̇p and

using G′ ∼ Cα, one expects ηp ∼ C(α−1)(3−df )/df . As
shown in the inset of Fig. 2, ηp indeed follows a power-
law with an exponent α′ = 2.1 (see also Table I). As-
suming that α′ = (α− 1)(3− df )/df and using α = 4.0,
one gets df = 1.8 ± 0.1 in full agreement with thermo-
porometry that reports df = 1.81–1.85±0.05 for the same
CB particles dispersed in water and undecane [87]. This
consistency provides a nice confirmation of the scaling of
the viscoelastic modulus with C and σp already found in
Ref. [76].
Flow curves σ vs γ̇ measured by rapidly sweeping down

the shear rate from γ̇ = 103 s−1 are shown for concentra-
tions C = 4, 6, 8, and 10% w/w in Fig. 2. For shear rates
larger than 1 s−1, the data are reasonably well fitted by
Herschel-Bulkley behaviours, σ = σy2 + Aγ̇n. This pro-
vides estimates for the yield stress σy2 that are compared
to σy1 in Table I and in Fig. 3. The exponent n, which
ranges from 0.3 to 0.6, is typical of values reported in
the literature for a wide variety of yield stress fluids such
as concentrated emulsions [88], foams [4, 5, 89, 90], and
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Figure 3: Rheological parameters gathered in Table I and
plotted against the concentration C. Storage modulus G′ (�)
and loss modulus G′′ (N) measured at f = 1 Hz and σ = 2 Pa.
Yield stress σy1 inferred from the crossing between G′ and G′′

in an oscillatory stress sweep at f = 1 Hz (•). Yield stress σy2

(�) inferred from the Herschel-Bulkley fits of the flow curves
shown in Fig. 2. Red lines are the best power-law fits whose
exponents are given in the last line of Table I.

microgels [91–94]. It shows a decrease with increasing
concentrations, i.e. shear-thinning is more pronounced
when C increases. At small shear rates γ̇ . 1 s−1, the
deviations from Herschel-Bulkley behaviour would tra-
ditionally be attributed to paramount wall slip effects
[27, 95]. Wall slip is indeed present in our experiments,
even though a roughened cell is used, as will be confirmed
below in Sect. III A. However, the shape of the flow curves
of Fig. 3 at low shear rates may also be interpreted as
the consequence of time-dependent effects. Indeed CB
gels have recently been described as rheopectic systems
with a yield stress that depends on previous shear history
[17]. For instance the yield stress of a 6% w/w CB gel
could be made arbitrarily small by applying a succession
of steps of decreasing shear stresses. Another signature of
such time-dependence is the presence of hysteresis loops
in up-down flow curves [96].
Therefore, one has to keep in mind that all the rheo-

logical features in the present section are strongly time-
and protocol-dependent. Note that this remark may be
quite general not only in the case of attractive gels but
also in the case of glasses, which is usually poorly empha-
sized in the literature. Here, in particular, the estimates
of σy1 and σy2 depend on the sweep rate used in both
oscillatory tests and flow curve determination. Thus, it
is not clear whether the shoulders seen in Fig. 1(b) for
both G′ and G′′ above σy1 at C = 4 and 6% w/w corre-
spond to the two-step yielding of Ref. [30] or not. As
shown in Refs. [17, 76], both viscoelastic moduli and
the yield stress also depend on the stress level during
preshear. In other words, the preshear stress determines
the gel microstructure and its subsequent mechanical re-
sponse. Consequently the values reported in Table I are
only relative to the specific protocol used in the present

work. This sensitivity on protocol and on previous his-
tory also justifies the time-resolved local measurements
detailed below that aim at better understanding the slow
dynamics involved in yielding.
Finally, we checked that hollow glass microspheres do

not have any significant impact on the rheology of our
carbon black gels, except for a slight stiffening, as shown
in Supplemental Fig. 2 for C = 6% w/w and as already
observed in carbopol microgels [97].

C. Investigation of creep and yielding

In order to investigate creep and yielding in our CB
samples, we turn to the specific protocol already used
in Ref. [50] that allows for reproducible measurements.
Prior to each experiment, the CB gel is presheared at
+103 s−1 for 20 s and at -103 s−1 for 20 s in order to
erase any previous shear history. In particular, such a
high shear rate allows us to exclude structuration effects
such as those reported in Ref. [75] in smaller gaps. Then
small-amplitude oscillatory shear measurements are per-
formed for 300 s at a frequency of 1 Hz and a stress am-
plitude of 2 Pa, low enough to be into the linear regime
for all samples [see Fig. 1(b)] and long enough for the gel
to form a homogeneous space-spanning network that has
reached a steady state [50]. Finally, a constant stress σ
is applied in the “positive” direction, i.e. in the direction
opposite to the last preshear step, and the resulting shear
rate response γ̇(t) is recorded by the rheometer simulta-
neously to the velocity.
Note that this response depends on the preshear pro-

tocol, and in particular on the preshearing direction, as
shown in Supplemental Fig. 3. Indeed, as recalled above
in Sect. II B, carbon black gels were shown to be sensitive
to a preshear stress σp through a power-law dependence
of the elastic modulus G′ ∼ σ1.5−2

p and through the pres-
ence of internal stresses that slowly relax over time [76].
Such a complex behaviour may also be interpreted in
terms of rheopexy in light of recent results by Ovarlez et
al. [17]. A full investigation of the effect of preshear on
yielding is out of the scope of the present article. Still
time-dependence and memory effects definitely explain
why no consistency can be easily found between the fast
sweeps used in the previous section and the long-lasting
creep experiments detailed below.

III. EXPERIMENTAL RESULTS

A. Yielding scenario under rough boundary
conditions

Figure 7 shows the shear rate responses γ̇(t) for differ-
ent shear stresses applied at time t = 0 on an 8% w/w
CB gel. Whatever the applied stress σ, three regimes are
observed. (i) The shear rate first decreases as a power
law γ̇(t) ∼ t−0.8 for a duration that strongly decreases



6

Figure 4: Creep experiments in an 8% w/w CB gel under rough boundary conditions. Shear rate responses γ̇(t) for different
shear stresses σ applied at time t = 0: from right to left, σ = 24, 27, 35, 38, 41, 45, 47, 50, 52, 55, 60, 70, and 80 Pa.

as σ is increased. This power-law decrease is reminis-
cent of Andrade creep, also referred to as primary creep,
in solids [98]. (ii) Then γ̇(t) progressively departs from
power-law creep (secondary creep regime) and suddenly
jumps by several orders of magnitude (tertiary creep
regime) to reach a quasi-constant value γ̇⋆ ≃ 0.3–1 s−1.
(iii) Finally γ̇(t) undergoes another sharp increase be-
fore it reaches a steady-state value. As demonstrated in
Fig. 5, the same two-step fluidization process is observed
under rough boundary conditions whatever the gel con-
centration C.

Furthermore, simultaneous velocity measurements al-
low us to better understand such a temporal evolution.
This is illustrated in the case of a 10% w/w CB gel in

Figure 5: Shear rate responses γ̇(t) for different CB gels under
rough boundary conditions: C = 6% w/w and σ = 13 Pa (N),
C = 8% w/w and σ = 45 Pa (�), and C = 10% w/w and
σ = 90 Pa (•). The imposed shear stresses were chosen so as
to yield roughly the same failure times.

Fig. 6, where γ̇(t) is plotted in semi-logarithmic scales.
The following sequence of velocity profiles is found. Dur-
ing the initial creep regime, noted (i) in Fig. 6(a), veloc-
ities are too small to be correctly measured with ultra-
sonic velocimetry. Therefore, we cannot yet conclude on
the strain field during the Andrade-like power-law creep
before the first jump in γ̇(t) from this experiment. More
insights on the creep regime will be given below in the dis-
cussion of Sect. IVA. After the transition to the plateau
at γ̇⋆ ≃ 1 s−1, however, velocity profiles clearly reveal
the occurrence of total wall slip at both boundaries in
spite of the presence of roughness [Fig. 6(b)].

Toward the end of the plateau in γ̇(t) [i.e. end of regime
(ii) in Fig. 6(a)], pluglike flow gives way to highly fluc-
tuating velocity profiles that oscillate between pluglike
and heterogeneous profiles characterized by the coexis-
tence of a highly sheared region and an unsheared band
[Fig. 6(c)]. Such fluctuations are most likely due to het-
erogeneity in the azimuthal direction: the gel is partially
broken down into fluidlike and solidlike pieces, which
leads to shear-banded profiles that alternate with pluglike
profiles. Just before the second inflection point in γ̇(t),
stable shear-banded velocity profiles are recorded over a
rather short time window [Fig. 6(d)]. Finally, at the sec-
ond inflection point in γ̇(t), shear banding evolves into
homogeneous flow with no significant wall slip [Fig. 6(e)],
which constitutes the steady-state regime noted (iii) in
Fig. 6(a). The same sequence of velocity profiles is found
in regimes (ii) and (iii) under rough boundary conditions
for all gel concentrations C.
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Figure 6: Creep experiment in a 10% w/w CB gel at σ = 55 Pa under rough boundary conditions. (a) Shear rate response
γ̇(t). The vertical dashed lines indicate the limits of the three regimes discussed in the text, i.e. the end of the initial creep at
τc = 11630 s and the end of the fluidization regime at τf = 17440 s. The coloured symbols show the times at which the velocity
profiles in (b)–(e) are recorded. Shown in the right panel are individual velocity profiles v(r, t0), where r is the distance to the
rotor, normalized by the current rotor velocity v0(t0) at (b) t0 = 12278, 12630, and 12780 s, (c) t0 = 15258, 15358, and 15401 s,
(d) t0 = 16642, 16773, and 16882 s, and (e) t0 = 17696, 20204, and 24919 s.

B. Characteristic timescales under rough boundary
conditions

1. Creep duration and fluidization time.

Based on the above results, we may extract two charac-
teristic times for creep and yielding of CB gels: the time
τc that corresponds to the end of the creep regime and
to the occurrence of total wall slip and the time τf which
corresponds to full fluidization. τf can be estimated ei-
ther from velocity measurements as the time after which
velocity profiles remain all linear, or from the last in-
flection point in γ̇(t). More precisely, we define τf as
the inflection time in a linear representation of the shear
rate data, i.e. d2γ̇/dt2(τf ) = 0. We checked that an esti-
mation of τf from a semilogarithmic representation, i.e.
d2logγ̇/dt2(τf ) = 0, leads to a systematic yet insignifi-
cant difference that does not affect our results. Due to
the lack of velocity data in the creep regime, τc is only
defined from rheological data as the time at which γ̇(t)
first reaches the plateau at γ̇⋆.

Figure 7 shows the two times τc and τf extracted from
the data of Fig. 7 and from the corresponding velocity
profiles. As expected, both times decrease strongly as the
imposed shear stress is increased. Interestingly, τc is best
fitted by using a power-law τc ∼ (σ−σc)

−β [see Fig. 7(a)].
The characteristic shear stress σc = 21.0 ± 0.1 Pa is
first estimated by minimizing the distance to a power-
law in a least-square procedure explained in more details
in Ref. [27]. The power-law exponent is then found
to be β = 3.2. On the other hand, we could not fit τf
satisfactorily with a similar power law even by using dif-

ferent estimates for σc. Figure 7(b) rather shows that the
time for full fluidization is well modeled by an exponen-
tial behaviour, τf = τ0 exp(−σ/σ0), if one excludes the
data point at the lowest shear stress. This result is fully
consistent with previous works [50–52]. Also note that,
except for the longest failure times [see, e.g., Fig. 6(a)],
τf remains always much larger than τc so that the du-
ration of the fluidization process after the initial creep,
τf − τc ≃ τf , also decreases exponentially with the im-
posed stress. Actually, if τf−τc is considered rather than
τf when the creep duration τc becomes a significant frac-
tion of the full fluidization time τf (say when τc > 0.2τf )
at low shear stress, one recovers an exponential behaviour
all the way down to the lowest shear stresses as shown by
the two white symbols in Fig. 7(b) [see also Fig. 9(a) for
the case of the 10% w/w CB gel at σ = 55 Pa shown in
Fig. 6]. These two different scalings for τc and τf −τc (or
equivalently τf in most cases) will be further discussed
below in Sect. IVB and IVD in light of other experiments
and recent modeling of yielding.

2. Influence of the gel concentration.

The influence of the gel weight fraction C on the creep
duration τc and on the fluidization time τf is summa-
rized in Figs. 8 and 9 respectively. Figure 8(a) con-
firms that whatever the concentration τc behaves as a
power law of a “viscous” stress σ − σc, where the criti-
cal stress σc depends on the concentration C as a power
law σc ∼ C3.7 [see Table II and Fig. 8(b)]. The insets
of Fig. 8(b) show that in spite of the limited range of
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Figure 7: Characteristic timescales for yielding of an 8 % w/w
CB gel under rough boundary conditions as a function of the
imposed shear stress σ. (a) Duration of the creep regime τc
(or equivalently time at which total wall slip is observed) as a
function of the reduced shear stress σ− σc with σc = 21.0 Pa
in logarithmic scales. The blue line shows the best power-
law fit τc ∼ (σ − σc)

−β with β = 3.2 ± 0.1. The red dashed
line is the best exponential fit of τc. (b) Full fluidization
time τf vs σ in semilogarithmic scales. Gray symbols cor-
respond to estimations derived from rheological data while
black symbols are times extracted from velocity measure-
ments. White symbols show τf −τc for the two lowest stresses
(where τc > 0.2τf ). The red line shows the best exponen-
tial fit τf = τ0 exp(−σ/σ0) with τ0 = 2.6 ± 0.1 104 s and
σ0 = 15.0 ± 0.1 Pa when excluding the two leftmost points.
The blue dashed line is the best power-law fit τf ∼ (σ−σc)

−β

of the full data set with σc = 21.0 Pa. No satisfactory power-
law fit of τf can be found when allowing σc to vary.

concentration that only spans half a decade, both affine
and, to a lesser extent, exponential dependences for σc vs
C are unlikely since a systematic curvature of the data
is seen in linear and semilogarithmic coordinates. The
power law σc ∼ C3.7 is fully consistent with that of the
rheological parameters G′, G′′, and σy2 (see Table I and
Fig. 3).
Turning to the fluidization time τf , as already visi-

ble in Fig. 7(b), the estimations of τf from rheological
data (gray symbols) and from velocity measurements at
a given height in the Couette cell (black symbols) are in
very good agreement [see Fig. 9(a)]. This allows us to
reconcile the two independent studies by Gibaud et al.

[50] and Sprakel et al. [51] which were based on these two
different definitions of τf . This also suggests that the flu-
idization process occurs rather homogeneously along the
vertical direction, although this remains to be directly
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Figure 8: (a) Duration of the creep regime τc vs σ for different
CB gels under rough boundary conditions: C = 4 (△), 6 (�),
8 (◦), and 10% w/w (⋄) from left to right. Solid lines show
the best power-law fits τc ∼ (σ−σc)

−β. The exponents β are
given in Table II. (b) Fit parameter σc as a function of the
gel concentration C in logarithmic scales. The red line is the
power law σc ∼ C3.7. Top (bottom resp.) inset: same data
as in the main figure but plotted in linear (semilogarithmic
resp.) scales together with the best linear (exponential resp.)
fit in red solid line.

Table II: Fit parameters vs gel concentration C for τc and
τf , the two timescales involved in yielding of CB gels un-
der rough boundary conditions: τc ∼ (σ − σc)

−β and τf =
τ0 exp(−σ/σ0). The last line shows the exponents extracted
from the power-law fits shown in Figs. 8(b) and 9(b).

C σc (Pa) β τ0 (×104 s) σ0 (Pa)
4% 1.7 2.9 0.61 2.0
6% 9.8 2.4 1.1 6.6
8% 21.0 3.2 2.6 15.0
10% 53.5 2.2 3.8 30.4
exp. 3.7 n/a n/a 2.9

checked using two-dimensional imaging techniques [99].
Moreover, as expected from first intuition, τf strongly
increases with C for a given σ. Equivalently the stress
required to fully fluidize a gel after a given time τf dra-
matically increases with C. Whatever the concentration
an exponential law fits the stress-dependence of τf (or of
τf−τc) very well. The characteristic stress σ0 involved in
this exponential decay is plotted against C in Fig. 9(b).
The evolution of σ0 with C is best modeled by a power
law σ0 ∼ C2.9 in spite of a small range of concentrations
[see also Table II and insets of Fig. 9(b)]. This expo-
nent of 2.9 is close to that found for the concentration-
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Figure 9: (a) Fluidization time τf vs σ for different CB gels
under rough boundary conditions: C = 4 (△), 6 (�), 8 (◦),
and 10% w/w (⋄) from left to right. Gray symbols correspond
to estimations derived from rheological data while black sym-
bols are times extracted from velocity measurements. The red
lines are the best exponential fits τf = τ0 exp(−σ/σ0) when
excluding stresses where τc > 0.2τf (the three corresponding
points are indicated by showing τf − τc in white symbols).
(b) Fit parameter σ0 as a function of the gel concentration C
in logarithmic scales. The red line is the power law σ0 ∼ C2.9.
Top (bottom resp.) inset: same data as in the main figure but
plotted in linear (semilogarithmic resp.) scales together with
the best linear (exponential resp.) fit in red solid line.

dependence of the yield stresses σy1 but significantly
smaller than that of G′, G′′, and σy2 vs C (see Table I
and Fig. 3). A discussion on this power-law dependence
and on the value of the exponent will be provided in
Sect. IVD.

C. Comparison with smooth boundary conditions

Yielding under smooth boundary conditions has been
investigated by Gibaud et al. [50] in the case of a 6% w/w
CB gel. Figure 10 shows a set of creep responses recorded
in an 8% w/w CB gel. Overall the shear rate response
under smooth boundary conditions resembles that un-
der rough boundary conditions. The shear rate first de-
creases in a long creeping flow regime before undergoing
an upturn leading to a fluidized steady state. However
here the sudden jump in γ̇(t) does not lead to such a well-
defined plateau as under rough boundaries but rather to
one (or several) kink(s) and fluctuations in the shear rate
before a final increase up to steady state (see also Sup-

plemental Fig. 4 for a semilogarithmic representation of
γ̇(t)). Therefore three regimes can no longer be clearly
distinguished in γ̇(t) and one may only extract a sin-
gle characteristic time τf for yielding and fluidization,
defined as the last inflection point of γ̇(t). Moreover the
creep regime is not characterized by a well-defined power-
law decay of γ̇(t) as in the case of rough boundaries.
As already reported in Ref. [50] velocity profiles show

an evolution that is quite similar to that reported above
for rough boundary conditions. Still, with smooth walls,
apparent shear rates are larger, which makes velocity
measurements during the initial creep regime possible.
Such measurements show that the sample undergoes to-
tal slippage right from the start-up of shear at t = 0
(see Supplemental Fig. 4 and Fig. 3 in Ref. [50]). Total
wall slip persists until the fluctuations seen in γ̇(t) for
intermediate shear stresses (see, e.g., σ = 50–55 Pa in
Fig. 10). These fluctuations signal the beginning of bulk
fluidization through highly fluctuating shear-banded ve-
locity profiles as shown in Supplemental Fig. 4. In steady
state, a small amount of wall slip remains measurable at
both walls contrary to the case of rough boundaries.
Fluidization times in smooth and rough Couette cells

are compared in Fig. 11(a) in the case of a 6% w/w CB
gel. In both cases, τf follows an exponential behaviour
with the imposed shear stress. However, at low imposed
stresses, τf is seen to be larger for smooth boundaries
while it becomes smaller than in the case of rough walls
at high stresses. In other words, the exponential decay
is stronger in the case of smooth boundary conditions.
This is also observed for other concentrations: the pa-
rameter σ0 remains always smaller for smooth boundary
conditions as shown in Fig. 11(b). Since the 10% w/w
CB gel is seen to slip on smooth walls whatever the im-
posed stress, only three concentrations are reported in
Fig. 11(b). Still the data are again compatible with a
power-law behaviour σ0 ∼ C2.9 with a prefactor that is
about twice as small in the case of smooth walls.

IV. DISCUSSION

A. Andrade-like creep regime

In this paragraph, we discuss the strikingly robust ini-
tial creep regime found with rough boundary conditions
and characterized by a power-law decay of the shear rate
as γ̇ ∼ t−0.8±0.1 or equivalently by an increase of the
strain as γ ∼ t0.2±0.1. Such a power-law creep is reminis-
cent of the Andrade law γ̇ ∼ t−2/3 (or γ ∼ t1/3) found
in solid materials [98] and has been attributed to col-
lective dislocation dynamics [100–102]. Experiments on
heterogeneous fiber materials as well as corresponding
models such as the “fiber bundle model” (FBM) show
a similar creep behaviour prior to rupture [103–106].
Andrade-like creep has also been reported for cellulose
gels [107] and more recently for some amorphous soft
solids such as polycrystalline surfactant hexagonal phases
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Figure 11: (a) Fluidization time τf vs σ for a 6% w/w CB
gel under rough (�) and smooth (▽) boundary conditions.
Gray and red symbols correspond to estimations derived from
rheological data while black symbols are times extracted from
velocity measurements. Red lines are the best exponential fits
τf = τ0 exp(−σ/σ0). (b) Fit parameter σ0 as a function of the
gel concentration C in rough (•) and smooth (▽) boundary
conditions. Red lines are power laws σ0 ∼ C2.9.

[108], carbopol microgels [27], core-shell poly(styrene)-
poly(N-isopropylacrylamide) colloidal particles [44], and
thermo-reversible protein gels [109]. Yet, no clear link
between the physical mechanisms at play in the creep of
ordered and disordered materials is available.

In order to get a deeper insight into the creep regime,
Fig. 12 focuses on an experiment where strains in the
creep regime are large enough to be estimated from ultra-
sonic velocimetry. This results from a difficult compro-
mise between measurable motions (large applied stress)
and long enough creep regime (small applied stress).
The local strain γ(r, t) is computed from the ultrasonic
data and independently of any rheological measurement
by summing up the local displacements computed from
the cross-correlation algorithm described in Ref. [65].
The space-time map of γ(r, t) shown in Fig. 12(a) sug-
gests that the strain increases slowly but mostly homo-
geneously after an initial instantaneous elastic deforma-
tion γ0. Indeed in view of the large uncertainty on γ, it
seems reasonable to attribute the observed fluctuations
of γ with r to increased noise due to smaller local in-
tensity of the ultrasonic signal and/or tiny displacements
rather than to any true spatial heterogeneity of the strain
field. The scenario of a bulk deformation that remains
homogeneous at least on the length scales probed by our
high-frequency ultrasonic setup (typically 1 µm) is fur-
ther supported by Fig. 12(b) which shows that the local
strain is well captured by γ(r, t) = (γ0 +λt0.4) · (1− r/e)
with the same set of parameters γ0 and λ for three dif-
ferent positions within the gap. The exponent 0.4 found
here is slightly larger than expected from global rheol-
ogy but, in this specific case, the creep regime is short
(τc ≃ 10 s) and the exponent of the global shear rate
γ̇(t) vs t actually decreases continuously from -0.8 at very
early times to 0 when the minimum is reached, so that
an exponent of 0.4 is not inconsistent with some average
exponent derived from global rheology [see red line with
slope -0.6 in Fig. 12(c)]. This point clearly deserves more
attention and should be addressed in detail in future work
together with the fact that the scaling behaviour of γ(r, t)
may also be weakly space-dependent as suggested by the
systematic deviations from the power law close to the
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Figure 12: Creep regime for a 6% w/w CB gel at σ = 17 Pa
under rough boundary conditions. (a) Spatiotemporal dia-
gram of the local strain γ(r, t) coded in linear color levels.
Blue corresponds to 0 and red to a strain of 0.1. (b) Lo-
cal strain γ versus time t at various locations within the
gap: r0 = 0.12 (top red symbols), 0.40 (middle green sym-
bols), and 0.69 mm (bottom blue symbols). The solid lines
are γ(r0, t) = (γ0 + λt0.4) · (1 − r0/e) with γ0 = 2.2 % and
λ = 0.066. (c) Global shear rate response γ̇(t) recorded si-
multaneously by the rheometer. The black dotted line and
the red solid line are power laws with exponents -0.8 and -0.6
respectively.

stator [see data in blue in Fig. 12(b)].

Figure 13(a) investigates the initial creep at a slightly
lower shear stress by looking directly at the ultrasonic
speckle signal. It focuses on the region close to the ro-
tor and extends slightly within the rotor (−0.05 < r <
0.28 mm). The sharp shift in the pressure signal at t = 0
corresponds to instantaneous elastic response when shear
is started. It is followed by a much slower deformation
over roughly the first 10 s. During this Andrade-like
creep regime, no obvious heterogeneity is observed in the
bulk. For t & 10 s, the rotor progressively accelerates
while pressure signals remain horizontal in the bulk. In
other words, the material starts to slip at the rotor. For
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Figure 13: Creep regime for a 6% w/w CB gel at σ = 15 Pa
under rough boundary conditions. (a) Spatiotemporal dia-
gram of the pressure signal plotted as a function of the radial
position r from the rotor (vertical axis) and time t (horizon-
tal axis) after shear is started at t = 0. Negative values of r
correspond to locations inside the Plexiglas rotor. (b) Corre-
sponding shear rate response γ̇(t). The dashed lines indicate
the end of the creep regime at τc ≃ 11.5 s which is seen to
correspond to wall slip at the rotor.

t & 12 s, the rotor has achieved a large, steady value as
indicated by the constant slope of the ultrasonic echoes
inside the rotor (for −0.05 < r < 0 mm). Figure 13(b)
confirms that the time τc that signals the end of the creep
regime also corresponds to full wall slip at the rotor.
Therefore both Figs. 12 and 13 show that no bulk

fracture nor any noticeable local rearrangements are ob-
served before the material detaches from the inner wall.
This means that, if present, bulk plasticity during the
Andrade creep regime would involve motions on length
scales that are below the detection threshold of our ul-
trasonic technique (typically 1 µm). Another possibility
is that plastic events are preferentially localized close to
the moving wall. Indeed one may be tempted to inter-
pret the somewhat larger fluctuations of γ(r, t) close to
the rotor [see data in red in Fig. 12(b)] as an indication
for such plasticity localization. Yet, we again emphasize
that the poor signal-to-noise ratio prevents us from draw-
ing any definite conclusion at this stage. In spite of the
good temporal resolution of the present measurements
(0.1 s in the case of the ultrasonic data of Figs. 12 and
13), an apparently homogeneous strain field could also re-
sult from an average over many plastic events occurring
on timescales much shorter than our measurement time.
Note that a similar homogeneous flow was also found dur-
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ing the Andrade-like creep regime evidenced in carbopol
microgels [27] although in this case the flow profile was
averaged over a long duration in the creep regime. We
also recall that in both carbopol and carbon black gels
we actually follow the motion of acoustic tracers and not
that of the material itself. Therefore more direct local
measurements [64] using, e.g. fast confocal microscopy,
are required to conclude on the physical origin of the
creep regime.

B. Duration of the creep regime: insights from
fiber-bundle models (FBMs)

One of the main results of the present work is the
observation of a two-step yielding process under rough
boundary conditions involving two timescales, τc and τf ,
that show very different dependences upon the imposed
shear stress. We first discuss the duration τc of the creep
regime, which is found to scale as τc ∼ (σ − σc)

−β .
Such a power-law behaviour is also found for the “rup-
ture time” in various FBMs that aim at reproducing sys-
tems with a succession of Andrade creep (primary creep),
quasi stationary regime (secondary creep), and acceler-
ation of the strain rate (tertiary creep) prior to rupture
[103, 104, 106, 110]. Depending on the fiber rheology and
on the relaxation mechanisms after fiber breakage, FBM
models predict β = 0.5–1.25 [106, 110] significantly be-
low our experimental observations for τc in CB gels for
which β = 2.2–3.2 (see Table II).
Inspired by these previous works, we investigate in

more detail the shear rate responses for t < τc in two
different CB gels at 8% w/w and 10% w/w in Fig. 14.
Power-law creep, with exponents −0.81 and −0.93 in the
two particular cases shown in Fig. 14(a), is observed from
the earliest stages until t ≃ 0.2τc. From t & 0.2τc,
the shear rate progressively deviates from the initial
power law and eventually reaches a minimum γ̇min at
τmin ≃ 0.4τc. The two shear rate responses nicely col-
lapse when normalized by γ̇min and plotted against t/τc
[Fig. 14(b)]. This clearly indicates that the nature of
the creep regime remains the same for these two differ-
ent concentrations as already inferred from Fig. 5. This
is further confirmed in Fig. 15 where τmin is reported as
a function of τc for all the creep experiments where τmin

was large enough to be measured (typically larger than
1 s), thus involving the four different gel concentrations.
Whatever the CB concentration and the applied stress,
the new timescale τmin is seen to be directly proportional
to τc with a prefactor of 0.4. Finally, during the approach
to the localized failure at the inner wall, the shear rate
increases as a power law of (τc − t) with exponents than
can hardly be distinguished from −1 (namely −0.97 and
−1.0 respectively).
Figure 14 reports results that are strikingly similar to

those of FBM models [103, 106] and to experiments on
fiber composite materials [104, 110]. For instance, the
exact same scaling for the power-law acceleration of the
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Figure 14: Initial creep regimes in two different CB gels al-
ready shown in Figs. 7 and 6. Black symbols correspond
to the 8% w/w gel at σ = 27 Pa with τc = 1216 s and
blue symbols correspond to the 10% w/w gel at σ = 55 Pa
with τc = 11575 s. (a) γ̇ vs t/τc in logarithmic scales
showing the primary (Andrade) creep regime. Solid lines
show the best power-law fits (shifted vertically for clarity)
for 0.01 < t/τc < 0.1 with exponents -0.81 (top) and -0.93
(bottom). (b) γ̇/γ̇min vs t/τc in linear scales, where γ̇min is
an estimate of the minimum value reached by γ̇. The verti-
cal dashed line shows τmin = 0.4τc. (c) γ̇ vs (τc − t)/τc in
logarithmic scales (with reverse horizontal axis) showing the
tertiary creep regime prior to failure at the inner wall. Solid
lines show the best power-law fits (shifted vertically for clar-
ity) for 0.01 < (τc − t)/τc < 0.1 with exponents -0.97 (top)
and -1.0 (bottom).

strain rate prior to rupture, ε̇ ∼ 1/(τc − t), is generally
reported. In particular, Fig. 2 in the recent work by
Jagla [106] also shows the three different stages in the
creep regime with a minimum reached at a time that is
proportional to the final rupture time. Yet the prefactors
reported in Refs. [104, 106, 110], typically 0.5–0.7 are
significantly larger than that reported here.
Finally, we note that two types of FBM models have

been proposed in the literature: models that simply
rely on a local yield strain (or stress) for fiber rupture
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Figure 15: Time τmin at which γ̇(t) reaches a minimum during
the creep regime plotted against the creep duration τc for CB
gels at C = 4 (△), 6 (�), 8 (•), and 10% w/w (�). The red
solid line is τmin = 0.4τc.

[104, 106, 110], which lead to rupture times that decrease
as a power-law of the viscous stress σ − σc, and models
that also include damage accumulation in the form of a
memory term involving the whole loading history of the
fiber [111–113], which lead to a power law of the applied
shear stress (i.e. σc = 0) otherwise known as the Basquin
law. Interestingly, our results are fully consistent with
the first category of FBM models. This supports the mi-
croscopic picture of attractive gels controlled by a local
yield strain between two neighbouring colloidal particles
rather than by a local yield stress. This may also ex-
plain why kinetic models such as the one developed in
Ref. [51, 52] do not apply to the duration of the creep
regime.

C. Total wall slip and lubrication layers after
failure

As shown in Fig. 6, the succession of primary, sec-
ondary, and tertiary creep regimes [noted (i) in Fig. 6(a)]
gives way to a regime of total wall slip before fluidization
occurs at τf [see Fig. 6(b)]. Here, local velocity measure-
ments prove crucial to interpret the shear rate response
under rough boundary conditions, which systematically
shows a plateau at a characteristic apparent shear rate
γ̇⋆ right after failure occurs at τc. Indeed, along this
plateau, the flow profile points to local vanishing shear
rates in the bulk, i.e. the gel undergoes solid-body rota-
tion and the flow is pluglike. Therefore, shear is localized
in lubrication layers which thickness δl is much smaller
than the spatial resolution of our velocity profiles. These
lubrication films are submitted to a local shear rate which
is of the order of γ̇l ≃ γ̇⋆e/δl where e = 1 mm is the gap
of the Couette cell. Assuming that the lubrication lay-
ers remain Newtonian with a viscosity ηl close to that of
the pure suspending mineral oil, one gets δl ≃ ηlγ̇

⋆e/σ.
Quantitatively, the data of Fig. 6 leads to δl ≃ 400 nm,
which is consistent with data reported for surfactant sys-

tems [114] but significantly larger than the thickness of
lubrication films found in microgel pastes [115, 116]. This
estimate is however in good agreement with Ref. [117]
that reports δl ≃ (1 − φ/φm)Dp for various dispersions
of rigid particles, where φ is the volume fraction, φm

the maximum packing fraction, and Dp the particle di-
ameter, since in our case we have φ/φm ≃ 0.1–0.2 and
Dp ≃ 200–500 nm.
As reported in Supplemental Fig. 5, γ̇⋆ increases

roughly linearly with the applied stress σ, which sug-
gests that the size of lubricating layers is independent of
σ (although ηl could also depend on σ in the case where
a stress-dependent amount of CB particles remains in
the lubricating layers after failure at the walls). Supple-
mental Fig. 5 also indicates that γ̇⋆ increases with the
gel concentration C, pointing to thicker films (or to less
viscous films) in more concentrated samples.
Our measurements show that wall slip is inherent

to the yielding mechanism of our attractive gels since
standard procedures to minimize slippage through wall
roughness fail. However, a more detailed and quanti-
tative study of the influence of roughness would be in-
teresting to better understand wall slip in relation with
yielding. In particular, the typical roughness of our sand-
blasted cell (1 µm) lies above the size of the fractal par-
ticles (0.2–0.5 µm) but below that of aggregates in the
system at rest. Therefore our “rough” boundaries may
appear as smooth boundaries for large aggregates but
not for smaller aggregates or for individual soot parti-
cles. This may partly explain why wall slip is transiently
observed under “rough” boundaries and account for the
concentration dependence observed above since the ag-
gregate size is likely to depend on C. Other physico-
chemical factors, such as wetting properties or wall–
particle electrostatic interactions, most probably influ-
ence failure at the wall as well.

D. Fluidization time: activated dynamics?

The second timescale involved in the yielding of carbon
black gels, namely the time τf required for full fluidiza-
tion, was already shown to follow an exponential decay
with the applied shear stress in previous works [50–52].
Such a behaviour, which was also reported in silica and
polystyrene particulate gels [51, 52] as well as thermo-
reversible protein gels [109], hints to activated dynamics
with an energy barrier that decreases linearly with the
applied stress. Note that a similar exponential decay
was found in thermo-reversible silica gels [49] and for the
shear-induced aggregation time in some non-Brownian
suspensions [118]. A mean-field model for delayed yield-
ing was recently proposed in which macroscopic failure
results from a homogeneous degradation due to micro-
scopic strand fractures within the gel [51, 52].
The present experiments shed new light on the valid-

ity and application of such a model. Indeed, the model
proposed by Lindstrom et al. [52] does obviously not
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apply to the creep duration τc which is found to fol-
low a power-law decay rather than an exponential decay.
This is in apparent contradiction with the statement in
Ref. [52] that “the delay time is well estimated by the
time-scale of the initial static fatigue, occurring prior to
the final macroscopic failure, while the duration of crit-
ical crack propagation, which is much more rapid, can
be neglected,” which would imply that the model applies
to the initial creep regime and thus to τc. However, one
should keep in mind that the experiments reported in
Refs. [50–52] were restricted to smooth boundary con-
ditions where slippage is likely to occur at the earliest
stages as shown in Sect. III C above (see also Supplemen-
tal Fig. 4). These experiments show only one timescale
τf that decreases exponentially with the applied stress.
This suggests to apply models based on activated dy-
namics such as that devised by Lindstrom et al. [52]
only for the part of the dynamics where the material has
failed at the inner cylinder (i.e. for t > τc in the pres-
ence of rough walls and for t > 0+ when smooth walls
are used). Indeed, as noted above in Sect. III B 2, under
rough boundary conditions, the duration of the fluidiza-
tion process τf − τc follows a nice exponential decay over
the full range of accessible shear stresses [see Fig.9(a)].
We recall that considering τf − τc rather than simply τf
compensates for the deviations of τf from exponential as
the shear stress approaches the critical stress σc and τc is
no longer negligible when compared to τf . This clearly
indicates a crossover to a regime that is dominated by
the (diverging) timescale for creep τc.

Focusing on the fluidization process, we note that het-
erogeneous flows are observed over a rather narrow time
window close to τf . Therefore, under both smooth and
rough boundary conditions, the gel remains solid and
subject to friction from the lubrication layers at the walls
over most of the fluidization regime. If one applies the
model of Refs. [51, 52] to our case where no previous
flow history is applied to the sample, then one expects the
characteristic stress to be given by σ0 = ρ0kBT/δ where
ρ0 ∼ 1/ξ2 is the initial area density of strands, with ξ the
mesh size (or correlation length) of the network, and δ is
the width of the interaction potential. σ0 appears as the
stress applied on one link and corresponding to an energy
kBT . In other words, σ/σ0 corresponds to the elastic en-
ergy per bond normalized by kBT . For a network of frac-
tal dimension Df , the characteristic length ξ is linked to

the gel concentration C through [119]: ξ ∼ C−1/(3−Df ).
Assuming that δ does not significantly depend on C, one
has σ0 ∼ C2/(3−Df ). Since our gels are prepared through
a strong preshearing step, we may assume that the net-
work fractal dimension is Df ≃ 2.3 as generally observed
for shear-induced flocs [120–122]. Such a fractal dimen-
sion nicely accounts for the scaling σ0 ∼ C2.9 reported in
the present work since 2/(3−Df ) ≃ 2.86.

More generally, beyond attractive gels and yield stress
materials, some viscoelastic fluids such as self-assembled
transient networks [123] also display “delayed” dynamics
under stress. These materials, composed of supramolec-

ular aggregates (e.g. wormlike micelles, surfactant vesi-
cles, emulsion droplets, etc.) linked together by stickers
(most often telechelic polymers), resemble colloidal gels
in that their mesoscopic constituents exhibit attractive
interactions. However, they do not display any solidlike
behavior at rest as the link network is weak and thus
temporary [123]. Interestingly, such materials appear to
be “brittle” [124]: under an imposed shear stress, they
exhibit macroscopic fractures which are reversible and
occur after a delay time that decreases exponentially for
increasing shear stress [125]. A fiber-bundle like model
[126] introducing reversible link rupture has been pro-
posed recently to account for fractures in transient net-
works in a way similar to the model proposed for the acti-
vated yielding of colloidal gels [52]. One can thus wonder
whether there exists some deeper link between the frac-
ture of self-assembled transient networks and the yielding
of colloidal gels, and if so, whether these two phenomena
can be described in a single generic framework.

E. Open questions

1. Link with standard rheological data.

The divergence of the creep duration τc as the criti-
cal shear stress σc is approached allows us to clearly de-
fine σc as the yield stress of the material: whatever the
shear stress applied below σc the gel will not start to flow
whereas it will eventually get fluidized for σ > σc even if
it takes longer and longer as σ gets closer to σc. Quanti-
tatively, the fact that σc lies significantly below the other
two estimates σy1 and σy2 extracted from standard rhe-
ological tests is not surprising for such a time-dependent
material as CB gels (see Tables I and II). Yet, it is in-
teresting to note that σy2 estimated from the flow curve
follows roughly the same power law of the gel concen-
tration (∼ C3.5) as σc (∼ C3.7). Whether or not this
agreement is fortuitous remains an open issue.

2. Interpretation of Andrade creep.

Based on our observations, an appealing interpreta-
tion of the observed Andrade-like creep could be that
bulk deformation is actually fully reversible (i.e. with-
out any plasticity in the bulk) and that the origin of the
power-law creep lies in a two-dimensional process such as
stress-induced demixing of the gel into a diphasic system
at the inner wall. Indeed, in the different context of pres-
sure solution creep, an analogy with spinodal dewetting
has been invoked to explain the Andrade-like creep ob-
served during the indentation of single crystals of sodium
chloride in the presence of saturated brine [127]. Power-
law creep was shown to be correlated to the power-law
growth of fluid inclusions at the interface. Although very
speculative, such a spinodal-like mechanism transposed
to our CB gels would imply the growth of colloid-poor
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(or even pure oil) domains that separate from the bulk
colloid-rich material at the inner boundary. In the case of
rough boundaries, this growth will eventually lead to to-
tal wall slip when the fluid domains extend over the whole
height of the Couette cell, while under smooth bound-
aries the system would slip right from shear start-up.
Such a mechanism could also be involved in the creep of
carbopol microgels where homogeneous deformation and
similar critical-like scaling was reported, although in this
case failure at the inner wall was immediately followed by
a transient shear-banding regime rather than by a total
wall slip regime [27].

3. Characteristic strains and timescales.

Supplemental Fig. 6 shows the data of Fig. 7 replot-
ted as a function of the strain γ. The good collapse of
all curves at the end of the initial creep regime (see also
inset of Supplemental Fig. 6) suggests that failure at the
inner wall at τc can be associated with a characteristic
“yield strain” γc ≃ 0.2–0.3. The strains γf correspond-
ing to full fluidization at τf are spread over a very large
range γf ≃ 200–3000, which can be expected from the
dominance of slip effects in the second and third regimes.
Indeed, it should be kept in mind that the above strains
are those indicated by the rheometer. In the presence of
dominant wall slip (as is the case here between τc and
τf ), these strains dramatically overestimate the actual
strains within the material. Investigating other concen-
trations (data not shown) reveals that γc decreases with
C from about 0.5 for the 4% w/w CB gel to about 0.2
for C = 10% w/w, while γf increases from about 100 up
to several thousands over the same concentration range
and depending on the imposed shear stress.
In terms of timescales, it remains unclear whether the

two times τc and τf revealed in the present work (or the
corresponding strains γc and γf ) are linked to the two-
step yielding observed in attractive glasses [30] and men-
tioned in the introduction. In Ref. [30], the two char-
acteristic yield strains inferred from shear start-up and
LAOS experiments fall into the ranges 0.03–0.3 and 1–
3 respectively. These much smaller orders of magnitude
suggest a priori different origins and interpretations for
the two strains involved in the present experiments and
associated with τc and τf . However, we recall that exper-
iments in Ref. [30] were performed under imposed shear
rate instead of imposed shear stress and were not com-
plemented by local strain field or velocity field measure-
ments. It is also worth mentioning that the interpreta-
tion of the double yielding process proposed in Ref. [30]
has been confirmed only partially by very recent local
measurements on Pickering emulsions [128] and certainly
deserves more experiments coupled to direct visualiza-
tions.
Finally, the link between the present timescales and

those which may be inferred from experiments under con-
trolled shear rate remains to be explored in CB gels. In-

deed, several previous studies, e.g. on concentrated sus-
pensions of glass spheres into a polymer matrix [129],
on laponite suspensions [62], and on carbopol microgels
[53, 94] have reported a power-law decay of fluidization
times with the applied shear rate. In the case of car-
bopol microgels, a clear link could be made between
stress-imposed and strain-imposed fluidization through
the steady-state Herschel-Bulkley rheology [27]. In CB
gels, the strong time-dependence of the material is very
likely to preclude such a simple link.

4. Role of boundary conditions.

One last puzzling point is the fact that yielding un-
der rough boundary conditions involves two successive
regimes with such different scalings as power law and ex-
ponential while the gel is submitted to the same constant
stress field. As discussed above, these distinct behaviours
hint to different physical processes. We also emphasize
that an important difference between the initial creep
and the subsequent fluidization regime lies in the bound-
ary conditions: during Andrade-like creep the gel does
not slip against the walls while it is bounded by viscous
lubrication layers during fluidization. Therefore, the role
of boundary conditions, such as the surface roughness
and the interactions between the wall and the colloidal
gel, raises critical open questions. For instance, when
smooth walls are used, we can no longer define τc prop-
erly and the gel may show slippage well below the yield
stress of the bulk material. Clearly, much more work
is required to fully understand such an effect of bound-
ary conditions. We believe that a major step forward
will be performed through a systematic investigation of
yielding under controlled roughness and chemical prop-
erties of the cell walls based on microscopic experiments
close to the walls. On the theoretical side, recent ap-
proaches based on phenomenological models such as the
Soft Glassy Rheology or fluidity models or based on con-
stitutive equations such as the Rolie-Poly model have
provided promising predictions for yielding timescales
that show power-law dependence and are associated with
shear-banded flows [59]. However, since failure and slip-
page at the walls turn out to be central to the yielding
process of colloidal gels, future theoretical developments
still need to include the presence of bounding walls and
the specific interactions of the material with the surface
in order to account for all the complexity of experimental
situations.

V. CONCLUSION

We have reported an extensive set of experiments cou-
pling rheology and velocimetry during creep and yielding
of attractive colloidal gels. Our results reveal that under
rough boundary conditions yielding proceeds in two suc-
cessive steps. (i) The gel first undergoes a creep regime
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which is fully similar to that reported in some crystalline
solids as well as other soft amorphous solids and charac-
terized by a succession of Andrade creep (primary creep),
quasi stationary regime (secondary creep), and accelera-
tion of the strain rate (tertiary creep) prior to rupture,
here localized at the inner wall of our Couette geometry.
During Andrade creep, the bulk strain field appears to re-
main homogeneous down to the micron-scale. (ii) The gel
then slips totally at both walls and is progressively broken
down into smaller and smaller pieces through a strongly
heterogeneous flow until full fluidization is reached. The
two timescales associated to this yielding scenario follow
very different scalings with the applied stress. While the
creep duration is governed by a critical-like behaviour,
the –generally much larger– fluidization time follows an
exponential decay. These scalings suggest that two differ-
ent physical mechanisms are successively at play in each
step, (i) either local yielding in the bulk above some criti-
cal yield strain as invoked in fiber-bundle models or two-

dimensional stress-induced demixing close to the walls,
followed by (ii) activated bond-breaking dynamics.

Our study constitutes the first complete description of
the so-called “delayed yielding” phenomenon at a meso-
scopic level. Obviously, it should be pursued through
more microscopic investigations especially close to the
bounding walls in order to specify the role of boundary
conditions in the fluidization process. It should also be
extended to other systems, including attractive and re-
pulsive glasses for comparison with previous shear start-
up and LAOS experiments and in order to test for uni-
versality in the yielding behaviour of soft solids.
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M. Ballauf and M. Fuchs, J. Rheol., 2013, 57, 149–175.

[26] V. Carrier and G. Petekidis, J. Rheol., 2009, 53, 245–
273.

[27] T. Divoux, C. Barentin and S. Manneville, Soft Matter,
2011, 7, 8409–8418.

[28] N. Koumakis, A. Pamvouxoglou, A. S. Poulos and
G. Petekidis, Soft Matter, 2012, 8, 4271–4284.

[29] K. N. Pham, G. Petekidis, D. Vlassopoulos, S. U. Egel-
haaf, W. C. K. Poon and P. N. Pusey, J. Rheol., 2008,
52, 649–676.

[30] N. Koumakis and G. Petekidis, Soft Matter, 2011, 7,
2456–2470.

[31] P. Uhlherr, J. Guo, C. Tiu, X.-M. Zhang, J.-Q. Zhou
and T.-N. Fang, J. Non-Newtonian Fluid Mech., 2005,
125, 101–119.

[32] A. Mohraz and M. J. Solomon, J. Rheol., 2005, 49, 657–
681.

[33] P. H. S. Santos, O. H. Campanella and M. A. Carignano,
Soft Matter, 2013, 9, 709–714.
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Supplemental material

I. PROCEDURE FOR REMOVING SPURIOUS
SCATTERING FROM THE CELL WALLS

In the present work, the Plexiglas cylinders used in
our Couette geometry were sand-blasted in order to pro-
vide a roughness of about 1 µm which leads to significant
scattering of the incident ultrasonic pulses. This results
in spurious fixed echoes in the raw ultrasonic data that
get mixed with the echoes backscattered by the moving
particles. Such fixed echoes appear as vertical lines in
the spatiotemporal diagram of Supplemental Figure 1(a)
that shows the successive pressure signals p(tus, t) coded
in gray levels as a function of the ultrasonic time-of-flight
tus (horizontal axis) after a single pulse is sent at time
t (vertical axis). Using the cross-correlation algorithm
described in Ref. [65] on such raw ultrasonic data leads
to a dramatic underestimation of the local velocities at
the location of these fixed echoes.
In order to remove the undesired fixed echoes before

data analysis, we average the ultrasonic signals recorded
during the systematic preshear step at γ̇p = 103 s−1 (see
Sect. 2.3) and subtract this average to each raw pressure
signal recorded subsequently during the actual experi-
ment. The result is shown in Supplemental Figure 1(b).
In the averaging process at large shear rate, all contri-
butions from acoustic scatterers within the sheared fluid
cancel out and one is left with the static spurious signal.
Subtracting this signal to the raw data appears as a very
efficient way to remove the spurious contributions of the
ultrasonic waves scattered off by the surface roughness of
the outer fixed wall.

Figure 2: Spatiotemporal diagrams of the pressure signal
recorded as a function of time tus (horizontal axis) after a
single pulse is sent at time t (vertical axis). (a) Raw data.
(b) Same data after fixed echoes have been removed following
the procedure described in the text. The pressure signal is
coded in linear gray levels.

II. INFLUENCE OF ADDING ACOUSTIC
CONTRAST AGENTS TO CARBON BLACK

GELS

Supplemental Figure 2 compares the linear and nonlin-
ear rheological properties of 6% w/w CB gels with and
without acoustic contrast agents, namely 1% w/w hol-
low glass microspheres of mean diameter 6 µm (Spheri-
cel, Potters) and density 1.1 g.cm3. Addition of acoustic
contrast agents does not significantly affect the mechan-
ical behaviour of CB gels. Quantitatively, we note that
the viscoelastic moduli at rest increase by about 10%
upon addition of microspheres [see Supp. Fig. 2(a,b)].
Such an enhancement of the viscoelastic properties is ex-
pected and has already been observed in, e.g., carbopol
microgels [97]. Accordingly, the flow curve of a CB gel
as well as the yield stress are shifted upwards by about
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Figure 3: Rheological properties of a CB gel at 6% w/w seeded with 1% w/w hollow glass microspheres (black triangles)
compared to those of the same sample free of seeding microspheres (red squares). Viscoelastic moduli G′ (filled symbols) and
G′′ (empty symbols) (a) as a function of frequency f for a stress amplitude of 2 Pa (waiting time of 6 oscillation periods per
point) and (b) as a function of stress amplitude σ at a frequency of 1 Hz (waiting time of 5 s per point). (c) Flow curves σ vs
γ̇ measured by decreasing γ̇ (waiting time of 1 s per point).

10% when adding 1% w/w hollow glass microspheres to
the system [see Supp. Fig. 2(c)].

III. INFLUENCE OF THE PRESHEAR
PROTOCOL ON THE FLUIDIZATION TIME

The fluidization time τf was measured as described in
the main text after preshearing a 6% w/w CB gel either
at +1000 s−1 or at −1000 s−1 for 20 s before viscoelastic
moduli at rest are monitored for 300 s and a given stress
σ is subsequently applied in the positive direction. As
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Figure 4: Fluidization time τf after two different preshear pro-
tocols for a 6% w/w CB gel under rough boundary conditions:
preshear for 20 s at +1000 s−1 (�) and at −1000 s−1 (•). The
shear stress σ is applied in the positive direction once vis-
coelastic moduli have been measured for 300 s after preshear.
Red lines are the best exponential fits τf = τ0 exp(−σ/σ0).

shown in Supplemental Figure 3 this leads to significant
differences in the yielding phenomenon. In both cases, an
exponential behaviour is found for τf vs σ but fluidization
is much faster when creep and preshear are applied in
opposite directions.

We checked that:
(i) the preshearing direction does not affect the shape of
the subsequent shear rate response γ̇(t) (data not shown),
which remains similar to the responses shown in Fig. 4 in
the main text and, in particular, shows three well-defined
regimes.
(ii) reversing both preshear and creep directions does not
affect τf so that the difference may not be attributed to
an artifact due to our rheometer or geometry,
(iii) in the case of successive preshears with different di-
rections such as in the protocol used in the main text
(+1000 s−1 followed by −1000 s−1), the fluidization time
is only affected by the last preshear step.
This clearly shows that, even though preshear success-
fully erases previous sample history, the resulting gel mi-
crostructure is sensitive to preshear.

The influence of preshear was investigated by Osuji et
al. [76] in CB gels in tetradecane at 2–8% w/w. A power-
law dependence of the elastic modulus with the shear
stress applied during preshear was reported together with
a slow decrease of the residual “internal stress”, i.e. the
shear stress measured after flow cessation, σi(t) ∼ t−0.1.
These findings were interpreted based on a simple model
for the cluster size reached after preshearing at a stress σp

and on an unusually fast build-up of the network struc-
ture after cessation of shear in which internal stresses act
opposite to the preshear direction.

Internal stresses may partly explain our results. In-
deed, if stress is applied in the direction opposite to pres-
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Figure 5: Creep experiment in a 6% w/w CB gel at σ = 16 Pa under smooth boundary conditions. (a) Shear rate response γ̇(t).
The vertical dashed lines indicate the limits of the three regimes discussed in the text. The coloured symbols show the times
at which the velocity profiles in (b)–(e) are recorded. Velocity profiles v(r, t0), where r is the distance to the rotor, normalized
by the current rotor velocity v0(t0) at (b) t0 = 39 s, (c) t0 = 3806, 5700, and 6240 s, (d) t0 = 6871, 7157, and 7536 s, and
(e) t0 = 7650, 7800, and 8000 s.

hear, internal stress adds up to the applied stress, thus
facilitating yielding and leading to a faster fluidization
process. Yet Supplemental Figure 3 shows that the ef-
fect of preshear is not simply an effective change of σ by
a constant ±σi depending on the preshear direction since
in this case the two curves τf vs σ would only be trans-
lated by a constant amount. Moreover, if the differences
in fluidization times were to be explained solely by in-
ternal stresses, then one would expect that for very long
fluidization times (i.e. for small σ), the slow relaxation of
internal stresses leads to smaller discrepancies in τf . This
is not observed in our data. Rather, fluidization times be-
come similar for large values of σ and both parameters
σ0 and τ0 in the exponential fits depend on the preshear
direction. We find σ0 = 2.6 Pa and τ0 = 3.4 106 s for a
preshear in the positive direction and σ0 = 4.8 Pa and
τ0 = 1.9 104 s for the opposite direction (see red lines in
Supp. Figure 3). This suggests that the anisotropy of
the gel structure induced by preshearing plays an impor-
tant role in the delayed fluidization under creep. Such an
anisotropy is not accounted for in the model of Ref. [52].

IV. VELOCITY PROFILES UNDER SMOOTH
BOUNDARY CONDITIONS

Supplemental Figure 4 reports velocity profiles
recorded during a creep experiment performed under
smooth boundary conditions on a 6% w/w CB gel to-
gether with the corresponding evolution of the shear rate
γ̇(t) [see Supp. Figure 4(a)]. Total slippage at the fixed
outer wall is observed as soon as shear is applied at
t = 0 [see Supp. Fig. 4(b)]. Although velocities for

200 . t . 3000 s are too small to allow for reliable mea-
surements, the flow is most likely pluglike throughout the
creeping flow regime (i) with slip velocities increasing at
the rotor and decreasing at the stator. Indeed, once the
shear rate has raised above roughly 10−2 s−1 allowing
velocities to be accurately estimated, velocities show a
flat profile with almost total slippage at the rotating in-
ner wall [see Supp. Fig. 4(c)]. After a small bump in
γ̇(t) which is characteristic of the shear rate response in
a smooth cell (here at t ≃ 6000 s, see also Fig. 10 in
the main text), highly fluctuating shear-banded velocity
profiles are recorded [regime (ii), see Supp. Fig. 4(d)].
Steady homogeneous velocity profiles are recovered after
the inflection point in γ̇(t), with about 10% of residual
wall slip at the rotor [regime (iii), see Supp. Fig. 4(e)].

V. EVOLUTION OF THE CHARACTERISTIC
SHEAR RATE γ̇⋆ AFTER FAILURE AT THE

INNER WALL

The characteristic shear rate γ̇⋆ after failure at the
inner wall at t = τc under rough boundary conditions
is shown in Supplemental Figure 5 as a function of the
applied shear stress σ for four gel concentrations C. γ̇⋆

is seen to increase fairly linearly with the applied stress
σ and, on average, to increase with the gel concentration
C.
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Figure 6: Shear rate γ̇⋆ after failure at the inner wall at t = τc
as a function of the applied shear stress σ for CB gels of
concentration C = 4 (△), 6 (�), 8 (•), and 10% w/w (�).
Solid lines correspond to linear behaviours γ̇⋆

∝ σ. Error
bars show the variations of γ̇(t) over the shear rate plateau
for τc < t < τf .

VI. SHEAR RATE RESPONSE AS A
FUNCTION OF STRAIN

Supplemental Fig. 6 shows the data of Fig. 7 replotted
as a function of the strain γ. The good collapse of all
curves at the end of the initial creep regime (see also
inset of Supp. Fig. 6) suggests that failure at the inner
wall at τc can be associated with a characteristic “yield
strain” γc ≃ 0.2–0.3. The strains γf corresponding to
full fluidization at τf are spread over a very large range
γf ≃ 200–3000.
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Figure 7: Creep experiments in an 8% w/w CB gel under rough boundary conditions. Shear rate responses γ̇ as a function of
the strain γ for different shear stresses σ applied at time t = 0: from right to left, σ = 24, 27, 35, 38, 41, 45, 47, 50, 52, 55, 60,
70, and 80 Pa. Inset: enlargement over the end of the initial creep regime.


