
0 5 10 15 20 25 30
0

10

20

30

40

Number of cores

F
P

S

1 2 3 4 5 6
0

20

40

60

80

100

Number of cores

F
P

S

Efficient Software Synthesis
of Dynamic Dataflow Programs

H. Yviquel1, A. Sanchez1, P. Jääskeläinen2, J. Takala2, M. Raulet1, E. Casseau3

1 INSA of Rennes, IETR, France
2 Tampere University of Technology, Finland

3 University of Rennes 1, IRISA, Inria, France

Orcc : Dataflow Programming Made Easy
Orcc is an open-source Integrated Development Environment based on
Eclipse and dedicated to dataflow programming.
- Assisted writing of the applications: A advanced editor for writing
dataflow actors in CAL, and a intuitive graph editor for designing dataflow
networks.
- Fast debug and validation: Orcc introduces innovative features for the
debugging of dataflow programs, and integrates a simulator which allows
quick functional verification.
- Develop once, run everywhere: The embedded compiler is able to
generate both hardware or software code from a single description. Then,
generated implementations can be executed on large panel of platforms
(GPP, DSP, FPGA, etc) thanks to the available runtime libraries.

Reconfigurable Video Coding

Reconfigurable Video Coding (RVC) is a development framework for
video coding tools based on dataflow programming. The objectives of
RVC are :
- Accelerating the standardization process of video coding technologies.
- Increasing flexibility of coding devices

The framework has been standardized by MPEG in 2009 and can be
considered as the first large-scale experimentation on dynamic dataflow
programming based on a subset of CAL Actor Language. Several video
decoders, among other applications, have been developed using the
RVC standard, such as the following HEVC decoder:

Freely available at http://orcc.sf.netEfficient Software Synthesis
The synthesis translates dataflow descriptions into procedural code :

The software synthesis of dynamic dataflow programs has been
enhanced by :
- Using relative indexes for the circular buffer to avoid costly conditional
branching when accessing to data.
- Computing directly from/to FIFO channel whenever it is possible: This
removes additional data copies within muti-rate actions
- Detecting automatically when data are aligned in circular buffers: This
detection accelerates FIFO accesses and allow auto-vectorization from
the compiler.

Our runtime allows the execution of any dynamic dataflow programs on
multi-core platforms.

The runtime can be decomposed in 3 parts :
- A lightweight profiling is performed at runtime in order to determine the
computational loads and the communication rates in the application.
- The mapping system assigns at runtime the actors to the processor
cores according to the profiling results. As a result, the application can be
equitably balanced on the platform. The mapping is only performed at
predefined synchronization point to reduce the overhead of actor
migration.
- The distributed schedulers order and time the actor execution on each
processor core according to the flow of data. The actors are executed
until they cannot fire anymore to benefit from temporal and spatial
locality.

Desktop implementation
Intel Xeon @ 3,2GHz // 720P sequence
MPEG-4 Visual: 95 FPS -- 3x (4 cores)
MPEG-4 AVC: 14 FPS -- 3x (6 cores)
HEVC: 52 FPS – 2x (4 cores)
Good frame-rate → High freq. / Assembly opt.
Limited speed-up → Communication cost

Embedded implementation
TTA multicore platforms with distributed mem.
Simulation @ 1GHz // 720P sequence
MPEG-4 Visual: 40 FPS -- 8x (16 cores)
HEVC: 5 FPS
Bad frame-rate → Low freq. / No opt.
Good speed-up → Pipeline parallelism

Results

FIFO channels

Actors
States
Firing rules (FSM, guards)
Actions (Read/write tokens)

Circular buffers

Procedural tasks
Variables
Internal schedulers
Procedures (Access buffer + Update index)

struct fifo_s {
 uint readIndex;
 uint writeIndex;
 type buffer[SIZE];
}

int X = 0;

int foo(){
 return X;
}

Application

Platform

(a) Applying
initial mapping

(c)
Profiling

application

(e) Applying
efficient
mapping

(d) Processing
actor mapping

(b, f)
Executing
application

Interconnection network

Core CoreCore

448

12

4

1

7

8

14 24

19

9 17

5

665
38

17

12

334
12

3
5

 Multicore Runtime

Intra
Prediction

Generate
InterInfo

Select
CU

Inter
Prediction

Picture
Buffer

Inverse
Transform

DBF SAO
RESIDUAL

PREDICTION

FILTER

Transp
4x4

IT4x4
1d

Transp
4x4

IT4x4
1d

Transp
8x8

IT8x8
1d

Transp
8x8

IT8x8
1d

Transp
16x16

IT16x16
1d

Transp
16x16

IT16x16
1d

Transp
32x32

IT32x32
1d

Transp
32x32

IT32x32
1d

InvDST4x4

Splitter Merger

P
A

R
S

E
R

InvDST4x4

34 actors / 109 FIFOs

Variable granularity
Big actors

4000 loc
1000 loc

Small actors
 200 loc

 40 loc

Dynamic Dataflow Modeling
Based on a Model of Computation introduced by Lee and Parks in 1995
and called Dataflow Process Network (DPN).

D
A

C

B
E

 Actions

State

Actions may
1) Read input tokens
2) Modify actor state
3) Write output tokens

Non-blocking FIFO channels
transport discrete data (“tokens”)

DPN actors
encapsulate state (communicate only through ports)
execute actions sequentially according to firing rules

	Diapo 1

