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ABSTRACT

This paper introduces advanced software synthesis techniques

that enhance the implementation of dynamic dataflow pro-

grams. These techniques have been implemented into open-

source tools and demonstrated on well-known video decoders

including one based on the new High Efficiency Video Cod-

ing (HEVC) standard. The results show an improvement of

more than 100% of the frame-rate over previously proposed

implementations, and achieve real-time decoding of high def-

inition video sequences.

1. INTRODUCTION

The emergence of massively parallel architectures, along

with the increasing complexity of applications, has revived

the interest in dynamic dataflow programming. Indeed, dy-

namic dataflow programming offers a flexible development

approach which is able to build complex and modular appli-

cations while expressing parallelism explicitly. Paradoxically,

most of the studies stay focused on static dataflow program-

ming, even if a pragmatic development process requires

the expressiveness and the practicality offered by dynamic

dataflow programming.

The main challenge that dynamic dataflow programs have

to face is the demonstration of efficient implementations that

can achieve performance constraints imposed by modern ap-

plications. For instance, video decoders have to provide real-

time frame-rates for high-definition video sequences. While

the efficiency of traditional language programs is the result

of 50 years of work on compilers to mainly exploit memory

locality, abandoning memory-oriented programming in favor

of dataflow programming requires the development of new

compilation techniques to fully benefit from the processor ar-

chitecture.

As a result, this paper presents advanced software synthe-

sis techniques that enhance the implementation of dynamic

dataflow programs using their specific properties and the flex-

ibility of software systems. These techniques have been im-
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plemented into open-source tools and demonstrated on well-

known video decoders including one based on the new High

Efficiency Video Coding (HEVC) standard.

The paper is organized as follows. First, the context of dy-

namic dataflow programming is described in Section 2. Then,

we describe our methodology to enhance the software syn-

thesis of dynamic dataflow programs in Section 3. Section 4

presents experimental results and compare them with previ-

ous works. Finally, we conclude in Section 5.

2. DYNAMIC DATAFLOW PROGRAMMING

Dynamic dataflow programming relies upon a model of

computation called Dataflow Process Network (DPN) [1],

which is closely related to Kahn Process Network (KPN).

In this model, an application is represented as a directed

graph wherein the vertices model computational units that

are called actors and the unidirectional edges represent un-

bounded communication channels based on FIFO principle.

The FIFO channels can be empty or can carry a possibly

infinite sequence of atomic data called tokens.

Additionally to the KPN model, DPN introduces the no-

tion of firing. An actor firing is an indivisible quantum of

computation which corresponds to a mapping function of in-

put tokens to output tokens applied repeatedly and sequen-

tially on one or more data streams. This mapping is composed

of three ordered and indivisible steps: data reading, then com-

putational procedure, and finally data writing. These func-

tions are guarded by a set of firing rules which specifies when

the functions can be fired, i.e. the number and the values of

tokens that have to be available on the input ports to fire the

actor. An actor can fire when at least one of its firing rules is

satisfied. When several firing rules are satisfied at the same

time, a single one is chosen based on predefined priorities.

Few years ago, MPEG has introduced an innovative

framework, called RVC [2], that can be considered as the

first large-scale experimentation on dynamic dataflow pro-

gramming. RVC has been initially introduced to overcome

the lack of interoperability between the various video codecs

deployed in the market. The framework allows the devel-

opment of video coding tools, among other applications, in



a modular and reusable fashion thanks to the inclusion of a

subset of CAL programming language [3], and the support of

a complete development environment known as Orcc [4].

In general, communication and synchronization are the

major sources of inefficiencies on every multi-core system.

In particular, the implementation of dynamic dataflow pro-

grams faces two issues to achieve performance requirements:

Scheduling and communication. Both are directly impacted

by the application granularity, usually defined as the ratio

of computation to the amount of communication. Video de-

coders are traditionally described at fine-granularity since the

pixels are processed block after block. On the one hand, the

scheduling is a well-known bottleneck of dynamic dataflow

programs since their expressive power requires a large num-

ber of control structures. The literature has already introduced

a large panel of methodologies to optimize the scheduling of

dynamic dataflow programs in different manners [5, 6, 7, 8,

9]. On the other hand, the communication is the major bottle-

neck of all dataflow programs. Since the actors can only com-

municate through the FIFO channels, the execution requires a

massive amount of data movements that can ultimately lead to

poor performance. Restricted dataflow models usually solve

this issue by grouping the data transfers, but this is not possi-

ble with dynamic dataflow models. As a result, this paper fo-

cuses on communication and computation aspects to enhance

the software implementation of dynamic dataflow programs

[10, 11] using the specific properties of the DPN model and

the flexibility of software systems.

3. PROPOSED SOFTWARE IMPLEMENTATION OF

DYNAMIC DATAFLOW PROGRAMS

In theory, the DPN model defines FIFO channels with un-

bounded capacity [1]. In practice, the FIFO channels are

bounded to limit memory usage and avoid the overhead of dy-

namic memory allocation. Actually, bounded FIFO channels

have been studied extensively, but the DPN model has speci-

ficities that make their implementation quite challenging. The

DPN model defines action firing as an indivisible quantum of

execution. Therefore, an action is fired if and only if its firing

rule is valid. Thus, the implementation of FIFO channels for

DPN-based programs requires the ability to check their state,

i.e. the number of tokens available, during the execution, and

to peek their tokens from input channels, i.e. checking val-

ues of incoming tokens without consuming them, to evaluate

action fireability and thus break conventional FIFO principle.

3.1. Branch-Free Communications

In software, FIFO channels are traditionally implemented by

a circular buffer allocated in a shared memory. Read and write

are then achieved by accessing the buffer according to read

and write indexes that are updated afterwards. Moreover, the

comparison of the indexes is sufficient to know the state of

the FIFO channel. Finally, a peek is a read without the update

of the read index, but any token can be peeked thanks to the

full accessibility of the shared memory. Using circular buffer

to implement FIFO channels avoids side shuffles of data after

each reading, but implies an advanced management of mem-

ory indexes that can ultimately lead to poor performance. For

instance, the update of the indexes may require checking if

the end of the buffer is reached to go back to the beginning.

Avoiding checks on the position of the indexes is how-

ever possible using absolute indexes with the cost of addi-

tional modulo operations. Thus, performing read and write

increases the indexes infinitely until the overflow of the vari-

ables. Since computing the modulo is costly on most pro-

cessor architectures, it is translated to a simple right shift by

forcing the size of the buffer to a power of two. Paradoxically,

such a constraint on the size of the communication channels

does not have a large impact on the memory usage, especially

compared to the large needs of video decoders. Indeed, the

initial sizes of our FIFO channels being reasonable, the round-

up to the next power of two is relatively small.

1 transp: action

2 IN:[ src ] repeat 16 // Input pattern

3 ==>

4 OUT:[ dst ] repeat 16 // Output pattern

5 var

6 int(size=16) dst[16] =

7 [ src[ 4 * column + row ] :

8 for int row in 0 .. 3,

9 for int column in 0 .. 3

10 ]

11 end

Listing 1. Transposition of a 4x4 block in CAL

3.2. Copy-Free Communications

One of the high-level features of CAL is its ability to describe

multi-rate actions [3], i.e. actions reading and writing pools of

data at each firing, such as the transposition of 4x4 block pre-

sented in Listing 1 that reads and writes 16 tokens by firing.

In fact, multi-rate actions are common for video coding since

the pictures are usually processed block after block. Follow-

ing this semantic, the body of a multi-rate action, such as the

one described in Listing 1, is translated into a function com-

posed of 3 steps as follows [12, 10]: 1) Reading: Incoming

tokens are read in order from the input FIFO channels and

stored into the local variables referenced by the input pattern.

E.g., in Listing 1, 16 tokens are read from the input port IN

and stored in the local array src. 2) Processing: The action

is processed, as defined in its CAL description, using the lo-

cal variables referenced into the input and output patterns as

interfaces. As a consequence, the processing of data is not

necessarily described in order. 3) Writing: Outgoing tokens

are written in order from local variables referenced by the

output pattern into the output FIFO channels. E.g., in List-



ing 1, 16 tokens are written successively from the local array

dst to the output port OUT. While this implementation stays

respectful of the FIFO principle, with the exception of the

peeking, it also involves two additional copies between the

circular bIn fact, the firing rules are evaluated successively

according to the partial order defined within the actor (prior-

ities and FSM). Thus,uffers and the local variables (knowing

that only one copy is mandatory).

1 void transp() {

2 int indSrc, indDst;

3 for(int row = 0; row<=3; row++) {

4 for(int col = 0; col<=3; col++) {

5 indSrc = (IN->rdInd + (4*col+row))

% IN->SIZE;

6 indDst = (OUT->wrInd + (row*4+col))

% OUT->SIZE;

7 OUT->buff[indDst] = IN->buff[indSrc];

8 }

9 }

10 IN->rdInd += 16;

11 OUT->wrInd += 16;

12 }

Listing 2. Copy-free and branch-free action

Since our FIFO channels are implemented in shared mem-

ory without access restriction, we can remove all the addi-

tional copies to local buffers by accessing directly to the con-

tent of the FIFO channels within the processing of the ac-

tion. So, accesses to input and output variables, such as src

and dst, are replaced by direct accesses to FIFO channels,

such as IN and OUT respectively. Unfortunately, race condi-

tions, i.e. synchronization issues, can occur when the action

processing does not ensure that the FIFO accesses are per-

formed in order (such as the accesses to src). But, the DPN

model defines an action firing as a quantum of execution [1],

in other words an action firing is an atomic step that cannot

be interrupted. Thus, the FIFO indexes can be updated just

once at the end of the action without changing the semantic

of the application, such as presented in Listing 2. Then, the

implementation stays respectful of the FIFO principle of the

DPN model. Indeed, other processors cannot access the FIFO

rooms involved by this processing since the FIFO indexes are

not updated until the action is entirely processed.

To summarize, the three first steps of action firing (Read-

ing, processing, and writing) can be merged together, reduc-

ing the memory footprint and the number of instructions to

implement the action, as long as the FIFO indexes are up-

dated after the action processing, and thus let the other actors

using newly produced data and newly released rooms.

3.3. Aligned Communications

Our branch-free implementation prevents potential optimiza-

tions due to absolute indexes. In fact, the compiler cannot

know if the access are aligned in the memory or if the end

of the circular buffer is reached during the execution of the

current action. Thus, we generate two versions of all ac-

tions, standard (Listing 2) and aligned (Listing 3), that are

executed according to the current position in circular buffers.

The aligned version of the action is called whenever the to-

kens are linearly accessible in the buffer. So, the relative in-

dexes can be computed only once at the beginning of the ac-

tion. Additionally, the aligned accesses to the circular buffer

are vectorizable since the width of the FIFO channels within

our applications are often inferior to the bus width (8 or 16

bits are common values in video processing). As a result

this optimization is very powerful for processors that exploits

instruction-level parallelism and word-level parallelism.

1 void transp_aligned() {

2 int IN_rdInd = IN->rdInd % IN->SIZE;

3 int OUT_wrInd = OUT->wrInd % OUT->SIZE;

4 int ind_Src, ind_Dst;

5 for(int row = 0; row<=3; row++) {

6 for(int col = 0; col<=3; col++) {

7 indSrc = IN_rdInd + (4*col+row);

8 indDst = OUT_wrInd + (row*4+col);

9 OUT->buff[indDst] = IN->buff[indSrc];

10 }

11 }

12 IN->rdInd += 16;

13 OUT->wrInd += 16;

14 }

Listing 3. Dependence-free action

3.4. Multi-level Dynamic Scheduling

As defined by Lee and Parks [1], the execution of a DPN-

based actor is modeled by the repeated evaluation of the fir-

ing rules that are, in case of a success, followed by the firing

of the associated action. This process is usually defined as

the action scheduling. The action scheduler can be imple-

mented by a simple function that evaluates the firing rules

in order [11] such as presented in Listing 4. In theory, the

scheduler evaluates only two conditions to determine the fire-

ability of an action: the input pattern, the amount of tokens

required in the input channel (hasTokens), and the guard,

the potential condition on the values of tokens and/or state

variables (isSchedulable). In practice, the scheduler has

also to evaluate the output pattern so as to ensure that enough

rooms are available in the output channels to allow the firing

of the action without blocking (hasRooms). While the valida-

tion of the output pattern is not required by the DPN model, it

is necessary when several actors are executed concurrently on

the same processor. Indeed, waiting for the availability of an

output channel, using blocking writes for instance, inevitably

leads to a deadlock if the target of the channel, the consumer,

is mapped to the same processor. Additionally, the sched-

uler checks if a sufficient number of tokens are aligned in the

FIFO channels to be able to execute the optimized version of



the action (areAligned).

Apart from this internal scheduling, the execution of a

DPN program in a concurrent environment requires actor

scheduling to order and time the actor execution. In previous

works [13, 14], we have introduced run-time actor map-

ping/scheduling strategies dedicated to DPN-based actors.

Our scheduling strategies execute the current actor until it

cannot fire anymore to exploit spatial and temporal locality.

We assume that an actor should not be fired indefinitely with-

out external contribution (other actors that consume/produce

the tokens). So, the actor currently scheduled will be blocked

at some point, with no chance to be fired anymore, and will

exit from the action scheduler to let the actor scheduler decide

the next actor to schedule.

1 void Transpose4x4_0_scheduler() {

2 while (1) {

3 if (hasTokens(fifo_Src, 16) &&

isSchedulable_transp) {

4 if (hasRooms(fifo_Dst, 16)) {

5 goto finished;

6 }

7 if (areAligned(fifo_Dst, 16))

8 transp(); // Fire the action

9 } else

10 transp_aligned(); // Fire the action

11 }

12 } else { // Check the next action...

13 goto finished;

14 }

15 }

16 finished:

17 return; // Return to actor scheduler

18 }

Listing 4. Action scheduler

To conclude, the execution of DPN-based programs in-

volves both actor scheduling and action scheduling. While

they are two distinct levels of scheduling, they are intimately

related since the success of the action scheduling within an ac-

tor is directly dependent on the production/consumption per-

formed by its predecessors/successors.

4. RESULTS

This section studies the implementation of dynamic dataflow

programs on both desktop and embedded multi-core plat-

forms. On the one hand, the desktop implementation is

generated by use of the C back-end of Orcc [4]. The gener-

ated C code is compiled with GCC and executed on top of

Ubuntu GNU/Linux. Concerning the platform that has been

used during these experiments, we use an Intel Core i7 with

2 cores clocked at 3.2GHz. On the other hand, the embedded

implementation targets multi-core platforms composed of

homogeneous Very Long Instruction Word -style processors,

based on the Transport-Trigger Architecture (TTA) [15], run-

ning at 100MHz and interconnected by point-to-point shared

memories. In this configuration, the tested software imple-

mentations are generated by use of the TTA back-end of

Orcc [16], then the generated code is compiled and simulated

thanks to the TTA-based Co-design Environment (TCE) [17].

Desktop Embedded

[18] [11] Ours [16] Ours

MPEG-4 SP 12 150 400 90 180

MPEG-4 AVC N/A 60 220 N/A N/A

Table 1. Improvement of more than 200% of the decod-

ing frame-rates (QCIF) over previously proposed implemen-

tations [18, 11, 16]

Table 1 summarizes the decoding frame-rates obtained

from different implementations of DPN-based video de-

coders. All the results have been obtained with the same

application descriptions (standardized) and video sequences

(foreman QCIF). The results clearly show that our implemen-

tation significantly improves the performance thanks to our

advanced software synthesis techniques.

Number of cores 1 2 4

MPEG-4 SP 30 54

HEVC 12 22

Table 2. Real-time HD decoding frame-rates (720P) on desk-

top multi-core platforms

Table 2 presents the decoding frame-rates obtained from

our implementation on desktop platforms with high definition

video sequence. The results show that our implementation

can already achieve real-time decoding frame-rates even on a

small number of processor cores.

5. CONCLUSION

We have proposed advanced software synthesis techniques to

enhance the implementation of dynamic dataflow programs

on both desktop and embedded processors. We have particu-

larly focused on communication and computation issues. Our

approach is validated by presenting real-time decoding frame-

rates of HD video sequences.
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[13] Hervé Yviquel, Emmanuel Casseau, Matthieu Wipliez,
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